Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 July 2001 (19.07.2001)

(10) International Publication Number

WO 01/52539 Al

(51) International Patent Classification’: HO04N 7/12

(21) International Application Number: PCT/US00/35287

(22) International Filing Date:
27 December 2000 (27.12.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/481,337 12 January 2000 (12.01.2000) US

(71) Applicant: SONY ELECTRONICS INC. [US/US]; 1
Sony Drive, Park Ridge, NJ 07656 (US).

(72) Inventors: LUNA, Amelia, Carino; 6553 Edgebrook
Ct., San Jose, CA 95120 (US). WANG, Jason, N.; 1238
Oregold Place, San Jose, CA 95131 (US). WILLIAMS,
Richard, L.; P.O. Box 66101, Scotts Valley, CA 95067
(US).

(74) Agents: HEID, David, W. et al; Skjerven Morrill
MacPherson LLP, 25 Metro Drive, Suite 700, San Jose,
CA 95110 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR DECODING MPEG VIDEO SIGNALS

11

MPEG [.
VIDEO VIDEO VIDEO
STREAM DECODER | " ouTPUT

f107
MPEG —3] DEMUX 1

BITSTREAM ¥ 12
AauDIO |18 _ AUDIO
DECODER | OUTPUT

&\ (57) Abstract: A method and apparatus for decoding an input MPEG (Fig. 1) video stream are provided that includes a core pro-
€73 cessor with a very long instruction word (VLIW) processor (Fig. 2A, 21) and a co-processor that includes a variable length decoder
(VLD) for decoding the MPEG video stream (Fig. 2A, 24). The input MPEG video stream is organized into macroblocks, wherein
each macroblock includes a header for a macroblock that is not decoded, and encoded data for a macroblock whose header is pre-
~~ viously decoded by VLD (Fig. 5). Thereafter, VLD decodes the encoded video data of a first macroblock whose header has been
decoded, and decodes the header of a second (current) macroblock (Fig. 6). VLIW then performs motion compensation on a current
macroblock based upon reference data of a previously decoded macroblock (Fig. 7). VLIW also adds a fake slice start code and fake
O macroblock data at the end of each picture into the input MPEG video data stream (Fig. 3, S305); and utilizes the fake slice start code
and fake macroblock data to skip to a next slice (Fig. 3, S306). The fake macroblock data indicates an error to the VLD stopping the
decoding process until the core processor clears the interrupt and reinitiates decoding of a selected macroblock (Fig. 3, 310).

WO 01/52539 PCT/US00/35287

10

15

20

25

METHOD AND APPARATUS FOR DECODING MPEG VIDEO SIGNALS

RELATED APPLICATIONS:

The present Application is related to the U.S. patent application entitled
“METHOD AND APPARATUS FOR DECODING MPEG VIDEO SIGNALS WITH
CONTINUOUS DATA TRANSFER?”, Serial No. 09/481,603, filed January 12, 2000,
and assigned to the Assignee of the present invention. The disclosure of the patent
application “METHOD AND APPARATUS FOR DECODING MPEG VIDEO
SIGNALS WITH CONTINUOUS DATA TRANSFER?” is hereby incorporated by

reference herein in its entirety.

The present Application is also related to the U.S. patent application entitled
“METHOD AND APPARATUS FOR DECODING MPEG VIDEO SIGNALS
USING MULTIPLE DATA TRANSFER UNITS”, Serial No. 09/481,336, filed
Janaury 12, 2000, and assigned to the Assignee of the present invention. The
disclosure of the patent application “METHOD AND APPARATUS FOR
DECODING MPEG VIDEO SIGNALS USING MULTIPLE DATA TRANSFER

UNITS” is hereby incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates to video decoders, and more particularly, to a
method and apparatus for decoding encoded MPEG video data stream into raw video

data.

BACKGROUND OF THE INVENTION
MPEG Background

Moving Pictures Experts Group (“MPEG”) is a committee under the
A
International Standards Organization (“ISO”) and the International Electronics

Commission (“IEC”) that develops industry standards for compressing/decompressing

WO 01/52539 PCT/US00/35287

10

15

20

25

video and audio data. Two such standards that have been ratified by MPEG are called
MPEG-1 and MPEG-2. MPEG-1 is documented in ISO/IEC 11172 publication and is
fully incorporated herein by reference. MPEG-2 is disclosed in ISO/IEC publication

11172 and 13818, and is also incorporated herein by reference.

MPEG-1 was developed with the intent to play back cofnpressed video and
audio data either from a CD-ROM, or transfer compressed data at a combined coded
bit rate of approximately 1.5 Mbits/sec. MPEG-1 approximates the perceptual quality
of a consumer videotape (VHS). However, MPEG-1 was not intended for broadcast
quality. Hence, MPEG-1 syntax was enhanced to provide efficient representation of

interlaced broadcast video signals. This became MPEG-2.

MPEG-1 and MPEG-2 can be applied at a wide range of bit rates and sample
rates. Typically MPEG-1 processes data at a Source Input Resolution (SIF) of 352
pixels x 240 pixels at 30 frames per second, at a bit rate less than 1.5 Mbits/s. MPEG-
2, developed to serve the requirements of the broadcast industry, typically processes
352 pixels x 240 lines at 30 frames/sec (“Low Level”), and 720 pixels/line x 480 lines

at 30 frames/sec (“Main Level™), at a rate of approximately 5 Mbits/sec.

MPEG standards efficiently represent video image sequences as compactly
coded data. MPEG standards describe decoding (reconstruction) processes by which
encoded bits of a transmitted bit stream are mapped from compressed data to the

original raw video signal data suitable for video display.

MPEG ENCODING

MPEG encodes video sequences such that RGB color images are converted to
YUYV space with two chrominance channels, U and V. A MPEG bitstream is
compressed by using three types of frames: I or intra frames, P or predicted frames,
and B or bi-directional frames. I frames are typically the largest frames containing
enough information to qualify as entry points. Predicted frames are based on a
previous frame and are highly compressed. Bi-directional frames refer both to future

and previous frames, and are most highly compressed.

2

WO 01/52539 PCT/US00/35287

10

15

20

25

MPEG pictures can be simply intra-coded, with no motion
compensation prediction involved, forward coded with pel prediction projected
forward in time, backward coded with pel prediction backward in time, or bi-
directionally coded, with reference to both forward and backward pictures. Pictures
can be designated as I (formed with no prediction involved as a still image from the
image data originating at the source, e.g., a video camera), P (formed with prediction
from forward pictures) or B (formed with prediction both from a forward picture
and/or a backward picture). An example of display sequence for MPEG frames might
be shown as follows:

IBBPBBPBBPBBIBBPBBPB
Each MPEG picture is broken down into a series of slices and each slice is

comprised of a series of adjacent macroblocks.

MPEG pictures can be progressive sequence or interlaced. For the interlaced
GOP comprises of field and/or frame pictures. For frame pictures, macroblock

prediction scheme is based upon fields (partial frames) or complete frames.

MPEG encoder decides how many pictures will occur in a GOP, and how
many B pictures will be interleaved between each pair of I and P pictures or pair of P
pictures in the sequence. Because of picture dependencies, i.e., temporal compression,
the order in which the frames are transmitted, stored or retrieved, is not necessarily the
video display order, but rather an order required by the decoder to properly decode

pictures in the bitstream.

MPEG compression employs two fundamental techniques: Motion
compensation and Spatial Redundancy. Motion compensation determines how
predicted or bi-directional frames relate to their reference frame. A frame is divided
into 16 x 16 pixel units called macroblocks. The macroblocks in one frame are
compared to macroblocks of another frame, similarities between the frames are not
coded. If similar macroblocks shift position between frames, the movement is

explained by motion vectors, which are stored in a compressed MPEG stream.

WO 01/52539 PCT/US00/35287

10

15

20

25

Spatial redundancy technique reduces data by describing differences within
corresponding macroblocks. Spatial compression is achieved by considering the
frequency characteristics of a picture frame. The process uses discrete cosine
transform (“DCT”) coefficients that spatially tracks changes in color and brightness.
The DCTs are done on 8x8 pixel blocks. The transformed blocks are converted to the
“DCT domain”, where each entry in the transformed block is quantized with respect to
a set of quantization tables. Huffman coding and zig-zag ordering is used to transmit

the quantized values.

MPEG DECODING

MPEG Video decoders are known in the art. The video decoding process is
generally the inverse of the video encoding process and is employed to reconstruct a
motion picture sequence from a compressed and encoded bitstream. Generally MPEG
video bitstream data is decoded according to syntax defined by MPEG standards. The
decoder must first identify the beginning of a coded picture, identify the type of

picture, and then decode each individual macroblock within a particular picture.

Generally, encoded video data is received in a rate or a video buffer verifier
(“VBV”). The data is retrieved from the channel buffer by a MPEG decoder or
reconstruction device for performing the decoding. MPEG decoder performs inverse
scanning to remove any zig zag ordering and inverse quantization to de-quantize the
data. Where frame or field DCTs are involved, MPEG decoding process utilizes frame
and field Inverse Discrete Cosine Transforms (“IDCTs”) to decode the respective
frame and field DCTs, and converts the encoded video signal from the frequency

domain to the spatial domain to produce reconstructed raw video signal data.

MPEG decoder also performs motion compensation using transmitted motion
vectors to reconstruct temporally compressed pictures. When reference pictures such
as I or P pictures are decoded, they are stored in a memory buffer. When a
reconstructed picture becomes a reference or anchor picture, it replaces the oldest
reference picture. When a temporally compressed picture, also referred to as a target

frame, is received, such as P or B picture, motion compensation is performed on the
4

WO 01/52539 PCT/US00/35287

10

15

20

25

picture using neighboring decoded I or P reference pictures. MPEG decoder examines
motion vector data, determines the respective reference block in the reference picture,

and accesses the reference block from the frame buffer.

After the decoder has Huffman decoded all the macroblocks, the resultant
coefficient data is then inverse quantized and operated on by an IDCT process to
transform macroblock data from a frequency domain to data in space domain. Frames
may need to be re-ordered before they are displayed in accordance with their display
order instead of their coding order. After the frames are re-ordered, they may then be

displayed on an appropriate device.

Fig. 1 shows a block diagram of a typical MPEG decoding system, as is known
in the art. Shown in Figure 1 are a MPEG Demux 10, 2a MPEG video decoder 11 and
an audio decoder 12. MPEG Demux 10 receives encoded MPEG bit stream data 13
that consists of video and audio data, and splits MPEG bit stream data 13 into MPEG
video stream data 14 and MPEG audio stream data 16. MPEG video stream data 14 is
input into MPEG video decoder 11, and MPEG audio stream data 16 is input into an
MPEG audio decoder 12. MPEG Demux 10 also extracts certain timing information
15, which is provided to video decoder 11 and audio decoder 12. Timing information
15 enable video decoder 11 and audio decoder 12 to synchronize an output video
signal 17 (raw video signal data) from video decoder 11 with an output audio signal

18 (raw audio data) from audio decoder 12.

MPEG video decoders may have a core processor for reconstructing decoded
MPEG video data into raw video signal data, and a co-processor (“VLD”) for doing
variable length decoding of the MPEG video data stream. A direct memory access
controller (“DMA”) either associated with or incorporated into a host computer, or
associated with or incorporated into the MPEG video decoder, manages data transfer

between the core processor, VLD and various memory buffers.

