woO 2008/155523 A2 |10 00 000 0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 December 2008 (24.12.2008)

lﬂb A0 000

(10) International Publication Number

WO 2008/155523 A2

(51) International Patent Classification:
GOG6F 3/06 (2006.01)

(21) International Application Number:
PCT/GB2008/002031

(22) International Filing Date: 13 June 2008 (13.06.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

0711840.9 19 June 2007 (19.06.2007) GB

(71) Applicant (for all designated States except US): SONY
COMPUTER ENTERTAINMENT EUROPE LIM-
ITED [GB/GB]; 10 Great Marlborough Street, London
WI1F 7LP (GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): CARTY, Christo-
pher, Paul [GB/GB]; Sony Computer Entertainment

Europe Limited, 10 Great Marlborough Street, London
WI1F 7LP (GB).

Agents: TURNER, James, Arthur et al.; D YOUNG &
CO, London ECIN 2DY (GB).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR COMPRESSING AND DECOMPRESSING DATA

Load into Memory va 110
Fragment in Memory / 1120

Load Fragments into Processing Units _/ 1130
/1 140

Decompress Fragments

1150
v

Write Fragments to Main Memory

FIG. 4

(57) Abstract: One embodiment of the invention provides
a method and apparatus for decompressing a compressed data
set using a processing device having a plurality of processing
units and a shared memory. The compressed data set
comprises a plurality of compressed data segments, in which
each compressed data segment corresponds to a predetermined
size of uncompressed data. The method includes loading
the compressed data set into the shared memory so that each
compressed data segment is stored into a respective memory
region of the shared memory. The respective memory region
has a size equal to the predetermined size of the corresponding
uncompressed data segment. The method further includes
decompressing the compressed data segments with the
processing units; and storing each decompressed data segment
back to its respective memory region within the shared
memory.



WO 2008/155523 A2 {00000 00000100 0 0O

FR, GB, GR,HR,HU, IE, IS, IT, LT, LU, LV, MC, MT,NL,, Published:
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, — without international search report and to be republished
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). upon receipt of that report



5

10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

METHOD AND APPARATUS FOR COMPRESSING AND DECOMPRESSING DATA

The invention relates to the compression and decompression of data, especially in a
device having multiple processing units.

In recent years, it has become common to use multiple systems operating in parallel to
enhance the performance of computers and other processing devices. Thus rather than
looking to further increase the clock speed of microprocessors (which can cause thermal
problems), such devices are now being provided with multiple cores or other processing units
for performing operations in parallel. For example, the Cell® processor, as used in the Sony
Playstation 3® entertainment device, has a main processor, referred to as the Power
Processing Element (PPE), and eight co-processors referred to as Synergistic Processing
Elements (SPEs).

It is well-known that the move to parallelism causes potential programming
difficulties, in that a linear sequence of operations can no longer be assumed. This can lead to
problems such as deadlocks, race conditions, and so on.

The use of parallelism is especially attractive for computationally intensive tasks, such
as compression and decompression. If a large data set is to be compressed, one option is to
partition the data set into smaller segments. Each data set can then be compressed (or
decompressed) independently of the other segments. Accordingly, compression (or
decompression) of the individual segments can be ‘allocated to different processing units for
completion in parallel.

As an example, an 8MB uncompressed file may be split into 128 segments, each of
64KB. The compression of the different segments can then be shared across multiple
processing units, with the results then being assembled to produce the final compressed file.
Let us assume that each of the 128 segments is compressed down to 32KB, so that the final
file is 4MB. For the decompression operation, the converse processing is performed. Each of
the 128 segments is expanded from 32KB back up to 64KB, thereby returning from a 4MB
file to an 8MB file.

During the decompression operation, one possibility is to allocate 4MB in memory for
the compressed file, and a separate 8MB in memory for the location where the decompressed
file is produced. This requires a total memory allocation of 12MB. A more efficient use of

memory is for the decompressed file to overwrite the compressed file.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

2

Figure 8 illustrates one approach to storing the decompressed file into the same
memory space as where the compressed file was initially stored. Thus Figure 8A illustrates a
memory space having a Jow end (L) and a high end (H). A file comprising sixteen-equal
compressed segments (0-F) is written into the low end of the memory space, while region 11
of the memory space is initially unoccupied. The compressed segments are depicted with
diagonal shading in Figure 8A. Tt is assumed that each compressed segment has half the
volume of the corresponding uncompressed segment.

The decompression commences by first decompressing the segment at the highest
memory location occupied by the compressed data, namely segment F, and then saving the
decompressed data segment into the empty memory region 11 at the highest available
memory location. The next highest compressed segment, namely segment E, is then likewise
decompressed, and again saved into the empty memory region 11 at the highest available
memory location (immediately below the uncompressed segment F).

As this process continues, it leads to the situation shown in Figure 8B, whereby
segments F-9 have now been decompressed. The decompressed segments are depicted with
dotted shading in Figure 8B. There is now only empty memory space 11 remaining for one
further decompressed segment, which will be segment 8. After this, the decompressed data
starts to overwrite the original compressed data. Thus decompressed segment 7 will
overwrite compressed segments E and F, while decompressed segment 6 will overwrite
compressed segments C and D. However, no data is lost, since segments E and F have
already been decompressed and saved by the time that they are overwritten by decompressed
segment 7, and likewise segments C and D have already been decompressed and saved by the
time that they are overwritten by decompressed segment 6.

As this process continues, it leads to the situation shown in Figure 8C, whereby
segments F-2 have now been decompressed. There are two remaining segments to
decompress, namely segments 0 and 1. When segment 1 is decompressed, it overwrites
compressed segments 2 and 3, and when segment 0 is decompressed, it overwrites
compressed segments 0 and 1. This leads to the result that the memory space is now fully
occupied with the decompressed data.

The above processing relies upon the fact that the data segments are decompressed in
sequence. However, in a parallel environment, this does not necessarily happen. For
example, imagine the situation from Figure 8C, where the two remaining compressed
segments, namely 0 and 1, are despatched to different processing units for decompression. It

may be that the decompression of segment 0 occurs very rapidly, and completes before the



w

10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031
3

compressed data for segment 1 has been fully processed (or loaded into the relevant
processing unit). In these circumstances, if the decompressed data for segment 0 is written to
its correct location (at the lowest end of the memory space), this will overwrite the as yet
unprocessed compressed data for segment 1; in other words, the data for segment 1 may be
lost.

One way to overcome this problem would be to initially save the decompressed data
for segment 0 to the memory region currently occupied by compressed data segments 2 and 3
(which have already been decompressed and saved). The decompressed data for segment 1,
when received later, would be written to the lowest end of the memory, currently occupied by
compressed data segments 0 and 1. The decompressed data for segments 0 and 1 would thenl
have to be swapped or reordered to assemble the data set back to its correct sequence.

