wo 2010/048051 A2 I 10K 0 OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /g5 1IN0 00T 00 0N 0RO O L 1
International Bureau S,/)
43) Int tional Publication Dat \P'/ (10) International Publication Number
nternational Publication Date N5
ey
29 April 2010 (29.04.2010) PCT WO 2010/048051 A2
(51) International Patent Classification: PRADHAN, Samir S.; c/o Microsoft Cororation, One
GOG6F 9/455 (2006.01) GOG6F 3/048 (2006.01) Microsoft Way, Redmond, Washington 98052-6399 (US).
GO6F 3/041 (2006.01) TEED, Jennifer A.; c¢/o Microsoft Cororation, One Mi-
ft R d, Washington 98052-6399 (US).
(21) International Application Number: crosoft Way, Redmond, Washinglon Us)
PCT/US2009/060977 (81) Designated States (unless otherwise indicated, for every
. - kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO. AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
16 October 2009 (16.10.2009) CA. CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
o . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/258,439 26 October 2008 (26.10.2008) Us NO, NZ, OM, PE, PG, P11, PL, PT, RO, RS, RU, SC, SD,
SE, S@G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
(71) Applicant (for all designated States except US). MI- TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
CROSOFT CORPORATION [US/US]; One Microsoft . o
Way, Redmond, Washington 98052-6399 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: TOWNSEND, Reed L.; c/o Microsoft Coro- GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ration, One Microsoft Way, Redmond, Washington
98052-6399 (US). TU, Xiao; c/o Microsoft Cororation,
One Microsoft Way, Redmond, Washington 98052-6399
(US). SCOTT, Bryan D.; c¢/o Microsott Cororation, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
TORSET, Todd A.; c/o Microsoft Cororation, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
SYKES, Kenneth W.; c¢/o Microsoft Cororation, One
Microsoft Way, Redmond, Washington 98052-6399 (US).

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

[Continued on next page]

(54) Title: MULTI-TOUCH OBJECT INERTIA SIMULATION

(57) Abstract: The inertia system provides
a common platform and application-pro-

210 gramming interface (API) for applications

to extend the input received from various
multi-touch hardware devices to simulate
real-world behavior of application objects.
To move naturally, application objects
should exhibit physical characteristics such
as elasticity and deceleration. When a user
lifts all contacts from an object, the inertia
system provides additional manipulation
events to the application so that the applica-
tion can handle the events as if the user was
still moving the object with touch. The iner-
tia system generates the events based on a
simulation of the behavior of the objects. If
- the user moves an object into another ob-

ject, the inertia system simulates the bound-
Bin

ary characteristics of the objects. Thus, the

330

inertia system provides more realistic move-

Figure 3

ment for application objects manipulated
using multi-touch hardware and the API
provides a consistent feel to manipulations
across applications.

WO 2010/048051 A2 I 0000)00 U0 Y00 A A

as to applicant’s entitlement to apply for and be granted Published:
a patent (Rule 4.17(i1)) — without international search report and to be republished

as to the applicant's entitlement to claim the priority of upon receipt of that report (Rule 48.2(g))

the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

MULTI-TOUCH OBJECT INERTIA SIMULATION
BACKGROUND
[0001] A tablet PC, or pen computer, is a notebook or slate-shaped mobile
computer, equipped with a touch screen or graphics tablet/screen hybrid
technology that allows the user to operate the computer with a stylus, digital pen,
or fingertip instead of a keyboard or mouse. Tablet PCs offer a more natural form
of input, as sketching and handwriting are a much more familiar form of input than
a keyboard and mouse, especially for people who are new to computers. Tablet
PCs can also be more accessible because those who are physically unable to
type can utilize the additional features of a tablet PC to be able to interact with the
electronic world.
[0002] Multi-touch (or multitouch) denotes a set of interaction techniques that
allow computer users to control graphical applications using multiple fingers or
input devices (e.g., stylus). Multi-touch implementations usually include touch
hardware (e.g., a screen, table, wall, and so on) and software that recognizes
multiple simultaneous touch points. Multi-touch stands in contrast to traditional
touch screens (e.g., computer touchpad, ATM, shopping kiosk) that only
recognize one touch point at a time. Multi-touch hardware can sense touches
using heat, finger pressure, high capture rate cameras, infrared light, optic
capture, tuned electromagnetic induction, ultrasonic receivers, transducer
microphones, laser rangefinders, shadow capture, and other mechanisms. Many
applications for multi-touch interfaces exist and application designers and users
are proposing even more. Some uses are individualistic (e.g., Microsoft Surface,
Apple iPhone, HTC Diamond). As a new input method, multi-touch offers the
potential for new user experience paradigms.
[0003] An application cannot use multi-touch hardware without an interface for
the application software to receive information from the multi-touch hardware.
Unfortunately, each multi-touch hardware device includes its own proprietary
interface and application authors must have specific knowledge of a hardware
device to write software that works with the device. For example, a multi-touch
hardware provider may provide a kernel-mode driver and a user-mode application
interface through which user-mode software applications can communicate with

the multi-touch hardware to receive touch information. An application author

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

writes software that communicates with the user-mode application interface, but
the application author's software works only with that multi-touch hardware. A
computer user with a different multi-touch hardware device cannot use the
application author's software unless the application author produces a different
version of the software that operates correctly with the computer user's device.
This produces a very limited potential market for application authors, reduces the
incentive to write applications supporting multi-touch interactions, and keeps the
cost of the most popular devices high for which the greatest number of
applications is available.