Current decoding processors such as those manufactured by Equator

Technology Inc. (“ETI”) process data on an individual block by block basis, rather
5

WO 01/52539 PCT/US00/35287

10

15

20

25

than a macroblock level. For component block by block decoding and transfer, the
speed of the processing of an entire macroblock may be limited by data transfer speed.
For example, if a data transfer mechanism is able to transfer 2 bytes per cycle, for a
macroblock with six (6) 8 x 8 blocks comprising of 768 bytes of data, will require 384
cycles and an additional “y” number of cycles for overhead delay per transfer set.

Hence, block by block decoding slows the overall decoding process.

Currently more DMA instructions are required to process each block of data
vis-a-vis processing an entire macroblock of data. Also, conventional MPEG
techniques have multiple waits for different DMA transfers and hence a significant

amount of lead-time occurs that slows the overall decoding process.

Also, current decoding techniques adversely impact parallelism between VLD
and the core processor and have inefficient VLIW pipelines. Furthermore, currently,

VLD can only detect errors and is not able to correct those errors.

Therefore, a decoding system is needed that can efficiently transfer data
between VLD and core processor, and also optimally utilize the resources of both

processors, and perform error recovery in the core processor.

SUMMARY OF THE INVENTION

The present invention addresses the foregoing drawbacks by providing an
apparatus and method that synchronizes data exchange between a core processor that
includes a very long instruction word (VLIW) processor, and a variable length decoder
(VLD) of an MPEG video decoder, and enhances core processor and co-processor
parallelism. According to one aspect, the present invention provides an incoming
compressed and encoded MPEG video bit stream to a video decoder on a picture by
picture basis. The input MPEG video stream data is organized into pictures and slices.
Thereafter, VLIW adds a fake slice start code and fake macroblock data at the end of
each MPEG input picture, and VLD utilizes the fake slice start code and fake

macroblock data to skip to a next picture. The fake macroblock data indicates an error

WO 01/52539 PCT/US00/35287

10

15

20

25

to VLD stopping the decoding process until the core processor reinitiates decoding of

a selected slice.

VLIW then provides the input MPEG coded data stream to VLD on a picture
by picture basis. VLD decodes the header of a current macroblock and the video data
of a previous macroblock whose header has been decoded. The encoded MPEG video

data includes DCT coefficients.

Thereafter, VLD transfers the current decoded header along with the decoded
DCT coefficients of a previously decoded macroblock to the core processor on a
macroblock by macroblock basis. VLIW performs motion vector reconstruction based
upon decoded header data, inverse discrete cosine transforms based upon the decoded
DCT coefficients, and motion compeﬁsation based upon reference data of a previous

macroblock(s), and converts the data into raw video data.

The present invention has numerous advantages over the existing art. The
decoding of an entire macroblock of video data assists in maintaining continuos and
efficient pipelined operation. Since a macroblock includes a macroblock header for a
current macroblock and DCT coefficients for a previous macroblock, VLIW can easily

locate data for motion vector reconstruction and compensation.

The foregoing aspects of the invention also simplify the decoding and
reconstruction process because VLD decodes a macroblock header for a current
macroblock, e.g. MB(i) and stores the decoded header data with a macroblock already
decoded, e.g. MB(i-1), and transfers the decoded header and macroblock data (DCT's)
to a data cache for access by VLIW. This enables VLIW to acquire reference data for a
macroblock prior to performing motion compensation and IDCTs. This reduces idle
time and improves decoding efficiency. VLIW architecture also allows simultaneous
data processing and data transfer, and hence improves parallelism. Furthermore, since
VLIW controls VLD operations, error handling is streamlined and hence improves

performance.

WO 01/52539 PCT/US00/35287

10

15

20

25

This brief summary has been provided so that the nature of the invention may
be understood quickly. A more complete understanding of the invention can be
obtained by reference to the following detailed description of the preferred

embodiments thereof in connection with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 shows ablock diagram of a typical MPEG decoding system known in
the art.

Fig. 2A shows a block diagram of a MPEG video decoder according to one

aspect of the present invention.
Figure 2B shows a block diagram of data cache 22 memory buffers.

Fig. 3 shows a flow diagram of process steps for decoding MPEG video stream

by using a fake slice start code and fake macro-block data.

Fig. 4 is an example of macroblock data format with fake start code and fake

macro block data.
Fig. 5 shows an example of a macroblock data structure.

Fig. 6 shows a flow diagram of process steps according to one aspect of the
present invention for decoding an MPEG video stream on a macroblock by

macroblock basis.

Figure 7 shows process steps for performing motion compensation and motion

vector reconstruction of a decoded output video stream.

Fig. 8A-8L shows a flow chart according to another aspect of the present
invention illustrating the general processing, and groups of processes performed by
various components of a MPEG video decoder.

The use of similar reference numerals in different Figures indicates similar or

8

WO 01/52539 PCT/US00/35287

10

15

20

25

identical items.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Overall Architecture:

Fig. 2A shows a schematic view of an MPEG video decoder 11, according one
aspect of the present invention. MPEG video decoder 11 has a core processor 20,
which includes a very long instruction word (“VLIW”) processor 21. VLIW processor
21 utilizes instructions that are grouped together (i.e., very long) at the time of
compilation of a computer program. As is well known in the art of VLIW processors,

very long instructions are fetched and segregated for execution by VLIW processor 21,

and dispatched to independent execution units.

VLIW processor 21 is connected to a data cache memory 22 over a bi-
directional internal bus 23. VLIW 21 can read input MPEG video stream 14 buffered
in VBV 25 contained within a memory device for example, SDRAM 26 which also

includes a frame buffer 40 whose functionality is discussed in detail below.

MPEG video decoder 11 also includes a co-processor 23a. Co-processor 23a
has a variable length decoder (“VLD”’) 24 which decodes (Huffman decodes)
incoming encoded MPEG video stream 14 to produce decoded MPEG video data from
which core processor 20 can reconstruct and output raw video data. Co-processor 23a
also has a memory (“CM1”) 29 that has at least two buffers BO and B1 to store at least
two sets of macroblock data. CM1 29 is connected to VLD 24 over a bi-directional
bus 30 and is also connected to a Direct Memory Access (“DMA”) transfer unit, DS1
31, over a bus 32. DS1 31 in turn is also connected to data cache memory 22 via a bi-
directional bus 33, and transfers data from CM1 29 memory buffers to data cache 22
memory buffers. Figure 2B, as described below shows a block diagram of data cache

22 with various memory buffers.

VLD 24 has an input/output (“I/O”) section, a GetBits engine (“GB”) 28.
VBYV 25 supplies incoming MPEG video stream 14 to VLD 24 through DS0 27, where

DSO0 27 is another Direct Memory Access (“DMA”) unit channel used for transferring
9

WO 01/52539 PCT/US00/35287

10

15

20

25

data between VBV 25 and GetBits engine 28 via buses 34 and 47. GetBits engine 28
gets MPEG coded video bit stream 14 and transfers the data to VLD 24 through an

input buffer (not shown).

VLIW processor 21 communicates command signals to DS0 27 over a
command signal line 35. VLIW 21 can also read/write to CM1 29 over bus 36 and
when VLIW 21 writes to CM1 29, VLD 24 can interpret the “writes” as a command.
One such command is the “GO” command that allows VLD 24 to start decoding a
macroblock. Also, VLD 24 can send data transfer commands to DS1 31 over

command signal line 37.

It is noteworthy that core processor 20, co-processor 23a including all the data
transfer elements can be integrated on a single chip. An example of such a chip is the

MAP 1000A sold by Equator Technology.

Fig. 2A also shows various DMA elements utilized for storage and transfer of
video data. Fig. 2A shows frame buffer 40, that receives output reconstructed raw
video signal data from data cache memory 22 on a macroblock by macroblock basis
via DMA transfer unit DS3 39, over buses 42 and 45. DS3 39 has three paths,
designated for illustration purposes as DS3_0, DS3 1 and DS3 2 that allows
simultaneous data transfer from data cache 22 to frame buffer 40. It is noteworthy that
the invention is not limited to a three path DMA transfer unit. Frame buffer 40 also
provides macroblock reference data for motion compensation to VLIW processor 21

through DMA transfer unit DS2 38, over buses 41 and 46.

Figure 2B shows a block diagram of various memory buffers that can be
included in data cache 22. Figure 2B shows memory buffers MB_B0’, MB_B1’ and
MB_2’ to receive data from CM1 29 via DS1 31. Also shown are buffers MC BO0’,
and MC_B1’ to receive and store reference data for motion compensation from frame
buffer 40 via DS2 38. Data cache 22 includes output memory buffers designated as
OUT _B0’, OUT_B1’ and OUT B2’ for storing decoded raw video data. It is
noteworthy that all three buffers can transfer data simultaneously via DMA DS3 39.

10

WO 01/52539 PCT/US00/35287

10

15

20

25

It is noteworthy that in one embodiment command lines/buses 34, 35,37, 41,
42,43, and 44 can be integrated into a single bus. Also buses 32 and 33 can be
included in a single bus, and furthermore buses 45, 45A, 46 and 47 can be included in
a single bus. In another embodiment all the command lines/buses, namely,
34,35,37,41,42,43,44, 45, 45A, 46 and 47 may be included on a single bus. Figure 2A
and Figure 2B show the logic layout of the various buses and command lines, as

discussed above.

Video Stream decoding using fake slice code

Figure 3 is flow diagram showing process steps according to one aspect of the
present invention for decoding MPEG video stream 14 by using a fake slice start code

and fake macro-block data.

In step S301, store input MPEG video stream 14 in VBV 25 in a non-coherent

mode, i.e., no other copy of the data stream is made.

In step S302, VLIW 21 parses video bitstream data 14 stored in VBV 25 to
search for the presence of start code of a picture. VLIW 21 also determines picture

size (“picture_size”) and stores the picture size in cache memory 22.
In step S 303, VLIW 21 reads input MPEG video stream 14.

In step S 304, VLIW 21 parses input MPEG video stream 14 and finds the end
location of the slice. VLIW 21 follows MPEG standards to identify markers in the

input MPEG video stream 14, as start and end positions of pictures and slices.

In step S 305, VLIW 21 adds fake slice start code and fake macroblock data at
the end of a picture. The picture data is appended with fake slice start code and fake
macroblock data to facilitate macroblock level decoding and error handling. Figure 4
shows an example of a macroblock data format 41 with fake start code 42 and fake
macro block data 43. It is noteworthy that the invention is not limited to the shown

fake start code format, any other format can be used to insert fake slice code. Fake

macroblock data 43 is a macroblock header for pictures that indicates an error in the

11

WO 01/52539 PCT/US00/35287

10

15

20

25

marker bit and will cause VLD 24 to stop decoding a current macroblock, and await
further instructions (a “GO” command) from VLIW 21. By appending a fake slice
start code to the end of the picture, VLD 24 skips to the next picture without actually

decoding the data in the present picture.

