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CLAIMS

1. A test instrument comprising:

a first processing system that is programmable to run one or more test
programs to test a device interfaced to a test instrument, and that is programmed to
control operation of the test instrument; and

a second processing system that is dedicated to device testing, the second
processing system being programmable to run one or more test programs to test the
device;

wherein the first processing system has a first application programming
interface (API) and the second processing system has a second API, the first API
and the second API being different APls, the first API and the second API having at

least some duplicate functions.

2. The test instrument of claim 1, wherein functions of the first API are

associated with corresponding functions of the second API.

3. The test instrument of claim 2, wherein functions of the first API are

configured to call functions of the second API in response to information received by

the first processing system.
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4. The test instrument of claim 3, wherein the information comprises
programming code written using functions of the first API, the functions of the first
API calling functions of the second API to configure the programming code to run on

the second processing system.

5. The test instrument of claim 4, wherein configuring the programming code
to run on the second processing system comprises generating code using functions
associated with the second API in response to use of corresponding functions of the

first API.

6. The test instrument of claim 1, wherein the first processing system is
programmable to generate a user interface, the user interface for interacting with the
first processing system and for interacting with the second processing system

through the first APl and the second API.

7. The test instrument of claim 1, wherein the first processing system is
programmable to generate a user interface, the user interface for interacting with the

second processing system through the second API.

8. The test instrument of claim 1, wherein the first processing system is
programmed to run one or more test programs to test the device interfaced to the

test instrument,
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wherein the second processing system is not programmed to run one or more

test programs to test the device.

9. The test instrument of claim 1, wherein the first processing system is not
programmed to run one or more test programs to test the device interfaced to the
test instrument,

wherein the second processing system is programmed to run one or more

test programs to test the device.

10. The test instrument of claim 1, further comprising:

one or more ports configured to mate to the device;

wherein the first processing system is configured to send test data to the
device through the one or more ports; or

wherein the second processing system is configured to send test data to the

device through the one or more ports.

11. The test instrument of claim 1, wherein the first processing system
comprises one or more microprocessors programmed to run a general purpose
operating system; and

wherein the second processing system comprises one or more embedded
microprocessors, each of the one or more embedded microprocessors being

programmed to test a corresponding device interfaced to the test instrument.
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12. A method performed on a test instrument, the method comprising:

receiving a test program at a first processing system that is programmable to
run one or more test programs to test a device interfaced to a test instrument, and
that is programmed to control operation of the test instrument;

generating, based on the test program, an altered test program that is
executable on a second processing system, the second processing system being
dedicated to device testing and being programmable to run one or more test
programs to test the device; and

transmitting the altered test program to the second processing system.

13. The method of claim 12, wherein the first processing system has a first
application programming interface (API) and the second processing system has a
second API, the first API and the second API being different APIs, the first APl and

the second API having at least some duplicate functions.

14. The method of claim 13, wherein the test program comprises one or

more calls to functions of the first API.

15. The method of claim 14, wherein generating the altered test program

comprises identifying one or more corresponding functions of the second API that

correspond to the one or more functions of the first API.

-30-
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16. The method of claim 15, wherein generating the altered test program
comprises replacing the one or more calls to functions of the first API with one or

more calls to corresponding functions of the second API.

17. The method of claim 12, further comprising executing the altered test

program on the second processing system to test the device.

18. The method of claim 12, further comprising providing a development

environment associated with the second processing system that allows the altered

test program to be modified at the second processing system.

31-
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PROGRAMMABLE TEST INSTRUMENT

TECHNICAL FIELD

This disclosure relates generally to a programmable test instrument

BACKGROUND

Automatic test equipment (ATE) plays a role in the manufacture of electronics,
such as semiconductor devices and circuit board assemblies. Manufacturers
generally use automatic test equipment, or "tester instruments", to verify the
operation of devices during the manufacturing process. Such devices are referred to
as a "device under test" (DUT) or a "unit under test" (UUT). Early detection of faults
eliminates costs that would otherwise be incurred by processing defective devices,
and thus reduces the overall costs of manufacturing. Manufacturers also use ATE to
grade various specifications. Devices can be tested and binned according to
different levels of performance in areas, such as speed. Devices can be labeled and

sold according to their actual levels of performance.