[0004] Another problem is the difficulty for applications to determine a user's
intentions based on touch input received from multi-touch hardware. Touch input
may be received as a list of coordinates where the hardware senses touch input at
any given time. Each application has to include software to interpret the
coordinates and determine the user's intention. In addition, the user's intention
may extend beyond the actual touch input received. The user may expect virtual
objects to behave how they do in the physical world. For example, a user may
expect to be able to "toss" a file from one side of the desktop to another by flicking
his/her finger. This type of movement is not supported by current multi-touch
applications, which would expect the user to drag his/her finger from one side of
the screen all the way to the other. Even if an application provides support for this
type of movement, other applications could not benefit from it and thus application
authors would have to repeat the work of the first application author to offer the
same functionality in their applications.

SUMMARY

[0005] The inertia system provides a common platform and application-
programming interface (API) for applications to extend the input received from
various multi-touch hardware devices to simulate real-world behavior of objects.
The manipulations received by the application only describe the movement of an
object based on the movement of contacts with the multi-touch hardware.
However, to move naturally, objects should also exhibit physical characteristics
such as elasticity and deceleration. When a user lifts all contacts from an object,
the inertia system provides additional manipulation events to the application so
that the application can handle the events as if the user was still moving the object
with touch. However, the inertia system actually generates the events based on a

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

simulation of the behavior of the objects. If the user moves an object into another
object, the inertia system sends manipulation events based on the boundary
characteristics of the objects. Thus, the inertia system provides more realistic
movement for application objects that a user manipulates using multi-touch
hardware and the API provides a consistent feel to manipulations across
applications.

[0006] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1 is a block diagram that illustrates components of the inertia
system, in one embodiment.

[0008] Figure 2 is a data flow diagram that illustrates a typical operating
environment of the inertia system and the flow of data between components, in
one embodiment.

[0009] Figure 3 is a display diagram that illustrates an application object
manipulated by user touch, in one embodiment.

[0010] Figure 4 is a flow diagram that illustrates the input loop processing of a
multi-touch application using the inertia system to handle manipulation events, in
one embodiment.

[0011] Figure 5 is a flow diagram that illustrates the processing of the inertia
system when the system receives touch input, in one embodiment.

[0012] Figure 6 is a flow diagram that illustrates the processing of a multi-touch
application using the inertia system to process inertia events, in one embodiment.
[0013] Figure 7 is a flow diagram that illustrates the processing of the simulation
component of the inertia processing system, in one embodiment.

DETAILED DESCRIPTION

[0014] The inertia system provides a common platform and API for applications
to extend the input received from various multi-touch hardware devices to
simulate real-world behavior of objects. For example, real world objects do not
typically stop moving when a user stops pushing them, but rather exhibit some
inertia and keep moving until friction slows them finally to a stop. In some

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

embodiments, the touch input first goes through a process to interpret the
movement of one or more contacts as manipulations. Manipulations map more
directly to user intentions than do individual touch inputs and add support for basic
transformation of objects using multiple touch contacts. An application can use
manipulations to support rotating, resizing, and translating multiple objects (e.g.,
photos) at the same time. The manipulations may be described as two-
dimensional (2D) affine transforms that contain rotation, scale (e.g., zoom), and
translation (e.g., pan) information.

[0015] Each touch of the multi-touch hardware is called a contact. For example,
when a user sets his/her finger on the multi-touch hardware, moves his/her finger
around, and lifts his/her finger, that series of events is a single contact. For
example, if the user moves two contacts closer together or further apart, the
system may determine that the user is scaling (e.g., zooming into or out from) an
object. As another example, if the user moves multiple contacts in a circular
motion, then the system may interpret the movement as a rotation of an object.
Each application can define objects that are relevant differently, so it is up to the
application to attach an instance of the system (called a manipulation processor)
to each object that a user can manipulate using touch input within the application.
For example, a photo browsing application may attach a manipulation processor
to each displayed photo, so that the user can move the photos around, scale the
photos, rotate the photos, and so forth.

[0016] The manipulations handled by the application only describe the
movement of an object based on the movement of contacts. However, to move
naturally, objects should also exhibit physical characteristics such as elasticity and
deceleration. When a user lifts all contacts from an object, the inertia system
provides additional manipulation events to the application so that the application
can handle the events as if the user was still moving the object with touch.
However, the inertia system actually generates the events based on a simulation
of the behavior of the objects. For example, if the user lifted the contacts while
the object had a velocity in a particular direction, then inertia system continues
sending events that indicate that the object is moving in that direction, slowing
down over time as the object decelerates. If the user moves an object into
another object, such as the edge of the screen, the inertia system sends
manipulation events based on the boundary characteristics of the objects. For

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

example, if an application author defines two objects as being elastic, then the two
objects may bounce off each other when a user moves the objects into each
other. Thus, the inertia system provides more realistic movement for application
objects that a user manipulates using multi-touch hardware and the API provides
a consistent feel to manipulations across applications.

[0017] Figure 1 is a block diagram that illustrates components of the inertia
system, in one embodiment. The inertia system 100 includes a hardware
interface 110, one or more manipulation processors 120, an input transformation
component 130, a simulation component 140, and an application interface 150.
Each of these components is described in further detail herein.

