

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 July 2001 (26.07.2001)

PCT

(10) International Publication Number
WO 01/53548 A2

(51) International Patent Classification⁷: C22C 25705 (US). BAKER, Brian, A. [US/US]; 63 Private Road #603, Kitts Hill, OH 45645 (US).

(21) International Application Number: PCT/US01/02247

(74) Agents: BYRNE, Richard, L. et al.; Webb Ziesenhein Logsdon Orkin & Hanson, P.C., 700 Koppers Building, 436 Seventh Avenue, Pittsburgh, PA 15219-1818 (US).

(22) International Filing Date: 24 January 2001 (24.01.2001)

(81) Designated States (national): CA, JP, US.

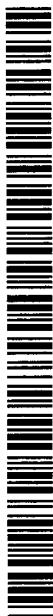
(25) Filing Language: English

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(26) Publication Language: English

(30) Priority Data: 60/177,862 24 January 2000 (24.01.2000) US

Published:


— without international search report and to be republished upon receipt of that report

(71) Applicant (for all designated States except US): INCO ALLOYS INTERNATIONAL, INC. [US/US]; 3200 Riverside Drive, Huntington, WV 25705 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): SMITH, Gaylord, D. [US/US]; 120 Stamford Park Drive, Huntington, WV

A2

WO 01/53548

(54) Title: Ni-Co-Cr HIGH TEMPERATURE STRENGTH AND CORROSION RESISTANT ALLOY

(57) **Abstract:** A high strength, sulfidation resistant Cr-Co-Ni base alloy for long-life service at 538 °C to 816 °C containing in % by weight about 23.5-25.5 % Cr, 15.0-22 % Co, 0.2-2.0 % Al, 0.5-2.5 % Ti, 0.5-2.5 % Nb, up to 2.0 % Mo, up to 1.0 % Mn, 0.3-1.0 % Si, up to 3.0 % Fe, up to 0.3 % Ta, up to 0.3 % W, 0.005-0.08 % C, 0.01-0.3 % Zr, 0.001-0.01 % B, up to 0.05 % rare earth as misch metal, 0.005-0.025 % Mg plus optional Ca, balance Ni including trace additions and impurities. The alloy provides a combination of strength, ductility, stability, toughness and oxidation/sulfidation resistance so as to render the alloy range uniquely suitable for engineering applications where sulfur-containing atmospheres are life limiting, in applications such as exhaust valves for diesel engines and in tubes for coal-fired steam boilers.

Ni-Co-Cr HIGH TEMPERATURE STRENGTH AND CORROSION RESISTANT ALLOY

BACKGROUND OF THE INVENTION

1. Field of the Invention

5 The present invention relates generally to Ni-Co-Cr base alloys and, more particularly, to a high strength, sulfidation resistant Ni-Co-Cr alloy for long-life service at 538°C to 816°C. The alloy of the present invention provides a combination of strength, ductility, stability, toughness and oxidation/sulfidation resistance so as to render the alloy range uniquely suitable for engineering applications where sulfur-containing 10 atmospheres are life limiting.

2. Discussion of the Related Art

Over the years, researchers have continually developed alloys meeting requirements for both high strength at intermediate temperatures and corrosion resistance under severe environmental conditions. This quest for increasing performance is far from 15 over as designers and engineers continuously seek to increase productivity, lower operating costs, improve yields and extend service lives. All too often, however, researchers terminated their efforts when the target combination of properties was achieved. Such is the case, for example, in two industrial areas in critical need of advanced alloys to maintain progress. These industrial applications are diesel exhaust 20 valves and alloys for coal-fired boilers. These applications have in common that their developers require ever-increasing strength at increasingly higher temperatures, improved resistance to sulfur-containing atmospheres as atmospheres become more demanding and increases in service lives to assure trouble-free operation over the life of the equipment. Heavy-duty diesel engines in off-road construction equipment, often operating in remote 25 corners of the globe where refined, low sulfur fuels are not available, are suffering exhaust valve failure due to sulfidation attack. Maintenance of these engines, usually requiring original equipment mechanics, can become prohibitively expensive and time-consuming. These same engines are now being designed for higher temperatures to increase power and efficiency. This has only served to exacerbate the alloy challenge.

