(51) International Patent Classification:
A61B 17/70 (2006.01)

(21) International Application Number:
PCT/IB2015/057785

(22) International Filing Date:
12 October 2015 (12.10.2015)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
1459907 15 October 2014 (15.10.2014) FR

(72) Inventors: SOURNAC, Denys; 345 Montée de Bellevue, F-01600 Reyrieux (FR), MOSNIER, Thomas; 24 rue du Prince d'Orange, F-38280 Anthon (FR), RYAN, David; 33 rue Pierre Ternier, F-69660 Collonges Au Mont D'or (FR).

(74) Agent: JEANNET, Olivier; 26 Quai Claude Bernard, F-69007 Lyon (FR).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available):

(54) Title: VERTEBRAL OSTEOSYNTHESIS EQUIPMENT

(57) Abstract: This equipment (1) comprises at least one connecting bar (3) having an assembly portion (11), at least two anchoring members (2) and at least one connecting part (4), (5) of the so-called "side loading" type. According to the invention, said assembly portion (11) comprises at least one protruding lug (13) situated on the side of one of its ends, and said connecting part (4) has a longitudinal slot emerging in said engagement duct, sized to receive said lug (13) in an adjusted manner, but with the lug (13) being able to slide therein, said connecting part (4) being able to be engaged on said assembly portion (11) beyond that lug (13).
VERTEBRAL OSTEOSYNTHESIS EQUIPMENT

The present invention relates to a vertebral osteosynthesis equipment.

To treat the degeneration of one or more vertebral joints, it is known to use vertebral osteosynthesis equipment comprising anchoring members for anchoring to the vertebrae (pedicle screws and/or laminar hooks), connecting bars, connecting parts for connecting said bars to said anchoring members, and tightening nuts for tightening said connecting parts relative to said bars and anchoring members. As an example, patent application publication no. WO 98/55038 describes such an equipment.

In general, the existing equipment does not always appear to be well-suited to treating a short vertebral column segment, i.e., resolving a degeneration at one or two vertebral joints. In particular, they are relatively complicated and time-consuming to implant, which noticeably extends the procedure time.

Such an equipment may comprise at least one connecting part of the so-called "side loading" type, like those described in the aforementioned patent application publication no. WO 98/55038, i.e., in which the duct for engaging the connecting bar is laterally offset relative to a duct allowing the part to be mounted on a proximal pin comprised by the associated anchoring member. An equipment of this type has the drawback of causing, particularly when the connecting bar is short, the risk of one or more connecting parts escaping from that bar.

Furthermore, this type of equipment has the drawback of not ruling out pivoting of the connecting bar relative to the anchoring members during tightening of the nuts, occurring even more when that bar is short and curved. This may result in defective angular positioning of the bar, leading to an imperfect or even defective correction of the treated segment, and therefore involving loosening of the nuts and repositioning of the bar.

A vertebral osteosynthesis equipment also comprises at least one connecting part of the so-called "top loading" or "tulip" type, i.e., forming an engagement duct of the connecting bar whose axis is secant to the axis of the vertebral anchoring screw, said duct being closed, after implantation of the connecting bar thereon, by a
threaded stopper screwed into the "tulip". This type of equipment has the drawback of making it possible for the connecting bar to pivot as cited above, which occurs even more when that bar is short and curved. The threaded stoppers can be difficult to place, in particular because the connecting bar may not always be completely engaged in the ducts formed by the "tulips", and it is then necessary to use an instrument to push the connecting bar into those duct so that it is possible to place the stoppers. Furthermore, such stoppers have small sizes and may undergo a deterioration of their thread when they are placed, problem known as "cross threading".

The present invention aims to provide a vertebral osteosynthesis equipment resolving all of these drawbacks.

Furthermore, patent application publication no. US 2008/312692 A1 describes a vertebral osteosynthesis equipment comprising at least one connecting bar, at least two anchoring members and at least one connecting part for connecting the connecting bar to the anchoring members. The connecting part comprises an engagement duct of the bar that is laterally offset relative to an assembly duct on the corresponding anchoring member. In this equipment, the part of the connecting bar designed to be engaged in said engagement duct is smooth, which does not make it possible to resolve the aforementioned drawback of the risk of one or more connecting parts escaping outside the bar, particularly when the connecting bar is short.