[0018] The hardware interface 110 communicates with the hardware to receive
touch contacts and movements. The hardware interface 110 may include several
subcomponents that work together to provide touch input information. For
example, the operating system may provide a common driver model for multi-
touch hardware manufacturers to provide touch information for their particular
hardware. The operating system may translate touch information received
through this model into window messages (e.g., WM_TOUCH described herein)
and pass these messages to the application. Thus, the hardware interface 110
may involve the coordination of the hardware, a hardware driver, and an operating
system layer. The result is a series of messages to the inertia system that identify
a particular contact (e.g., touch of a finger), and the coordinates of the contact
over time. For example, the operating system may provide a message when a
new contact is set down on the multi-touch hardware, a message each time the
contact moves, and a message when the contact is lifted away from the multi-
touch hardware.

[0019] One or more manipulation processors 120 use the input transformation
component 130 to interpret movement of each contact associated with a particular
application object. The manipulation processor 120 may determine that a user is
using multiple contacts to perform a single action. For example, a user could
touch a photo with all five fingers of one hand and twist his/her hand to indicate an
intention to rotate the photo. The manipulation processor 120 receives five
separate contacts (one for each finger) and the change in coordinates of each
contact as the user rotates his/her hand. The manipulation processor 120
determines that each contact is grabbing the same object and performing the

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

same rotation. The system will inform the application that the user rotated the
object, but the application can ignore whether the user used two, five, or any
particular number of fingers or other contacts to perform the rotation. This greatly
simplifies the authoring of the application because the application author can
handle those types of manipulations that are relevant to the application and leave
it to the inertia system to interpret the meaning of each low-level touch input
received from the multi-touch hardware.

[0020] The manipulation processor 120 uses the input transformation
component 130 to make determinations about the meaning of received
movements of various contacts, both alone and in concert. For example, if a user
is manipulating a photo with two fingers, which creates two corresponding input
contacts, then the manipulation processor 120 uses the input transformation
component 130 to determine the meaning of relative movements between the two
contacts. If the two contacts move apart, then the input transformation component
130 may determine that the user is scaling the object to change the object's size.
If the two contacts rotate, then the input transformation component 130 may
determine that the user is rotating the object. If the two contacts both slide in a
particular direction, then the input transformation component 130 may determine
the user is panning the object to a new location. Although each type of movement
is discussed separately, note that a user can make all three types of movements
at the same time, and the input transformation processor can report the overall
transformation to the application. For example, a user can rotate, scale, and pan
an object all in one motion.

[0021] The simulation component 140 simulates the continued movement of an
application object after the user stops touching the object based on initialization
parameters and constraints defined for the object. An application may initialize
the simulation component 140 with the final state of the manipulation processor
120 associated with the object. The application may also define various
characteristics of the object, such as how the object's boundaries should behave.
The simulation component 140 uses techniques based on physics to simulate the
behavior of the object for a period after the user releases the object. For example,
the simulation component 140 may continue to fire notifications to the application
in the same form as the manipulation events received by the application while the
user was moving the object. The application can then focus on reacting to the

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

movement of the object rather than being concerned with what actions (user or
physical) caused the object to move. Those of ordinary skill in the art will
recognize numerous well-known techniques for simulating the equivalent physical
behavior of virtual objects in software.

[0022] The application interface 150 communicates with the application to
receive information and provide manipulation transforms to the application. The
application interface 150 receives initialization information from the application.
The initialization information may specify which types of transforms the application
object supports for a particular object and associated manipulation processor as
well as initialization data for the simulation component 140 when the user is no
longer moving the object. For example, some application objects may support
scaling but not rotation. The initialization information may also specify a pivot
point of the object. The inertia system provides manipulation transforms to the
application through the application interface. For example, when the inertia
system receives low-level touch input that the system interprets as a recognized
transform (e.g., a rotation), the system fires an event to notify the application
about the manipulation. The application processes the manipulation transform to
modify the object based on the transform. For example, if the user rotated the
object, then the application may store the new orientation of the object to use the
next time the application displays the object. As another example, if the object
continued to rotate after the user released it based on calculations of the
simulation component 140, then the application may store the new orientation of
the object.

[0023] The computing device on which the system is implemented may include a
central processing unit, memory, input devices (e.g., keyboard and pointing
devices), output devices (e.g., display devices), and storage devices (e.g., disk
drives). The memory and storage devices are computer-readable media that may
be encoded with computer-executable instructions that implement the system,
which means a computer-readable medium that contains the instructions. In
addition, the data structures and message structures may be stored or transmitted
via a data transmission medium, such as a signal on a communication link.
Various communication links may be used, such as the Internet, a local area
network, a wide area network, a point-to-point dial-up connection, a cell phone
network, and so on.

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

[0024] Embodiments of the system may be implemented in various operating
environments that include personal computers, server computers, handheld or
laptop devices, multiprocessor systems, microprocessor-based systems,
programmable consumer electronics, digital cameras, network PCs,
minicomputers, mainframe computers, distributed computing environments that
include any of the above systems or devices, and so on. The computer systems
may be cell phones, personal digital assistants, smart phones, personal
computers, programmable consumer electronics, digital cameras, and so on.
[0025] The system may be described in the general context of computer-
executable instructions, such as program modules, executed by one or more
computers or other devices. Generally, program modules include routines,
programs, objects, components, data structures, and so on that perform particular
tasks or implement particular abstract data types. Typically, the functionality of
the program modules may be combined or distributed as desired in various
embodiments.