SUMMARY
In general, in one aspect, a test instrument includes a first processing system
that is programmable to run one or more test programs to test a device interfaced to
a test instrument, and that is programmed to control operation of the test instrument,

and a second processing system that is dedicated to device testing. The second
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processing system being programmable to run one or more test programs to test the
device, and the first processing system has a first application programming interface
(API) and the second processing system has a second API, the first API and the
second API being different APls, the first APl and the second API having at least
some duplicate functions.

In general, in another aspect, a method performed on a test instrument
includes receiving a test program at a first processing system that is programmable
to run one or more test programs to test a device interfaced to a test instrument, and
that is programmed to control operation of the test instrument, generating, based on
the test program, an altered test program that is executable on a second processing
system, the second processing system being dedicated to device testing and being
programmable to run one or more test programs to test the device, and transmitting
the altered test program to the second processing system.

Aspects may include one or more of the following features. Functions of the
first API| are associated with corresponding functions of the second APIl. Functions
of the first API are configured to call functions of the second API in response to
information received by the first processing system. The information includes
programming code written using functions of the first API, the functions of the first
API calling functions of the second API to configure the programming code to run on
the second processing system. Configuring the programming code to run on the
second processing system includes generating code using functions associated with

the second API in response to use of corresponding functions of the first APl. The
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first processing system is programmable to generate a user interface, the user
interface for interacting with the first processing system and for interacting with the
second processing system through the first APl and the second API.

The first processing system is programmable to generate a user interface, the
user interface for interacting with the second processing system through the second
API. The first processing system is programmed to run one or more test programs
to test the device interfaced to the test instrument, and the second processing
system is not programmed to run one or more test programs to test the device. The
first processing system is not programmed to run one or more test programs to test
the device interfaced to the test instrument, and the second processing system is
programmed to run one or more test programs to test the device. The test
instrument further includes one or more ports configured to mate to the device, the
first processing system is configured to send test data to the device through the one
or more ports, or the second processing system is configured to send test data to
the device through the one or more ports.

The first processing system has a first application programming interface
(API) and the second processing system has a second API, the first API and the
second API being different APls, the first APl and the second API having at least
some duplicate functions. The test program includes one or more calls to functions
of the first API. Generating the altered test program includes identifying one or more
corresponding functions of the second API that correspond to the one or more

functions of the first APl. Generating the altered test program includes replacing the
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one or more calls to functions of the first APl with one or more calls to corresponding
functions of the second API. The altered test program is executed on the second
processing system to test the device. A development environment associated with
the second processing system is provided that allows the altered test program to be
modified at the second processing system.

Two or more of the features described in this disclosure, including this
summary section, may be combined to form embodiments not specifically described
herein.

The systems and techniques described herein, or portions thereof, may be
implemented as a computer program product that includes instructions that are
stored on one or more non-transitory machine-readable storage media, and that are
executable on one or more processing devices. The systems and techniques
described herein, or portions thereof, may be implemented as an apparatus,
method, or electronic system that may include one or more processing devices and
memory to store executable instructions to implement the stated functions.

The details of one or more implementations are set forth in the accompanying
drawings and the description below. Other features, objects, and advantages will be

apparent from the description and drawings, and from the claims.
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DESCRIPTION OF THE DRAWINGS
Fig. 1is a block diagram of an example test instrument.
Fig. 2 is a block diagram of showing examples of features that may be
incorporated into the example test instrument of Fig. 1
5 Fig. 3 is a block diagram of an example test system.

Fig. 4 is a block diagram of an example tester included in the test system.

DETAILED DESCRIPTION
Described herein is a test instrument that may include multiple processing
10 layers (sometimes referred to as "tiers"). The multiple processing layers may include
respective application programming interfaces (APIs) that include function libraries.
The function libraries can store various functions that can be called by a program
such as a test program or test logic that has been provided to the test instrument at
least one level. In some examples, a first layer may programmed to run one or more
15 test programs to test a device interfaced to the test instrument, and may also be
programmed to control operation of the test instrument. A second layer of the same
test instrument may be dedicated to device testing and may also run one or more
test programs to test the device.
The first layer may include a first API and the second layer may include a
20 second API, and the first API and the second API may differ from each other in
some way. To allow test programs to be generated at the first layer and executed

on the second layer, the first API and the second APl may include at least some
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duplicate functions (e.g., a function of the first APl may correspond to a function of
the second API). Thus, a test program generated at the first layer (e.g., a test
program that includes or calls functions of the first APl) can be made compatible with
a processing device of the second layer, as at least some of the functions of the first
API have counterpart functions associated with the second API.