30 Ultra supercritical boiler designers are creating a similar problem in coal-fired boilers as utilities seek to improve efficiency by raising steam pressure and

temperature. Today's boilers with efficiencies around 45% typically operate at a 290 bar steam pressure and 580°C steam temperature. Boiler designers are setting their sights on 5 50% efficiency or better by raising the steam conditions as high as 375 bar/700°C. To meet this requirement in the boiler tubing, the 100,000 hour stress rupture life must exceed 100 MPa at 750°C (mid radius tube wall temperature needed to maintain a 700°C steam temperature at the inner wall surface). Raising steam temperature has made coal 10 ash corrosion more troublesome, placing a further requirement on any new alloy. This corrosion requirement is less than 2 mm of metal loss in 200,000 hours for exposures in the temperature range of 700°C to 800°C. For economy, the boiler tube must be as thin-walled as possible (i.e., <8 mm wall thickness) and be fabricable into long lengths in high 15 yield on conventional tube making equipment. This places a major constraint on the maximum work-hardening rate and yield strength tolerable in manufacture and field installation, physical property characteristics running counter to the need for superior strength in valve and boiler tube service.

15 To meet the new strength and temperature requirements of an advanced diesel exhaust valve or a future boiler tube alloy, designers must exclude the usual ferritic, solid solution austenitic and age-hardenable alloys heretofore employed for this service. These materials commonly lack one or more of the requirements of adequate strength, temperature capability and stability or sulfidation resistance. For example, the 20 typical age-hardenable alloy, in order to develop high strength at intermediate temperatures, must be alloyed with insufficient chromium for peak sulfidation resistance in order to maximize the age-hardening potential of the alloy. Adding chromium not only degrades the strengthening mechanism but, if added in excess, can result in embrittling sigma, mu or alpha-chromium formation. Since 538°C to 816°C is a very active range 25 for carbide precipitation and embrittling grain boundary film formation, alloy stability is compromised in many alloys in the interest of achieving high temperature strength and adequate sulfidation resistance.

30 The present invention overcomes the problems of the prior art by providing a Ni-Co-Cr-base alloy range possessing exceptional resistance to sulfur-containing atmospheres containing limiting amounts of Al, Ti, Nb, Mo and C for high strength at 538°C to 816°C while retaining ductility, stability and toughness.

The present invention contemplates a newly-discovered alloy range that extends service conditions for the above-described critical industrial applications notwithstanding the seemingly incongruous constraints imposed by the alloying elements economically available to the alloy developer. Past alloy developers commonly claimed 5 broad ranges of their alloying elements which, when combined in all purported proportions, would have faced these counter influences on overall properties. The present inventors have discovered that a narrow range of composition does exist that allows one to fabricate a high strength alloy for service at 538°C to 816°C with both sulfidation resistance, phase stability and workability. A better appreciation of the alloying 10 difficulties can be presented by defining below the benefits and impediments associated with each element employed in the present invention.