In step S 306, VLIW 21 sets DS0 27 over control line 35 to transfer the
encoded MPEG video stream 14 from VBV 25 to GetBits engine 28, and DS0 27
transfers encoded MPEG video data 17 to GetBits engine 28. VLIW 21 sends a first
slice start code to VLD co-processor 23 for the purpose of slice level synchronization
and also to enable VLD 24 to skip to another slice in a picture. An entire picture is
transferred. This is the most efficient transfer mode, since a picture is the largest data
entity. Transfer of smaller entities, such as a slice, results in a more complex pre-
parsing workload for VLIW 21 and results in a complex data transfer system that can

slow down the overall decoding process.

In step S307, DSO 27 transfers fake slice start code 42 and fake macroblock
data 43 to GetBits engine 28.

In step S 308, VLD 24 decodes the macroblock header for macroblock i (MB
(1). Figure 5 shows an example of a macroblock data structure 500 that consists of a
macroblock header 502 for a MB (i), and DCT coefficients 501 for the previously
decoded macroblock MB (i-1). Figure 5 macroblock structure improves decoding
efficiency because while VLD 24 decodes a current header, it also decodes the DCTs
of a previous macroblock simultaneously. VLIW 21 can also perform Inverse Discrete
Cosine Transforms and motion compensation on a current macroblock and
simultaneously perform motion vector reconstruction on two previous macroblock.

This improves parallelism and also minimizes the number of memory buffers.

In step S 309, VLD 24 decodes DCTs for MB (i-1). The decoding algorithms
used by VLD 24 are those recited by established MPEG standards and disclosed in
U.S. Patent Application , Serial Number 09/144, 693, titled “SYSTEM AND
METHOD FOR DECODING A VARIABLE LENGTH CODE DIGITAL SIGNAL”,

12

WO 01/52539 PCT/US00/35287

10

15

20

25

filed on March 31, 1998, and assigned to the present assignee, The techniques are

incorporated herein by reference.

In step S310, when commanded by VLIW 21, VLD 24 detects fake slice start
code 42 and fake macroblock data 43 and in step S311, VLD 24 waits for a command

from VLIW 21 to proceed with the next slice or picture.

Variable Length Decoding and transfer of decoded data:

Figure 6 is a flow diagram showing process steps for macroblock level

decoding by VLD 24 according to another aspect of the present invention.

In step S601, VLD 24 receives a macroblock, designated for illustration
purposes as MB (1). VLD 24 receive MB (i) stored in VBV 25 based upon VLIW 21
command to DS0 27. Macroblock data is transferred from VBV 25 via DS0 27 using
buses 34 and 47. Macroblock data is stored in an input buffer (not shown) in GetBits
Engine 28 and then transferred to VLD 24 for decoding. As shown in Figure 5,
macroblock MB(i) has a header and DCT coefficients for macroblock MB (i-1).

In step S602, VLD 24 decodes DCT coefficients for MB (i-1), and also
decodes macroblock header for MB (i), designated as HDR (i), using MPEG decoding
techniques, incorporated herein by reference, and stores the decoded DCT coefficients

and the decoded header in CM1 29 memory buffer BO.

In step S603, VLD 24 transfers decoded header HDR (i) and DCT coefficients
of MB (i-1) from CM1 29 memory buffer, BO to data cache 22 memory buffer,
MB_B1’ (Figure 2A) via DS1 31 and buses 32 and 33 respectively.

In step S604, VLD 24 receives MB (i+1) data, and decodes DCTs for MB (i)
and MB (i+1) header, using MPEG decoding techniques incorporated herein by
reference, and stores the decoded data in CM1 29 memory buffer B1. The decoding
process in step S604 and the transfer step of S603 are done simultaneously in parallel,

and hence improves overall system performance.

13

WO 01/52539 PCT/US00/35287

10

15

20

25

In step S605A, VLD 24 verifies if the transfer from CM1 29 memory buffer
B0, in step S603 is complete. If the transfer is not complete, then in step S606B, VLD

24 waits till transfer from B0 is complete.

If step S603 transfer is complete, then in step S606, VLD 24 transfers the
decoded MB (i+1) header and decoded DCT coefficients for MB (i), from CM1 29
memory buffer B1 to data cache 22 memory buffer MB_B1” via DS1 31 using buses
32 and 33, respectively. The foregoing steps (S601 to S606) are repeated till the last

macroblock is reached.

In step S607, VLD 24 decodes the last macroblock designated as MB (1)
header and DCT coefficients for the last but one macroblock MB (1-1), and stores the
decoded data in CM1 29 memory buffer.

In step S608, VLD 24 transfers the decoded MB (1) header and decoded DCT
coefficients for MB (I-1) from CM1 29 memory buffer to data cache 22 via DS1 31

using buses 32 and 33, respectively.

In step S609, VLD 24 decodes DCTs for MB (1) and stores the DCTs with a
dummy header in CM1 29.

In step S610, VLD 24 transfers decoded DCTs for MB (1) and the dummy
header from CM1 29 to data cache 22 via DS1 31 using buses 32 and 33 respectively.

In step S611, VLD 24 waits for the next slice in the input MPEG video stream
14 from GetBits engine 28. VLIW 21 indicates to VLD 24 which slice code
corresponds to the next slice that is to be decoded, thereby enabling skipping slices or

even moving to the next picture.

Figure 6 process steps optimize MPEG decoding and data transfer because the
decoded header of a current macroblock (MB (i)) and DCT coefficients of a previous
macroblock (MB (i-1)) are packed together in the same memory buffer. Also, the

decoding of a current macroblock is performed in parallel with data transfer from CM1

14

WO 01/52539 PCT/US00/35287

10

15

20

25

29 memory buffer to data cache 22. Furthermore, VLD 24 stops decoding when VLD
24 encounters an error due to fake slice code (Figure 3) and waits for VLIW 21

commands, hence error handling is efficiently controlled by a central processor.

Motion Compensation and Motion Vector reconstruction:

Figure 7 shows process steps according to another aspect of the present
invention for performing motion compensation and motion vector reconstruction, for

outputting decoded MPEG video stream 17 as raw video data.

In step S701, VLIW 21 commands DS2 38 via command line 43 to get

reference data for a macroblock, e.g., MB (i) from frame buffer 40.

In step S702, DS2 loads reference data from frame buffer 40 to data cache 22,
via buses 46 and 41 respectively and in parallel in step S703A, VLIW 21 reconstructs
motion vector for MB (i-2). Motion vector data is stored in data cache 22, after VLD

24 decodes macroblock header and macroblock data, as discussed in Figure 6 above.

In step S703B, VLIW 21 performs motion compensation and inverse discrete
cosine transforms (IDCT) for MB (i-1) using well known MPEG techniques. It is
noteworthy that step S703B occurs in parallel with S703A, if in step S702 data is still
being loaded.

In step S704, VLIW 21 outputs decoded MB (i) IDCTs and motion
compensation data as raw video data to frame buffer 40, from data cache 22 via DS3

39 and buses 42 and 43, respectively.

The advantage of the foregoing steps is that VLIW 21 can perform parallel
processing in steps S703A and S703B. Loading reference data values into data cache
memory 22 for an upcoming macroblock motion compensation and reconstruction
operations can take considerable time. As shown above, during this downloading
process, VLIW 21 processor can perform motion compensation and/or IDCTs on the
DCTs of a previously decoded macroblock, and hence improve the overall decoding
process. Furthermore, three macroblocks of data are processed with only two memory

15

WO 01/52539 PCT/US00/35287

10

15

20

25

buffers.

Data Transfer Descriptors

Data transfer from, and to the various memory buffers is accomplished by
using set of descriptors. Numerous sets of data descriptors are used for transferring
data from one memory buffer to another in the foregoing decoding system. A set of
descriptors include a source descriptor déscribing the data source and a destination

descriptor describing where and in what format the data is transferred.

A set of descriptors is used to transfer data from CM1 29 to data cache 22 and
another set for transferring data from data cache 22 to CM1 29. Another set of
descriptors is used to transfer data from data cache 22 to get bits engine 28. Two other
set of descriptors are used to transfer data from data cache 22 to frame buffer 40 as
well as transfer from frame buffer 40 to data cache 22. An example of “source” and
destination descriptors is provided below. It is noteworthy the examples below are to
illustrate data descriptors and are not to limit the present invention. Other data
descriptor formats may be used to implement the various aspects of the present

invention.

Data from CM1 29 memory buffers BO and B1 is transferred by using a Source
Descriptor Set (“SDS”) that includes descriptors 1 and 2. Descriptor 1 includes
instructions to read from CM1 29 buffer, e.g. B0, using a mode, ¢.g., non-coherent and
having a width, e.g., 832 bytes. Descriptor 2 has instructions to read from a buffer,
e.g., BO’ in cache memory 22, using a mode, e.g., coherent allocate, with a width of 64
bytes and a pitch of -64 bytes and a “halt after transfer” control instruction. The -64
byte pitch means that the buffer will be read repeatedly 13 times to equal the 832 bytes
to zero out CM1 29 memory buffer.

Each data transfer also has a Destination Descriptor Set (“DDS”). DDS for
data transfer from CM1 29 includes instructions to write to a destination buffer, e.g.,
B0’ in cache memory 22, in a particular mode, e.g., coherent allocate, with a width of

832 bytes and a control instruction “no halt after transfer.” DDS for transfer of data

16

WO 01/52539 PCT/US00/35287

10

15

20

25

from data cache 22, includes instructions to write to a buffer, e.g., BOin CM1 29 in a
mode, e.g., non—cohereﬁt, with a width of 832 bytes, and a control instruction, e.g., “no
halt after transfer.” DDSs from CM1 29 designate buffers MB_B0’, MB_B1’ and
MB_B2’ in data cache 22 sequentially. Also DDSs from data cache 22 designate
CM1 29 memory buffers B0 and B1 sequentially.

Task Synchronization Loops:

Figures 8A-8 L show process steps for the computer programmed operation of
the decoder according to yet another aspect of the present invention, with groups of
operations being performed simultaneously. Efficient scheduling in processing

macroblock data is essential to optimize VLIW 21 and VLD 24 usage.

Various VLIW 21 processes and DMA transfers are incorporated in one trace
i.e. motion vector reconstruction, motion compensation and IDCTs are performed
continually with ongoing transfers without semaphore waits. A trace is a sequence of
operations that are scheduled together. Traces are limited by module boundary
(entry/return), loop boundary and previously scheduled code. Furthermore, all VLIW
21 execution components, motion compensation transfers, VLD 24 DMA transfers and

output buffer transfers overlap for achieving maximum parallelism.

For illustration purposes, Figure 8 A-8L process steps show decoding and
DMA transfers for macroblocks, designated as MB0, MB1, MB3, MB4, MB5 and
MB6 and MB7. This illustration is not to limit the invention and is only to show how
different components operate within a continuos time loop to achieve optimum
efficiency. Figure 8A-8L process steps also show how decoded raw video data can be
transferred to frame buffer 40 while other VLIW 21 and VLD 24 processes steps are

being performed.

Figure 8A
In step S800A, VLIW 21 parses MPEG video bitstream 14 at a picture and

slice level. VLIW 21 also sets up DS0 27 for transfering bitstream 14 to VLD 24 via
Getbits engine 28. In parallel, in step S800B, VLIW 21 sends a “Go” command to

17

WO 01/52539 PCT/US00/35287

10

15

20

25

VLD 24, after VLD 24 has been initialized. Thereafter in step S800C slice processing
begins and in step S§00D VLIW 21 sends slice code for a given slice to VLD 24 by
writing to CM1 29.