The main aim of the invention is therefore to provide simple and easy-to-place equipment that is particularly well-suited to treating a short vertebral column segment.

Another aim of the invention is to provide an equipment in which the risk of a connecting part of the so-called "side loading" type escaping outside the connecting bar is eliminated.

An additional aim of the invention is to provide an equipment in which the risk of pivoting of the connecting bar relative to the connecting parts is eliminated.
Still another aim of the invention is to provide an equipment in which the assembly of the connecting bar to the anchoring members is done simply and quickly.

This equipment comprises, in a manner known in itself,

- at least one connecting bar having an assembly portion designed to extend along the vertebrae to be treated, this assembly portion having a circular cross-section;
- at least two anchoring members designed to be anchored in the vertebrae to be treated, each anchoring member comprising a threaded proximal pin;
- at least one connecting part of the so-called "side loading" type, i.e., comprising an engagement duct for the engagement of said assembly portion that is laterally offset relative to an assembly duct for the engagement of the connecting part on the proximal pin comprised by the associated anchoring member; said engagement duct has a circular cross-section and said assembly portion is designed to be engaged through said engagement duct, the connecting part being capable to pivot around said assembly portion when the assembly portion is engaged in the engagement duct; and
- tightening nuts designed to be screwed on said threaded proximal pins of the anchoring members, so as to mount said connecting part (4) on said associated anchoring member.

According to the invention,

- said assembly portion comprises at least one protruding lug situated on the side of one of its ends, and
- said connecting part has a longitudinal slot emerging in said engagement duct, sized to receive said lug in an adjusted manner, but with the lug being able to slide therein, said connecting part being able to be engaged on said assembly portion beyond that lug.

Once said connecting part is engaged past that lug, the connecting part can pivot relative to said assembly portion; it can then only be removed from the assembly portion in the angular position allowing it to be engaged on the lug. This
connecting part is thus made "captive" relative to the connecting bar, such that the risk of the connecting part escaping from said assembly portion is made very low.

 Preferably,
 - said engagement duct is arranged on one side of the connecting part, so that, when the connecting part is engaged on said assembly portion, the connecting part adopts by gravity a first angular position on the assembly portion;
 - the lug and said slot are so positioned relative to, respectively, the connecting bar and the connecting part that the angular engagement position permitting to engage the connecting part on the lug is a second angular position distinct from said first angular position and angularly separated therefrom.

 The connecting part adopts by gravity said first angular position when it is engaged on said assembly portion and has to be pivoted to said second angular position to be removed from said assembly portion, and is thus normally retained on said assembly portion during the implantation procedure.

 Preferably, said first and second position are angularly separated by at least 90 degrees, and more preferably by 180 degrees.

 Preferably,
 - said connecting part is U-shaped, i.e., comprises a base part and two parallel branches connected to that base part, which are separated from one another by an interstice, said engagement duct of the assembly portion being defined by that base part and by the base of those parallel branches; and
 - said longitudinal slot is formed by the portion of said interstice extending along the base of the parallel branches.

 With this type of connection, it is thus not necessary to specifically arrange a slot able to allow the engagement of the connecting part on the lug: it is the part of the interstice bordering the engagement duct of the connecting bar that forms that slot.

 According to another aspect of the invention, the connecting bar has an eyelet at one end and an intermediate portion connecting that eyelet to said assembly portion, said intermediate portion being dimensioned to laterally offset the axis of the
eyelet relative to the longitudinal direction of said assembly portion, by a distance substantially equal to the distance by which, on said connection portion, said engagement duct of the assembly portion is offset relative to said assembly duct.

During the implantation of the equipment, the eyelet is directly engaged on the proximal pin of the anchoring member associated with it and said connecting part, engaged on said assembly portion, is engaged on the proximal pin of the anchoring member associated with it. The eyelet makes it possible, by comparison with a traditional equipment, to eliminate the need for an additional connecting part that would be situated close to one end of the bar and would therefore tend to escape from the bar during the implantation of the equipment; said intermediate portion makes it possible, notwithstanding this assembly using this eyelet, for said assembly portion to be positioned with its longitudinal direction substantially parallel to the longitudinal direction of the vertebral column, in order to immobilize the vertebrae, or correct the position of those vertebrae, in an adapted manner.