In some examples, the first layer may store associations or mappings
between functions of the first APl and corresponding functions of the second API.
The stored associations and mappings can be used to alter or translate a test
program generated at the first layer into a form that is suitable for execution at the
second layer (e.g., by replacing or modifying functions of the first API in the test
program to correspond to functions of the second API). The altered test program
can then be transmitted to the second layer for execution.

Fig. 1is a block diagram of an example implementation of the foregoing test
instrument 100. In Fig. 1, test instrument 100 includes a three-tiered processing
system. However, in other example implementations, there may be more, or fewer,
tiers. The different tiers of test instrument 100 reflect the relative relationship of the
tiers to the DUT. In this example, first tier 101 includes a computer 102. Computer
102 controls various features of test instrument 100, such as communication with an
external network. In addition, computer 102 is programmable to perform various
testing operations, as described below. Second tier 104 includes one or more
processing devices 106 to 108 that are dedicated to testing. For example,

processing devices 106 to 108 typically do not perform non-test functions like test
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instrument control and network communication. Third tier 110 includes logic 111 to
113 that is programmable both to act as an interface to a DUT 115 and to perform
one or more test operations on the DUT.

In this example first tier 101, computer 102 includes one or more processing
devices, such as one or more microprocessors or a single multi-core microprocessor
(not shown). Computer 102 also includes memory (not shown) that stores
executable code to control test instrument communication with the external
environment, and to perform various "housekeeping" functions to control operation of
test instrument 100. For example, computer 102 may be responsible for exchanging
communications between the test instrument and one or more external entities over
a network interface, scanning the test instrument for malware, memory
management, power control, and other functions that are not specifically related to
testing the DUT.

Computer 102 is also programmable to perform test operations on a DUT
(e.g., 115) interfaced to test instrument 100. The test operations may include, but
are not limited to, testing bus speed, reaction time, or any other appropriate
operational aspects of the DUT. In general, the testing that is performed is
dependent upon the type of device being tested, and the information sought during
testing.

One or more test programs may be loaded into memory on computer 102,
and executed by processing device(s) in computer 102 in order to perform the

testing. While performing testing, computer 102 may continue to perform other



10

15

20

WO 2013/062693 PCT/US2012/056250

functions, such as those described above, to keep test instrument 100 operational.
Consequently, the test latency (e.g., the amount of time between the start of a test
and receipt of test results) can be on the order of milliseconds. Furthermore, timing
variability can also be affected by the computer 102 performing system functions,
(e.g., virus scanning) during one run of a test but not during another. This could
result in consecutive steps of a test sequence executing more closely in time when
the virus scan is not running relative to when the virus scan is running. This is but
an example of the test latency. In different systems, numerous factors may have an
effect on test latency, such as the speed of the processing device(s) in computer
102, the amount of memory available in computer 102 to run the test programs, a
division of attention among processing devices, .and so forth.

A possible advantage of performing testing via computer 102 relates to
development costs of test programs. More specifically, computer 102 may run a
windowing, or other relatively user-friendly, operating system. Tools available for
development of test programs on such an operating system are typically widely
available, and generally familiar to test program developers. As a result, the cost of
developing test programs on computer 102, to run on computer 102, can be less
than the cost of developing test programs to run on the other tiers of the multi-tiered
architecture. This generalization, however, may not apply in all cases.

In this example, second tier 104 includes multiple embedded processing
devices 106 to 108. Here, three embedded processing devices are shown;

however, test instrument 100 may include any appropriate number of embedded
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processing devices, e.g., one, two, four, five or more. These processing devices are
embedded in the sense that they are incorporated into test instrument 100; and are
dedicated to performing test functions (e.g., to testing DUTs interfaced to test
instrument 100). Embedded processing devices 106 to 108 typically are not
responsible for test instrument operations like the "housekeeping" operations
described above that are performed by computer 102. However, in some
implementations, embedded processing devices 106 to 108 may be programmed to
perform one or more such operations, or other operations not specifically directed to
testing DUTSs.

Each embedded processing device 106 to 108 may include, e.g., a
microcontroller or a microprocessor having a single core or multiple cores. Each
microprocessor is programmable, either directly or via computer 102. For example,
a user of test instrument 100 may interact with the operating system of computer
102 to program an embedded processing device 106. Alternatively, there may a
direct interface, e.g., hardware or software, through which each embedded
processing device may be programmed. Programming, in this context, refers to
storing one or more test programs onto a respective embedded processing device,
which can be executed on that embedded processing device to test a DUT.