[0026] Figure 2 is a data flow diagram that illustrates a typical operating
environment of the inertia system and the flow of data between components, in
one embodiment. A multi-touch hardware device produces inputs 210 through a
hardware interface. For example, the hardware may send the inputs 210 to an
operating system through a software driver provided by the hardware
manufacturer. The hardware interface provides input events 220 to an application
230. For example, an application may inform the operating system that the
application 230 supports multi-touch user input and register to receive messages
related to multi-touch user input. The application 230 receives low-level touch
input information as input changes 240 and forwards the input changes 240 to a
manipulation system 250. For example, the input changes 240 may describe
each movement of one or more touch contacts with the hardware using a set of
coordinates that indicate each contact's current position and other movement
characteristics. The manipulation system 250 interprets the input changes 240
and notifies the application 230 of one or more manipulation events 260 that
indicate higher-level manipulations that the user is performing on a displayed
object. For example, if the movement of the contacts indicates that the user
intends to rotate the object, the manipulation events 260 indicate a degree of

rotation.

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

[0027] When the user is done moving the object (e.g., when the application
receives a notification that each contact touching an object has been removed
from the touch hardware), the application 230 sends initialization information 270
to the inertia system 280. The inertia system 280 determines a next position of
the object and provides inertia events 290 similar to the manipulation events 260
that the manipulation system 250 provided when the user was moving the object.
The application 230 also provides a driving timer to periodically call the inertia
system 280 to provide the next position of the object through inertia events 290.
The application 230 processes the inertia events in a way similar to manipulation
events.

[0028] Although the diagram illustrates that the application first receives touch
input and passes the touch input to the manipulation system and inertia, in some
embodiments, these systems receive touch input directly from the hardware
interface, interpret the touch input, and provides interpreted manipulation events
to the application. Likewise, the application may not know that a separate inertia
system 280 provides inertia events after a user stops moving an object with touch,
but rather may receive events from one interface during the time the user is
moving the object and afterwards when the object is moving based on inertia.
This represents an alternative architecture that provides similar resultant
functionality but gives the application less control over the processing of the input.
For example, the application may not be able to define individual application
objects to which the system attaches individual manipulation processors. The
RTS plug-in described herein is one example of this alternative architecture for the
system.

[0029] Figure 3 is a display diagram that illustrates an application object
manipulated by user touch, in one embodiment. An application may
simultaneously display and receive touch input for many such objects. For
example, an operating system shell application may display one or more
document objects stored on the user's computer desktop. In the display 310, the
document object 320 represents a document on the user's desktop that the user
wants to drag to the recycle bin 330 using touch. The user performs a flicking
motion of the document object 320 that results in system processing a first
manipulation location 340, second manipulation location 350, and third
manipulation location 360. The application receives the first manipulation location

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

340 when the user initially touches the document object 320 with one or more
fingers (i.e., contacts). The application receives the second manipulation location
350 as the user slides his/her fingers across the screen. The application receives
the third manipulation location when the user lifts his/her fingers from the screen.
The arrows 365 represent the vectors of the document object's 320 movement.
[0030] Without inertia, the document object 320 would stop at the third
manipulation location 360, which is likely not what the user intends. The inertia
system provides additional manipulation locations to the application as if the user
was still touching and moving the document object 320 based on the document
object's 320 velocity when the user releases the document object 320. The
application receives the first inertia-based manipulation location 370 when the
application initializes the inertia system and calls the inertia system's processing
function for the first time. The application receives the second inertia-based
manipulation location 380 as the application continues to call the inertia system's
processing function. Because the final manipulation location 380 of the document
object 320 is over the recycle bin 330, the application processes the contact
between the two objects (e.g., by placing the document object 320 in the recycle
bin 330). In the example illustrated, even though the inertia system decelerates
the movement of the document object 320, the document object 320 is still able to
move a fair distance across the display 310 based on the high initial velocity of the
user's movement of the document object 320 at the start.

[0031] Figure 4 is a flow diagram that illustrates the input loop processing of a
multi-touch application using the inertia system to handle manipulation events, in
one embodiment. In block 410, the application receives low-level touch input. For
example, an operating system or instance of the inertia system receives touch
contact information from multi-touch hardware and forwards the touch contact
information to the application. In block 420, the application identifies the object to
which the input applies. For example, the application may hit test the coordinates
of the received input by comparing the coordinates with the coordinates of each
application object displayed by the application. If the touch input is within the
boundaries of a displayed application object, then the application determines that
the touch input applies to that object. In block 430, the application sends the
received touch input and the information about the identified application object to
a manipulation API for invoking the inertia system (see Figure 5). For example,

10

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

the application may create a numeric identifier for each application object and
pass the numeric identifier to the inertia system each time touch input
corresponds to that object.

[0032] In block 440, the application receives a manipulation event from the
inertia system that describes one or more manipulations of the identified
application object. For example, the application may receive an event describing
a 2D affine transform of the application object. Note that block 440 is illustrated
serially after block 430 for simplicity of illustration. In practice, the application may
receive many touch input events before the inertia system notifies the application
with a manipulation event. There is not necessarily a one-to-one mapping of
touch input events to manipulation events. Because manipulation events
represent a higher-level interpretation of low-level touch inputs, multiple touch
inputs may make up a single manipulation event. In block 450, the application
handles the received manipulation event. For example, if the received
manipulation event is a rotation, then the application may rotate the application
object on the screen and store the application objects new location for use when
the application object is displayed again. The inertia system frees the application
from performing steps specific to a particular multi-touch hardware device or even
from knowing which hardware device is providing the multi-touch input. In
addition, the inertia system frees the application from processing individual
contact movement and allows the application to focus on processing transforms at
the application object level.

