DEMANDE DE BREVET D'INVENTION

Date de dépôt : 22.04.97.
Priorité : 23.04.96 JP 10080996.

Demandeur(s) : AJINOMOTO CO INC — JP.

Inventeur(s) : ONO EIJI, TSUJIMOTO NOBUHARU, IZUI HIROSHI et MATSUI KAZUHIKO.

Titulaire(s) :

Mandataire : CABINET BEAU DE LOMENIE.

MICRO-ORGANISME PRODUCTEUR D'ACIDE L-GLUTAMIQUE ET PROCEDE DE PRODUCTION D'ACIDE L-GLUTAMIQUE A L'AIDE DE CE MICRO-ORGANISME.

L'invention concerne un micro-organisme appartenant au genre Escherichia qui présente une résistance à un antimétabolite de l'acide aspartique, qui est capable de produire de l'acide L-glutamique et dont l'activité d'α-acétylglutamate déshydrogénase est nulle ou réduite, et qui peut être obtenu par mutation d'une souche dépourvue d'activité d'α-acétylglutamate déshydrogénase (W3110 sucr A::Km). L'invention concerne également un procédé de production d'acide L-glutamique par fermentation qui comprend la culture de ce micro-organisme dans un milieu liquide, l'accumulation d'acide L-glutamique dans ce milieu et la récupération de l'acide L-glutamique.
La présente invention concerne un micro-organisme utilisé pour produire de l'acide L-glutamique par fermentation et un procédé de production d'acide L-glutamique par fermentation à l'aide de ce micro-organisme. L'acide L-glutamique est un acide aminé qui est important dans l'industrie alimentaire et dans le domaine des médicaments.

Jusqu'à maintenant, l'acide L-glutamique a été produit par fermentation principalement au moyen de micro-organismes producteurs d'acide glutamique qui appartiennent au genre Brevibacterium, Corynebacterium ou Microbacterium ou à l'aide de mutants de ces micro-organismes (Amino-Acid Fermentation, Gakkai Shuppan Center, p. 195-215, 1986). Comme procédé de production d'acide L-glutamique au moyen d'autres souches, on connaît un procédé qui utilise des micro-organismes appartenant au genre Bacillus, Streptomyces, Penicillium ou analogue (brevet US n° 3 220 929) et un procédé qui utilise des micro-organismes appartenant au genre Pseudomonas, Arthrobacter, Serratia, Candida ou analogue (brevet US n° 356 387). Ces procédés conventionnels ont permis d'augmenter sensiblement le rendement en acide L-glutamique. Toutefois, pour répondre à la demande croissante dans le futur, il est souhaitable de développer un procédé pour produire l'acide L-glutamique de manière plus efficace et à moindre coût.

Etant donné que Escherichia coli a une vitesse de croissance élevée et que son analyse génétique a progressé de manière remarquable, il est possible que ce micro-organisme soit utilisé dans le futur comme excellent micro-organisme producteur d'acide L-glutamique. Toutefois, selon le document J. Biochem., vol. 50, p. 164-165, 1961, la quantité d'acide L-glutamique produite par Escherichia coli, 2,3 g/l, est très faible. Néanmoins, il a été décrit récemment qu'un mutant dépourvu d'activité d'α-céto glutarate déshydrogénase (appelée dans la suite en abrégé "α-CGDH") ou dont l'activité d'α-céto glutarate déshydrogénase est réduite présente un haut rendement de production d'acide glutamique (brevet français n° 2 680 178).

La présente invention a pour objet d'améliorer le rendement de production d'acide L-glutamique de micro-organismes appartenant au genre Escherichia et de proposer un procédé pour produire l'acide L-glutamique avec un meilleur rendement et à moindre coût grâce à de tels micro-organismes.

A la suite de recherches approfondies concernant un procédé de production d'acide L-glutamique à l'aide de micro-organismes appartenant au genre Escherichia, on a constaté que le rendement de production d'acide L-glutamique
d'un micro-organisme appartenant au genre Escherichia, capable de produire de l'acide L-glutamique et auquel on a conféré une résistance à un antimétabolite de l'acide aspartique, était amélioré.