As shown in Fig. 1, each embedded processing device is interfaced to
computer 102 and to respective programmable logic (in this example, a field
programmable gate array (FPGA)). As explained below, each FPGA acts as an

interface to a separate DUT (not shown) or to a portion of a single DUT (e.g., a bus
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122, 123, 124 on that DUT, as shown) for testing. Accordingly, in this example,
each embedded processing device may be programmed with a test program
designed specifically for the corresponding DUT, or portion thereof being tested. As
noted, an appropriate test program may be loaded directly into the embedded
processing device or it may be loaded via computer 102. Each embedded
processing device may execute its own test program separately, and concurrently
with, other embedded processing devices. In some implementations, there may be
coordination among the embedded processing devices as to how their respective
test programs are to be executed. Such coordination maybe implemented by the
embedded processing device themselves or by computer 102. In some
implementations, the coordination may involve devices at different tiers of the
architecture. In some implementations, the different embedded processing devices
106 to 108 may implement different portions (e.g., modules) of the same test
program, with or without appropriate coordination.

A possible advantage of performing testing via an embedded processing
device relates to test latency and timing variability. More specifically, because the
embedded processing devices are dedicated to testing, their resources are not
typically taxed by other tasks. As a result, testing latency can be less than that
achieved by computer 102, and timing variability can be reduced. For example, test
latency for an embedded processing device can be on the order of microseconds.
This, however, is but an example of embedded processing device test latency. In

different systems, numerous factors may have an effect on test latency, such as

-10-
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processing device speed, the amount of memory available to run the test programs,
and so forth. Accordingly, the foregoing generalization may not apply in all cases.

Furthermore, tools are available for development of test programs on the
embedded processing devices. As a result, the cost of developing test programs
targeting an embedded processing device, to run on an embedded processing
device, can be less than the cost of developing test programs to run on hardware,
such as an FPGA. In some examples, cost issues can relate to the commonness of
the skill sets need to program in the various tiers, and to the maturity of the
respective development environments. Programming for the embedded tier versus
the system tier may require more advanced SW skills. These skills may be less
common and more expensive to develop/outsource. System tier development tools
are quite refined and powerful relative to the corresponding tools for the embedded
tier. This may reduce the cost of development for the system tier (all other things
being equal). In addition, the cost of debugging test programs on an embedded
processing device can be higher than the cost of debugging those tests on the
system processing device for similar reasons. The debugging tools available on the
system processing device may be less expensive, more powerful, and more familiar
than similar tools available on the embedded processing devices.

Third tier 110 includes programmable logic, e.g., FPGAs 111to 113, although
other types of programmable logic may be used in lieu of FPGAs. Each FPGA is
configured by loading a program image into the FPGA. This program image is

referred to as an "FPGA load". In this example, each FPGA is configured to act as

-11-
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an interface between a DUT, or portion thereof (e.g., @ DUT bus) and test instrument
100. For example, an FPGA may specify a port width, port speed (e.g., 10MHz to
400MHz), the number of input ports, the number of output ports, and so forth.

First tier 101 computing device(s) (e.g., computer 102) and second tier 104
computing device(s) (e.g., embedded processing devices 106 to 108) access DUT
115 through third tier 110. For example, as shown in Fig. 1, each embedded
processing device may communicate with DUT 115 through a corresponding FPGA.
Computer 102 may communicate with DUT 115 through one or more FPGAsS,
depending upon which DUT, or portion of a DUT, is being currently tested. In some
implementations, each interface implemented by an FPGA is programmable. In
other implementations, the interface implemented by each FPGA is static (e.g., not
programmable).

Each FPGA may also be configurable to perform one or more tests on a
corresponding DUT, or portion thereof to which the FPGA is interfaced. For
example, the FPGA load for each FPGA may include one or more test routines that
are run by the FPGA to test various aspects of the DUT. As above, the routines that
are implemented depend upon the device being tested, and the information sought
during testing. Test routines run by each FPGA may be run independently of other
test routines run by other FPGAs, or there may be coordination among the various
FPGAs. Each FPGA may execute its own test routine separately, and concurrently
with, other embedded processing devices. In some implementations, there may be

coordination among the FPGASs as to how their respective test programs are to be

-12-
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executed. Such coordination may be implemented by the FPGAs themselves, by
their corresponding embedded processing devices, or by computer 102. In some
implementations, the coordination may involve devices at different tiers of the
architecture. For example, computer 102, in concert with embedded processing
devices 106 to 108, may coordinate operation of respective FPGAs 111to 113. In
some implementations, the different FPGAs may implement different portions (e.g.,
modules) of the same test routine, with or without appropriate coordination.