[0033] In block 460, the application waits for the next touch input. For example,
the application may call an operating system provided message API, such as
GetMessage on Microsoft Windows that waits for the next message to be
delivered to the application's message queue. In decision block 470, if the
application receives the next touch input, then the application loops to block 410
to process the input, else the application loops to block 460 to continue waiting for
further input. When the application closes, the application exits the input loop (not
shown).

[0034] Figure 5 is a flow diagram that illustrates the processing of the inertia
system when the system receives touch input, in one embodiment. In block 505,
the system receives touch input along with information identifying an application
object with which the touch input is associated. For example, the touch input may

11

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

include coordinates or other location information of one or more touch contacts,
and the application object information may include an identifier that the application
assigned to a particular displayed object that the touch input is over on the multi-
touch hardware. In block 510, the system identifies a manipulation processor
associated with the application object. In decision block 520, if the system has not
previously associated a manipulation processor with the application object, then
the system continues at block 530, else the system continues at block 540. In
block 530, the system creates a manipulation processor and associates it with the
application object, then continues at block 540.

[0035] In decision block 540, if the received touch input indicates that the
application received a new contact (e.g., a touch down event), then the system
continues at block 550, else the system continues at block 560. For example, a
user may make initial contact of a finger with an on-screen object, or set down
another finger (i.e., contact) on a previously touched object. In block 550, the
system adds the new contact to the list of contacts associated with the
manipulation processor, and then continues at block 560. In decision block 560, if
the received touch input indicates that the application received notification that a
touch contact was removed (e.g., a touch up event), then the system continues at
block 570, else the system continues at block 580. For example, the user may lift
one or more fingers from a previously touched object. In block 570, the system
removes the contact from the list of contacts associated with the manipulation
processor, and then continues at block 580. In block 580, the system processes
the touch input to determine any manipulations represented by the touch input.
For example, touch movement may indicate a rotation or translation manipulation,
while touch contact removal may indicate completion of a manipulation. In block
590, the system fires a manipulation event to send transform information
describing the manipulation to the application. For example, the system may
provide a degree of angular rotation of the object to the application. After block
590, these steps conclude.

[0036] Figure 6 is a flow diagram that illustrates the processing of a multi-touch
application using the inertia system to process inertia events, in one embodiment.
In block 610, the application determines that the user has released an object. For
example, following the handling of a manipulation event in block 450 of Figure 4,
the application may receive an indication that the manipulation is complete or that

12

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

the user has lifted all contacts that were touching an application object. In block
620, the application initializes the inertia system. For example, the application
may pass a reference to the manipulation processor that was handling the
movement of the object and other initialization information. In block 630, the
application sets a timer that will drive the inertia processing period of the inertia
system. For example, the application may set a timer that will fire every 100
milliseconds to process the next movement increment of an object. In block 640,
the application calls the processing function of the inertia system (see Figure 7).
For example, the inertia system may provide a "Process" function that the
application calls to inform the inertia system that it is time to perform simulation for
the period since the last simulation period.

[0037] In block 650, the application receives one or more inertia events that
describe manipulations of the object (e.g., rotation, translation, and/or scaling)
based on simulated inertia. For example, if the object was traveling in a particular
direction, the application may receive an inertia event that describes a translation
manipulation in that direction. As another example, if the object was expanding
when the user released it, the application may receive an inertia event that
describes a scaling manipulation. Note that block 650 is illustrated serially after
block 640 for simplicity of illustration. In practice, the application may call the
inertia processing function several times before the inertia system notifies the
application with an inertia event. There is not necessarily a one-to-one mapping
of calls to the processing function and inertia events. On the other hand, the
inertia system may notify the application of multiple inertia events after a single
call to the processing function.

[0038] In block 660, the application handles the received inertia event based on
the meaning (e.g., an effect) of the manipulation in the context of the particular
application. For example, if the received inertia event is a rotation, then the
application may rotate the application object on the screen and store the
application objects new location for use when the application displays the
application object again. In decision block 670, if the inertia events are complete,
then these steps conclude, else the system continues at block 680. The inertia
system may inform the application that a particular simulated manipulation is
complete as a return value from the process function or through the notifications
provided to the application (e.g., through a Component Object Model (COM) event

13

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

interface). In block 680, the application waits for the next firing of the timer, then
loops to block 640 to call the inertia system processing function.

[0039] Figure 7 is a flow diagram that illustrates the processing of the simulation
component of the inertia processing system, in one embodiment. In block 710,
the component receives initial simulation parameters. For example, an application
or manipulation processor may provide the final state of an application object
when a user stopped touching the object. In block 720, the component initializes
a simulation engine that performs calculations based on physics to determine the
behavior of an object based on the parameters. For example, the simulation
engine may provide realistic deceleration or elasticity behavior for application
objects set in motion by user touch input. In block 730, the component receives a
process call from the application. The application or other component drives the
simulation process by repeatedly calling a processing function at regular intervals
to move the simulation forward. The simulation component may also internally
generate the timer.