Ainsi, la présente invention concerne un micro-organisme qui appartient au genre Escherichia, qui présente une résistance à un antimétabolite de l'acide aspartique et qui est capable de produire de l'acide glutamique.

De préférence, ce micro-organisme est dépourvu d'activité d'α-céto-glutarate déshydrogénase ou a une activité d'α-cétoglutarate déshydrogénase réduite.

De préférence encore, l'antimétabolite de l'acide aspartique est le β-hydroxamate de l'acide aspartique.

La présente invention concerne également un procédé de production d'acide L-glutamique par fermentation qui comprend la culture d'un micro-organisme tel que défini ci-dessus dans un milieu de culture liquide, l'accumulation d'acide L-glutamique dans le milieu de culture et la récupération de l'acide L-glutamique.

Le micro-organisme appartenant au genre Escherichia qui est utilisé selon la présente invention est par exemple une souche de Escherichia coli telle que les suivantes :

- Escherichia coli K-12 (ATCC 10798)
- Escherichia coli W3110 (ATCC 27325)
- Escherichia coli B (ATCC 11303)
- Escherichia coli W (ATCC 9637)

L'antimétabolite de l'acide aspartique qui est utilisé selon la présente invention est une substance qui exerce une inhibition de la croissance des micro-organismes appartenant au genre Escherichia, inhibition qui est levée par addition d'acide L-aspartique. De plus, il s'agit d'une substance qui supprime l'expression d'une enzyme qui participe à la biosynthèse de l'acide L-aspartique ou qui inhibe l'activité d'une telle enzyme, cette suppression ou inhibition étant levée par addition d'acide L-aspartique.

Le β-hydroxamate d'acide aspartique, l'acide α-méthylaspartique, l'acide β-méthylaspartique, l'acide cystéinesulfinique, l'acide difluorosuccinique et la hadacidine (acide N-formylhydroxyaminoacétique) sont des exemples d'antimétabolites de l'acide aspartique. Comme antimétabolites de l'acide aspartique, il est possible d'utiliser des produits du commerce.
Il est possible d'utiliser non seulement des micro-organismes appartenant au genre Escherichia mais aussi des micro-organismes ayant d'autres besoins nutritionnels et présentant une résistance à d'autres antimétabolites, à condition qu'ils présentent les propriétés mentionnées ci-dessus.

Il est possible d'obtenir une souche présentant une résistance à un antimétabolite de l'acide aspartique par irradiation de la souche parentale avec des rayons ultraviolets ou par traitement de cette souche avec un mutagène (par exemple la N-méthyl-N'-nitro-N-nitrosoguanidine (appelée dans la suite en abrégé "NG") et le méthanesulfonate de méthyle), et par récolte d'une souche capable de croître sur un milieu gélosé contenant un antimétabolite de l'acide aspartique à une concentration à laquelle la souche parentale ne peut pas se développer.

Une souche présentant une résistance à un antimétabolite de l'acide aspartique est une souche dont la résistance à cet antimétabolite de l'acide aspartique est supérieure à celle de la souche parentale.

Comme exemple de micro-organisme appartenant au genre Escherichia et capable de produire de l'acide L-glutamique, on peut citer un micro-organisme qui est dépourvu d'activité d'α-cétoglutarate déshydrogénase ou dont l'activité d'α-cétoglutarate déshydrogénase est réduite.

De tels micro-organismes et leurs procédés de culture sont décrits dans les demandes de brevets japonais mises à la disposition du public (Kokai) n° 244 970/1993 et 203 980/1995. Les micro-organismes suivants constituent des exemples spécifiques de tels micro-organismes :

Escherichia coli W3110 sucA::Km
Escherichia coli AJ12624 (FERM BP−3853)
Escherichia coli AJ12628 (FERM BP−3854)
Escherichia coli AJ12949 (FERM BP−4881)