In step S801A, VLD 24 receives slice code and decodes MBO header, and
saves the decoded header in CM1 29 memory buffer, BO.

In step S 801B, VLD 24 waits for DS1 31 to be ready for data transfer, and for
a “GO” command from VLIW 21. VLD 24 also sends a “continue” command to DS1
31 to transfer CM1 29 memory buffer BO data (i.e. decoded header of MB0) with
dummy coefficients to data cache 22 memory buffer MB_BO’.

In step S802A, DS1 31 transfers decoded MBO header data from CM1 29
memory buffer, BO to data cache 22 memory buffer, MB_B(’, and in parallel, in step
S802B, VLD 24 decodes DCT coefficients of MB0O and the header for MB1, and
saves the decoded data in CM1 29 memory buffer B1.

It is noteworthy that DS1 31 data transfer and VLD 24 decoding of MBO DCT

coefficients and MB1 header occur simultaneously, and hence improves efficiency.

Figure 8B
In step S803A, VLIW 21 sends a “GO” command to VLD 24 to proceed with

the next macroblock, and VLIW 21 also waits for DS1 31 transfer in step S802A. In
parallel, in step S803B, VLD 24 waits for DS1 31 to finish transfer of data from
memory buffer BO (in step S802A) and wait for a “GO” command from VLIW 21.
VLD 24 also sends a “continue” command to DS1 31 to start transfer of decoded DCT
coefficients of MBO and decoded header of MB1 from CM1 29 memory buffer B1 to
data cache 22 memory buffer, MB_B1’, after data transfer in step S802A.

In step S803C, VLIW 21 reconstructs motion vector based upon decoded MB0
header data stored at data cache 22 memory buffer MB_B0’. VLIW 21 also set’s up
descriptors for transfer of reference data from frame buffer 40 to data cache 22 for
motion compensation of MBO.

18

WO 01/52539 PCT/US00/35287

10

15

20

25

In step S803D, DS1 31 transfers data stored in CM1 29 memory buffer B1 (
i.e. decoded DCT coefficients of MBO and decoded header of MB1) to data cache 22
memory buffer, MB-B1°.

In step S803E, after receiving the “GO” command from VLIW 21, VLD 24
decodes DCT coefficients of MB1 and header for MB2, and saves decoded DCTs of
MB1 and header MB2 in CM1 29 memory buffer, BO. It is noteworthy that process
steps S803C-S803E occur simultaneously, and while data is being transferred from
CM1 29 buffer B1 in step S803D, VLD 24 decodes DCT coefficients and header of
the next macroblock. Hence process steps for decoding, data transfer and storage of

decoded data are synchronized to minimize VLD 24 idle time.

Figure 8C:
Steps 804A-F show various operations performed by VLD 24 and VLIW 21

simultaneously, while various DMA channels transfer data. The various process steps

as discussed below are synchronized to minimize time delay.

In step S804 A, VLIW 21 waits for DS1 31 to transfer data (in step S803D),
and sends a “GO” command to VLD 24 to proceed with the next block. VLIW 21 also
sends a continue command to DS2 38 to transfer reference data from frame buffer 40

to data cache 22 memory buffer MC-B0.

In step S804B, parallel to step S804A, VLD 21 waits for DS1 transfer in step
S803D, and for a “Go” command from VLIW 21. VLD 21 also sends a “continue”
command to DS1 29 to transfer CM1 29 memory buffer B0 data (i.e. decoded DCT
coefficients for MB1 and decoded header for MB2) to data cache 22 memory buffer,
MB_B2’.

In step S804C, VLIW 21 reconstructs motion vector for MB1 based upon the
decoded MB1 header data stored in data cache 22 memory buffer, MB-B1’. VLIW 21
also set’s up the descriptor set for DS2 38 to transfer reference data for motion

compensation for MB1.

19

WO 01/52539 PCT/US00/35287

10

15

20

25

In step S804D, in response to the “continue” command from VLIW 21, DS2

38 transfers reference data for MBO from frame buffer 40 to data cache 22 memory

buffer, MC BO0’.

In step S804E, DS1 31 transfers data (decoded DCT coefficients for MB1 and
header for MB2) from CM1 29 memory buffer BO to data cache 22 memory buffer,
MB_B2’.

In step S804F, VLD 24 decodes DCT coefficients for MB2 and header for
MB3, and stores the decoded DCT coefficients and decoded header in CM1 29
memory buffer, B1.

It is noteworthy that process steps S804C to S804F occur in parallel, and hence

improve the overall efficiency of the decoding process.

Figure 8D
In step S805A, VLIW 21 waits for DS1 31 data transfer in step S804E, and

sends a “GO” command to VLD 24 to proceed with the next macroblock. VLIW 21
also waits for DS2 38 transfer of reference data for MBO in step S804D, and also sends

a “continue” command for transfer of reference data for MB1.

Parallel to step S805A, in step S805B, VLD 24 waits for DS1 31 data transfer
in step S804E, and for a “GO” command from VLIW 21 to proceed with the next
macroblock. VLD 24 also sends a “continue” command to DS1 31, to transfer data

from CM1 29 memory buffer, Bl after step SS04E.

In step S805C, VLIW 21 reconstructs motion vector for MB2 based upon
decoded data stored in data cache 22 memory buffer, MB_B2’, and set’s up
descriptors for DS2 38 to transfer reference data for MB1 motion compensation.
Thereafter, VLIW 22 performs motion compensation for MBO based upon reference
data stored in data cache 22’s memory buffer MC_B0’, and perform IDCTs for MBO
based upon decoded DCT coefficients stored in MB-B1’. Thereafter, VLIW 21 adds
IDCTs and motion compensation data, and saves the MB0 IDCTs and motion

20

WO 01/52539 PCT/US00/35287

10

15

20

25

compensation data in data cache 22, output buffer, Out_BO’.

In step S805D, DS2 38 loads reference data for MB1 to data cache 22 memory
buffer, MC_B1’.

In step S805E, DS1 31 transfers decoded DCT coefficients of MB2 and
decoded header of MB3 from CM1 29 memory buffer B1 to data cache 22 memory
buffer, MB_BO0’.

In step S805F, after receiving the “GO” command from VLIW 21, VLD 24
decodes DCTs for MB3 and header for MB4, and stores the decoded DCT coefficients
and decoded header in CM1 29 memory buffer BO.

It is noteworthy that steps S805C-S805F occur simultaneously and improves
parallelism between VLD 24 and VLIW 21 while efficiently transferring data using
DMA channels DS1 31 and DS2 38. ’

Figure 8E
In step S806A, VLIW 21 sends a “’GO” command to VLD 24, and waits for

DS1 31 transfer in step S805E. VLIW 21 also sends a “continue” command to DS3_0
39 to transfer decoded MBO data from data cache 22 Output buffer, Out B0’ to
SDRAM frame buffer 40, and to DS2 38 to load reference data for MB2 from
SDRAM frame buffer 40 to data cache 22.

Parallel to step S806A, in step S806B, VLD 24 waits for DS1 31 to transfer in
step S805C, and waits for a “GO” command from VLIW 21. VLD 24 also sends a

“continue” command to CM1 29 memory buffer B1, to transfer data after step S805C.

In step S806C, VLIW 21 reconstructs motion vector for MB3 based upon
decoded MB3 data stored in data cache 22 memory buffer, MB-B0’, and set’s up
descriptors for DS2 38 to load MB3 reference data. Thereafter, VLIW 21 performs
motion compensation and IDCTs for MB1 based upon reference data stored in

MC_B1’ and DCT coefficients stored in data cache 22 memory buffer, MB_B2’

21

WO 01/52539 PCT/US00/35287

10

15

20

25

respectively. VLIW 21 also adds IDCTs and motion compensation data for MB1, and
saves the added data in data cache 22, Output memory buffer, Out B1’.

In step S806D, DS2 38 transfers reference data for MB2 from frame buffer 40
to data cache 22 memory buffer, MC_BO0’.

In step S806E, DS3 0 39 transfers MBO decoded pixels from data cache 22
output buffer, Out_BO0’ to frame buffer 40.

In step S806F, DS1 31 transfers data decoded header for MB4 and DCT
coefficients for MB3 from CM1 29 memory buffer, B0 to data cache 22’s memory
buffer, MB_B1’.

In step S806G, VLD 24 decodes MB4 DCT coefficients and header for MBS,
and thereafter saves the decoded data in CM1 29 memory buffer B1.

It is noteworthy that steps S806C-S806G occur simultaneously and hence
improves VLIW pipeline as well parallelism between VLD 24 and VLIW 21, while

efficiently transferring data using various DMA data transfer channels.

Figure 8F
Figure 8F shows that in step S807A, DS3_0 39 continues to transfer (From

Figure 8E) decoded pixel data of MBO from data cache 22 output memory buffer,
OUT _BO0’ to frame buffer 40, while other VLD 24 and VLIW 21 operations are being
performed.

In step S807B, VLIW 21 waits for DS1 31 to finish data transfer in step 806D,
and sends a “GO” command to VLD 24. VLIW 21 also waits for DS2 38 to transfer
reference data for MB2 in step S806D, and data transfer by DS3 0 39 in step S807A.
VLIW 21 also sends a continue coﬁmmd to DS2 38 (for transfer of reference data for
MB3) and to DS3_1 39 for transfer of decoded data from data cache 22 output
memory buffer, Out B1’ after step S807A.

In step S807C, VLD 24 waits for DS1 31 data transfer is step S806F, and waits

22

WO 01/52539 PCT/US00/35287

10

15

20

25

for a “GO” command from VLIW 21 to proceed with the next macroblock. VLD 24
sends a continue command to DS1 31 to transfer data from CM1 29 memory buffer,

BO after data transfer from memory buffer B1 in step S806F.
It is noteworthy that steps S807A-S807C occur simultaneously.

In step S807D, VLIW 21 reconstructs motion vector for MB4 based upon
decoded MB4 data stored in data cache 22 memory buffer, MB B1’, and sets up
descriptors for DS2 38 to transfer reference data for MB4. VLIW 21 also performs
motion compensation for MB2 based upon reference data stored in data cache 22
memory buffer, MC_B0’, and also performs IDCTs for MB2 based upon decoded
DCT coefficients stored in data cache 22 memory buffer, MB_B0’. VLIW 21 adds the
IDCTs and motion compensation results and saves the added data in data cache 22

output memory buffer, OUT B2’.

In step S807E, DS2 38 transfers reference data for MB3 from frame buffer 40
to data cache 22 memory buffer, MC_B1’.

In step S807F, DS3_1 39 transfers decoded pixels for MB1 from data cache 22
output memory buffer, Out-B1’ to frame buffer 40.

In step S807G, DS1 31 transfers decoded header for MBS and decoded DCT
coefficients for MB4 from CM1 29 memory buffer B1 to data cache 22 memory
buffer, MB_B2’.