Said intermediate portion could be at a right angle relative to said assembly portion; it is, however, advantageously bent so as to be relatively compact with respect to the surrounding anatomical structures.

Preferably, said connecting bar comprises, at the connecting zone of said intermediate portion to said assembly portion, or near that zone, a bearing surface for an instrument making it possible to move said connecting part, engaged on said assembly portion.

This instrument thus makes it possible to move one anchoring member relative to the other so as to correct the position of two treated vertebrae, in which these anchoring members are implanted.

Said bearing surface is advantageously in the form of a collar secured to the connecting bar.

Such a collar offers a possibility of bearing over its entire perimeter.

Said assembly portion can be dimensioned lengthwise so as to receive two anchoring member / connecting part assemblies; the equipment then comprises not only a first assembly formed by said connecting part and said anchoring member
associated with the connecting part, but also a second assembly formed by a second connecting part and a second anchoring member associated with that second connecting part.

According to one possibility, in that case,

- said second connecting part is of the "open" type, i.e., forms a curved portion that defines an engagement duct for the engagement of said assembly portion, said curved portion being able to surround the assembly portion only partially, and
- said second assembly comprises a closing means making it possible to close this engagement duct when said second connecting part is gripped on said associated second anchoring member.

This closing means may be made up of a step present on the anchoring member, as for example described by patent application publication no. WO 94/15554, or by a step present on the tightening nut, as for example described by patent application publication no. EP 0,441 ,084.

This closing means may also be in the form of a locking part forming a passage through it, that passage allowing the engagement of that locking part on a threaded proximal pin comprised by said associated second anchoring member; said second connecting part then comprises:

- a body forming said curved portion, and
- said locking part, which comprises:
 - a locking portion designed to bear against said associated second anchoring member and forming a lateral closing extension of said engagement duct, and
 - an assembly portion dimensioned to be engaged in an assembly duct comprised by said body and to slide in said duct, that sliding occurring between a separated position of said body and said second connecting part, in which said lateral extension does not hinder the transverse engagement of said assembly portion in said engagement duct, and a close position of said body and said locking
part, in which said lateral extension is at a distance from said curved portion such that it closes said engagement duct and it keeps said assembly portion in that duct.

The invention will be well understood, and other features and advantages thereof will appear, in reference to the appended diagrammatic drawing, showing, as a non-limiting example, one preferred embodiment of the equipment in question.

Figure 1 is a perspective view of this equipment;
Figure 2 is a slightly enlarged perspective view from another angle;
Figure 3 is a side view of a connecting bar comprised by the equipment;
Figure 4 is a perspective view of this connecting bar and a connecting part also comprised by the equipment;
Figure 5 is a partial view of the connecting bar, similar to figure 4, in a position different from the connecting part relative to the connecting bar;
Figure 6 is a perspective view of a second connecting part comprised by the equipment;
Figure 7 is a perspective view of this second connecting part, from another angle and in exploded view;
Figure 8 is a side view of this second connecting part, assembled on a partially visible anchoring member, in one possible assembly position of the second connecting part on the anchoring member; and
Figure 9 is a view similar to figure 8, in another possible assembly position of the second connecting part on the anchoring member.

Figures 1 and 2 show a vertebral osteosynthesis equipment comprising three anchoring members, a connecting bar, two connecting parts and tightening nuts.

The anchoring members are of the well-known "polyaxial" type, in particular described in patent application publication no. WO 98/55038. Each of them therefore comprises a screw body, a proximal wall (cf. figures 8 and 9) forming a bearing surface for a connecting part or for the eyelet described below, and an articulated proximal pin, part of which is threaded and is able to receive a nut.
The connecting bar 3 is more particularly visible in figures 3 and 4. It comprises an eyelet 10 at one end, an assembly portion 11, also called "correction" portion, an intermediate bent portion 12 between the eyelet 10 and the assembly portion 11, a lug 13 and a collar 14.

The eyelet 10 is designed to be engaged on the pin 9 by an anchoring member 2, as shown in figures 1 and 2, until it rests against said proximal bearing wall 8 thereof, and has a countersink 10a on its upper side, suitable for receiving a nut 6.