A possible advantage of performing testing via an FPGA relates to test
latency and to reducing timing variability. More specifically, because the FPGAs are
hardware devices, they are able to run at higher speeds than the test routines
programmed into either the embedded processing devices 106 to 108 or computer
102. As aresult, testing latency can be less than that achieved by embedded
processing devices 106 to 108 or computer 102. For example, test latency for an
embedded processing device can be on the order of nanoseconds. This, however,
is but an example of FPGA test latency. In different systems, numerous factors may
have an effect on test latency. Accordingly, the foregoing generalization may not
apply in all cases.

In some implementations, testing may be performed exclusively by one tier or
another of the architecture. For example, computer 102 may be programmed to run
one or more test programs to test a DUT, while devices on other tiers of the
architecture do not perform DUT tests. Embedded processing devices 106 to 108

may be programmed to run one or more test programs to test a DUT, while devices
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on other tiers of the architecture do not perform DUT tests. FPGAs 111to 113 may
be configured to run one or more tests on the device, while devices on other tiers of
the architecture do not perform DUT tests. Devices that are not performing tests are
not necessarily dormant during this time. For example, computer 102 may continue
to perform the housekeeping operations described above; the FPGAs may continue
to route data to/from the DUT (i.e., to act as interfaces to the DUT); and the
embedded processing devices may continue to be active in coordination or other
communication (e.g., transmitting test results from the FPGAs to computer 102).

In other implementations, testing may be performed by different tiers of the
architecture concurrently or in concert. For example, two or more of computer 102,
embedded processing devices 106 to 108, and FPGAs 111to 113 may act in
coordination, at the same time or within the same test sequence, to perform one or
more test operations on a single DUT or on multiple DUTs. To effect such
coordination, appropriate programming is loaded into computer 102 and/or
embedded processing devices 106 to 108, and/or an appropriate image is loaded
into the FPGAs. By way of example, a first test may be performed on a DUT by
computer 102; a second test may be performed on the DUT by embedded
processing device 106; and a third test may be performed on the DUT by FPGA 111.
The first, second and third tests may be separate tests, or part of the same test
sequence. Data from the first, second and third tests may be combined, e.g., in
computer 102, and processed to obtain the appropriate test results. These test

results may be sent to an external computer (not shown) for analysis and reporting.
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Any tier of the architecture or another (e.g., third party) computer (not shown) may
perform the coordination.

In implementations where one or more tiers of the architecture have not been
programmed, the unprogrammed tiers may be bypassed (at least as far as their test
functionality is concerned). The unprogrammed tiers may be pre-programmed or
pre-configured to perform various functions, such as those described above relating
to programming and communication among the tiers and with an external network.

Devices at the various tiers may be programmed or configured in real-time.

In this context, "real-time" includes programming at test time or shortly before test
time. That is, the test instrument need not come pre-programmed with test
programs that are to be run on a DUT. Those test programs may be incorporated
into the instrument at the appropriate time. Existing test programs on the test
instrument may likewise be replaced with new test programs, as appropriate.

Fig. 2 shows a test instrument 200 that includes a multi-tiered architecture. In
the example of Fig. 2, the test instrument 200 includes a system layer 202 (e.g., the
"first tier") and a testing layer 204 (e.qg., the "second tier). However, in other example
implementations, there may be more, or fewer, tiers. As discussed above, the
different tiers of the system 200 reflect the relative relationship of the system layer
202 and the testing layer 204 to a DUT (not shown). In this example, the system
layer 202 can provide similar functionality to the first tier 101 shown in Fig. 1, and
may include a system processing device 206. For example, the system processing

device 206 may control various features of the test instrument 200, such as

-15-
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communication with an external network or other general computing tasks (e.g.,
controlling programs unrelated to testing DUTSs, such as email programs and word
processing programs). In addition, the system processing device 206 can be
programmable to perform various testing operations, as described below.