[0040] In block 740, the component simulates movement of the object based on
the initial parameters, any previous processing, and the time passed since the last
process call. The process call may also provide a timestamp that indicates the
time that the application wants the simulation to use. This allows the application
to simulate application behavior in other than real-time (e.g., for application testing
or debugging). In decision block 750, if the movement is complete, then the
component continues at block 760, else the component continues at block 770.
The component may determine that the movement is complete based on factors
such as whether the object is still moving or whether the object movement has
fallen below a certain threshold. In block 760, the component sets a completion
flag on the next inertia event. In block 770, the component fires an inertia event to
send transform information describing the current movement (e.g., as a
manipulation) to the application. For example, the system may provide a degree
of angular rotation of the object to the application. After block 770, these steps
conclude.

[0041] In some embodiments, the inertia system receives object constraints from
the application. For example, the application may define the elasticity of an
object, friction coefficient (to determine how an object decelerates), boundary
characteristics of the object, and so forth. For example, an application author may

14

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

define rigid objects that the user can move and a bouncy application window
edge, so that objects moved into the window edge bounce back from the window
edge when the user releases them.

[0042] In some embodiments, the inertia system receives initial object state
information from a manipulation system that was tracking the movement of the
object when the user was manipulating the object with touch input. For example,
the manipulation system may track the current position of each object, the
historical movement of the object, the linear and angular velocity of the object, and
so forth. The application author can provide the output of the manipulation to the
inertia system to initialize the inertia system, so that the inertia system can
smoothly continue the past movement of the object and slow it down based on
appropriate physics and characteristics of the object.

[0043] In some embodiments, the inertia system receives limits on the
movement of objects from the application. For example, the application author
may define an upper bound on the distance that an object can move once a user
releases the object. As another example, the application may define an upper
bound on how long the object can move once a user releases the object. These
and other limits allow the application author to adjust the inertia system to suit the
types of objects manipulated by the application and to enhance the user
experience with the application.

[0044] In some embodiments, the inertia system does not provide additional
movement for objects with movement below a predefined threshold. The
threshold may be configurable by the application. For example, the inertia system
may have a particular object linear or angular velocity below which the system will
not continue movement of the object after the user releases the object. If the
object is not moving very fast when the user releases it, the user may expect that
the object will stay put and not continue to move. The threshold allows the
application or author of the inertia system to determine the level of movement
after manipulation that provides a good user experience.

[0045] In some embodiments, the inertia system receives instructions to
simulate movement incrementally from the application. For example, the inertia
system may provide a "Process" or "DoWork" function that the application calls to
instruct the inertia system to perform a portion of the overall simulation. The
inertia system may expect the application to set a timer or otherwise periodically

15

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

call the function to cause the inertia system to simulate movement over time
according to a natural timeline. The application can affect the characteristics of
the manipulation events provided by the inertia system by varying how often the
application calls the function. In other embodiments, the inertia system uses an
internal timer to provide manipulation events on a regular schedule until each
object has stopped moving (e.g., due to deceleration or other simulated forces).
[0046] In some embodiments, the inertia system is part of a message-based
operating system, and the system receives messages related to touch input that
the operating system receives from the hardware. For example, using a paradigm
similar to WM_MOUSEMOVE for mouse messages, future versions of Microsoft
Windows may provide a WM_TOUCH message that contains low-level touch
movement information received from multi-touch hardware. The operating system
may also provide finer grained messages, such as WM_TOUCHDOWN (when a
new contact is made with the multi-touch hardware), WM_TOUCHMOVE (when
an existing contact moves), and WM_TOUCHUP (when a contact is lifted from the
multi-touch hardware). An application that receives a WM_TOUCH-related
message can invoke the inertia system and pass the message to the inertia
system for interpretation and processing. The application then receives higher-
level events that represent the inertia system's interpretation of the manipulation
intended by the user based on the received low-level touch movement
information.

[0047] In some embodiments, the inertia system receives low-level touch
movement information from specialized hardware, such as a real-time stylus. For
example, the Microsoft Tablet PC Software Development Kit (SDK) provides a
real-time stylus (RTS) component that application authors can extend with hooks.
RTS hooks receive input from the RTS hardware and can perform processing on
the received input. The inertia system may provide a hook that an application can
insert into the RTS component to automatically process RTS and other input to
manipulate application objects as described herein. The RTS hook provides a
different way for the inertia system to receive input, but the inertia system
interprets input and fires events to the application describing manipulations
implied by the input as previously described. A user may use a combination of
stylus and touch input. For example, the user may draw an object with the stylus
and then rotate the object using his/her fingers.

16

10

15

20

25

WO 2010/048051 PCT/US2009/060977

[0048] In some embodiments, the inertia system is part of a common control that
an application can invoke to provide a common user interface. Microsoft Windows
provides common controls for displaying lists, trees, buttons, and so forth.
Likewise, the inertia system may provide a multi-touch based control for
manipulating application objects in the ways described herein. For example, the
system may provide a scatter control that allows the user to display one or more
objects and manipulate the objects. The scatter control handles processing of
low-level touch input and associating the input with a particular application object,
and the application receives events from the control to handle the manipulations
of the application objects. For example, if the control indicates that the user
resized an object, then the application may store the objects new size.

[0049] In some embodiments, the inertia system performs the processing
described herein in three dimensions. Although two-dimensional multi-touch
hardware is described herein, those of ordinary skill in the art will recognize that
the processing of the system described herein can be applied equally well to
three-dimensional (3D) manipulations if hardware is available to provide
coordinate movement in three dimensions. For example, hardware that detects
pressure or uses cameras to detect 3D movement of a user's fingers could
provide the coordinates of movement in the third dimension to the inertia system,
and the inertia system could then produce 3D transforms that describe
manipulations (e.g., rotation, scaling, and translation) of objects in multiple 3D
directions.