SUMMARY OF THE INVENTION

A high strength, sulfidation resistant Cr-Co-Ni base alloy for long-life service at 538°C to 816°C containing, in % by weight, about 23.5-25.5%Cr, 15.0-15 22.0%Co, 0.2-2.0%Al, 0.5-2.5%Ti, 0.5-2.5%Nb, up to 2.0% Mo, up to 1.0%Mn, 0.3-1.0%Si, up to 3.0%Fe, up to 0.3%Ta, up to 0.3%W, 0.005-0.08%C, 0.01-0.3%Zr, 0.001-0.01%B, up to 0.05% rare earth as misch metal, 0.005-0.025%Mg plus optional Ca, 20 balance Ni, including trace additions, such as up to 0.05% La, up to 0.05% Y, plus impurities. The alloy provides a combination of strength, ductility, stability, toughness and oxidation/sulfidation resistance so as to render the alloy range uniquely suitable for engineering applications where sulfur-containing atmospheres are life limiting.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The combination of elements set forth above unexpectedly and surprisingly possesses all of the critical attributes required of high strength applications 25 in sulfur-containing atmospheres. It has been discovered that sulfidation resistance can be achieved by alloying within a narrow range of Cr (23.5-25.5%Cr) without destroying phase stability resulting from embrittling phases by concurrently limiting certain elements to very narrow ranges, namely, Mo to less than 2%, C to less than 0.08%, Fe to less than 3.0% and the total Ta plus W content to less than 0.6%. Less than 23.5% Cr results in 30 inadequate sulfidation resistance and greater than 25.5% Cr produces embrittling phases even with the alloy restrictions defined above. It should be mentioned that, unless

otherwise specified, all percentages of the various alloy constituents set forth herein are percent by weight.

Oftentimes, in striving for maximum corrosion resistance, the resultant alloys lack the required high temperature strength. This has been solved by the instant 5 invention by balancing the weight percent of precipitation hardening elements to a narrow range where the resulting volume percent of hardening phase is between about 10 and 20% within the Ni-Co-Cr matrix. Excessive amounts of the hardener elements not only reduce phase stability and lower ductility and toughness, but also render valve and tubing 10 manufacturability extremely difficult, if not impossible. The selection of each elemental alloying range can be rationalized in terms of the function each element is expected to perform within the compositional range of the present invention. This rationale is defined below.

15 Chromium (Cr) is an essential element in the alloy of the invention because Cr assures development of a protective scale which confers the high temperature oxidation and sulfidation resistance vital for the intended applications. In conjunction with the minor elements Zr (up to 0.3%), Mg (up to 0.025%) and Si (up to 1.0%), the protective nature of the scale is even more enhanced and made effective to higher 20 temperatures. The function of these minor elements is to enhance scale adhesion, scale density and resistance of the scale to decomposition. The minimum level of Cr is chosen to assure α -chromia scale formation at 538° and above. This level of Cr was found to be about 23.5%. Slightly higher Cr levels accelerated α -chromia formation but did not change the nature of the scale. The maximum Cr level for this alloy range was determined by alloy stability and workability. This maximum level of Cr was found to be about 25.5%.

25 Cobalt (Co) is an essential matrix-forming element because Co contributes to hot hardness and strength retention at the upper regions of the intended service temperature (538°C-816°C) and contributes in a significant way to the high temperature corrosion resistance of the alloy range. However, because of cost, it is preferred to maintain the level of Co below 40% of that of the Ni content. Thus the 30 beneficial range of the Co content becomes 15.0-22.0%.

Aluminum (Al) is an essential element in the alloy of the present invention not only because Al contributes to deoxidation but because it reacts with nickel (Ni) in conjunction with Ti and Nb to form the high temperature phases, gamma prime (Ni₃Al,Ti,Nb) and eta phase (Ni₃Ti,Al,Nb). The Al content is restricted to the range of 5 0.2-2.0%. The minimum total of elements contributing the hardening elements are related by the following formula:

$$\%Al + 0.56x\%Ti + 0.29x\%Nb = 1.7\%, \text{ preferably } \leq 2.0\% \quad (1)$$

While the maximum hardening elements are related by the following formula:

$$\%Al + 0.56x\%Ti + 0.29x\%Nb = 3.8\%, \text{ preferably } < 3.5\% \quad (2)$$

10 Larger amounts than 2.0% Al in conjunction with the other hardener elements markedly reduce ductility, stability and toughness and reduce workability of the alloy range. Internal oxidation and sulfidation can increase with higher amounts of Al.