Escherichia coli W3110 sucA::Km est une souche obtenue par rupture d'un gène d'α-cétoglutarate décarboxylase de Escherichia coli W3110 (appelé dans la suite en abrégé "gène sucA"), et il s'agit d'une souche totalement dépourvue d'activité d'α-CGDH. Cette souche est obtenue de la manière suivante :

des amorces sont synthétisées sur la base de la séquence nucléotidique du gène sucA qui a déjà été décrite (Eur. J. Biochem., vol. 141, p. 351−359, 1984), puis le gène sucA est amplifié par amplification en chaîne par polymérase (ACP ou PCR) au moyen d'une matrice constituée par l'ADN chromosomique de Escherichia coli W3110. Un gène de résistance à un médicament (dans le cas pré-
sent, un gène de résistance à la kanamycine) est inséré dans la région codante du
gène sucA amplifié pour obtenir un gène sucA qui a perdu sa fonction propre.
Ensuite, par recombinaison homologue, le gène sucA situé sur le chromosome de
W3110 est remplacé par le gène sucA (sucA::Km\(^{r}\)) dans lequel le gène de résis-
tance à la kanamycine a été inséré et qui a perdu sa fonction propre.

Une souche dépourvue d'activité d'\(\alpha\)–CGDH peut aussi être isolée au
moyen d'un procédé de mutation conventionnel différent du procédé de génie
genétique décrit ci-dessus. Par exemple, la souche initiale est irradiée avec des
rayons X ou des rayons ultraviolets ou est traitée avec un mutagène tel que NG ou
anologue, et la souche dépourvue d'activité d'\(\alpha\)–CGDH peut être sélectionnée sur
la base des propriétés suivantes.

Le mutant qui est dépourvu d'activité d'\(\alpha\)–CGDH ou dont l'activité
d'\(\alpha\)–CGDH est réduite ne peut pas se développer dans un milieu minimum conte-
nant du glucose ou ne peut se développer dans des conditions aérobies qu'à une
vitesse de croissance sensiblement réduite. Toutefois, lorsque de l'acide succinique
ou de la lysine et de la méthionine sont ajoutés au milieu minimum, une croissance
normale est possible dans les mêmes conditions. D'autre part, des conditions
anaérobies permettent au mutant de croître normalement dans du milieu minimum

Escherichia coli AJ12624 (FERM BP–3853) est un mutant qui a une
activité d'\(\alpha\)–CGDH réduite et qui présente également une aptitude réduite à dégra-
der l'acide L–glutamique.

Escherichia coli AJ12628 (FERM BP–3854) est un mutant qui a une
activité d'\(\alpha\)–CGDH réduite et une aptitude réduite à dégrader l'acide L–glutamique
combinées avec une expression constitutive de l'opéron ace.

Escherichia coli AJ12949 (FERM BP–4881) est une souche obtenue
par introduction d'un plasmide contenant un gène de la phosphoénolpyruvate
carboxylase et un gène de la glutamate déshydrogénase dans Escherichia coli
W3110 sucA::Km\(^{r}\).

Les mutants mentionnés ci-dessus, dont l'activité d'\(\alpha\)–CGDH est nulle
ou réduite, qui ont une aptitude réduite à dégrader l'acide L–glutamique et, en
même temps, qui présentent une expression constitutive des opérons malate
synthase (aceB), isocitrate lyase (aceA) et isocitrate déshydrogénase phosphatase
(aceK) et/ou dont les activités de phosphoénolpyruvate carboxylase et de
glutamate déshydrogénase sont amplifiées, sont préférables car ils présentent une
plus grande aptitude à produire de l'acide L–glutamique.
Le micro-organisme selon la présente invention appartient au genre Escherichia, présente une résistance à un antimétabolite de l'acide aspartique et est capable de produire de l'acide L-glutamique. On citera à titre d'exemple le micro-organisme suivant :

Escherichia coli AJ13199 (FERM P-15573/FERM BP-5807)

On obtient Escherichia coli AJ13199 en soumettant Escherichia coli W3110 sucA::KmR dérivé d'une souche sauvage non pathogène, Escherichia coli W3110, à une mutation conventionnelle, et c'est le mutant ainsi obtenu qui présente une résistance à l'antimétabolite de l'acide aspartique qu'est le β-hydroxamate de l'acide aspartique.