The assembly portion 11 is slightly bent, as shown in figures 3 and 4, and is designed to receive the connecting parts 4 and 5. These parts are of the so-called "side loading" type, i.e., they each comprise, as shown in figures 4 to 7, a duct 15 for engaging the assembly portion 11 that is laterally offset relative to an assembly duct 16 allowing the assembly of the connecting part 4, 5 on the proximal pin 9 comprised by the associated anchoring member 2.

The assembly portion 11 has a circular cross-section and the duct 15 of the connecting part 4 also has a circular cross-section, adjusted to the cross-section of the assembly portion 11, such that the connecting part 4 is capable to pivot around said assembly portion 11 when the assembly portion 11 is engaged in the duct 15.

Additionally, the duct 15 of the connecting part 4 is arranged on one side of the connecting part 4, so that, when the connecting part 4 is engaged on said assembly portion 11, the connecting part 4 adopts by gravity a first angular position on the assembly portion 11, shown on Figure 5.

As particularly shown in figure 2, the intermediate portion 12 is bent so as to laterally offset the axis A of the eyelet 10 relative to the general longitudinal direction DL of the assembly portion 11, by a distance D substantially equal to the distance by which, on the connecting parts 4, 5, the axis of the engagement duct 15 is offset relative to the axis of the assembly duct 16. In this way, when the equipment 1 is assembled as shown in figure 2, the three anchor members 2 are substantially aligned parallel to the longitudinal direction DL and after implantation, the connecting bar 3 is positioned substantially parallel to the axis of the treated vertebral segment.
The lug 13 is situated at the end of the assembly portion 11 opposite the intermediate portion 12 and protrudes radially from the wall of that portion 11. It has a small width (i.e., its dimension in the direction DL), such that the connecting part 4 can be engaged on the portion 11 past it or beyond it, and has a thickness (i.e., its dimension perpendicular to the direction DL) such that it can be slidingly engaged in an interstice 22, or slot, formed by the connecting part 4, as described later.

The lug 13 and said interstice or slot 22 are so positioned relative to, respectively, the connecting bar 3 and the connecting part 4 that the angular engagement position permitting to engage the connecting part 4 on the lug 13 is a second angular position, shown on Figure 4, distinct from said first angular position and angularly separated therefrom by 180 degrees.

The collar 14 is situated at the connecting zone of the intermediate portion 12 to the assembly portion 11. It forms a bearing surface for an instrument (not shown) making it possible to move the connecting part 4 engaged on the portion 11 relative to the eyelet 10. This instrument, known in principle, comprises a branch able to bear against the connecting part 4, and another branch, movable relative to the first branch, able to bear against the eyelet 10.

As particularly shown in figures 4 and 5, the connecting part 4 is U-shaped, i.e., it comprises a base 20 and two parallel branches 21 connected to that base part, which are separated from one another by said interstice or slot 22. The engagement duct 15 of the portion 11 is defined by that base part 20 and by the base of these parallel branches 21.

As will be understood in reference to figures 4 and 5, the part 4 is able to be engaged on the portion 11 by engagement of the interstice 22 on the lug 13, which requires that part 4 to be manually positioned as shown in figure 4. The part 4 is engaged on the portion 11 beyond the lug 13, which makes it possible for it to pivot relative to the portion 11 by gravity, until it assumes the position shown in figure 5, in which it is "captive" relative to the connecting bar 3. From that position, it can be brought to its engagement position on the pin 9 of the associated anchoring member 2 by simple pivoting around the portion 11.
The connecting part 5, more particularly visible in figures 6 to 9, is formed by a body 25 and a locking part 26. It is of the "open" type, i.e., its body 25 forms a curved portion 27 defining said engagement duct 15, said curved portion 27 being able to only partially surround said assembly portion 11 engaged in that duct. Outside that portion 27, the body 25 defines the assembly duct 16.

The locking part 26 comprises a locking portion 28 and a central portion 29. The locking portion 28 is designed to bear against the proximal wall 8 of the associated anchoring member 2 and forms a lateral closing extension 30 of the engagement duct 15. The assembly portion 29 is in the form of a ring of teeth that are slightly radially flexible, which is dimensioned to be engaged with friction in the assembly duct 16. These teeth are able to slide with friction in this duct 16, between a separated position of the body 25 on the locking part 26, in which said lateral extension 30 does not hinder the transverse engagement of the assembly portion 11 in the engagement duct 15, and a close position of this body 25 and this locking part 26, in which said lateral extension 30 is at a distance from said curved portion 27 such that it contains the engagement duct 15 and retains the assembly portion 11 in that duct.