However, such a procedure is potentially complex and time-consuming. Firstly, each
processing unit, when writing data back to memory, would need to decide where in memory
to save the data. The chosen locations would then need to be tracked to allow the re-ordering
to be performed after the decompression had completed.

Another approach, which is more commonly adopted for parallel (out-of-order)
execution, would be to impose some sequentiality on the system. For example, in the above
situation, the processing unit which produced the decompressed data for segment 0 would be
suspended until the decompressed data for segment 1 had been obtained and saved,
whereupon the decompressed data for segment 0 could now be safely written back to the
memory space. Unfortunately, introducing such restrictions and inter-dependencies between
different processing units reduces the potential benefits that can be gained through the use of
parallel processing.

One embodiment of the invention provides a method of decompressing a compressed
data set using a processing device having a plurality of processing units and a shared memory.
The compressed data set comprises a plurality of compressed data segments, in which each
compressed data segment corresponds to a predetermined size of uncompressed data. The
method comprises loading the compressed data set into the shared memory so that each
compressed data segment is stored into a respective memory region of the shared memory.
The respective memory region has a size equal to the predetermined size of the corresponding
uncompressed data segment. The method further comprises decompressing the compressed
data segments with the processing units, and storing each decompressed data segment back to

its respective memory region within the shared memory.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

4

This approach allows both the compressed and decompressed data to be contained
within a single memory space (generally corresponding to the size of the decompressed data).
In addition, different data segments may be processed in parallel with one another by the
different processing units without having to worry about over-writing data for other data
segments.

In one embodiment, the loading comprises: loading the compressed data set into the
shared memory so that the plurality of compressed data segments are arranged contiguously
within the shared memory; and fragmenting the compressed data set into the plurality of
compressed data segments so that each compressed data segment is stored into the respective
memory region of the shared memory.

In one embodiment, the data segments can be decompressed independently of one
another. This allows the full parallel capabilities of the multiple processing units to be
exploited. In other embodiments however, there may be partial or full ordering imposed on
the decompression sequence for the data set.

In one embodiment, each of the data segments has the same predetermined size of
uncompressed data. Each processing unit has a local output buffer for holding data prior to
storing back to shared memory. The local output buffer has a size equal to the predetermined
size of uncompressed data. In other embodiments, the uncompressed data segments may have
a variable size, and/or the predetermined size may differ from the size of the local output
buffer. For example, the predetermined size may reflect a suitable amount of data for
independent processing by a processing unit.

In one embodiment, the compressed data set is loaded into a portion of memory equal
to the size of the uncompressed data set. The compressed data set is located at a first end of
the memory portion and the fragmenting comprises moving or copying the compressed data
segments in turn away from this first end towards the opposite end, starting with the
compressed data segment furthest from the first end.

In one embodiment, the fragmenting is performed as a serial process, for example by
one of the processing units. In other embodiments, some parallel algorithm might be adopted
for the fragmentation, and/or the fragmentation might be controlled by a separate device, for
example a central processing unit.

In one embodiment, each respective memory region is arranged contiguously within
the shared memory.

Another embodiment of the invention provides apparatus for decompressing a

compressed data set. The compressed data set comprises a plurality of compressed data



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

5

segments, in which each compressed data segment corresponds to a predetermined size of
uncompressed data. The apparatus comprises a plurality of processing units and a shared
memory. The apparatus is operable to load the compressed data set into the shared memory
so that each compressed data segment is stored into a respective memory region of the shared
memory. The respective memory region has a size equal to the predetermined size of the
corresponding uncompressed data segment. The apparatus is further operable to decompress
the compressed data segments with the processing units and to store each decompressed data
segment back to its respective memory region within the shared memory.

In one embodiment, the apparatus is operable to: load the compressed data set into the
shared memory so that the plurality of compressed data segments are arranged contiguously
within the shared memory; and fragment the compressed data set into the plurality of
compressed data segments so that each compressed data segment is stored into the respective
memory region of the shared memory.

In one embodiment, each respective memory region is arranged contiguously within
the shared memory.

Another embodiment of the invention provides a method of compressing a data set
using a processing device having a plurality of processing units and a shared memory. The
data set comprises a plurality of data segments. The method comprises loading the data set
into the shared memory so that the plurality of data segments are arranged contiguously
within the shared memory. Each data segment is assigned a respective memory region. The
data segments are then compressed with the processing units and each compressed data
segment is stored back to its respective region within the shared memory. Lastly, the
compressed data segments are de-fragmented back into a contiguous file.

Another embodiment of the invention provides an apparatus for compressing a data set
comprising a plurality of data segments. The apparatus comprises a processing device having
a plurality of processing units and a shared memory. The apparatus is configured to load the
data set into the shared memory so that the plurality of data segments are arranged
contiguously within the shared memory, each data segment being assigned a respective
memory region. The apparatus is further configured to compress the data segments with the
processing units, to store each compressed data segment back to its respective region within
the shared memory, and to defragment the compressed data segments into a contiguous file.

A computer program for implementing a method such as described above may also be

provided in accordance with one embodiment of the invention.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

6

Various embodiments of the invention will now be described in detail by way of
example only with reference to the following drawings:

Figure 1 is a schematic diagram of a Sony Playstation 3 entertainment device;

Figure 2 is a schematic diagram of the Cell processor of the Sony Playstation 3
entertainment device of Figure 1;

Figure 3 is a schematic diagram of the graphics unit of the Sony Playstation 3
entertainment device of Figure 1;

Figure 4 is a flowchart of a method for decompressing data using the Sony Playstation
3 entertainment device of Figure 1 in accordance with one embodiment of the invention;

Figure 5 (drawn as Figures 5A to 5C) is a schematic diagram of the use of memory
when decompressing data by the method of Figure 4 in accordance with one embodiment of
the invention;

Figure 6 (drawn as Figures 6A and 6B) is a schematic diagram of the use of memory
when decompressing data by the method of Figure 4 when the compressed data includes a file
header in accordance with one embodiment of the invention;

Figure 7 (drawn as Figures 7A to 7C) is a schematic diagram of the use of memory
when compressing data in accordance with one embodiment of the invention; and

Figure 8 (drawn as Figures 8A to 8C) is a schematic diagram of the use of memory
when decompressing data using an approach not based on the method of Figure 4.

Detailed Description

Figure 1 schematically illustrates the overall system architecture of the Sony®
Playstation 3® entertainment device. A system unit 10 is provided, with various peripheral
devices connectable to the system unit.

The system unit 10 comprises: a Cell processor 100; a Rambus® dynamic random
access memory (XDRAM) unit 500; a Reality Synthesiser graphics unit 200 with a dedicated
video random access memory (VRAM) unit 250; and an I/O bridge 700.