Le milieu utilisé pour produire de l'acide L-glutamique selon la présente invention est un milieu de culture standard contenant des sources de carbone, des sources d'azote, des sels inorganiques et, si nécessaire, des nutriments organiques à l'état de traces tels que des acides organiques et des vitamines, par exemple. On peut utiliser un milieu synthétique et également un milieu complet. Il est possible d'utiliser dans le milieu des sources de carbone et des sources d'azote quelconques à condition qu'elles autorisent la culture d'un micro-organisme.

Les sources de carbone peuvent être par exemple le glucose, le glycérol, le fructose, le saccharose, le maltose, le mannose, le galactose, un hydrolysat d'amidon et des mélasses, et également des acides organiques tels que l'acide acétique et l'acide citrique. On peut utiliser ces sources de carbone indépendamment ou combinées avec d'autres sources de carbone.

Les sources d'azote comprennent par exemple l'ammoniac, les sels d'ammonium tels que le sulfate d'ammonium, le carbonate d'ammonium, le chlorure d'ammonium, le phosphate d'ammonium et l'acétate d'ammonium, et les nitrates.

Les nutriments organiques à l'état de traces comprennent par exemple les acides aminés, les vitamines, les acides gras, les acides nucléiques, la peptone (mélange d'acides aminés et de polypeptides résultant de l'action d'une enzyme protéolytique sur une substance protéique), la caséine hydrolysée en milieu acide en acides aminés (appelée dans la suite casamino-acides), un extrait de levure et un hydrolysat de soja. Lorsque l'on cultive un micro-organisme auxotrophe nécessitant des acides aminés, par exemple, pour sa croissance, il est nécessaire d'ajouter les nutriments voulus.
Les sels inorganiques comprennent par exemple les sels de l'acide phosphorique, les sels de magnésium, les sels de calcium, les sels de fer et les sels de manganèse.

La culture est accomplie par voie aérobie à une température de fermentation de 20 à 45°C et à un pH de 5 à 9. Lorsque l'on contrôle le pH pendant la culture, on neutralise en ajoutant du carbonate de calcium ou une base telle que l'ammoniac. Lorsque l'on réalise la culture pendant 10 h à 4 j, une quantité considérable d'acide L-glutamique s'accumule dans le milieu de culture.

On peut récupérer l'acide L-glutamique à partir du milieu de culture après l'achèvement de la culture, par un procédé connu. Par exemple, on récupère l'acide L-glutamique par un procédé dans lequel les cellules sont retirées du milieu de culture et le résidu est ensuite concentré et cristallisé, ou par chromatographie d'échange d'ions.

La présente invention va maintenant être illustrée de manière plus spécifique par les exemples non limitatifs suivants et les dessins annexés, dans lesquels :

la figure 1 est une vue représentant la construction de pBR-sucAB ;
la figure 2 est un schéma représentant le remplacement du gène sucA sur l'ADN chromosomique de Escherichia coli W3110 par un gène sucA dans lequel est inséré un gène de résistance à la kanamycine (sucA::Km²).

**Exemple 1**

Construction d’une souche dépourvue d’α-CGDH :

(1) Clonage du gène sucA et du gène de la déshydrolipoamido-succinylé transférase de Escherichia coli W3110.


Parmi les amorces que l'on a synthétisées, celles que l'on a utilisées pour amplifier le gène sucA sont représentées par les séquences n° 1 et 2 de la liste de séquences jointe en annexe. La séquence n° 1 correspond à la séquence qui s'étend du 45e résidu au 65e résidu de la séquence nucléotidique du gène sucA décrite.

Les amorces utilisées pour amplifier le gène sucB sont représentées par les séquences n° 3 et 4 de la liste de séquences jointe en annexe. La séquence n° 3 correspond à la séquence qui s'étend du 2179e résidu au 2198e résidu de la séquence nucléotidique du gène sucA décrite à la page 354 du document mentionné ci-dessus, et la séquence n° 4 de la liste de séquences correspond à la séquence qui s'étend du 4566e au 4591e résidus de la séquence nucléotidique du gène sucB décrite à la page 364 du document mentionné ci-dessus. On indiquera à ce sujet qu'il a été mis en évidence que le gène sucA et le gène sucB forment un opéron.