[0050] The following table defines one API that the inertia system provides to
applications for providing inertia-based movement to application objects following

user touch-based movement of the objects.

Properties:

BoundaryBottom Limits how far towards the bottom of the
screen the target object can move.

BoundaryLeft Limits how far towards the left of the
screen the target object can move.

BoundaryRight Limits how far towards the right of the
screen the target object can move.

BoundaryTop Limits how far towards the top of the
screen the target object can move.

DesiredAngularDeceleration Specifies the desired rate that the target
object will stop spinning in radians per
millisecond.

17

WO 2010/048051

PCT/US2009/060977

DesiredDecleration

Specifies the desired rate at which
translation operations will decelerate.

DesiredDisplacement

Specifies the desired distance that the
object will travel.

DesiredExpansion

Specifies the desired change in the
object's average radius.

DesiredExpansionDeceleration

Specifies the rate at which the object
will stop expanding.

ElasticMarginBottom

Specifies the bottom region for
bouncing the target object.

ElasticMarginLeft Specifies the leftmost region for
bouncing the target object.
ElasticMarginRight Specifies the rightmost region for

bouncing the target object.

InitialAngularVelocity

Specifies the rotation of the target when
movement begins.

InitialOriginX

Gets or puts the property designating
the horizontal position of a target object.
This property specifies the starting
horizontal location for a target with
inertia.

InitialOriginY

Gets or puts the property designating
the vertical location for a target object.
This property specifies the starting
vertical location for a target with inertia.

InitialRadius

Specifies the distance from the edge of
the target to its center before the object
was changed.

Initial Timestamp

Specifies the starting timestamp for a
target object with inertia.

InitialVelocityX Specifies the initial movement of the
target object on the horizontal axis.
InitialVelocityY Specifies the initial movement of the
target object on the vertical axis.
Methods:

HRESULT Reset();

Initializes the processor with initial
timestamp.

HRESULT Process(
[out] BOOL* completed

)i

Performs calculations for the given tick
and can raise the Delta or Completed
event depending on whether
extrapolation is completed or not. If
extrapolation finished at the previous
tick, the method is no-op.

HRESULT ProcessTime(
[in] DWORD timestamp,
[out] BOOL* completed

)i

Performs calculations for the given tick
and can raise the Delta or Completed
event depending on whether
extrapolation is completed or not. If
extrapolation finished at the previous
tick, the method is no-op.

HRESULT Complete();

Raises the Completed event.

HRESULT CompleteTime(
[in] DWORD timestamp

):

Processes the given tick and raises the
Completed event.

18

10

WO 2010/048051 PCT/US2009/060977

Events:
HRESULT ManipulationStarted(Handles the event for when a
[in] FLOAT x, manipulation begins.
[in] FLOATYy
)
HRESULT ManipulationDelta(Handles events that happen when a
[in] FLOAT x, manipulated object changes
[in] FLOAT v,

[in] FLOAT translationDeltaX,

[in] FLOAT translationDeltaY,

[in] FLOAT scaleDelta,

[in] FLOAT expansionDelta,

[in] FLOAT rotationDelta,

[in] FLOAT cumulativeTranslationX,
[in] FLOAT cumulativeTranslationY,
[in] FLOAT cumulativeScale,

[in] FLOAT cumulativeExpansion,
[in] FLOAT cumulativeRotation

)

HRESULT ManipulationCompleted(Handles the event when manipulation
[in] FLOAT x, finishes.
[in] FLOAT v,

[in] FLOAT cumulativeTranslationX,
[in] FLOAT cumulativeTranslationY,
[in] FLOAT cumulativeScale,

[in] FLOAT cumulativeExpansion,
[in] FLOAT cumulativeRotation

)

[0051] In the table above, the inertia system may provide the listed events on the
same interface on which an application was previously receiving events based on
user movement.

[0052] From the foregoing, it will be appreciated that specific embodiments of
the inertia system have been described herein for purposes of illustration, but that
various modifications may be made without deviating from the spirit and scope of
the invention. For example, although the system has been described in the
context of multi-touch manipulations, the system provides simulation of inertia that
could be used in other contexts, such as games and other areas where simulation
is commonly used. Accordingly, the invention is not limited except as by the
appended claims.

19

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

CLAIMS

I/We claim:
1. A computer-implemented method for providing realistic movement of
objects manipulated using multi-touch input, the method comprising:

determining 610 that a user has released an application object by removing
one or more contacts from a multi-touch input device;

invoking 640 an inertia AP to process a simulation of movement of the
application object for a current inertia processing period, wherein the inertia API
provides an application-independent platform for simulating realistic movement
independent of a type of the application object;

receiving 650 an inertia event that describes a manipulation of the object
based on simulated inertia;

handling 660 the received inertia event based on an effect of the
manipulation in a context of the application by modifying the application object.
2. The method of claim 1 further comprising, after determining that the user
released the object, initializing the inertia system by passing a reference to a
manipulation processor that was handling the movement of the object before the
user released the object.
3. The method of claim 1 further comprising, after determining that the user
released the object, initializing the inertia system by passing one or more
parameters describing a state of the object when the user released the object.
4. The method of claim 1 wherein receiving the inertia event comprises
receiving information describing a 2D affine transform of the application object.
5. The method of claim 1 wherein the manipulation described by the inertia
event includes at least one of a rotation manipulation, a translation manipulation,
and a scaling manipulation.
6. The method of claim 1 wherein the received inertia event is a rotation and
wherein handling the received inertia event comprises rotating the application
object on a display.
7. The method of claim 1 further comprising setting a timer that determines a
length of the inertia processing period, and wherein the application invokes the
inertia AP at each firing of the timer.