The system unit 10 also comprises a Blu Ray® Disk BD-ROM® optical disk reader
430 for reading from a disk 440 and a removable slot-in hard disk drive (HDD) 400,
accessible through the I/O bridge 700. Optionally the system unit also comprises a memory
card reader 450 for reading compact flash memory cards, Memory Stick® memory cards and
the like, which is similarly accessible through the I/O bridge 700.

The I/O bridge 700 also connects to four Universal Serial Bus (USB) 2.0 ports 710; a
gigabit Ethernet port 720; an IEEE 802.11b/g wireless network (Wi-Fi) port 730; and a
Bluetooth® wireless link port 740 capable of supporting up to seven Bluetooth connections.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

7

In operation the I/O bridge 700 handles all wireless, USB and Ethernet data, including
data from one or more game controllers 751. For example when a user is playing a game, the
I/0 bridge 700 receives data from the game controller 751 via a Bluetooth link and directs it
to the Cell processor 100, which updates the current state of the game accordingly.

The wireless, USB and Ethernet ports also provide connectivity for other peripheral
devices in addition to game controllers 751, such as: a remote control 752; a keyboard 753; a
mouse 754; a portable entertainment device 755 such as 'a Sony Playstation Portable®
entertainment device; a video camera such as an EyeToy® video camera 756; and a
microphone headset 757. Such peripheral devices may therefore in principle be connected to
the system unit 10 wirelessly; for example the portable entertainment device 755 may
communicate via a Wi-Fi ad-hoc connection, whilst the microphone headset 757 may
communicate via a Bluetooth link.

The provision of these interfaces means that the Playstation 3 device is also potentially
compatible with other peripheral devices such as digital video recorders (DVRs), set-top
boxes, digital cameras, portable media players, Voice over IP telephones, mobile telephones,
printers and scanners.

In addition, a legacy memory card reader 410 may be connected to the system unit via
a USB port 710, enabling the reading of memory cards 420 of the kind used by the
Playstation® or Playstation 2® devices.

In the present embodiment, the game controller 751 is operable to communicate
wirelessly with the system unit 10 via the Bluetooth link. However, the game controller 751
can instead be connected to a USB port, thereby also providing power by which to charge the
battery of the game controller 751. In addition to one or more analogue joysticks and
conventional control buttons, the game controller is sensitive to motion in 6 degrees of
freedom, corresponding to translation and rotation in each axis. Consequently gestures and
movements by the user of the game controller may be translated as inputs to a game in
addition to or instead of conventional button or joystick commands. Optionally, other
wirelessly enabled peripheral devices such as the Playstation Portable device may be used as a
controller. In the case of the Playstation Portable device, additional game or control
information (for example, control instructions or number of lives) may be provided on the
screen of the device. Other alternative or supplementary control devices may also be used,
such as a dance mat (not shown), a light gun (not shown), a steering wheel and pedals (not
shown) or bespoke controllers, such as a single or several large buttons for a rapid-response

quiz game (also not shown).



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

8

The remote control 752 is also operable to communicate wirelessly with the system
unit 10 via a Bluetooth link. The remote control 752 comprises controls suitable for the
operation of the Blu Ray Disk BD-ROM reader 430 and for the navigation of disk content.

The Blu Ray Disk BD-ROM reader 430 is operable to read CD-ROMs compatible
with the Playstation and PlayStation 2 devices, in addition to conventional pre-recorded and
recordable CDs, and so-called Super Audio CDs. The reader 430 is also operable to read
DVD-ROMs compatible with the Playstation 2 and PlayStation 3 devices, in addition to
conventional pre-recorded and recordable DVDs. The reader 430 is further operable to read
BD-ROMs compatible with the Playstation 3 device, as well as conventional pre-recorded and
recordable Blu-Ray Disks.

The system unit 10 is operable to supply audio and video, either generated or decoded
by the Playstation 3 device via the Reality Synthesiser graphics unit 200, through audio and
video connectors to a display and sound output device 300 such as a monitor or television set
having a display 305 and one or more loudspeakers 310. The audio connectors 210 may
include conventional analogue and digital outputs whilst the video connectors 220 may
variously include component video, S-video, composite video and one or more High
Definition Multimedia Interface (HDMI) outputs. Consequently, video output may be in
formats such as PAL or NTSC, or in 720p, 10801 or 1080p high definition.

Audio processing (generation, decoding and so on) is performed by the Cell processor
100. The Playstation 3 device’s operating system supports Dolby® 5.1 surround sound,
Dolby® Theatre Surround (DTS), and the decoding of 7.1 surround sound from Blu-Ray®
disks. .

In the present embodiment, the video camera 756 comprises a single charge coupled
device (CCD), an LED indicator, and hardware-based real-time data compression and
encoding apparatus so that compressed video data may be transmitted in an appropriate
format such as an intra-image based MPEG (motion picture expert group) standard for
decoding by the system unit 10. The camera LED indicator is arranged to illuminate in
response to appropriate control data from the system unit 10, for example to signify adverse
lighting conditions. Embodiments of the video camera 756 may variously connect to the
system unit 10 via a USB, Bluetooth or Wi-Fi communication port. Embodiments of the video
camera may include one or more associated microphones and also be capable of transmitting
audio data. In embodiments of the video camera, the CCD may have a resolution suitable for
high-definition video capture. In use, images captured by the video camera may for example

be incorporated within a game or interpreted as game control inputs.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

9

In general, in order for successful data communication to occur with a peripheral
device such as a video camera or remote control via one of the communication ports of the
system unit 10, an appropriate piece of software such as a device driver should be provided.
Device driver technology is well-known and will not be described in detail here, except to say
that the skilled man will be aware that a device driver or similar software interface may be
required in the present embodiment described.

Referring now to Figure 2, the Cell processor 100 has an architecture comprising four
basic components: external input and output structures comprising a memory controller 160
and a dual bus interface controller 170A,B; a main processor referred to as the Power
Processing Element 150; eight co-processors referred to as Synergistic Processing Elements
(SPEs) 110A-H; and a circular data bus connecting the above components referred to as the
Element Interconnect Bus 180. The total floating point performance of the Cell processor is
218 GFLOPS, compared with the 6.2 GFLOPs of the Playstation 2 device’s Emotion Engine.

The Power Processing Element (PPE) 150 is based upon a two-way simultaneous
multithreading Power 970 compliant PowerPC core (PPU) 155 running with an internal clock
of 3.2 GHz. It comprises a 512 kB level 2 (L2) cache and a 32 kB level 1 (L1) cache. The
PPE 150 is capable of eight single position operations per clock cycle, translating to 25.6
GFLOPs at 3.2 GHz. The primary role of the PPE 150 is to act as a confroller for the
Synergistic Processing Elements 110A-H, which handle most of the computational workload.
In operation the PPE 150 maintains a job queue, scheduling jobs for the Synergistic
Processing Elements 110A-H and monitoring their progress. Consequently each Synergistic
Processing Element 110A-H runs a kernel whose role is to fetch a job, execute it and
synchronise with the PPE 150.