Les produits d'ACP résultants ont été munis d'extrémités franches à l'aide de l'ADN polymérase de T4 et clonés dans un site EcoRV du vecteur pBR 322. Le vecteur pBR322 dans lequel le gène sucA amplifié a été cloné a été appelé pBR–sucA et le vecteur pBR322 dans lequel le gène sucB amplifié a été cloné a été appelé pBR–sucB. Puis, à l'aide de ces plasmides, Escherichia coli JM109 a été transformé par le procédé au CaCl2 (Report on Biological Engineering Experiments, Society for Fermentation and Bioengineering, Japon, p. 139, Baifukan, 1992). Des plasmides ont été préparés à partir des transformants, et des cartes de restriction des fragments d'ADN clonés ont été établies. On a ainsi confirmé que les gènes clonés présentaient les mêmes cartes de restriction que celles du gène sucA et du gène sucB décrites antérieurement.

Puis, pBR–sucB a été digéré avec KpnI et EcoRI pour donner un fragment KpnI–EcoRI contenant le gène sucB. De même, pBR–sucA a été digéré avec KpnI et EcoRI, et le plus grand fragment d'ADN ainsi obtenu a été ligaturé avec le fragment précédent à l'aide de l'ADN ligase de T4 pour préparer pBR–sucAB, comme le montre la figure 1.
(2) Rupture du gène sucA sur l'ADN chromosomique de Escherichia coli W3110.

Le schéma suivi pour la rupture du gène sucA sur l'ADN chromosomique de Escherichia coli W3310 est représenté sur la figure 2.

Tout d'abord, pBR–sucAB a été digéré avec KpnI et ses deux extrémités ont été rendues franches avec l'ADN polymérase de T4. En même temps, pUC4K (obtenu auprès de la société Pharmacia) a été digéré avec PstI pour préparer un fragment d'ADN contenant un gène de résistance à la kanamycine. Puis, ses deux extrémités ont été rendues franches avec l'ADN polymérase de T4. Ces fragments ont été ligaturés au moyen de l'ADN ligase de T4 pour construire pBR–sucA::Km\(^R\). Un fragment d'ADN HindIII–EcoRI contenant le gène de résistance à la kanamycine a été préparé à partir de ce plasmide. La souche Escherichia coli JC7623 obtenue auprès du Escherichia coli Genetic Stock Center (Yale University, USA) a été transformée par le procédé au CaCl\(_2\) (Report on Biological Engineering Experiments, the Society for Fermentation and Bioengineering, Japon, p. 139, Baifukan, 1992) à l'aide de 60 μg de ce fragment d'ADN linéaire. La souche dans laquelle le gène sucA sur l'ADN chromosomique de la souche JC7623 a été remplacé par le gène sucA dans lequel est inséré le gène de résistance à la kanamycine (sucA::Km\(^R\)) a été sélectionnée sur un milieu de gélose L (10 g/l de bactotryptone, 5 g/l d'extrait de bactolevure, 5 g/l de NaCl (pH 7,2) et 15 g/l de gélose), contenant 25 mg/l de kanamycine. Comme la souche Escherichia coli JC7623 contient des mutations telles que recB\(^-\), recC\(^-\) et sbcB\(^-\), il est possible d'obtenir une recombinaison homologue à fréquence élevée au moyen d'un ADN linéaire. Douze souches résistantes à la kanamycine ont été obtenues, et des ADN chromosomiques ont été préparés à partir de ces douze souches. Chacun de ces ADN a été digéré avec KpnI, et une hybridation de Southern a été réalisée en utilisant comme sonde le fragment d'ADN contenant le gène sucA. On a ainsi mis en évidence que, dans les douze souches, le gène sucA initial était remplacé par le gène sucA dans lequel était inséré le gène de résistance à la kanamycine, par recombinaison homologue. Il a été possible de confirmer cette recombinaison d'après les résultats suivants. L'hybridation de Southern a été réalisée en utilisant comme sonde le fragment EcoRI–HindIII de 2,6 kb contenant le gène sucA sur pBR–sucA. Lorsque l'ADN chromosomique de la souche JC7623 a été digéré avec KpnI et hybridé avec ce fragment de 2,6 kb, deux bandes de 5,2 kb et 6,2 kb ont été détectées car le site KpnI était présent dans le gène sucA. D'autre part, dans la souche dont le gène sucA a été remplacé par le gène sucA dans lequel était inséré
le gène de résistance à la kanamycine, le site KpnI a été coupé lors de l'insertion du gène de résistance à la kanamycine (1,2 kb) dans le gène sucA. Ainsi, une seule bande de 12,6 kb a été détectée lorsque le fragment de cet ADN chromosomique qui a été digéré avec KpnI a été hybridé avec le fragment de 2,6 kb.