In step S807H, after receiving a “GO” command from VLIW 21, VLD 24
decodes DCT coefficients for MB35, and decodes the header for MB6. VLD 24 saves
the decoded MB5 DCT coefficients and MB6 header in CM1 29 memory buffer, BO.

It is noteworthy that steps S807A, S807D-S807H occur in parallel.

Figure 8G
In step S808A, DS3 1 39 continues to transfer of decoded MBI pixels.

23

WO 01/52539 PCT/US00/35287

10

15

20

25

In step S808B, VLIW 21 waits for DS1 31 data transfer in step S807G, and
also sends a “GO” command to VLD 24 to proceed with the next macroblock. VLIW
21 also waits for DS2 38 transfer in step S808E, and sends a “continue” command to
DS2 38 to transfer reference data for MB4. VLIW 21 also waits for DS 3_0 to output
data to frame buffer 40 in step S 807A and sends a “continue” command to DS3_2 39
to transfer MB2 decoded pixel data from data cache 22 memory buffer, Out_B2’ to
frame buffer 40.

In step S808C, VLD waits for DS1 31 transfer in step S807G, and for a “GO”
command from VLIW 21 to proceed with the next macroblock. VLD 24 also sends a
“continue” command to DS1 31 to transfer data from CM1 29 memory buffer B0, after
step S807G.

In step S808D, VLIW 21 reconstructs motion vector for MB5 from data stored
in data cache 22 memory buffer MB_B2’, and set’s up descriptors for DS2 38 to
transfer reference data for MB5. VLIW 21 performs motion compensation and IDCTs
for MB3 based upon reference data stored in MC_B1’ and decoded DCT coefficients
stored in data cache 22 memory buffer, MB_B1’ respectively. Thereafter, VLIW 21
adds the IDCTs and motion compensation data, and saves the data in data cache 22

output memory buffer, Out BO0’.

In step S808E, DS2 38 transfers reference data for MB4 from frame buffer 40
to data cache 22 memory buffer, MC_BO0’.

In step S808F, DS3_2 39 starts transfer of decoded pixels for MB2 to frame
buffer 40. It is noteworthy that data transfers in steps S807A, 808A and 808F occur
simultaneously. Hence the three paths of DS3 39 i.e. DS3_0, DS_1 and DS_2 can

simultaneously transfer decoded MPEG video stream to frame buffer 40.

In step S808G, DS1 31 transfers decoded header for MB 6 and DCT
coefficients for MB5 from CM1 29 memory buffer BO to data cache 22 memory
buffer, MB_BO’.

24

WO 01/52539 PCT/US00/35287

10

15

20

25

In step S808H, after receiving the “GO” command from VLIW 21, VLD 24
decodes the header for MB7and DCT coefficients for MB6, and stores the decoded
data in CM1 29 memory buffer B1.

It is noteworthy that process steps S808A, S808D and S808C occur
simultaneously. Also steps S808A and S808C-S808H occur simultaneously.

Figure 8H
In step S809A, DS3_2 39 continues to transfer decoded MB2 pixels from data

cache 22 output buffer, Out B2’.

In step S809B, VLIW 21 waits for DS1 31 data transfer in step S808G, and
also sends a “GO” command to VLD 24 to proceed with the next macroblock. VLIW
21 also waits for DS2 38 transfer in step S808E, and sends a “continue” command to
DS2 38 to transfer reference data for MB5. VLIW 21 also waits for DS 3_0 to output
data to frame buffer 40 in step S 807A and sends a “continue” command to DS3_0 39
to transfer MB3 decoded pixel data from data cache 22 memory buffer, Out B0’ to
frame buffer 40.

In step S809C, VLD waits for DS1 31 transfer in step S808G, and for a “GO”
command from VLIW 21 to proceed with the next macroblock. VLD 24 also sends a
“continue” command to DS1 31 to transfer data from CM1 29 memory buffer B1, after

step S808G.

In step S809D, VLIW 21 reconstructs motion vector for MB6 from data stored
in data cache 22 memory buffer, MB_B(’, and set’s up descriptors for DS2 38 to
transfer reference data for MB6. VLIW 21 performs motion compensation and IDCTs
for MB4 based upon reference data stored in MC_BO0’ and decoded DCT coefficients
stored in data cache 22 memory buffer, MB_B2’ respectively. Thereafter, VLIW 21
adds the IDCTs and motion compensation data, and saves the data in data cache 22

output memory buffer, Out B1’.

In step S809E, DS2 38 transfers reference data for MBS from frame buffer 40
25

WO 01/52539 PCT/US00/35287

10

15

20

25

to data cache 22 memory buffer, MC B1’.

In step S809F, DS3_0 39 starts transfer of decoded pixels for MB3 to frame
buffer 40.

In step S809G, DS1 31 transfers decoded header for MB 6 and DCT
coefficients for MB6 from CM1 29 memory buffer B1 to data cache 22 memory buffer
MB B1’.

In step S809H, VLD 24 decodes DCT coefficients for MB7, and stores the
decoded DCT coefficients and a dummy header in CM1 29 memory buffer B1. VLD
24 performs this operation if macroblock MB?7 is the last macroblock in the slice. The
dummy header may have a flag that indicates the end of a slice. Thereafter, VLD 24
finds a particular start code based upon start code sent by VLIW 21.

It is noteworthy that process steps S§09A-S809C occur simultaneously. Also
process steps S809D-S809H occur simultaneously.

Figure 81
In step S810A, DS3_0 39 continues to transfer decoded MB3 pixels from

output buffer Out BO’.

In step S810B, VLIW 21 waits for DS1 31 data transfer in step 809G, and also
sends a “GO” command to VLD 24. VLIW 21 also waits for DS2 38 transfer in step
S809E, and sends a “continue” command to DS2 38 to transfer reference data for
MB6. VLIW 21 also waits for DS 3_2 to output data to frame buffer 40 in step S
809A, and sends a “continue” command to DS3_1 39 to transfer MB4 decoded pixel
data from data cache 22 memory buffer Out_B1’ to frame buffer 40.

In step S810C, VLD waits for DS1 31 transfer in step S809G, and for a “GO”
command from VLIW 21 to proceed with the next macroblock. VLD 24 also sends a
“continue” command to DS1 31 to transfer data from CM1 29 memory buffer B0, after
step S809G.

26

WO 01/52539 PCT/US00/35287

10

15

20

25

In step S810D; VLIW 21 reconstructs motion vector for MB7 from data stored
in data cache 22 memory MB B1’, and set’s up descriptors for DS2 38 to transfer
reference data for MB7. VLIW 21 also performs motion compensation and IDCTs for
MBS based upon reference data stored in MC_B1’ and decoded DCT coefficients
stored in data cache 22 memory buffer, MB_BO0’ respectively. Thereafter, VLIW 21
adds the IDCTs and motion compensation data, and saves the added data in data cache

22 output memory buffer, Out B2’.

In step S810E, DS2 38 transfers reference data for MB6 from frame buffer 40
to data cache 22 memory buffer, MC_B0’.

In step S810F, DS3 1 39 starts transfer of decoded pixels for MB4 to frame
buffer 40.

In step S810G, DS1 31 transfers a dummy header and DCT coefficients for
MB?7 from CM1 29 memory buffer B0 to data cache 22 memory buffer. MB B2’.

It is noteworthy that process steps S810A -S810C occur simultaneously. Also
process steps S§10A and S810D-S810G occur simultaneously.

Figure 8]
In step S811A, DS3_1 39 continues to transfer decoded MB4 pixels from

output buffer, Out B1’.

In step S811B, VLIW 21 waits for DS1 31 data transfer in step 810G, and also
sends a “GO” command to VLD 24 to proceed with the slice or picture. VLIW 21
also waits for DS2 38 transfer in step S§10E, and sends a “continue” command to DS2
38 to transfer reference data for MB7. VLIW 21 also waits for DS 3_0 to output data
to frame buffer 40 in step S 810A, and sends a “continue” command to DS3_2 39 to
transfer MBS decoded pixel data from data cache 22 memory buffer Out B2’ to frame
buffer 40.

In step S811C, VLIW 21 recognizes MB?7 as the last macroblock . VLIW 21

27

WO 01/52539 PCT/US00/35287

10

15

20

25

performs motion compensation and IDCTs for MB6 based upon reference data stored
in MC B0’ and decoded DCT coefficients stored in data cache 22 memory buffer,
MB_B1’ respectively. Thereafter, VLIW 21 adds the IDCTs and motion
compensation data, and saves the data in data cache 22 output memory buffer,

Out_BO’.

In step S811D, DS2 38 transfers reference data for MB7 from frame buffer 40
to data cache 22 memory buffer, MC B1’.

In step S810E, DS3 2 39 starts transfer of decoded pixels for MB5 to frame
buffer 40.

It is noteworthy that process steps S811A and S811B, as well as Steps S811C-

S811E occur simultaneously.

Figure 8K
In step S812A, DS3_2 39 continues to transfer decoded MBS pixels from
output buffer, Out_B2’ to frame buffer 40.

In step S812B, VLIW 21 waits for DS2 38 transfer data in step S811C. VLIW
21 also waits for DS 3 1 to output data to frame buffer 40 in step S 811A , and sends
a “continue” command to DS3_0 39 to transfer MB6 decoded pixel data from data

cache 22 memory buffer, Out B0’ to frame buffer 40.

In step S812C, VLIW 21 performs motion compensation and IDCTs for MB7
based upon reference data stored in MC_B1’ and decoded DCT coefficients stored in
data cache 22 memory buffer, MB_ B2’ respectively. Thereafter, VLIW 21 adds the
IDCTs and motion compensation data, and saves the added data in data cache 22

output memory buffer, Out B1’.

In step S812D, DS3_0 39 starts transfer of decoded pixels for MB6 to frame
buffer 40.

It is noteworthy that process steps S812A and S812B as well as Steps S812A
28

WO 01/52539 PCT/US00/35287

10

15

20

25

and S812C-S811D occur simultaneously.

Figure 8L
In step S813A, VLIW 21 sends a continue command to DS3_1 39, to transfer

data for MB7. VLIW 21 also checks for start code for the next slice/picture. If the
start code is not fake then in step S813B, the process moves back to step S801A in
Figure 8A.

In step S813C, if the next slice code is fake slice code, then VLIW waits for
DS3_0,DS3 1 and DS3 2 39 transfers to finish.

In step S813D, DS3_1 transfers decoded data of MB7 to frame buffer from
data cache ouput buffer, OUT B1’.

In step S813E, the process goes to the next picture and process steps in Figure

8A-8L are repeated for the next picture.

The process steps of Figure 8 illustrate a timing loop that synchronizes data
decoding, data storage and data transfer by VLD 24, VLIW 21 and various DMA
channels, e.g. DS1 31, DS2 38 and DS3 39. Figure 8 process steps illustrate
simultaneous data transfer of decoded MPEG video for three macroblocks MB0, MB1
and MB2 based upon the three paths in DS3 39 namely DS3-0, DS3-1 and DS3_2.
This is merely to illustrate one aspect of the invention, other DMA transfers units with

more than or less than three channels may be used to transfer raw video data.

The present invention has numerous advantages over the existing art.
According to one aspect of the present invention, the decoding of an entire picture
with a macroblock data including the header for a current macroblock and DCT
coefficients of a previous macroblock assists in maintaining continuos pipelined

operation.