15 Titanium (Ti) in the range 0.5-2.5% is an essential strengthening element as defined in equations (1) and (2), above. Ti also serves to act as grain size stabilizer in conjunction with Nb by forming a small amount of primary carbide of the (Ti,Nb)C type. The amount of carbide is limited to less than 1.0 volume % in order to preserve hot and cold workability of the alloy. Ti in amounts in excess of 2.5% is prone in internal oxidation to leading to reduced matrix ductility.

20 Niobium (Nb) in the range 0.5-2.5% is also an essential strengthening and grain size control element in the alloy of the present invention. The Nb content must fit within the constraints of equations (1) and (2), above, when Al and Ti are present. Nb along with Ti can react with C to form primary carbides which act as grain size stabilizers during hot working. Compositions 2 through 4 of Table IIB contain increasing amounts of Nb which, when one examines the flue gas/coal ash corrosion data of Table VI, finds 25 that Nb has a negligible effect on the rate of corrosion within the limits of the present invention. Table VI presents metal loss and depth of attack for 2,000 hours at 700°C in a flue gas environment of 15%CO₂B4%O₂B1.0%SO₂Bbal.N₂ flowing at the rate of 250 cubic centimeters per minute. The specimens were coated with a synthetic ash comprising 2.5%Na₂SO₄ + 2.5%K₂SO₄ + 31.67%Fe₂O₃ + 31.67%SiO₂ + 31.67%Al₂O₃. 30 An excessive amount of Nb can reduce the protective nature of protective scale and, hence, is to be avoided. Tantalum and W also form primary carbides which can function

similarly to that of Nb and Ti. However, their negative effect on α -chromia stability limits their presence of each to less than 0.3%.

Molybdenum (Mo) can contribute to solid solution strengthening of the matrix but must be restricted to less than 2.0% due to its apparent deleterious effect on oxidation and sulfidation resistance when added in greater amounts to the alloys of the present invention. Table V shows the reduction in sulfidation resistance as a function of Mo content based on metal loss and depth of attack after times to 3,988 hours at 700°C in a flue gas environment of 15%CO₂B4%O₂B1.0%SO₂Bbal.N₂ flowing at the rate of 250 cubic centimeters per minute. The specimens were coated with a synthetic ash comprising 2.5%Na₂SO₄ + 2.5%K₂SO₄ + 31.67%Fe₂O₃ + 31.67%SiO₂ + 31.67%Al₂O₃.

Manganese (Mn), while an effective desulfurizer during melting, is overall a detrimental element in that it reduces protective scale integrity. Consequently, the Mn content is maintained below 0.5%. Mn, above this level, degrades the α -chromia phase by diffusing into the scale and forming a spinel, MnCr₂O₄. This oxide is significantly less protective of the matrix than is α -chromia.

Silicon (Si) is an essential element in the alloy according to the present invention because Si ultimately forms an enhancing silica (SiO₂) layer beneath the α -chromia scale to further improve corrosion resistance in oxidizing and sulfidizing environments. This is achieved by the blocking action that the silica layer contributes to inhibiting ingress of the molecules or ions of the atmosphere and the egress of cations of the alloy. Levels of Si between 0.3 and 1.0% are effective in this role. Excessive amounts of Si can contribute to loss of ductility, toughness and workability.

Iron (Fe) additions to the alloys of the invention lower the high temperature corrosion resistance by reducing the integrity of the α -chromia scale by forming the spinel, FeCr₂O₄. Consequently, it is preferred that the level of Fe be maintained at less than 3.0%.

Zirconium (Zr) in amounts between 0.01-0.3% and boron (B) in amounts between 0.001-0.01% are effective in contributing to high temperature strength and stress rupture ductility. Larger amounts of these elements lead to grain boundary liquation and markedly reduced hot workability. Zr in the above compositional range also aids scale adhesion under thermally cyclic conditions. Magnesium (Mg) and optionally calcium

(Ca) in a total amount between 0.005 and 0.025% are both an effective desulfurizer of the alloy and a contributor to scale adhesion. Excessive amounts of these elements reduce hot workability and lower product yield. Trace amounts of La, Y, or misch metal may be present in the alloys of the invention as impurities or as deliberate additions up to 5 0.05% to promote hot workability and scale adhesion. However, their presence is not mandatory as is that of Mg and optionally Ca.