The testing layer 204 includes an embedded processing device 208 that is
dedicated to one or more specialized tasks, such as device testing. While the
testing layer 204 may include more than one embedded processing device (e.g., as
shown in the second tier 104 of the test instrument 100 (Fig. 1)), only one embedded
processing device is shown for the sake of simplicity. In some examples, the
embedded processing device 208 does not perform non-test functions like test
instrument control and network communication. The test instrument may also
include one or more additional layers, such as the third tier 110 shown in Fig. 1,
which may in turn communicate with one or more DUTSs.

The system layer 202 also includes a system application programming
interface (API) 210. In general, an API is a set of data structures, functions,
protocols, routines and tools for accessing and interacting with an application (e.g.,
software running on one or more of the system processing device 206 and the
embedded processing device 208). An application programming interface may be
language dependent or language independent. A language dependent API is
available only in a particular programming language, while a language independent
APl is not bound to a particular language, system or process. In some examples,

language independent APIs can be accessed from (e.g., have their functions called
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using) more than one programming language. The system API 210 includes a
system device function library 212 that stores a number of functions associated with
the system API 210 (e.g., Function 1 and Function 2). A function (e.g., Function 1)
may, when called, cause the system processing device 206 to perform one or more
operations. For example, a function (e.g., Function 1) can cause a processing
device to access a register associated with an FPGA (e.g., an FPGA associated with
the third tier 110). Other functions may access a power supply or temperature
sensor (e.g., inside the instrument) to monitor the status of the instrument.

In some examples, a user 201 may wish to develop test logic that can be
used by the test instrument 200 to test a DUT. The system layer 202 may provide a
development environment that includes, or has access to, the system device
function library 212. While some system layers are not typically able to provide a
development environment that provides the ability for the user 201 to create test
logic (e.g., because test logic is executed on the embedded processing device 208
in the testing layer 204, and functions syntax and availability may vary between
layers of the test instrument 200), the techniques described herein allow the user
201 to create test logic at the system layer 202 that can be executed at the testing
layer 204 to test DUTs connected to the test instrument 200 (e.g., DUTs connected
to a third layer, such as the third tier 110).

In some examples, to allow for test logic creation at the system layer 202, the
system layer 202 and the testing layer 204 can be provided with respective APIs that

include functions that correspond to one another. For example, the embedded
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device API 214 can include an embedded device function library 216 that stores
functions (e.g., Corresponding Function 1 and Corresponding Function 2) that
correspond to functions of the system device function library (e.g., Function 1 and
Function 2, respectively). Such an arrangement allows, for example, the user 201 to
develop test logic at the system layer 202 that can be executed by the embedded
processing device 208 associated with the testing layer 204. For example, because
at least some of the functions of the embedded device function library 216 have
respective counterpart functions in the system device function library, test logic
developed at the system layer 202 can include functions calls that properly call the
desired functions of the embedded device function library 216. As a result, test logic
can be created that can be executed at least in part on the system processing
device 206 and that properly calls functions of the testing layer 204 (or other layers)
when necessary. For example, some functions of system device function library 212
can be wrappers to their embedded device function library 216 counterparts.
Providing similar functions at both the system layer 202 and the testing layer
204 allows developers who are unfamiliar with, for example, developing test logic at
the test level 204, to develop usable test logic at the system layer 202 (e.g., in a
development environment that the developer may be more familiar with). However,
in some examples, some test logic or portions thereof must be developed at the
testing layer 204 due to performance demands of certain test requirements, such as

latency or timing variability constraints.
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Fig. 3 shows a test instrument 300 that includes a system layer 302 and a
testing layer 304. Like the test instrument 200 discussed above with regard to Fig.
2, the test instrument 300 includes features that allow a user 301 to generate test
logic (e.g., test logic 316) that can be transferred or ported to the testing layer 304
for execution. For example, the user 301 may develop test logic 316 within a
development environment 313 associated with the system layer 302. In some
examples, the development environment 313 can run on a layer or machine different
than the system layer 302. While the test logic may include functions (e.g., Function
1 and Function 2) provided by a system device function library 312 associated with a
system API 310, the user 301 may desire to have some or all of the test logic 316 be
executed on an embedded processing device 308 associated with the testing layer
304.