Figures 8 and 9 show that the part 5 can be placed on the anchoring member 2 with the opening of the duct 15 turned toward the screw body 7 (cf. figure 8) or with that opening turned toward the side opposite that screw body 7 (cf. figure 9).

In practice, during the implantation of the equipment 1, the eyelet 10 is engaged directly on the proximal pin 9 of the anchoring member 2 associated with it until it bears against the wall 8 of that member; at the same time, the connecting part 4, placed so as to be captive on the portion 11, is engaged on the proximal pin 9 of the anchoring member 2 associated with it. The eyelet 10 makes it possible, relative to a traditional equipment, to eliminate the need for an additional connecting part that would be situated near one end of the bar and would therefore be likely to escape from the bar during the implantation of the equipment; said intermediate portion 12 makes it possible, notwithstanding this assembly using this eyelet 10, for the assembled portion 11 to be positioned with its longitudinal direction DL
substantially parallel to the longitudinal direction of the vertebral column, so as to
correct the position of those vertebrae, appropriately.

The part 5 is used when the third anchoring member 2 is made necessary by
the treatment to be performed. It is easy to engage, laterally, on the portion 11 due
to the fact that it is of the "open" type, and the locking part 26 ensures perfect locking
of that portion 11 in the duct 15 that it defines.

The invention thus provides a vertebral osteosynthesis equipment having the
decisive advantages of being quick and easy to place, and being particularly well-
suited to the treatment of a short vertebral column segment, eliminating the risk of
the connecting part 4 escaping from the connecting bar 3, eliminating the risk of
pivoting of the connecting part 3 relative to the connecting parts 4 and 5, and making
it possible to assemble the connecting bar 3 to the anchoring members 2 quickly and
easily.
CLAIMS

1. Vertebral osteosynthesis equipment (1) comprising:
 - at least one connecting bar (3) having an assembly portion (11) designed to extend along the vertebrae be treated, this assembly portion (11) having a circular cross-section;
 - at least two anchoring members (2) designed to be anchored in the vertebrae be treated, each anchoring member (2) comprising a threaded proximal pin (9);
 - at least one connecting part (4, 5) of the so-called "side loading" type, i.e., comprising an engagement duct (15) for the engagement of said assembly portion (11) that is laterally offset relative to an assembly duct (16) for the engagement of the connecting part (4) on the proximal pin (9) comprised by the associated anchoring member (2); said engagement duct (15) has a circular cross-section and said assembly portion (11) is designed to be engaged through said engagement duct (15), the connecting part (4) being capable to pivot around said assembly portion (11) when the assembly portion (11) is engaged in the engagement duct (15); and
 - tightening nuts (6) designed to be screwed on said threaded proximal pins (9) of the anchoring members (2), so as to mount said connecting part on said associated anchoring member (2);
 - characterized in that
 - said assembly portion (11) comprises at least one protruding lug (13) situated on the side of one of its ends, and
 - said connecting part (4) has a longitudinal slot (22) emerging in said engagement duct (15), sized to receive said lug (13) in an adjusted manner, but with the lug (13) being able to slide therein, said connecting part (4) being able to be engaged on said assembly portion (11) portion beyond that lug (13).

2. Equipment (1) according to claim 1, characterized in that:
- said engagement duct (15) is arranged on one side of the connecting part (4), so that, when the connecting part (4) is engaged on said assembly portion (11), the connecting part (4) adopts by gravity a first angular position on the assembly portion (11);
- the lug (13) and said slot (22) are so positioned relative to, respectively, the connecting bar (3) and the connecting part (4) that the angular engagement position permitting to engage the connecting part (4) on the lug (13) is a second angular position distinct from said first angular position and angularly separated therefrom.

3. Equipment (1) according to claim 2, characterized in that said first and second position are angularly separated by at least 90 degrees, and more preferably by 180 degrees.

4. Equipment (1) according to one of claims claim 1-3, characterized in that:

- said connecting part (4) is U-shaped, i.e., comprises a base part (20) and two parallel branches (21) connected to that base part (20), which are separated from one another by an interstice (22), said engagement duct (15) of the assembly portion (11) being defined by that base part (20) and by the base of those parallel branches (21); and
- said longitudinal slot is formed by the portion of said interstice (22) extending along the base of the parallel branches (21).