The foregoing aspects of the invention simplify the decoding and

reconstruction process because VLD 24 decodes a macroblock header for a current

29

WO 01/52539 PCT/US00/35287

10

15

20

25

macroblock MB(i) and stores the decoded header data with a macroblock already
decoded (MB(i-1), and transfers the decoded header and macroblock data (DCTs) to
data cache 22 for access by VLIW 21. This enables VLIW 21 to acquire reference data
for a macroblock prior to performing motion compensation and IDCTs, e.g., when
VLD 24 sends macroblock DCTs for MB2 and header for MB3, then VLIW 21 can
acquire reference data for MB3 prior to performing motion compensation and IDCTs.

This reduces idle time and improves decoding efficiency.

Furthermore, while data transfers occur via the various DMA channels, VLIW
21 and VLD 24 simultaneously perform various operations as discussed. This also

improves the overall efficiency of the process.

The present invention has been described in general terms to allow those
skilled in the art to understand and utilize the invention in relation to specific preferred
embodiments. It will be understood by those skilled in the art that the present
invention is not limited to the disclosed preferred embodiments, and may be modified
in a number of ways without departing from the spirit and substance of the invention
as described and claimed herein. For example VLIW 21 processor of the present
invention is believed to be the most convenient processor architecture for use with the
variable length decoder to achieve maximum parallelism and improve efficiency in
MPEG decoding. However, other processors of the RISC or CISC type architecture
may be optimized to be used as the VLIW discussed in this application.

The foregoing aspects of present invention are not limited to MPEG -1 or
MPEG-2 decoding, MPEG-4 can also be decoded by the foregoing process steps.
Furthermore, the foregoing aspects of the present invention are not limited to MPEG.
The foregoing aspects of the present invention are applicable wherever there is a need
for efficient synchronization data exchange between a processor and a co-processor, or
between portions of a processor for purposes of maintaining coherence, accuracy and

parallelism.

In addition, currently the core processor 20 and co-processor 23a are on the

30

WO 01/52539 PCT/US00/35287

10

same integrated circuit chip. However, the foregoing aspects of the present invention
will be applicable to other integrated circuits even if both the core processor and co-

processor are not on the same chip.

Furthermore, the present invention can be implemented essentially in software.
This is possible because software can dynamically create and maintain virtual
buffering, implement variable length decoding as well as discrete cosine transforms,
and the like. Hence, the foregoing aspects of the present invention can be
implemented essentially in software running on a general-purpose programmable
microprocessor/computer and still retain the spirit and substance of the present

invention, as more fully expressed in the attached claims.

31

WO 01/52539 PCT/US00/35287

10

15

20

25

30

We claim:
1. A method for decoding and reconstructing an input MPEG video data stream,
comprising the steps of:

decoding the encoded video data of a first macroblock whose header has been
decoded, and decoding the header of a second macroblock; wherein each macroblock
includes a header for a current macroblock and encoded MPEG video data of a
previous macroblock block whose header has been decoded; and

performing motion vector reconstruction on the decoded first macroblock

video data, based upon the decoded macroblock header data.

2. The method of Claim 1, further comprising the step of:
modifying the first decoded macroblock video data by motion compensation

based upon reference data of a previously decoded macroblock.

3. The method of Claim 1, further comprising of:
performing the preceding steps until an entire slice has been reconstructed into

raw video signal data.

4. The method of Claim 1, further comprising of:
performing the preceding steps until an entire picture has been reconstructed

into raw video signal data.

5. . The method of Claim 1, wherein the decoding is performed by a variable

length decoder (VLD) in a co-processor.

6. The method of Claim 1, wherein the modifying step is performed by a core

processor having a very long instruction word (VLIW) processor.

7. The method of Claim 6, further comprising of:

32

WO 01/52539 PCT/US00/35287

10

15

20

25

30

transferring the decoded header of the second macroblock and decoded video
data of the first macroblock from the VLD to the core processor; and
pre-fetching from a memory buffer reference data utilized by the VLIW for

motion compensation.

8. The method of Claim 1, further comprising the steps of:

adding a fake slice start code and fake macroblock data at the end of each
picture in the input MPEG video data stream; and

utilizing the fake slice start code and fake macroblock data to skip to the next

picture.

9. The method of Claim 8, wherein the fake macroblock data indicates
an error to the VLD stopping the decoding process until the core processor reinitiates

decoding of a selected slice.

10. The method of Claim 1, wherein the decoded macroblock data includes

discrete cosine transform coefficients.

11. The method of Claim 1, wherein the decoded macroblock data includes motion

vectors.

12. The method of Claim 10, wherein the modifying step includes performing
inverse discrete cosine transformétions on decoded discrete cosine transform

coefficients for the decoded first macroblock.

13. The method of Claim 12, further comprising of:

selecting a matching macroblock from another frame based upon the reference
data for motion compensation; and

adjusting the decoded first macroblock data according to the reference data for

motion compensation.

33

WO 01/52539 PCT/US00/35287

10

15

20

25

30

14. A video decoder adapted to reconstruct raw video signal data from an input
MPEG coded video data stream, comprising of:

a core processor for parsing the input coded video data stream to identify start
code and end location for slices and pictures, and the core processor is adapted to
perform motion compensation on the encoded MPEG video data ; and

a differential decoder in a co-processor adapted to decode a macroblock header
for the input MPEG video data for a second macroblock and decode the input MPEG
video data for a first macroblock whose header is already decoded, wherein each
macroblock includes a macroblock header for a current macroblock and encoded video

data of a previous macroblock whose header has already been decoded.

15. The apparatus of Claim 14, wherein the core processor is adapted to modify the
decoded video data of the first macroblock by motion compensation based upon

reference data of a previously decoded macroblock.

16. The apparatus of Claim 14, wherein the differential decoder is variable length
decoder (VLD).

17. The apparatus of Claim 14, wherein the core processor includes a very long

instruction word (VLIW) processor.

18. The apparatus of Claim 14, further comprising of:

a first control unit for transferring the decoded header of the second
macroblock and decoded video data of the first macroblock from the VLD to a data
cache in the core processor;.

a second control unit for pre-fetching from a memory buffer reference data
utilized by the VLIW for motion compensation; and

a third control unit for transferring decoded raw video data from the core

processor data cache to a memory storage device.

34

WO 01/52539 PCT/US00/35287

10

15

20

25

19. The apparatus of Claim 17, wherein the VLIW adds a fake slice start code and
fake macroblock data at the end of each picture in the input MPEG video stream, and
the VLD utilizes the fake slice start code and fake macroblock data to skip to the next

picture.

20. The apparatus of Claim 17, wherein the fake macroblock data indicates an error to
the VLD stopping the decoding process until the core processor reinitiates decoding of

a selected slice.

21. The apparatus of Claim 14, wherein the decoded macroblock data includes

discrete cosine transform coefficients

22. The apparatus of Claim 14, wherein the decoded macroblock data includes

motion vectors.

23. The apparatus of Claim 17, wherein the VLIW performs inverse
discrete cosine transforms on decoded discrete cosine transform coefficients of the

first macroblock.

24. The apparatus of Claim 14, wherein the co-processor includes a memory buffer

for storing decoded header and decoded macroblock data.

25. The apparatus of Claim 25, wherein the first controller transfers data from the

co-processor data memory buffer to the core processor data cache.
26. The apparatus of Claim 14, wherein the core processor data cache stores data

received from the co-processor via the first controller and the reference data from the

memory storage device via the second controller.

35

WO 01/52539

11
MPEG -
VIDEO VIDEO 17 VIDEO
10 STREAM DECODER OUTPUT
Ve
'3 14
IT'\gPEG —— DEMUX 15
BITSTREAM
16 'y 12
AUDIO |18 _ AUDIO
FIG. 1 DECODER | OUTPUT
RS 23 P 1
} DS1 ja—— ps2 | !
I 25V ¥ | 39\ I
! DATA |42 1
37
! CACHE —> bS8 :
I 45 146 |
I 1
|28 Je2 __ 23 .
= :29* ! 21~V [43 :
Iy | om |8 VLIW , I
R | 44 |
| B4
R wull
l |3°“1 } W
: : 24 [! FRAME
Iy |V : i BUFFER
1 i
i
: : T i : 25~
I !
1V [ceTair] | 35 45A | vBv
| I | i
: | l |
| L=t ! 26
i AN | l
} | DS @ | '
' 34 a1
L_- —————————————— ------——J
11/1 FIG. 2A

117

PCT/US00/35287

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539
2/17
22 ~
MB ouT
y MC_ A
B2 B B2
MB_ OuUT_
B1' MC B1’
MB_ Bo™ ouT_
BO' BO'
~—S301
INPUT MPEG VIDEO STREAM
~—S302
SEARCH FOR START CODE
— S303
READ INPUT VIDEO STREAM
PARSE INPUT VIDEQ STREAM
l _—S305
ADD FAKE SLICE START CODE AND FAKE MACROBLOCK CODE
— S306
TRANSFER ENCODED MPEG VIDEQ STREAM TO VLD DECODER
_—~S307
TRANSFER FAKE SLICE AND START CODE TO VLD DECODER
—S308
DECODE MACROBLOCK MB (i) HEADER
l ~—S309
DECODE DCTS FOR MACROBLOCK MB i-1
—S310

DETECT FAKE SLICE CODE AND FAKE MACROBLOCK DATA
-~ S311

WAIT FOR VLIW21 COMMAND

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 01/52539

PCT/US00/35287

3/17

0xD8 O0x92 O0x48 Ox84 41
MPEG STREAM DATA

OXE4 Ox90 Ox00 Ox00 o
0X00 Ox00 Ox01 OxB5 ~«— FAKE SLICE START CODE
OxFO OxFF OxFF OxFF 43
OXFF OXFF OXFE OxFF FAKE MACRO BLOCK DATA
OxFF

MB (i-1) DCTS — 501

MB (i) HEADER — 502

SUBSTITUTE SHEET (RULE 26)

WO 01/52539

4/17

PCT/US00/35287

L S601

VLD RECEIVES MACROBLOCK DATA FOR MB (i)

VLD DECODES DCTS FOR MB (i-1) AND HEADER FOR MB (i)

_— S603

VERIFY IF PREVIOUS TRANSFER, IF ANY IS COMPLETE AND
TRANSFER DECODED DCTS AND MB (i) HEADER TO DATA CACHE 22

_— S604

VLD RECEIVES MB (i+1) DATA AND DECODES MB (i) DCTS AND
HEADER FOR MB (i+1) AND STORES DECODED DATA IN MEMORY

- S605B

~— S605A

WAIT FOR S603 .NO
TRANSFER

VLD VERIFIES IF 603
TRANSFER IS COMPLETE

YES

VLD TRANSFERS DECODED DCTS FOR MB (i)

—™| AND HEADER FOR MB (i+1) TO DATA CACHE
_—S607
VLD DECODES LAST MACRO BLOCK
HEADER AND DCTS FOR MB g1
f S611 — S608
VLD TRANSFER LAST
VLD WAITS FOR MACRO BLOCK
VLIW COMMAND HEADER AND DCTS
FOR MB .1 TO DATA CACHE
- S610 5609
VLD TRANSFERS MB, VLD DECODES
DCTS AND DCTS FOR MB
DUMMY HEADER e