To facilitate the execution of test logic 316 that uses functions from the
system function library 312 (e.g., and not the embedded device function library 322),
the system layer 302 may use a test logic translation engine 314 to alter, translate,
or otherwise modify the test logic 316 into a format that can be executed by the
embedded processing device 308. In some examples, the test logic translation
engine 314 includes one or more function mappings 315 that specify associations
between a function of the system function library 312 and a corresponding function
of the embedded device function library 322. Using the mappings 315, the test logic
translation engine can modify the test logic 3 16 to provide altered test logic 318 that

is suitable for execution on the embedded processing device 308. In some
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examples, the test logic translation engine 314 can use the mappings 315 to replace
functions (e.g., Function 1) associated with the system function library 312 with its
counterpart function in the embedded device function library 322 (e.g.,
Corresponding Function 1).

After the test logic translation engine 314 has generated the altered test logic
318, the system processing device 306 of the system layer 302 can provide the
altered test logic 318 to the embedded processing device 308 for execution. Before
the embedded processing device 308 executes the altered test logic 3 18, the testing
layer 304 may perform one or more tasks, such as error checking, compilation, or
other pre-processing operations (e.g., testing layer 304 (and specifically the
embedded device function library 322) can error check the altered test logic 318). In
some examples, some of these checks are of the behavior of this test logic as it
runs, and some of these checks are of the altered test logic 318 binary itself. These
checks can be performed, for example, when the altered test logic 318 is loaded.
Furthermore, in some examples, it may be desirable to modify the altered test logic
318 prior to execution on the embedded processing device 308 (e.g., test
performance requirements, such as latency or response time specifications, may
require further modifications to be made to the altered test logic 318 at the testing
layer 304). To facilitate further modification of the altered test logic 318 at the testing
layer 304, the testing layer 304 may also include its own development environment
324 through which the user 301 may access and alter the altered test logic 318 that

has been ported over from the system layer 302. In some examples, the first tier
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may have a larger latency and timing variability associated with it than the second
tier. Furthermore, in some cases, action by the test logic can trigger a UUT
response that completes faster than the first tier's timing is latent or variable. In
these cases, some SW logic optimizations might not produce a measurable
performance improvement in the first tier yet might produce a dramatic improvement
in the second tier. In some examples, the system layer 202 (or 302) may also
provide a user interface 203 (Fig. 2) that can be used to interact with one or both of
the system API 210/31 0 and the embedded device APl 214/314. For example, the
user interface can act as a common interface to both development environments
313 and 324, which may allow the user 301 to modify test logic at either the system
layer 302 or the testing layer 304. Thus, the techniques described above can allow
the user 301 to generate early test logic at the system layer 302 (e.g., in a
development environment that is familiar to the user 301 ), and the test logic can then
be translated into altered test logic that is ported to the testing layer 304 for further
modification and/or execution. These techniques can also allow user 301 to debug
the early test logic at the system layer 302 using more powerful and familiar
debugging tools. These techniques can be used instead of, or in combination with,
the techniques discussed above with regard to Fig. 2. For example, the existence of
corresponding functions in function libraries of the system and testing layers allows
the test logic translation engine 314 (and its associated mappings 315) to identify
appropriate functions at the testing layer 304 that should be substituted for system

layer functions in the test logic 316.
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Fig. 4 illustrates a process 400 that allows a test program to be created at a
first processing system and to be modified for eventual execution at a second
processing system. The process 400 can be executed, for example, on a test
instrument. A test program is received at a first processing system (402). For
example, a user can generate a test program using a development environment
associated with the system layer 302. The user may also upload an existing test
program 302 to the first processing system via a network connection or a suitable
storage device (e.g., a portable storage device, such as a universal serial bus (USB)
thumb drive). In some examples, the first processing system is programmable to run
one or more test programs to test a device interfaced to a test instrument, and is
programmed to control operation of the test instrument.

An altered test program is generated that is executable on a second
processing system (404). In some examples, the second processing system is
dedicated to device testing and is programmable to run one or more test programs
to test the device. The first processing system may have a first application
programming interface (API) and the second processing system may have a second
API, where the first APl and the second API are different APIs, and the first APl and
the second API have at least some duplicate functions. While the test program may
include one or more functions of the first API, generating the altered test program
may include identifying one or more functions of the second API that correspond to

the one or more functions of the first API. Generating the altered test program may

22-



10

15

20

WO 2013/062693 PCT/US2012/056250

also include replacing the one or more functions of the first APl with the one or more
corresponding functions of the second API.

The altered test program is transmitted to the second processing system. For
example, after the altered test program has been generated in a form that is suitable
for execution on the second processing system, the altered test program can be
provided to the second processing system. The second processing system may
also provide a development environment that allows the altered test program to be
modified at the second processing system.