Each Synergistic Processing Element (SPE) 110A-H comprises a respective
Synergistic Processing Unit (SPU) 120A-H, and a respective Memory Flow Controller (MFC)
140A-H comprising in turn a respective Dynamic Memory Access Controller (DMAC) 142A-
H, a respective Memory Management Unit (MMU) 144A-H and a bus interface (not shown).
Each SPU 120A-H is a RISC processor clocked at 3.2 GHz and comprising 256 kB local
RAM 130A-H, expandable in principle to 4 GB. Each SPE gives a theoretical 25.6 GFLOPS
of single precision performance. An SPU can operate on 4 single precision floating point
members, 4 32-bit numbers, 8 16-bit integers, or 16 8-bit integers in a single clock cycle. In
the same clock cycle it can also perform a memory operation. The SPU 120A-H does not

directly access the system memory XDRAM 500; the 64-bit addresses formed by the SPU



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

10

120A-H are passed to the MFC 140A-H which instructs its DMA controller 142A-H to access
memory via the Element Interconnect Bus 180 and the memory controller 160.

The Element Interconnect Bus (EIB) 180 is a logically circular communication bus
internal to the Cell processor 100 which connects the above processor elements, namely the
PPE 150, the memory controller 160, the dual bus interface 170A,B and the 8 SPEs 110A-H,
totalling 12 participants. Participants can simultaneously read and write to the bus at a rate of
8 bytes per clock cycle. As noted previously, each SPE 110A-H comprises a DMAC 142A-H
for scheduling longer read or write sequences. The EIB comprises four channels, two each in
clockwise and anti-clockwise directions. Consequently for twelve participants, the longest
step-wise data-flow between any two participants is six steps in the appropriate direction. The
theoretical peak instantaneous EIB bandwidth for 12 siots is therefore 96B per clock, in the
event of full utilisation through arbitration between participants. This equates to a theoretical
peak bandwidth of 307.2 GB/s (gigabytes per second) at a clock rate of 3.2GHz.

The memory controller 160 comprises an XDRAM interface 162, developed by
Rambus Incorporated. The memory controller interfaces with the Rambus XDRAM 500 with
a theoretical peak bandwidth of 25.6 GB/s.

The dual bus interface 170A,B comprises a Rambus FlexIO® system interface
172A,B. The interface is organised into 12 channels each being 8 bits wide, with five paths
being inbound and seven outbound. This provides a theoretical peak bandwidth of 62.4 GB/s
(36.4 GB/s outbound, 26 GB/s inbound) between the Cell processor and the /O Bridge 700
via controller 170A and the Reality Simulator graphics unit 200 via controller 170B.

Data sent by the Cell processor 100 to the Reality Simulator graphics unit 200 will
typically comprise display lists, being a sequence of commands to draw vertices, apply
textures to polygons, specify lighting conditions, and so on.

Referring now to Figure 3, the Reality Simulator graphics (RSX) unit 200 is a video
accelerator based upon the NVidia® G70/71 architecture that processes and renders lists of
commands produced by the Cell processor 100. The RSX unit 200 comprises a host interface
202 operable to communicate with the bus interface controller 170B of the Cell processor
100; a vertex pipeline 204 (VP) comprising eight vertex shaders 205; a pixel pipeline 206
(PP) comprising 24 pixel shaders 207; a render pipeline 208 (RP) comprising eight render
output units (ROPs) 209; a memory interface 210; and a video converter 212 for generating a
video output. The RSX 200 is complemented by 256 MB double data rate (DDR) video RAM
(VRAM) 250, clocked at 600MHz and operable to interface with the RSX 200 at a theoretical
peak bandwidth of 25.6 GB/s. In operation, the VRAM 250 maintains a frame buffer 214 and



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

11

a texture buffer 216. The texture buffer 216 provides textures to the pixel shaders 207, whilst
the frame buffer 214 stores results of the processing pipelines. The RSX can also access the
main memory 500 via the EIB 180, for example to load textures into the VRAM 250.

The vertex pipeline 204 primarily processes deformations and transformations of
vertices defining polygons within the image to be rendered.

The pixel pipeline 206 primarily processes the application of colour, textures and
lighting to these polygons, including any pixel transparency, generating red, green, blue and
alpha (transparency) values for each processed pixel. Texture mapping may simply apply a
graphic image to a surface, or may include bump-mapping (in which the notional direction of
a surface is perturbed in accordance with texture values to create highlights and shade in the
lighting model) or displacement mapping (in which the applied texture additionally perturbs
vertex positions to generate a deformed surface consistent with the texture).

The render pipeline 208 performs depth comparisons between pixels to determine
which should be rendered in the final image. Optionally, if the intervening pixel process will
not affect depth values (for example in the absence of transparency or displacement mapping)
then the render pipeline and vertex pipeline 204 can communicate depth information between
them, thereby enabling the removal of occluded elements prior to pixel processing, and so
improving overall rendering efficiency. In addition, the render pipeline 208 also applies
subsequent effects such as full-screen anti-aliasing over the resulting image.

Both the vertex shaders 205 and pixel shaders 207 are based on the shader model 3.0
standard. Up to 136 shader operations can be performed per clock cycle, with the combined
pipeline therefore capable of 74.8 billion shader operations per second, outputting up to 840
million vertices and 10 billion pixels per second. The total floating point performance of the
RSX 200 is 1.8 TFLOPS.

Typically, the RSX 200 operates in close collaboration with the Cell processor 100;
for example, when displaying an explosion, or weather effects such as rain or snow, a large
number of particles must be tracked, updated and rendered within the scene. In this case, the
PPU 155 of the Cell processor may schedule one or more SPEs 110A-H to compute the
trajectories of respective batches of particles. Meanwhile, the RSX 200 accesses any texture
data (e.g. snowflakes) not currently held in the video RAM 250 from the main system
memory 500 via the element interconnect bus 180, the memory controller 160 and a bus
interface controller 170B. Each SPE 110A-H outputs its computed particle properties
(typically coordinates and normals, indicating position and attitude) directly to the video

RAM 250; the DMA controller 142A-H of each SPE 110A-H addresses the video RAM 250



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

12

via the bus interface controller 170B. Thus in effect the assigned SPEs become part of the
video processing pipeline for the duration of the task.

In general, the PPU 155 can assign tasks in this fashion to six of the eight SPEs
available; one SPE is reserved for the operating system, whilst one SPE is effectively
disabled. The disabling of one SPE provides a greater level of tolerance during fabrication of
the Cell processor, as it allows for one SPE to fail the fabrication process. Alternatively if all
eight SPEs are functional, then the eighth SPE provides scope for redundancy in the event of
subsequent failure by one of the other SPEs during the life of the Cell processor.