La souche de Escherichia coli JC7623 résistante à la kanamycine ainsi obtenue a été infectée avec le phage P1 pour préparer un lysat et sucA::Km^R a été introduit dans la souche Escherichia coli W3110 par transduction avec le phage P1 selon un procédé standard (Report on Biological Engineering Experiments, the Society for Fermentation and Bioengineering, Japon, p. 75–76, Baifukan, 1992).

La souche représentative qui a été choisie comme souche résistante à la kanamycine a été appelée W3110 sucA::Km^R.

L'activité d'α-CGDH des souches W3110 sucA::Km^R et W3110 a été mesurée par le procédé de Reed et al. (Methods in Enzymology, vol. 13, p. 55, 1969). Les résultats sont présentés dans le tableau 1 ci-dessous. Aucune activité d'α-CGDH n'a été détectée dans la souche W3110 sucA::Km^R, et il a été confirmé que cette souche était une souche déficiente en α-CGDH.

**Tableau 1**

<table>
<thead>
<tr>
<th>Activité d'α-CGDH</th>
<th>W3110</th>
<th>W3110 sucA::Km^R</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,70</td>
<td>non détectée</td>
<td></td>
</tr>
</tbody>
</table>

[unités : μmol/mg de protéine/min]

**Exemple 2**

 Sélection d'une souche ayant une résistance au β-hydroxamate de l'acide DL-aspartique

La souche de Escherichia coli W3110 sucA::Km^R a été cultivée dans du milieu liquide 2YT contenant 16 g/l de bactotryptone, 10 g/l d'extrait de bacto-levure et 5 g/l de NaCl (pH 7,2) à 37°C. La culture d'une nuit de W3110 sucA::Km^R (0,1 ml) a été inoculée dans 5 ml de milieu liquide 2YT et incubée à 37°C pendant 3 h pour recueillir les cellules dans la phase de croissance logarithmique. Ces cellules ont été mises en suspension dans un tampon phosphate de potassium 50 mM (pH 6,0) et la suspension a été centrifugée pour recueillir les cellules. Ce processus a été répété. Puis, les cellules ont été mises en suspension dans du tampon phosphate de potassium 50 mM contenant 200 mg/l de NG, et la suspension a été laissée au repos pendant 30 min. Ensuite, cette suspension a été
centrifugée pour recueillir les cellules. Ces cellules ont été mises en suspension dans du tampon phosphate 50 mM et la suspension a été centrifugée pour recueillir les cellules. Ce processus a été répété deux fois et les cellules ont été lavées. Ensuite, les cellules ont été étalées sur du milieu minimum M9 (5 g/l de glucose, 17,1 g/l d'hydrogénophosphate disodique dodécahydraté, 3.0 g/l de dihydrogénophosphate de potassium, 1.0 g/l de chlorure d'ammonium, 0.5 g/l de NaCl, 0.25 g/l de sulfate de magnésium heptahydraté, 1 mg/l de chlorhydrate de thiamine et 15 g/l de gélose) contenant 0,25 g/l de β-hydroxamate d'acide DL-aspartique et incubées à 37°C pendant 5 à 8 j.