Carbon (C) should be maintained between 0.005-0.08% to aid grain size control in conjunction with Ti and Nb since the carbides of these elements are stable in the hot working range (1000°-1175°C) of the alloys of the present invention. These 10 carbides also contribute to strengthening the grain boundaries to enhance stress rupture properties.

Nickel (Ni) forms the critical matrix and must be present in an amount greater than 45% in order to assure phase stability, adequate high temperature strength, ductility, toughness and good workability.

15 EXAMPLES

Examples of compositions within the alloy range of the present invention are presented in Table I and current commercial and experimental alloys which are outside the scope of the invention and use or considered for use in boiler designs and advanced engines are listed in Tables IIA and IIB.

20 Alloy Preparation and Mechanical Testing

Alloys A through I in Table I and alloys 1 through 6 (except alloy 5) of Table IIA were vacuum induction melted as 25 kg ingots, although alloy C was cast as a 150 kg ingot which was then vacuum arc remelted into two 75 kg ingots 150 mm in diameter by length. The ingots were homogenized at 1204°C for 16 hours and 25 subsequently hot worked to 15 mm bar at 1177°C with reheat as required to maintain the bar temperature at least at 1050°C. The final anneal was for times up to two hours at 1150°C and water quenched. Standard tensile and stress rupture specimens were machined from both annealed and annealed plus aged bar (aged at 800°C for 8 hours and air cooled). Annealed and aged room temperature tensile strength plus high temperature 30 tensile properties are presented in Table III for alloy C. Annealed and annealed plus aged

room temperature tensile data for alloys B and D are presented in Table IIIA. Table IV lists typical stress rupture test results for the alloys B, C and D.

Characterization of High Temperature Corrosion Resistance

Pins for corrosion testing were machined to approximately 9.5 mm diameter by 19.1 mm length. Each pin was given a 120 grit finish and, if tested in the flue gas/coal ash environment, coated with coal ash comprising 2.5% Na_2SO_4 + 2.5% K_2SO_4 + 31.67% Fe_2O_3 + 31.67% SiO_2 + 31.67% Al_2O_3 using a water slurry. The weight of the coal ash coating was approximately 15 mg/cm². The flue gas environment was composed of 15% CO_2 4% O_2 1.0% SO_2 Bbal. N_2 flowing at the rate of 250 cubic centimeters per minute. The testing was conducted for times ranging from 1,000 to 3,988 hours after which the specimens were metallographically sectioned and the rate of metal loss and depth of attack by oxidation and/or sulfidation determined. Specimens that exhibited a rate of metal loss or depth of less than 0.02 mm in 2,000 hours would have a corrosion loss of less than 2 mm in 200,000 hours. Table V presents these results for selected compositions of Tables I and II. Alloys within the scope of the invention meet the corrosion resistance requirement whereas alloys even slightly outside the compositional range of the invention fail to meet the requirement.

Hot corrosion of diesel exhaust valves occurs when deposits accumulate on the valve head and are subjected to engine exhausts at temperatures in excess of about 650°C. This corrosive deposit can be simulated by a mixture of about 55% Ca_2SO_4 + 30% Ba_2SO_4 + 10% Na_2SO_4 + 5%C. The mixture along with a test pin, described above, was placed in a MgO crucible and exposed to a temperature of 870°C for 80 hours. Following testing, the pins were metallographically examined and the depth of corrosion penetration was determined. Table VII records the comparison of alloy C with the currently employed diesel exhaust valve alloys. It is clear that alloy C improves corrosion resistance by 250% over that of the more commonly used diesel exhaust valve alloys in service today.