The PPU 155 can assign tasks to SPEs in several ways. For example, SPEs may be
chained together to handle each step in a complex operation, such as accessing a DVD, video
and audio decoding, and error masking, with each step being assigned to a separate SPE.
Alternatively or in addition, two or more SPEs may be assigned to operate on input data in
parallel, as in the particle animation example above.

Software instructions implemented by the Cell processor 100 and/or the RSX 200 may
be supplied at manufacture and stored on the HDD 400, and/or may be supplied on a data
carrier or storage medium such as an optical disk or solid state memory, or via a transmission
medium such as a wired or wireless network or internet connection, or via combinations of
these.

The software supplied at manufacture comprises system firmware and the Playstation
3 device’s operating system (OS). In operation, the OS provides a user interface enabling a
user to select from a variety of functions, including playing a game, listening to music,
viewing photographs, or viewing a video. The interface takes the form of a so-called cross
media-bar (XMB), with categories of function arranged horizontally. The user navigates by
moving through the function icons (representing the functions) horizontally using the game
controller 751, remote control 752 or other suitable control device so as to highlight a desired
function icon, at which point options pertaining to that function appear as a vertically
scrollable list of option icons centred on that function icon, which may be navigated in
analogous fashion. However, if a game, audio or movie disk 440 is inserted into the BD-ROM
optical disk reader 430, the Playstation 3 device may select appropriate options automatically
(for example, by commencing the game), or may provide relevant options (for example, to
select between playing an audio disk or compressing its content to the HDD 400).

In addition, the OS provides an on-line capability, including a web browser, an
interface with an on-line store from which additional game content, demonstration games

(demos) and other media may be downloaded, and a friends management capability,



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

13

providing on-line communication with other Playstation 3 device users nominated by the user
of the current device; for example, by text, audio or video depending on the peripheral devices
available. The on-line capability also provides for on-line communication, content download
and content purchase during play of a suitably configured game, and for updating the
firmware and OS of the Playstation 3 device itself. It will be appreciated that the term “on-
line” does not imply the physical presence of wires, as the term can also apply to wireless
connections of various types. |

The system unit 10 often handles data (images, text, audio, program code, etc) which
has been compressed to reduce storage or communication requirements. This compressed
data may be received over a network, such as ethernet 720 or wi-fi network 730, accessed
from the hard disk drive 400 or an optical disk 430, or obtained from any other suitable
source. The system unit 10 decompresses this data before using it. The decompression is
performed by Cell processor 100, and more particularly by the SPEs 110A, 110B, etc. As
previously indicated, each SPU has 256KB of local RAM 130. In one embodiment, this is
configured to provide a 64KB input buffer and also a 64KB output buffer (with the remaining
RAM being used for general program operations, such as code, stack, etc).

In order to allow the SPEs to operate in parallel, we assume that the data has been
compressed in independent segments, each representing 64KB of uncompressed data. It will
be appreciated that the 64KB size for the data segments corresponds to the size of the output
buffer of an SPU. Hence an SPU can output an uncompressed data segment as a whole
(rather than having to split the uncompressed data segment into pieces for returning to main
memory). We also assume at present that each compressed data segment has a fixed size of
32KB.

Figure 4 is a flowchart depicting a method for decompressing a data set using system
unit 10 in accordance with one embodiment of the invention. The method commences with
the compressed data being written into a contiguous portion of memory (operation 1110).
This leads to a situation such as shown in Figure SA, where 16 compressed data segments are
loaded into the low end of a memory portion, with the high end 11 of the memory portion
unoccupied. (It will be appreciated that this is also the starting configuration for the
decompression processing discussed above in relation to Figure 8).

The compressed data loaded into the main memory is now fragmented (operation
1120). In particular, each compressed data segment is allocated its own section of memory,
where the size of the memory section (also referred to herein as a memory region)

corresponds to the uncompressed size of the data segment, in this case 64KB.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

14

Figure 5B illustrates one configuration of data in memory where this has been
achieved. Thus each 64KB section of memory contains a compressed data segment (32KB),
and a corresponding empty area of memory (also 32KB). Thus the memory section for
compressed data segment 0 includes empty memory area 0-M, the memory section for
compressed data segment 3 includes empty memory area 3-M, the memory section for
compressed data segment 9 includes empty memory area 9-M, the memory section for
compressed data segment C includes empty memory area C-M, and so on.

One way to progress from the memory configuration of Figure 5A to that of Figure 5B
is to work through each compressed data segment in turn, starting at the one with the highest
memory location. The selected data segment is then assigned a 64KB section of memory at
the highest available memory location (allowing for memory that has already been assigned to
other data segments). The selected data segment is then stored at the lowest address within
the assigned data segment. The process then repeats until all the data segments are separated
(fragmented) into their respective memory sections. Depending on the particular data set, in
some cases one or more compressed data segments may not need movement during
fragmentation, in that such segments are already located by the initial loading (prior to
fragmentation) into the appropriate memory section for the corresponding uncompressed data.

The above approach for fragmentation preserves the ordering of the data segments
within the data set. (In other embodiments, the ordering may potentially be varied, but this
would then require a reordering step at the end to reassemble the decompressed file into the
correct sequence).

In one embodiment, the fragmentation is performed by a single SPE and is linear
(ordered). For example, compressed data segment E has to be moved before compressed data
segment 7, otherwise the latter will overwrite the former before it is has moved or copied.
This ordering can be readily accomplished by performing the fragmentation with just a single
processing unit (e.g. an SPE or the PPE). Since the fragmentation is a relatively
straightforward operation (compared to say decompression), it therefore can be accomplished
quickly even without parallelisation. In addition, different fragmentation strategies might
perhaps allow a more relaxed ordering for the relocation of the compressed data segments
within memory.

In the embodiment of Figure 5, it is assumed that the compressed data segments are
moved from their initial positions in memory to their fragmented positions in memory. In
other embodiments, the fragmentation may be achieved using a copy rather than a move

operation. In this case, the memory section for storing a particular decompressed segment



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031
15

may contain both the compressed data for that segment and also the compressed data for
another segment stored into the memory section prior to the fragmentation. For example, the
memory space 0-M of Figure 5B would be filled by the retained compressed data segment 1,
and the memory space 3-M would be filled by the retained compressed data segment 7.
However, this does not impact the overall decompression operation, since the retained
(copied) compressed data segments would be overwritten in due course by the decompressed
data.

In Figure 5B, the fragmentation process locates all of the compressed data segments
on the lower boundary of their respective memory section. However, the fragmentation may
place a compressed data segment anywhere within the relevant memory section. For
example, if a compressed data segment happens to be already located in the middle of its
corresponding memory section prior to fragmentation, it may be left where it is, without
aligning to a boundary of the memory section.