Les colonies formées sur le milieu minimum M9 contenant 0,25 g/l de β-hydroxamate d'acide DL-aspartique ont été prélevées et les colonies individuelles ont été purifiées sur du milieu minimum M9 par le procédé d'isolement de colonies uniques. La souche représentative présentant une résistance au β-hydroxamate d'acide DL-aspartique a été appelée AJ13199. Lorsque la souche W3110 suC::Km5 a été étalée sur du milieu minimum M9 contenant 0,25 g/l de β-hydroxamate d'acide DL-aspartique, il lui a été absolument impossible de se développer et aucune formation de colonie n'a été observée.

**Exemple 3**

Culture d'une souche productrice d'acide L-glutamique et production d'acide L-glutamique

La souche AJ13199 présentant une résistance au β-hydroxamate de l'acide DL-aspartique et sa souche parentale W3110 suC::Km5 qui avaient été incubées sur du milieu de gélose L ont été isolées dans un ballon de Sakaguchi de 500 ml contenant 20 ml de milieu de culture présentant la composition suivante, puis cultivées à 37°C jusqu'à ce que le sucre contenu dans le milieu de culture soit totalement consommé. Les résultats ainsi obtenus sont présentés dans le tableau 2 ci-dessous.

**Milieu pour la production d'acide L-glutamique**

<table>
<thead>
<tr>
<th>Constituant</th>
<th>Concentration (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (stérilisé séparément)</td>
<td>40</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>20</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>1</td>
</tr>
<tr>
<td>MgSO₄.7H₂O (stérilisé séparément)</td>
<td>1</td>
</tr>
<tr>
<td>Constituant</td>
<td>Concentration (g/l)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>0,01</td>
</tr>
<tr>
<td>MnSO₄·5H₂O</td>
<td>0,01</td>
</tr>
<tr>
<td>Extrait de levure</td>
<td>2</td>
</tr>
<tr>
<td>Chlorhydrate de thiamine</td>
<td>0,01</td>
</tr>
<tr>
<td>CaCO₃ (stérilisé à sec)</td>
<td>50</td>
</tr>
<tr>
<td>pH 7,0 (ajusté avec KOH avant traitement à l'autoclave à 120°C pendant 10 min)</td>
<td></td>
</tr>
</tbody>
</table>

**Tableau 2**

<table>
<thead>
<tr>
<th>Souche</th>
<th>DO*</th>
<th>Quantité d'acide L-glutamique accumulée (g/l)</th>
<th>Durée de culture (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3110</td>
<td>0,45</td>
<td>19,2</td>
<td>25</td>
</tr>
<tr>
<td>sucA::Km₂</td>
<td>0,76</td>
<td>19,8</td>
<td>12</td>
</tr>
</tbody>
</table>

* : DO₅₆₂ (dilution 26 fois)

Dans le cas de la souche AJ13199 présentant une résistance au β-hydroxamate de l'acide DL-aspartique, par comparaison avec sa souche parentale, la quantité d'acide glutamique accumulée était inchangée, mais la vitesse de croissance était augmentée ainsi que la quantité de cellules, la durée de culture était considérablement raccourcie et le rendement en acide glutamique par unité de temps était très amélioré.

Un grand nombre de souches présentant une résistance au β-hydroxamate de l'acide DL-aspartique, autres que AJ13199, ont été isolées et évaluées par le procédé décrit dans l'exemple 3. Pour un grand nombre de ces souches, de même que pour AJ13199, la vitesse de croissance était augmentée ainsi que la quantité de cellules, et la durée de culture était considérablement raccourcie.

Le procédé selon la présente invention permet d'augmenter le rendement en acide L-glutamique d'un mutant appartenant au genre Escherichia et de produire de l'acide L-glutamique efficacement à faible coût.

La souche Escherichia coli AJ12624 a été déposée auprès du National Institute of Bioscience and Human Technology of the Agency of Industrial Science and Technology (No. 3, 1-ban, Higashi 1-chome, Tsukuba, préfecture d'Ibaraki,
Japon, code postal 305) le 24 juillet 1991 et s'est vue attribuer le numéro de dépôt FERM P-12379. Cette souche a fait l'objet d'un dépôt international conformément au traité de Budapest le 15 mai 1992 et s'est vue attribuer le numéro de dépôt FERM BP-3853.