Table I. Compositions of the Alloys of The Present Invention
(Weight Percent)

Heat	Ni	Co	Cr	Al	Ti	Nb	Mo	Si	Fe	Mn	Ca	Mg	Zr	B	C
A	49.73	19.74	23.88	1.51	2.47	<0.01	0.12	0.57	1.59	0.20	0.0001	0.0085	--	0.0029	0.14
B	48.64	19.75	24.05	0.84	2.00	2.04	0.54	0.51	1.14	0.31	0.0025	0.0066	0.05	0.0052	0.07
C	48.46	19.80	24.97	0.87	1.69	2.01	0.58	0.47	0.71	0.30	--	0.0060	0.04	0.0012	0.06
D	48.38	19.88	25.91	0.94	1.38	0.75	0.55	0.54	1.14	0.38	0.0025	0.0068	0.06	0.0068	0.03
E	47.27	19.91	25.26	0.84	1.93	2.01	0.59	0.51	1.13	0.30	0.0016	0.0072	0.02	0.0057	0.10
F	47.65	19.84	25.00	0.82	1.95	2.05	0.53	0.52	1.14	0.28	0.0069	0.0091	0.01	0.0021	0.07
G	48.42	19.84	24.98	1.01	1.48	1.04	1.04	0.64	1.14	0.38	0.0016	0.0070	0.06	0.0040	0.06
H	46.60	19.80	24.99	0.82	2.03	2.02	1.51*	0.46	1.15	0.29	0.0013	0.0059	0.05	0.0061	0.03
I	47.72	19.99	24.14	1.45	2.99	0.97	1.53	0.85	0.06	<0.01	0.0070	--	0.003	0.05	

* Alloy H also contains 0.17%Ta as carbide formers

Table II A. Compositions of Alloys Outside The Range of The Present Invention
 Used in Flue Gas/Coal Ash Corrosion Testing
 (Weight Percent)

Heat	Ni	Co	Cr	Al	Ti	Nb	Mo	Si	Fe	Mn	Ca	Mg	Zr	B	C
1	49.92	19.87	22.96	0.73	1.38	0.52	3.08	0.31	0.77	0.30	0.013	0.0061	0.06	0.0045	0.03
2	48.30	19.94	24.02	1.43	0.52	1.32	3.09	0.33	0.60	0.31	0.009	0.0060	0.06	0.0043	0.03
3	47.75	19.93	24.02	1.78	0.57	1.42	3.09	0.34	0.61	0.31	0.010	0.0073	0.06	0.0045	0.03
4	47.76	19.90	24.01	1.41	0.71	1.71	3.08	0.33	0.61	0.31	0.010	0.0066	0.06	0.0043	0.03
5*	49.7	20.0	20.0	1.2	2.1	--	5.8	0.4m	0.7m	0.6m	--	--	--	0.0050	0.06
6	43.95	19.79	24.14	0.63	2.01	2.03	5.9	0.32	0.63	0.29	0.004	0.0092	0.01	0.0016	0.11

* Alloy 5 is commercial alloy NIMONIC alloy 263

Table II B. Compositions of Alloys Outside The Range of The Present Invention
 Used in Diesel Exhaust Valve Corrosion Testing
 (Weight Percent)

Heat	Ni	Cr	Al	Ti	Nb	Mo	Si	Fe	Mn	C
INCONEL alloy 751	72.7	15.3	1.22	2.57	0.87	--	0.50max	6.64	0.16	0.08
NIMONIC alloy 80A	71.8	19.5	1.4	2.25	--	--	1.0max	3.0max	1.0max	0.10max
Pyromet 31	56.5	22.6	1.25	2.25	0.85	2.00	0.2max	14.3	0.2max	0.04

Table III. Tensile Properties of Alloy C As-Annealed (1150°C/30 Minutes/Water Quenched) and As-Annealed plus Aged (800°C/16 Hours/Air Cooled)