20

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

8. The method of claim 7 further comprising receiving an indication from the
inertia API that the simulation is complete, and expiring the timer when the
indication is received.

9. The method of claim 1 wherein receiving the inertia event comprises
receiving a notification through a COM event interface.

10. A computer system for handling touch input from multi-touch hardware, the
system comprising:

a hardware interface 110 configured to communicate with the multi-touch
hardware to receive touch contact information and movements of the touch
contacts;

one or more manipulation processors 120 configured to manage
interpretation of movement of each contact associated with a particular application
object;

an input transformation component 130 configured to interpret a meaning
of received movements of various contacts to produce manipulations of
application objects;

a simulation component 140 configured to simulate continued movement of
the application object after a user stops touching the object;

an application interface 150 configured to communicate with the application
to receive contact movement information and provide manipulation transforms to
the application.

11. The system of claim 10 wherein the simulation component is further
configured to receive initialization parameters from an application through the
application interface.

12. The system of claim 11 wherein the initialization parameters are provided
by a manipulation processor that was managing the application object before the
user stopped touching the object.

13. The system of claim 10 wherein the simulation component is further
configured to receive boundary constraints of the application object.

14. The system of claim 10 wherein the simulation component is further
configured to apply laws of physics to determine the continued movement of the
object based on a past velocity and direction of movement of the object.

21

10

15

20

25

30

WO 2010/048051 PCT/US2009/060977

15. The system of claim 10 wherein the input transformation component and
simulation component generate events in a similar format so that the application
can handle events from both components similarly.
16. A computer-readable storage medium encoded with instructions for
controlling a computer system to simulate movement of an application object
previously moved by multi-touch input, by a method comprising:

receiving 710 one or more initial simulation parameters that provide a last
state of the application object when a user released the application object;

initializing 720 a simulation engine that performs calculations based on
physics to determine the behavior of the application object object based on the
initial simulation parameters;

receiving 730 an indication that a current simulation period is due for
moving a simulation forward,;

simulating 740 movement of the application object based on the initial
parameters, any previous processing, and the time passed since any previous
simulation period; and

firing 770 an inertia event to send transform information describing a
current movement of the application object to the application. For example, the
system may provide a degree of angular rotation of the object to the application.
17. The computer-readable medium of claim 16 wherein the simulation engine
simulates realistic deceleration behavior for the application object after it was set
in motion by the user touching the object.
18. The computer-readable medium of claim 16 wherein the simulation engine
simulates realistic elasticity behavior for the application object when the
application object overlaps with another element on a display.
19. The computer-readable medium of claim 16 wherein receiving the
indication that the current simulation period is due comprises receiving a call from
the application to a simulation processing function.
20. The computer-readable medium of claim 16 further comprising determining
whether the simulation is complete and if the simulation is complete, informing the
application that the simulation is complete.

22

WO 2010/048051 PCT/US2009/060977
117
100
Manipulation System
110 120 130 140
Hardware Manipulation Input : :
Interface Processor(s) Transformation Simulation
150
Application
Interface

Figure 1

WO 2010/048051

Inputs from

Hardware

220

Input
Events

y

27

240

230 Input

Interface

Application/Control

Changes

PCT/US2009/060977

250

>

Manipulation

A

Events
260

270
Inertia Inputs

and Driving Timer

Manipulation System

280

Y

Inertia Events

290

Figure 2

Inertia System

PCT/US2009/060977

WO 2010/048051

37

€ 24N31.J

vels

09€

Gog

0LE

WO 2010/048051

4/7

Application
Input Loop

410

Receive Low-Level Touch Input

420

Identify Touched Application Object

430

Send Touch Input/Object ID to
Manipulation API

440

Receive Manipulation Event

450

Handle Manipulation Event

460

Wait for Next Touch Input <

Next Input
Received?

PCT/US2009/060977

WO 2010/048051

550

57

(Manipulation API)

505

Receive Touch Input/ Application
Object ID

510

Identify Manipulation
Processor

Add Contact to Manipulation
Processor

Processor Exists?

Contact Added?

PCT/US2009/060977

530

Create Processor

Contact Removed?

Interpret Touch Input

570

Remove Contact from
Manipulation Processor

590

Fire Manipulation Event

(Done)

Figure 5

)

WO 2010/048051 PCT/US2009/060977

6/7

Application
Inertia Loop

610
Determine User Released Object

620

Initialize Inertia System
630

Set Timer

640

> Call Inertia Processing
650

Receive Inertia Event
660

Handle Inertia Event

680

Wait for Timer Complete?

< pone)

Figure 6

WO 2010/048051

PCT/US2009/060977
717
< Inertia Processing)
710
Receive Initial Parameters
720
Initialize Simulation
730
Receive Process Call
740
Simulate Movement
760
Movement Set Complete

Complete?

Fire Inertia Event <

< pone)

Figure 7

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