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 01/52539

5117

~— S701

VLIW COMMANDS DS2 38
TO TRANSFER DATA
FROM FRAME BUFFER

TRANSFER REFERENCE
DATA FROM FRAME
BUFFER TO DATA CACHE

PCT/US00/35287

—S702

PERFORM MOTION
COMPENSATION
AND IDCT FOR MB (i)

— S704

OUTPUT DECODED MBi
DATA TO FRAME BUFFER

~—S703A

Vs S703B

RECONSTRUCT MOTION
VECTOR FOR MB (i-2)

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

6/17

gg einbi4 o1 + V8 "DIA

Lg Jeyng Auowsw LIND Ul Jepesy pue Slusioied | D eAes pue 09 g Jeung Alowswi 8yoe? Blep 0}
LG JO Jepeay pue Qg JO SIUSIOIe0d 19 sepodsp aIA elep 0g Jeyng Alowsw LN siejsuen |SQ
_ ‘ \ _ \
S —— - 9208S -ve08s

" "SJUSIoe0d | D Awwnp pue |

| {epesy ogn Jejsuel} 0} LSQ O} PUBWIWOD ,BNUluod, spues qA |
| ‘PUBWIWOD 09, B Jofsiem A ‘Apess aq o} 1S 104 SHem A T g108S

— v ————— — — ll'llll—ll IIIII ————— v — w———

0g Jeyng Alowaw LIND Ul Jopesy papoosp 9AES pue OgiA 1o
Jepeay apodep A "Buipooep eousWWOd pue 8pod 89Iis BAI88) A ~——V/108S

Q1A 0} 8pod
a0l|s SPUas MITA

UBIS 80IIS |«e

~—Q008S

-8 2.nbi4

woi-

~—0008S

0OSq dnias ‘sjeas| 991 pue
ainoid uo weessiq sesied 1Lg MITA
ainld jo uels

"pezijeniul S| Jopoosp Jaye

g00gs — PUEWWO 0D, I8 SPUSS MITA

~—— Vv008S

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

717

d8 "OId

o8 enbig ol

‘09 Jeyng Alowsw LIND Ul Jepesy

puUe Sjusioeod | D[Papodsp saAes A
Zd\ JO lepesy pue

LGN JO SusIonend | 0Q sepodsp A

‘Lg an Jeyng
Alowsw ayoed ejep 01
elep Lg Jeyng Alowsw

LD sisjsuen |.sa

“lojsues) elep uollesuadwod uolow
09 10} s10idisosep dn s188 MITA

‘09N wouy
JOJOBA UOROW SlonJIsuooal MIIA

-~ 3g08S

\— aeo08s -~ 0g08S

| L9~ gW Jeyng Alowsw ayoeo ejep o} Lg Jeyng |

ge08S

l

| fowsw LN woj elep Jeysuei o} |Sq o} puewwoo | I
\\ﬂ L,8NUIUOD, SPUds (A 'PUBWIWOD 0B, 10} SHEM OTA " VE08S \ﬂ "dIA O} puewiwod _

I 04 18ynq JO Jejsuen) elep ysiuy g 1o} siiem QA | I

L

S NN

Joysuely 1sq |
10 syem MiA |

.09, SPUSS MIMA |

S

]

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

8/17

: D8 "DId

as ainfid ol
‘L9 Jsyng LND Ul ‘ :
Jopeay pue sjusiole00 29 g eyoeo - HEp cozmmc_manooacozoE
100 PapoIsp SBI0IS A e1ep 0} BIEP 0g 09 9OWN o1 .eynq LGN av, siojauosep
‘S8 10} Jopeey ou} seyng Aiowew | | SUE4 WOk OGN 10} e12p 1oREOY ‘U
pUE Zg\ 10} SIUSIOB09 LIND Sisjsuell 1Sq Elep Slejsuel gsd R e Lor
L0 SPC98P A WwoJ} J0J0BA uoljow
. f SJonJIsSuUooal MITTA
~ Ar08S aros
408s S - 5108s
3 ..-..||mmumy|oﬂwumw_mmmewmmm: | ogyy o) S1ep GUGIeIe! 20| 0 260 i
I 0gW Jo} elep eousielal peoj oy gsq |
I Sm% ﬂmm.wcmb O} 1SQ O} PUBLILIOD ,BNUNUOD,B " I o) puewwoo ,enunuoa, spuss MiiA & — V708S
av08s \o_ pu mm_\y nmwwm_wo 09, 0} siem qiA | _ “19Jsues} LS 10} SHem MITA o_
I g Jeyynq jo Jsjsuel} Fwﬁ 104 syem QA _ | Q1A Ol puBWWOd ,09, SPUSS MITA |
4 L -

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

9/17

38 ainbi4 0] Qw .Umrm

~ 4508S

Vs 3508S
0g 19jnq LINO Ul
18pesy pue 0d an Jeynq lg oW
Sjusioleod 104 8yoeo ejep Jayng ayoed
pPapoosp 8101s 1A 01 1g Jejnq Blep O} L giN 104
‘vdIN 10} Jepeay pue LD woly elep Blep aousisiel
€4IA 10} sjusidijjeod siejsuel) 1SQg sigjsuenl gsqg
103 sspodsp 1A

‘08 LNO Jeyng ayoed ejep o} ejep

aAes pue uonesuadwod uoow pue s19dl SPPe MIIA

19 9N 1eynq

8UoBd Ul palo)ls Bjep wolj 0g 10} S10al swiopad pMITA

‘09 O Jeyng eyoeo elep ul

paiols elep 0gN 10} uonesusdwod uonow wiopad MITA
"glep souaIslal ggn wol gsa 10} sioiduosep dn s1es MITA

*194Nq 2g-gIN OYoBd BlEp Ul PaIo)S

elep uodn paseq ZgiA 10} J0108A UOIIOW S}ONJISUcdal MITA

N~ 0508S

"1SQ 0} puewwod |

I ,enunuod,e spuss QA |

gs08s 9 ‘puewwon 0, 10} syem @A |

I I9ysuel) | SQ 104 SHEM QTTA |

"L EIN 10} BlEp 80UBlej0I PEO] 0} 28 O}

PUBLIWOD ,8NULOD, SPUas MITA

sdusisjal peo| 0} g5 10§ siiem MITA

"Jgjsuel} | S 10§ siem pITA
"AA O} puewwod ,09, SPUas MITA

|
|
‘0GIN Jo} erep +\ VS08S
|
|
|

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

N HS "Dl

SUBSTITUTE SHEET (RULE 26)

WO 01/52539

48 ainbi4 o1 48 ainbi4 o]
, 'Lg~1NO 8yoed eiep 0} elep aAes pue
3908S uonesuadwiod uolow Yum ._.O.D_ SPPE MITA
. Y 2a 9 Jeyng
kg olng LINO Ul - —— ayoeo elep wolj LgiN 10} 10al suuopad MITA
lepesy pue Ld g Jeynq 0g 1no ‘080N 8yoes ‘19 DIN Jeynq ayoeo elep Ul 810}s Blep
sjusiole0d 103 aYoeo ejep Loy 1eyng 21Ep O} ZEI 10} LGN Jo} uoiesuadwos uonow wiopsd MITA
pepossp 8101s Q1A oL0g Jepnqg | | SUWBY O BIBRY |5 sousiejel "elep sousiejel
= [SaW loj 1epeay pue | JLNO woijejep | | OFN PEROOSP) | o o e €9 woly 2sq 1o} sioduosep dnjes MIA
S | VAW 10} sjusidlaod igjsuel] 1S\ |4eisueil 0 €S0 18)ng 09 g ®Yyoeo elep ul Jepeay wol)
— | 19Q sepodsp A r .\ €GN 10} JOJISA UOHOW S}ONJISU0I8I MITA
4908S asoss
N 5908S ~ 0908S
T 1T T T T T |
_ "kSQ 01 puwwoo I Blep 80uslajel peo] 01 g8 O} PUBLILIOY ,8NURU0D, SPUSS MITA |
,ONUIUOD, B pUSS I b DU _
8908S \+ ‘PUBLULLIOD .Mvmu hoﬁ_m\s mu__» | “ ‘0 €S 0} PUBLILLIOD ,8NUIIUOD, SPUBS MITA @ V9083
|- hmhmcm:_.vmn___ 10} 1em aiA I "L 10} Blep sousisjel Jajsuel) gSq 1o} siem MITA |
’ “ | “J8Isuel} | SQ 10} ¥BM MITA "dIA O} PuBWWOD ,09), SPUes MIA |

L I B]

PCT/US00/35287

WO 01/52539

11/17

d8 “OId

A
5g ainbl4 0] 6g ainbi4 0 V.08S /
| |
3208S Y
N\ '2871N0
S = layng 8yoeo elep 0] Blep pappe 8y} 8AES pue .
"0d J8ynqg LINO 29 an oWiEl o ey uopesusadwoo uoiow pue s L0l SPPe MITA a)nq swely
Ul Jepesy pue Jeyng 8yoed letﬁ o 212p 0] ‘09 9N 18)ng ayoeo ejep U} pelols elep 01049 1noO
SJUBIOIYS0D eep o 1g | | wou swel cal uodn peseq ggi 40} 1041 suioped MIIA SoED ElEP
100 pepooep oUnaLING } p L 10, 570D ‘08D Jo}Ng BUOED BIEP U] POIOIS BIEP woJ} elep
$8401s A woy erep pepoosp | | scusieses 29N Jo} uonesuediuod uoiow swiopad MIIA oop %%m_\w
"9gI\ 40} 18pesy , “glep souslisjal
pUE SaN 40} m._m_w_mww% m‘_w*lwcm.: w‘_mwm%mmﬂ AN wouy g8 4o} s10idiosep dn s,19s MIIA siejsuen
SUBIoIB00 1LDA esd ‘w 18|Ng 19~ g\ ©4yoeo ejep Ul Japesay wo.y 0 €sd
Sapoodp A r 52085 / PEW 10} JOJ0BA uoOW SIONIISUOISI MITA
\. HL08S 4088 N~aL08S
_. g.08S
_ 1 "ea 10} “

‘1S o1 puewwoo |

\+ .ONUNUOD,E SPUSS OTA |
0.08S T ‘puewiwod 09, 10} SHEM A |
‘1ejSuel} | S 10} SHeM A |

rlllnuuqllnlllu

e —— -I-L

BlEP 89USJ8}0) PEO| 0} 28 O} PUBWIWIOD ,ONUIU0D, SPUSS MIIA
*17£S(] 0} PUBWIWOD ,8NUIIUOD, SPUSS MITA
26N 10} Blep SousIsjel Peo| O} Jajsuel) 2Sa 10} siem MITA |
|'4eJsuel) 1S(] 10} SHEm MITA ‘dTA O PUBWILOD 09, SPUes MITA |