Temperature (°C)	Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Elongation (%)	Reduction of Area (%)
As-Annealed (1150°C/30 Minutes/Water Quenched)				
74	314	796	57.5	67.5
As-Annealed Plus Aged (800°C/16 Hours/Air Cooled)				
74	721	1169	31.4	49.4
538	616	980	31.3	39.0
593	607	992	31.4	32.8
649	621	1023	38.4	39.8
704	648	914	37.9	43.7
760	608	766	32.5	43.9
800	556	652	34.8	46.2
816	514	608	37.7	47.8
871	304	365	55.2	67.8
927	148	200	63.5	79.4
982	60	105	112.5	93.1

Table IIIA. Room Temperature Tensile Properties of Alloys B and D As-Annealed (1150°C/30 Minutes/Water Quenched) and As-Annealed plus Aged (800°C/16 Hours/Air Cooled)

Alloy	Heat Treatment	Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Elongation (%)	Reduction Of Area (%)
Alloy B	Annealed	530	1002	43.4	47.4
Alloy B	Aged	724	1104	27.1	32.5
Alloy D	Annealed	305	820	51.8	57.8
Alloy D	Aged	588	1053	34.1	42.3

Table IV. Stress Rupture Test Results for Alloys B, C and D. All Specimens Were Annealed at 1150°C/2 Hours/ Water Quenched Plus Aged at 800°C/16 Hours/Air Cooled

Alloy	Temperature (°C)	Stress on Specimen (MPa)	Rupture Life (Hours)	Elongation (%)
Alloy B	816	207	227	13.6
	900	100	71.2	53.8
Alloy C	700	455	256	21.2
			457	18.0
	850	100	575	19.3
Alloy D	700	400	470+	----
	750	250	253	11.5
		350	396	12.2
		100	153	12.6
	840	100	678	45.0
	850		412	39.2

Table V. Flue Gas/Coal Ash Corrosion Data for Selected Alloys Within and Without the Compositional Range of The Present Invention. The Flue Gas Mixture Was 15%CO₂B4%O₂B1.0%SO₂Bbal. N₂ Flowing at The Rate of 250 Cubic Centimeters per Minute. The Coal Ash Was Composed of 2.5%Na₂SO₄ + 2.5% K₂SO₄ + 31.67% Fe₂O₃ + 31.67% SiO₂ + 31.67% Al₂O₃ and Applied Using a Water Slurry. The Weight of The Coal Ash Coating Was Approximately 15 mg/cm². Average uniform metal loss and depth of attack was determined metallographically.

Alloy	Temperature (°C)	Time (Hours)	Metal Loss (mm)	Depth of Attack (mm)
Alloy A	775	1,000	0.000	0.016
Alloy B	700	2,000	0.003	0.013
Alloy C	700	2,000	0.005	0.015
Alloy D	700	2,000	0.000	0.010
Alloy E	700	1,000	0.005	0.015
		3,988	0.005	0.018
Alloy F	700	2,000	0.001	0.012
		3,988	0.001	0.015
Alloy G	700	2,000	0.000	0.018
Alloy H	700	2,000	0.000	0.016
Alloy I	700	1,000	0.000	0.004
Alloy 1	700	2,000	0.193	0.216
Alloy 2	700	2,000	0.020*	0.027*
Alloy 3	700	2,000	0.019 0.117	0.029 ----

* Sample was uncoated.

Table VI. Flue Gas/Coal Ash Corrosion Data for Selected Alloys Outside the Compositional Range of The Present Invention. The Flue Gas Mixture Was 15%CO₂4%O₂B1.0%SO₂Bbal. N₂ Flowing at The Rate of 250 Cubic Centimeters per Minute. The Coal Ash Was Composed of 2.5%Na₂SO₄ + 2.5% K₂SO₄ + 31.67% Fe₂O₃ + 31.67% SiO₂ + 31.67% Al₂O₃ and Applied Using a Water Slurry. The Weight of The Coal Ash Coating Was Approximately 15 mg/cm². Average uniform metal loss and depth of attack was determined metallographically.