5. Equipment (1) according to one of claims 1-4, characterized in that the connecting bar (3) has an eyelet (10) at one end and an intermediate portion (12) connecting that eyelet (10) to said assembly portion (11), said intermediate portion (12) being dimensioned to laterally offset the axis (A) of the eyelet (10) relative to the longitudinal direction (LD) of said assembly portion (11), by a distance (D) substantially equal to the distance by which, on said connection portion (4), said engagement duct (15) of the assembly portion (11) is offset relative to said assembly duct (16).
6. Equipment (1) according to claim 5, characterized in that said intermediate portion (12) is at an angle.

7. Equipment (1) according to one of claims 5-6, characterized in that said connecting bar (3) comprises, at the connecting zone of said intermediate portion (12) to said assembly portion (11), or near that zone, a bearing surface (14) for an instrument making it possible to move said connecting part (4), engaged on said assembly portion (11).

8. Equipment (1) according to claim 7, characterized in that said bearing surface is in the form of a collar (14) secured to the connecting bar (3).

9. Equipment (1) according to one of claims 1-8, characterized in that said assembly portion (11) is dimensioned lengthwise so as to receive two anchoring members (2) / connecting part assemblies (4, 5); the equipment then comprises not only a first assembly formed by said connecting part (4) and said anchoring member (2) associated with the connecting part (4), but also a second assembly formed by a second connecting part (5) and a second anchoring member (2) associated with that second connecting part (5).

10. Equipment (1) according to claim 9, characterized in that:
- said second connecting part (5) is of the "open" type, i.e., forms a curved portion (27) that defines said engagement duct (15) of said assembly portion (11), said curved portion (27) being able to surround the assembly portion (11) only partially, and
- said second assembly comprises a closing means (26) making it possible to close this engagement duct (15) when said second connecting part (5) is gripped on said associated second anchoring member (2).

11. Equipment (1) according to claim 10, characterized in that said closing means may also be in the form of a locking part (26) forming a passage through it, that passage allowing the engagement of that locking part (26) on a threaded...
proximal pin (9) comprised by said associated second anchoring member (2); said locking part (26) then comprises:

- a body (25) forming said curved portion (27), and
- said locking part (26), which comprises:

 - a locking portion (28) designed to bear against said associated second anchoring member (2) and forming a lateral closing extension (30) of said engagement duct (15), and

 - an assembly portion (29) dimensioned to be engaged in an assembly duct (16) comprised by said body (25) and to slide in said duct, that sliding occurring between a separated position of said body (25) and said locking part (26), in which said lateral extension (30) does not hinder the transverse engagement of said assembly portion (11) in said engagement duct, and a close position of said body (25) and said locking part (26), in which said lateral extension (30) is at a distance from said curved portion (27) such that it closes said engagement duct (15) and it keeps said assembly portion (11) in that duct.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B17/70
ADD.

According to International Patent Classification (IPC) into both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) one or more of which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“Z” document member of the same patent family

Date of the actual completion of the international search
8 January 2016

Date of mailing of the international search report
18/01/2016

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Cesari, Aude

Authorized officer

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2008312692 Al</td>
<td>18-12-2008</td>
<td>US 2008312692 Al</td>
<td>18-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008157472 Al</td>
<td>24-12-2008</td>
</tr>
<tr>
<td>US 6749613 Bl</td>
<td>15-06-2004</td>
<td>AT 275878 T</td>
<td>15-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 766743 B2</td>
<td>23-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2810900 A</td>
<td>04-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2362247 Al</td>
<td>24-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60013776 DI</td>
<td>21-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60013776 T2</td>
<td>10-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1152704 Al</td>
<td>14-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2789886 Al</td>
<td>25-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002537015 A</td>
<td>05-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6749613 Bl</td>
<td>15-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0048523 Al</td>
<td>24-08-2000</td>
</tr>
<tr>
<td>US 2011307013 Al</td>
<td>15-12-2011</td>
<td>US 2011307013 Al</td>
<td>15-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011307015 Al</td>
<td>15-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011307018 Al</td>
<td>15-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011156236 A2</td>
<td>15-12-2011</td>
</tr>
</tbody>
</table>