La souche Escherichia coli AJ12628 a été déposée auprès du National Institute of Bioscience and Human Technology of the Agency of Industrial Science and Technology (No. 3, 1-ban, Higashi 1-chome, Tsukuba, préfecture d'Ibaraki, Japon, code postal 305) le 24 juillet 1991 et s'est vue attribuer le numéro de dépôt FERM P-12380. Cette souche a fait l'objet d'un dépôt international conformément au traité de Budapest le 15 mai 1992 et s'est vue attribuer le numéro de dépôt FERM BP-3854.

La souche Escherichia coli AJ12949 a été déposée auprès du National Institute of Bioscience and Human Technology of the Agency of Industrial Science and Technology (No. 3, 1-ban, Higashi 1-chome, Tsukuba, préfecture d'Ibaraki, Japon, code postal 305) le 28 décembre 1993 et s'est vue attribuer le numéro de dépôt FERM P-14039. Cette souche a fait l'objet d'un dépôt international conformément au traité de Budapest le 11 novembre 1994 et s'est vue attribuer le numéro de dépôt FERM BP-4881.

La souche Escherichia coli AJ13199 a été déposée auprès du National Institute of Bioscience and Human Technology of the Agency of Industrial Science and Technology (No. 3, 1-ban, Higashi 1-chome, Tsukuba, préfecture d'Ibaraki, Japon, code postal 305) le 18 avril 1996 et s'est vue attribuer le numéro de dépôt FERM P-15573. Cette souche a fait l'objet d'un dépôt international conformément au traité de Budapest le 3 février 1997 et s'est vue attribuer le numéro de dépôt FERM BP-5807.

Tableau de séquences
Séquence n° 1
Longueur de la séquence : 21
Type de séquence : acide nucléique
Type de brin : brin unique
Topologie : linéaire
Type de séquence : ADN synthétique
Caractéristiques de la séquence : amorce pour amplifier le gène sucA de Escherichia coli
Séquence :

ACGCGCAAGC GTCGATCAG G

5 Séquence n° 2
Longueur de la séquence : 21
Type de séquence : acide nucléique
Type de brin : brin unique
Topologie : linéaire
Type de séquence : ADN synthétique
Caractéristiques de la séquence : amorce pour amplifier le gène sucA de Escherichia coli
Séquence :

15 ATCGGCTACG AATTCAGGCA G

Séquence n° 3
Longueur de la séquence : 20
Type de séquence : acide nucléique
Type de brin : brin unique
Topologie : linéaire
Type de séquence : ADN synthétique
Caractéristiques de la séquence amorce pour amplifier le gène sucB de Escherichia coli
Séquence :

25 CCGGTGCGG TACCTTC TTC

Séquence n° 4
Longueur de la séquence : 26
Type de séquence : acide nucléique
Type de brin : brin unique
Topologie : linéaire
Type de séquence : ADN synthétique
Caractéristiques de la séquence : amorce pour amplifier le gène sucB de Escherichia coli
Séquence :

CGTAGACCGA ATTCTCGTA TCGCTT
REVENDICATIONS

1. Micro-organisme caractérisé en ce qu'il appartient au genre Escherichia et en ce qu'il présente une résistance à un antimétabolite de l'acide aspartique et est capable de produire de l'acide L-glutamique.

2. Micro-organisme selon la revendication 1, caractérisé en ce que son activité d'α-céto glutarate déshydrogénase est nulle ou réduite.

3. Micro-organisme selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'antimétabolite de l'acide aspartique est le β-hydroxamate de l'acide aspartique.

4. Procédé de production d'acide L-glutamique par fermentation, caractérisé en ce qu'il comprend la culture d'un micro-organisme selon l'une quelconque des revendications précédentes dans un milieu liquide, l'accumulation d'acide L-glutamique dans ce milieu de culture et la récupération de l'acide L-glutamique.
FIG. 1
Transduction avec P1

W3110 suc A::Km<sup>r</sup>

FIG. 2