Alloy	Temperature (°C)	Time (Hours)	Metal Loss (mm)	Depth of Attack (mm)
Alloy 1	700	2,000	0.193	0.2160
Alloy 2	700	2,000	0.067	0.0737
Alloy 3	700	2,000	0.062	0.0692
Alloy 4	700	2,000	0.052	0.0546
Alloy 5	700	2,000	0.020*	0.027*
Alloy 6	700	2,000	0.019 0.117	0.0290 ----

* Sample was uncoated.

Table VII. Crucible Test at 870°C for 80 Hours

Samples Immersed in 55%CaSO ₄ + 30%BaSO ₄ + 10%Na ₂ SO ₄ + 5%C			
Alloy	Metal Loss (mm)	Depth of Oxidation (mm)	Depth of Sulfidation (mm)
Alloy C	0.0127	0.0558	0.0622
INCONEL alloy 751	0.0546	0.1206	0.1650
Pyromet alloy 31	0.0748	0.1662	0.1675

Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention, as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and appended claims.

WE CLAIM:

1. A high strength, corrosion resistant alloy useful for long-life service at temperatures up to about 820°C comprising, in % by weight, about: 23.5-25.5% Cr, 15.0-22.0% Co, 0.2-2.0% Al, 0.5-2.5% Ti, 0.5-2.5% Nb, up to 2.0% Mo, up to 1.0% Mn, 0.3-1.0% Si, up to 3.0% Fe, up to 0.3% Ta, up to 0.3% W, 0.005-0.08% C, 0.01-0.3% Zr, 0.001-0.01% B, up to 0.05% rare earth as misch metal, 0.005-0.025% Mg plus Ca, balance Ni plus trace additions and impurities.
2. A high strength Ni-Co-Cr base alloy composition resistant to sulfur-containing flue gas and diesel engine exhaust consisting essentially of, in % by weight: 23.5-25.5% Cr, 15.0-22.0% Co, 0.2-2.0% Al, 0.5-2.5% Ti, 0.5-2.5% Nb, up to 2.0% Mo, up to 1.0% Mn, 0.3-1.0% Si, up to 3.0% Fe, up to 0.3% Ta, up to 0.3% W, 0.005-0.08% C, 0.01-0.3% Zr, 0.001-0.01% B, up to 0.05% rare earth as misch metal, 0.005-0.025% Mg plus optional Ca, balance Ni plus trace additions and impurities.
3. The alloy of claim 2 which forms a protective layer of α -chromia scale at elevated service temperatures of about 530°C to 820°C to improve corrosion resistance in oxidizing and sulfidizing environments.
4. An exhaust valve for a diesel engine made from a high strength, sulfidation and oxidation resistant alloy comprising, in % by weight, about: 23.5-25.5% Cr, 15.0-22.0% Co, 0.2-2.0% Al, 0.5-2.5% Ti, 0.5-2.5% Nb, up to 2.0% Mo, up to 1.0% Mn, 0.3-1.0% Si, up to 3.0% Fe, up to 0.3% Ta, up to 0.3% W, 0.005-0.08% C, 0.01-0.3% Zr, 0.001-0.01% B, up to 0.05% rare earth as misch metal, 0.005-0.025% Mg plus Ca, balance Ni plus trace additions and impurities.

5. A tube for use in a steam boiler made from a high strength, sulfidation and oxidation resistant alloy comprising, in % by weight, about: 23.5-25.5% Cr, 15.0-22.0% Co, 0.2-2.0% Al, 0.5-2.5% Ti, 0.5-2.5% Nb, up to 2.0% Mo, up to 1.0% Mn, 0.3-1.0% Si, up to 3.0% Fe, up to 0.3% Ta, up to 0.3% W, 0.005-0.08% C, 0.01-0.3% Zr, 0.001-0.01% B, up to 0.05% rare earth as misch metal, 0.005-0.025% Mg plus Ca, balance Ni plus trace additions and impurities.