After the data has been fragmented, it is loaded into the SPEs for decompressing
(operation 1130). Each compressed data segment can now be treated independently from the
other compressed data segments (assuming that they are independent in terms of data
compression). Therefore any suitable algorithm can be used to allocate the compressed data
segments to the available SPEs for decompression, and the allocation can be performed in any
desired order (not necessarily sequentially O through F or vice versa). This allows the
decompression of at least some of the compressed data segments to be performed in parallel
using different SPEs.

Note that the decompression for a data segment can commence as soon as that
particular data segment has been fragmented to its correct location in memory (without having
to wait for the fragmentation of all the other data segments to complete). This allows some of
the fragmentation and decompression to be performed in parallel.

After the SPE has performed the decompression of a data segment (operation 1140),
the decompressed data is written back to the same memory section from where it was loaded
into the SPE (operation 1150). Since the decompressed data segment has a size of 64KB, the
decompressed data segment now occupies the entire memory section. As a result, adjacent
decompressed data segments are contiguous with one another in memory.

This leads to the situation shown in Figure 5C, where it is assumed that the
compression has been completed for data segments 2, 3, 5-7, A and C-E. For these segments,
the original compressed data has been over-written by the corresponding decompressed data.

The situation shown in Figure 5C also has some data segments still waiting for the



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

16

decompression to finish (data segments 0, 1, 4, 8, 9 and F). As shown in Figure 5A, these
memory sections still contain the compressed data, plus the corresponding empty memory
space (e.g. 0-M, 9-M).

As the data'decompression progresses, more and more data segments are saved to the
memory in uncompressed form, thereby overwriting the original compressed data. Eventually
all the compressed data segments are replaced by the uncompressed data. The uncompressed
data then fills the entire memory region shown as a single contiguous data set which is now
available for further processing by system unit 10.

It has been assumed in the above embodiment that the compressed data is always
smaller, or at worst the same size, as the original, uncompressed data (otherwise it is difficult
to determine the fragmentation spacing). In fact, this is not necessarily a property of all
compression algorithms. Nevertheless, the compression process can be readily made to have
this property by testing the size of each compressed data segment against the size of the
corresponding uncompressed data segment. If the former is larger than the latter, the latter
(uncompressed data) is used to represent the data segment in the compressed data set.

In one embodiment, the compressed data set is provided with a file header and Table
of Contents (TOC). This can be used to indicate, for example, the compression algorithm
used on the data set, and also whether any data segments are represented by uncompressed
rather than compressed data (such segments could then be accessed directly if so desired, and
do not need to be sent to an SPE for decompression). The file header and the TOC are often
not required for (or part of) the uncompressed data set.

In one embodiment, the file header and TOC are copied into the local store (RAM) of

an SPE prior to fragmentation. The file header and the TOC are then removed from the

compressed data set as part of the fragmentation, as illustrated in Figure 6. More particularly,
Figure 6A depicts the same data set as for Figure 5A, but this time preceded by a file header
and TOC (FH). Figure 6B depicts the compressed data set of Figure 6A after fragmentation
(the configuration is now the same as for Figure 5B). It can be seen that during the
fragmentation, most compressed data segments have been moved to a higher memory location
(as in Figure 5). However, compressed data segment 0 has been moved instead to a lower
memory location to overwrite the file header FH. Compressed data segment 1 is also moved
to a lower memory location as part of the fragmentation, with the remaining compressed data
segments 2-F moving to a higher memory location.

(In the example of Figure 6, compressed data segment 0 is somewhat smaller than file

header FH. Consequently, a portion of the file header FH would continue to be present



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

17

between compressed data segment 0 and compressed data segment 1 after the fragmentation.
However, this is omitted from Figure 6B for ease of representation).

Tt will be appreciated that the decompression procedure described above is limited in
its memory requirements to the size of the uncompressed data (rather than requiring separate
memory regions for both the compressed and the uncompressed data). Furthermore, the
decompression procedure supports full parallelism, in that each data segment can be
decompressed independently from the other data segments and in any order. This enables the
full benefit of the parallel architecture to be obtained, whereby different processors can work
in parallel on decompressing different data segments.

In addition, the order in which the compressed data segments are decompressed can be
changed as'appropriate. This may be helpful if certain decompressed data segments may be
needed before others. For example, the data set of Figure 5B is being decompressed in
response to a specifically request for (or predicted use of) data segment D, it may be desirable
to decompress this data segment first. This may then allow other portions of system unit 10 to
continue operations with the decompressed data segment D in parallel with the decompression
of the remaining data segments. A further motivation for specifically configuring the order of
decompression of the data segments is to allow for possible variations in expected
decompression time (as discussed in more detail below).

In the embodiment described above, each data segment represents a fixed amount of
uncompressed data. However, in other embodiments, the data segments may represent
varying amounts of uncompressed data. In this latter case, it is assumed that the size of the
uncompressed data can be otherwise determined, for example from file header information for
the compressed data segment. This then allows the compressed data segments to be suitably
dispersed (fragmented) in memory, with each compressed data segment allocated to a
memory section which is the correct size for the uncompressed data in that segment (i.e. the
uncompressed data should fill the memory section).

In the embodiment described above, the fixed size of each uncompressed data segment
corresponds to the size of the output buffer of an SPU. It will be appreciated that in some
embodiments, the processing units may not be provided with local RAM, but rather work
directly with main memory (potentially with one or more levels of cache). In addition, the
various processing units may not all be the same as one another; for example, some
processing units may have a larger input and/or output buffer than other processing units. If
the processing units are heterogeneous, this may impact the allocation of data segments to the

processing units. For example, if the data segments themselves vary in size, then larger data



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031
18

segments might be preferentially allocated to those processing units with larger input/output
buffers.

Furthermore the size of each uncompressed data segment may not correspond to the
size of the output buffer of an SPU. This then allows the size of the uncompressed data
segment to be chosen in accordance with other factors, such as the efficiency and performance
of the compression/decompression algorithm, and/or the desired granularity of the parallelism
(since a data segment represents the basic unit of work for allocation to a single SPE for
processing). As an example, one option might be for an SPU with a 4KB input buffer and
4KB output buffer to stream through a larger compressed data segment, for example IMB. In
this case, the compressed data segment would generally be right-aligned (i.e. at the high end)
of its memory section, with any padding coming before the real data rather than after it (this
would avoid the decompressed data over-writing any compressed data that had not yet been
decompressed).

In the embodiment described above, there is a fixed size for each compressed data
segment. For a given amount of input data, many compression algorithms produce a variable
(data-dependent) size of output. This can be turned into a fixed size compressed data segment
such as shown in Figure 5 by appropriate padding (assuming that the data can always be
compressed below the fixed size). In other embodiments however, the compressed data
segments may be (very) variable in size, for example, ranging from 100 bytes up to 64KB of
raw (uncompressed) data.