While some of the foregoing examples describe providing altered test logic to
one embedded processing device of the testing layer, the system layer can provide
altered test logic to multiple embedded processing devices of the testing layer. In
some examples, more than one embedded processing device can be associated
with one or more shared APIs. Similarly, one or more system processing devices
can be associated with one or more shared APIs.

The foregoing describes performing testing using a system processing
device, embedded processing devices, or programmable logic. However, testing, as
described herein, may be performed using a combination of system processing
device, embedded processing devices, or programmable logic. For example, each
of these different elements may run on or more test programs simultaneously to test
the same device or portion thereof. Likewise, these different elements may
coordinate testing so that, e.g., a system processing device (e.g., 102 of Fig. 1)

performs a first part of a test sequence, an embedded processing device (e.g., 106
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of Fig. 1) performs a second part of the same testing sequence, and programmable
logic (e.g., FPGA 111 of Fig. 1) performs a third part of the same testing sequence.
Any appropriate coordination may take place between the different programmable
elements of the test instrument described herein.

Furthermore, in some implementations, a tier of processing may be
circumvented. For example, testing may occur using a system processing device
(e.g., 102) and programmable logic (e.g., FPGA 111), but not an embedded
processing device. In such implementations, communications between the system
processing device and the programmable logic may pass through an embedded
processing device or bypass the embedded processing device tier altogether.

In some implementations, there may be more than three tiers of processing
devices. For example, there may be two tiers of embedded processing devices
(resulting, e.g., in four tiers total). For example, a single embedded processing
device may be used to coordinate testing of a single device, and different embedded
processing devices (under the direction of that single embedded processing device)
may be used to test different aspects or features of that single device.

In some implementations, one or more tiers of processing devices may be
eliminated from the system of Fig. 1. For example, some implementations may not
include a tier of embedded processing devices. In such example systems, there
may be only a system processing device (e.g., 102 of Fig. 1) and programmable
logic (e.g., FPGAs 111to 113. In this regard, any appropriate combination of tiers

may be employed in the test instrument described herein.
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In some implementations, the system processing device (e.g., 102 of Fig. 1)
may be external to the test instrument. For example, an external computer may be
employed to control operations of the test instrument, and may interact with
embedded processing device(s) and programmable logic on the test instrument in
the manner described herein. In other implementations, the system processing
device may be part of the test instrument or remote from the test instrument (e.g.,
connected to the test instrument over a network).

In some implementations, the programmable logic may be replaced with non-
programmable logic. For example, rather than using an FPGA, one or more
application-specific integrated circuits (ASICs) may be incorporated into the test
instrument in place of, orin addition to, the programmable logic described herein.

The functionality described herein, or portions thereof, and its various
modifications (hereinafter "the functions"), are not limited to the hardware described
herein. All or part of the functions can be implemented, at least in part, via a
computer program product, e.g., a computer program tangibly embodied in an
information carrier, such as one or more non-transitory machine-readable media, for
execution by, orto control the operation of, one or more data processing apparatus,
e.g., a programmable processor, a computer, multiple computers, and/or
programmable logic components.

A computer program can be written in any form of programming language,
including compiled or interpreted languages, and it can be deployed in any form,

including as a stand-alone program or as a module, component, subroutine, or other
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unit suitable for use in a computing environment. A computer program can be
deployed to be executed on one computer or on multiple computers at one site or
distributed across multiple sites and interconnected by a network.

Actions associated with implementing all or part of the functions can be
performed by one or more programmable processors executing one or more
computer programs to perform the functions All or part of the functions can be
implemented as special purpose logic circuitry, e.g., an FPGA and/or an ASIC
(application-specific integrated circuit).

Processors suitable for the execution of a computer program include, by way
of example, both general and special purpose microprocessors, and any one or
more processors of any kind of digital computer. Generally, a processor will receive
instructions and data from a read-only memory or a random access memory or both.
Components of a computer include a processor for executing instructions and one or
more memory devices for storing instructions and data.

Components of different embodiments described herein may be combined to
form other embodiments not specifically set forth above. Components may be left
out of the circuitry shown in Figs. 1to 4 without adversely affecting its operation.
Furthermore, various separate components may be combined into one or more
individual components to perform the functions described herein.

Other embodiments not specifically described herein are also within the
scope of the following claims.

What is claimed is:
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