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

12/17

A

V8 OIA

"Igjsuel} 1S Jo) yem QA |

"©gIA 10} Blep aousJioel peo| 0} Jejsuell s 10 siem MITA |

Hg ainbi4 o) Hg ainbi4 o] v808S]
‘09 LNO
— layng ayoed ejep O} ejep pappe oy} SSAES pue .
LG Joung LIND ogan || -q- ow wm_\u uojesusdwiod uoow pue 10d| SPPe MITA | | 1oHnd suel
ursepeay pue | | 000’ cen Nom_ _w,,mm sm_o o ‘LGN 18)nq eyoeo elep uj palojs erep | |OL 718 1NO
SJUBION}80D e1ep 0} 0g | | owres wioy PN uodn paseq g 10§ SLOAI swiopsd MITA ol
10ap2poosp | | aunaiin [| Pewen zam | | 101 orom L OW 18}jnq 8YoED BIEP Ul PAIOIS BIEP eIEp Lan
s810ls Q1A woJ} ejep popooep | | sousieres edW Joj uoiesusdwod uonow swioped MITA Mm%mmwm
L8 10} Jepesy Slgjsuel) stojsuely | | sisjsuen ‘Elep souslsjel £
pue 9gW 10} 1Sa 3 S GgIN wols 28 10} sioiduosap dn s)8s MITA I €8d
sjuBIaIYe0D 10d ¢ €sd esd ‘Joynq 29 GIN SYoED Elep U| 18pesy Woly
sepodep A / / GEIN 10} J0108A UOROW S)ONJISU02al MITA
9808S /
\" Hgoss 148085 3808S - a808s
_. .— d808S
mlllllll IIIIII |" T T T T .vm_\,_._ovp.“
| "1SQ@ O} pueWIWOD _ “ EJep 8ouslgjel peo| 0} S O} PUBWWOD ,8NUIU0Y, SPUSS MITA |
\+ nSNUHUCY, B pUSS (I1A | i '27€S3 0} PUBIWIOD ,8NUIIU0D, SPUSS MITA
0808S _ ‘PUBWIWOD ,0D), 0} HEM OTIA | | “JoJSuUBI) Ysiul 0-eSa 4o} siem MINA |
I |
L

1

| Jogsueil LSQ J0} SHEM MITA ‘A O} PUBLILIOD ,09), SPUSS MITA !

e

4208S
woi4

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

13/17

A

H8 "OId

18 8B4 o) I8 @1nBi4 01 V608S /
‘08 1e4nq LINO ‘g 1NO
ul Jepesy P 18jjng 8yora ejep o} Sm_u peppe 8y} SaAes pue
Awwnp pue La an 08" LNO oUEo ‘elep uolesusduiod uoiow pue $10al sPPe MITA Jayng
siepye0o [| 1eynqg ayoeo | | wioy seyng 21Ep 0} ‘29 g Jleyng eyoeo .mEmt ol
19 paposep 212p O} g ouE] 01 . _ Elep woy ygN 10} S10dl swiopad MINA ¢d 1NnoO
$0101S (TIA 1849 LD 218D S9N 104 €8P ‘097D Jeyng Alowew syoed eep ul palols elep wo4y
-801|S B} Ul Wwouj e1ep papooap | | sousseros G 40} uopesusdwos uojow swiopad MINA elep 2¢diN
300|qoioeW JSE| siejsuely sigjsuel; | | sisjsuel) ‘Eiep SousiSjal e oo
o} Se JgIN Spul 1Sq oesq =S 9dIN woip 28 4104 siolduosep dn s,18S MITA Sigjsuel)
pue 7gp o} d 19)Nq 0g g 8Yyoeo elep uj Japesy wo.y ¢ €sd
SJUBIOYE0D |0 , 94\ 10} JOJOBA UOHOW S}ONIISU0I8I MITIA
——p diA D608S| | \|4608S Z
T 3608S 6085
H608S
_. _. d608S
i e IR ‘SaN 10 |
| 1SQa 0} puewwod I BlEP 90UBI9jRl PO} 0] 2SA O} PUBWILLOD ,8NUIU0Y, SPUSS MITA |
\+ «ONURUOD, B Spuss O71A _ ‘0" £SA 01 puBWWO? ,8NURUOD, SPUaS MITA
0608S _ ucmw_%_w NoloN HM* SUEM OQTTA | | "Jojsued) ysiul 1 esqa 4o} siem MIIA |
| } lisgioysyem adin | YN 10} Blep aoudlejal peo| 0} Jajsuel) 28d 10} siem MITA |
L_ | “19§suel} | SQ 10} SHem MITA ‘AT O} PUBWIWOD 09, SPUSS MITA “
e e e e e e e e e e e e e 4808S
_I woi

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

I8 "OId

WO 01/52539

A
rg ainbi4 o] rg ainbi4 o1 V018S /
ed 1noO
— BUOED BlEp O} BJEp PEpPPE U} SOABS pUE Bljep Jaynq
- - uojesueduioa Uofjow pue s1001 SPPE MITA | | euwey o)
LQ&DQNMSO@MM C._O_.‘_m ._M,DDO MMMONOO“_. Omulm_)_ 154Nq SUoeo Oml..—nso
o150 Of $95nq P elep Woy GaW 10} SLOAI Swiopad MITA wosy
o :u 0d swey o} 9an ‘LE O Jeyng ayoeo elep Ul paIols elep e1ep ean
HNA LIND | | erep paN 10} Bjep gaW 10} uonesuadwoo uonow swiopad MIAA opode
woly ele pepooap
~ P rwmmou ¥ Nmn” L8N woy 25 Jo} s104duosap dn sies MITA 0 esq
- ‘Jong LG g 8YOED elep Ui Japesy Woj
3 ZEWN 10} 10}08A UOHOW SPONASU03I MITTA
ootss| | \Jorss ,/1 .
_v .— da0L8s
P I ‘98N 1o} |
| 1SQ 0} puewiwod _ " elep douslejal Peo| 0} 2SQ O} PUBLIWICD ,8NUIU0D, SPUSS MITIA |
\+ »ENUNUOD,E SPUss Q1A | _ '17©S(Ol puBWIWOD ,8NUIU0Y, SPUaS MITA
O0LBS [T PUBILID .00, 10} SHEM GTA | | “Jejsue} ysiuy o) 2 €S 0} SHEM MITA |
_ ‘Igjsuel} | S J0) SHEM OTTA | "GEIN 10} Blep aouaiajel peo) 0} Jojsuel} gSa 1o} shiem MITIA |
| [1eysuexl LSQ 10} SUEM MITA *QTA O} PUBWIWOD 0B, SPUSS MITA | L6085

_.|..||||.—|..|1|..L e

_.l Wwo.

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

16/17

A

rg "I

M8 ainbi4 o) Mg einbi4 o)
8yng 19 ON g 1N0
awel} 0} ayoes joojqosoew ise| syl st LdiN ey sezjubooal MITA woly Jeyng
29" LNO erep ‘09" LNO 8Yyoeo elep 0} Blep pappe U} SALS pue awel 0}
Wwouy 0} 28N uojesuadwoo uonow pue s19al SPPe MITA elep ya
N«MU mmE ._Ow mﬂmﬁ - —.m mE ‘_mtﬂﬂ QCONU GﬁMU C_ Um‘_nvww .mum“u UQUOO@U
papoosp | | eouaiejer uodn peseq ogi 0} S10ai swiopad MITA siejsuel)
slejsuel} siejsuel) ‘09 OW 18jng ayoed ejep ul 8101s ejep 17esa
Z esa 250 99N Jo} uollesuadwod uonow swuopad MITA
31188 / N-0L18S 4
dLiss Vi8S
d118S
I~ g 104 e1Ep B0UBISBI PEO] 01 25 0) PUBWLLOD ,8NUIUOY, SPUSS MITA _
“ "2 €80 0} puBWWO ,dNUIUOY, SPUSS MITA |
I "Jejsuel ysiuly 0 €SQ 104 suem MITA
| "0gW 10} BlEp 8ouasel peo| O} J8jsuel) 2S 404 siem MiTA |
I ‘Jejsuel} LS 10} SHem MIA | *
| *2an}o1d 10 891 IX8U Jo} (1A O1 PUBIWOD ,0D), SPuas MIA |
b e 40188
_I ‘ wol4

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

16/17

A

M8 "DId

18 anbiq ol 78 ainbij ol
18nq 184nq
ewei} o} "L~ LNO 8Uded BlEep 0} BlEp PEppE oy} SOAES swel} 0}
08 1no pue ejep uolesuaduiod uonow pue s10dl SPPe MIAA 29 1no
wioly za an wouy
elep ogN Jeyng eyoeo elep woly ZgN 1o} s10al swoped MITA elep sain
pepoIsp ‘L@ O Je}ng 8YoEd BIEp Ul PBIOIS Blep pepoosp
Sigjsuel L8N 10} uonjesuadwod uonjow suopad MITA sl9jsuen}
0 €sd 2 esq
- N
/ azies 0c18S
Vei8S
_. €218s
T
| |
“ *J N 10} BIEp S0USI9jaI PEO| 01 25 O} PUBWILLOD ,8NUUOD, SPUSS MITA
_ ‘0 €S(O} PUBWIWIOD ,BNUIUOD, SPUSS MITA |
i *JGIN 10} BIEp 80UBISjaI PEO| 0} 2Sd 40} SIem MIA | +
_ ‘Jojsuel} Ysiul 0} 1 T£SQ 10} SHem MITA |
L I 3L18S
wol

SUBSTITUTE SHEET (RULE 26)

PCT/US00/35287

WO 01/52539

17117

18 “OId

a1njoid 1xeu 0} 05

N—3¢18S

layng swel} 0}

19 1NO wojj erep
LgIN pepodsp
sigjsuel} 17esd

Jejsuel) ysiuly 01 2-€SA
pue ‘L7esa ‘0 €Sa suem MITTA
‘9p02 801|S 8)e} SI 8p0d B89I|S IXauU J|

N—qelss

A \— 5e18s

"1~ €SQ 0} puBWIWOD ,8NURUOD, SPUSS MITA

*9p0o ME]S 891|S IX8U 10} SH08YD MITA

N-velss

D008S 1k Hels 89j|s 01 0D
"8p02 821|S BP0 82I|S xe}
10U Ul P02 8IS XU §|

~ de18S

vg einbiq o]

SUBSTITUTE SHEET (RULE 26)

International application No.

INTERNATIONAL SEARCH REPORT PCT/US00/35287

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :HO4N 7/12
US CL :375/240
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 375/240; 345/327, 335

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X, P US 6,028,600 A (ROSIN et al) 22 February 2000, col.4, line 66 to | 1-26
col.5, line 14, col.5, lines 21-27

X, P US 6,072,483 A (ROSIN et al) 6 June 2000, col.4, line 66 to col.5, | 1-26
line 14, col.5, lines 21-27

|:| Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: "™ later document published after the international filing date or priority
. . - . date and not in conflict with the application but cited to understand
A document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
. . . . - X" document of particular relevance; the claimed invention cannot be
B carlier document published on or after the intemnational filing date considered novel or cannot be considered to involve an inventive step
"L* document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other . i . .
special reason (as specified) " document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“pr document pub]ished'priot to the international filing date but later than ~ ng» document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the internatignal search report
12 FEBRUARY 2001 30/ 03/ 2001
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231 CHRIS KELLEY
Facsimile No. (703) 305-3230 Telephone No. (703) 3054700

Form PCT/ISA/210 (second sheet) (July 1998) x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