The inherent data-dependence of many compression/decompression algorithms is one
reason why the processing time for decompressing compressed data segments may vary from
one data segment to another (thereby leading to potential out-of-order execution problems
such as described above in relation to Figure 8). If the size of the compressed data segments
does vary, one possible approach is to select the largest compressed data segments to
decompress first, on the basis that these largest data segments are generally expected to take
longest to decompress.

In the embodiment described above, the compressed data segments can be
decompressed independently of one another; nevertheless, the fragmentation approach of
Figure 5 may be used even where the compressed data segments do have a mutual
dependency (for example, it may be that data segment 2 cannot be decompressed without first
decompressing data segment 1). If the decompression sequence is completely specified (say
data segments 0 through F in that order), then the approach of Figure 8 may be adopted for the

decompression. However, if the decompression sequence is only partly specified, for



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

19

example in relation to data segments 2-6, but not for the remaining data segments, the
approach of Figure 5 is still valuable to address out-of-order execution problems. In addition,
fragmentation might be employed where the degree of dependency between the compressed
data segments cannot be immediately determined (this might only become apparent as the
data sets are decompressed).

In the embodiments described above, the operations 1110 and 1120 described with
respect to Figure 4 may be carried out as one operation, in which the compressed data is
written into the main memory so that each compressed data segment is allocated its own
section of memory, and where the size of the memory section corresponds to the
uncompressed size of the data segment (e.g. 64KB in this case). In other words, the
compressed data set may be loaded into the main memory in such a way as to arrive at the
memory configuration shown in Figure 5B, without the compressed data set first being
contiguously loaded into the memory configuration shown in Figure 5A and then fragmented
to arrive at the memory configuration shown in Figure 5B.

In one embodiment, the memory sections are arranged contiguously within the main
memory so that the ordering of the data segments within the data set is preserved. However, it
will be appreciated that, in other embodiments, the order in which the compressed data
segments are written into the memory sections may be varied and subsequently reordered at
the end of the process so as to reassemble the file into the correct sequence.

It will be appreciated that there may be a minimum size for the compressed data
segments. For example, CD-ROMs typically store data in 2KB sectors. Therefore, if a simple
direct memory access (DMA) operation is carried out to read the data sectors from the CD-
ROM to the main memory, the 2KB data sector would be written into a 4KB memory section
so as to create the memory arrangement shown in Figure 5B (assuming that a 2:1 compression
ratio was used to compress the data sectors). However, it will be appreciated that other
methods of reading data from a storage medium and writing the data to the main memory
could be used.

Where, for example, the storage medium is a CD-ROM, the memory controller 160
can read sixteen 2KB data sectors (forming a total of 32KB) from the CD-ROM and write
these into a 64KB memory section as described above so that the 2KB sectors are arranged
contiguously within the 64KB memory section. Another sixteen 2KB sectors can then be
loaded in a similar manner into the next 64KB memory section and so on so as to arrive at the
memory configuration shown in Figure 5B. This allows for optimum usage of the SPEs.

Decompression can then be carried out on each memory section as previously described.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031
20

In other words, the memory controller 160 can control the writing of data into the
main memory in any suitable manner so as to arrive at the memory configuration shown in
Figure 5B, although it will be appreciated that other processing elements could be used to
achieve this functionality. Additionally, it will be appreciated that data can be loaded into the
main memory in a similar manner to that described above from other suitable storage media
such as a Blu-Ray disc.

Figure 7 illustrates the compression of data in accordance with one embodiment of the
invention. The uncompressed data set to be compressed is initially loaded into memory as
shown in Figure 7A and split or allocated into different data segments 0-F. The data
segments are then compressed, generally at least partly in parallel with one another. The
compressed data is written back to the memory section, with each compressed data segment
being stored into the same memory section where the corresponding uncompressed data
segment was previously stored. This leads to the situation shown in Figure 7B. Finally, the
compressed data segments are assembled together (defragmented) into the final output file, as
shown in Figure 7C. (The final output file may also be provided with a file header and/or
TOC, as described above, but not shown in Figure 7C). Thus the compressed data is
produced and stored into the same memory space as the original decompressed data. In
addition, various portions of the compression can be performed in parallel with one another
without relative timing constraints.

The various methods set out above may be implemented by adaptation of an existing
entertainment device, for example by using a computer program product comprising
processor implementable instructions stored on a data carrier such as a floppy disk, optical
disk, hard disk, PROM, RAM, flash memory or any combination of these or other storage
media, or transmitted via data signals on a network such as an Ethernet, a wireless network,
the Internet, or any combination of these of other networks, or realised in hardware as an
ASIC (application specific integrated circuit) or an FPGA (field programmable gate array) or
other configurable circuit suitable to use in adapting the existing equivalent device.

In conclusion, although a variety of embodiments have been described herein, these
are provided by way of example only, and many variations and modifications on such
embodiments will be apparent to the skilled person and fall within the scope of the present

invention, which is defined by the appended claims and their equivalents.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031

21

CLAIMS

1. A method of decompressing a compressed data set using a processing device having a
plurality of processing units and a shared memory, the compressed data set comprising a
plurality of compressed data segments, in which each compressed data segment corresponds
to a predetermined size of uncompressed data, the method comprising:

loading the compressed data set into the shared memory so that each compressed data
segment is stored into a respective memory region of the shared memory, wherein the
respective memory region has a size equal to the predetermined size of the corresponding
uncompressed data segment;

decompressing the compressed data segments with the processing units; and

storing each decompressed data segment back to its respective memory region within

the shared memory.

2. The method of claim 1, the loading comprising:
loading the compressed data set into the shared memory so that the plurality of
compressed data segments are arranged contiguously within the shared memory; and
fragmenting the compressed data set into the plurality of compressed data segments so
that each compressed data segment is stored into the respective memory region of the shared

mermory.

3. The method of claim 1 or claim 2, wherein each of the data segments has the same

predetermined size of uncompressed data.

4, The method of claim 3, wherein each processing unit has a local output buffer for
holding data prior to storing back to shared memory, and wherein the local output buffer has a

size equal to the predetermined size of uncompressed data.

5. The method of any preceding claim, wherein the data segments can be decompressed

independently of one another.

6. The method of any preceding claim, wherein the compressed data set is loaded into a

portion of memory equal to the size of the uncompressed data set.



10

15

20

25

30

WO 2008/155523 PCT/GB2008/002031
22

7. The method of claim 6 when dependent on any of claims 2 to 5, wherein the
compressed data set is located at one end of the memory portion and the fragmenting
comprises moving or copying the compressed data segments in turn away from said one end

towards the opposite end, starting with the compressed data segment furthest from said one

end.

8. The method of any of claims 2 to 7, wherein the fragmenting is performed as a serial
process.

9. The method of claim 8, wherein the fragmenting is performed by one of the processing
units.

10.  The method of any preceding claim, wherein each respective memory region is

arranged contiguously within the shared memory.

11.  Apparatus for decompressing a compressed data set, the compressed data set
comprising a plurality of compressed data segments, in which each compressed data segment
corresponds to a predetermined size of uncompressed data, the apparatus comprising:

a plurality of processing units; and

a shared memory;

in which the apparatus is operable to:

load the compressed data set into the shared memory so that each compressed data
segment is stored into a respective memory region of the shared memory, wherein the
respective memory region has a size equal to the predetermined size of the corresponding
uncompressed data segment;

decompress the compressed data segments with the processing units; and

store each decompressed data segment back to its respective memory region within the

shared memory.

12.  The apparatus of claim 11, in which the apparatus is operable to:
load the compressed data set into the shared memory so that the plurality of

compressed data segments are arranged contiguously within the shared memory; and



16

15

20

25

30

WO 2008/155523 PCT/GB2008/002031
23

fragment the compressed data set into the plurality of compressed data segments so
that each compressed data segment is stored into the respective memory region of the shared

MEemory.

13. The apparatus of claim 11 or claim 12, in which each respective memory region is

arranged contiguously within the shared memory.

14. A method of compressing a data set using a processing device having a plurality of
processing units and a shared memory, the data set comprising a plurality of data segments,
the method comprising:

loading the data set into the shared memory so that the plurality of data segments are
arranged contiguously within the shared memory, each data segment being assigned a
respective memory region;

compressing the data segments with the processing units;

storing each compressed data segment back to its respective region within the shared
memory; and

defragmenting the compressed data segments into a contiguous file.

15.  Apparatus for compressing a data set comprising a plurality of data segments, the
apparatus comprising a processing device having a plurality of processing units and a shared
memory, the apparatus being configured to:

load the data set into the shared memory so that the plurality of data segments are
arranged contiguously within the shared memory, each data segment being assigned a
respective memory region;

compress the data segments with the processing units;

store each compressed data segment back to its respective region within the shared
memory; and

defragment the compressed data segments into a contiguous file.

16. A computer program for implementing the method of any of claims 1 to 10 or 14.

17. A computer program product comprising the computer program of claim 16 encoded

as machine-readable instructions on a storage medium.



PCT/GB2008/002031

1/8

L "Old 0cr
ovv\\Anmuuuv ;/,___

WO 2008/155523

OLp
I 2 Vi
\ _ iapesy . 1epeay
" Noy-ag A aaH = e
m < - 2 | 0
! =
m 0EY 0S¥ 00¥ 7
" 0Ls
m g
m 042 aBpug O] g
“ S \\p_
I oLe N
" VXA 00/ 0cL
> | iT
m -
e |5 =
= < — XSH 105589014 [0 WYHax b
_ 2
G0¢E Mw//
" 022
AN _
00g !




PCT/GB2008/002031
2/8

WO 2008/155523

- - e G ah me em mm e et Em mm A e e mm e M e G e M s mm e bm G M Em e e e A e e

! gcll  oxeld  VZll Hax _"

m 201 R m

! 09} 2 A\ TR

| - Ndd K _"

“ J9jjo4uo) GGl el Ny |

! 19]j0U07) 8oBLISIU| SNE flowsyy - !

| 0Lt Y0.) 06} 3dd "
“ y y L “

m \4 \ 4 AA‘ \ 4 ”

! ﬁﬁ ool sng %m::ovo._&:_ JUsWa|g 11
Hirv} oL drv) Ela arvl ol gvrl Vil

“ Herl Sehl derl Jevl acyl oerL devl vl “

” RE 94N SE[] 4N RE REN 94N SE[] ”

" ) 507 071 =) aovt 307 qort Vov "
e e e e e e e o e s

" HOEL 50EL 408} 3061 aos) 00¢) g0el YOEL “

i nds NdS NdS Nds Nds NS Nds Nds |
Aol/s || /aes || Jas || Jas || Jms || s || Jas || Jas ]
o Lo oL, boow Lo Laon oL taow L taon AL ool Laolh L Lwouk

ﬁ
| Hoek T 04 S S S e ! doek .. ey o 8oe T el . _



PCT/GB2008/002031

3/8

WO 2008/155523

m o » soepeu| AoUwB « o
X ' . 4 2
| segngewels | 1 g rw\ == 8%
“ . == =
712 | i)
e N wom\ — NP
” 1L 60¢ 7 “

............ o AT
m “ ! R dd m
' Jeyng ainjxe) m m S 2 |
| A 1L 202 ”
_ | 190z "
J— o i) _
T | poz S 2 “
L LEEE : “2--,i,iii--?iiiM.w-Iii.m.ow ................... |

N _

08¢ 00 Ve soBLalU| 1SOH

c0¢

I




WO 2008/155523

4/8

PCT/GB2008/002031

Load into Memory

1110
vl

Y

Fragment in Memory

1120
v

Y

Load Fragments into Processing Units

1130
v

v

Decompress Fragments

1140
v

Y

Write Fragments to Main Memory

1150
va

FIG. 4



WO 2008/155523

M

AANEAN

NN

NN
\\\\\\ SN
NI

N
DN

—

FIG. 5A

=/ TNOmm

=/ I

=/

s/ mIm

5/8

IIRNEEINN

RN AR

AMNERAN

AR

MR

AMNIREIN

AR NN

AR Y

RN

AN

AN

|

FIG. 5B

4 NN

PCT/GB2008/002031

DN

....................
.....................
......................

AN

AN

FIG. 5C

|



WO 2008/155523

A .S
\

N
AN

\\\\O\\\\\\

6/8

FIG. 6A

PCT/GB2008/002031

AT

RN LN

AMMEIAIN

DANEANN

DN

AN AOAN

MMITTRNNEIN

DA

R ETINNY

ARSI

NN

O

MR

MR

MRS

MERINN

RN SN

-

FIG. 6B



WO 2008/155523

7/8

RN

DTN

AN

RAMANEA

AN

A,

AHIRRANAN

RN

MAENN

IR o Y

DN

MR

AT .

MRS

AR

I

~1

FIG. 7B

PCT/GB2008/002031

A

N UJ\\s\\

RN
\\\\\O\\\\\
AN

N
MRS

AN
NN N

N
M

MR-
A

AN

—d

FIG. 7C



WO 2008/155523

AN
RN

J—

FIG. 8A

8/8

AMiiinmai
R Y

R

FIG. 8B

PCT/GB2008/002031

O
NN

Nk
MRS

-l

FIG. 8C




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings

