(54) Title: WIRELESS KEY MANAGEMENT FOR AUTHENTICATION

(57) Abstract: Disclosed are methods, systems, and computer-readable media for wireless key management for authentication. Authentication includes transmitting a request to a locking device, transmitting a security challenge to the mobile device, and transmitting a response to the challenge and an encrypted user profile for the locking device. The response includes data generated with an access key that is stored by both the mobile device and the locking device, and the user profile is encrypted by a server using a secret key that is stored by the server and the locking device. Authentication further includes verifying the response to the challenge, where the response is verified using the access key, and validating additional data from the mobile device. An action of the locking device may be initiated as specified by the request.
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
WIRELESS KEY MANAGEMENT FOR AUTHENTICATION

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND

[0002] Recently, electronic locks have become commercially available. Such electronic locks may be capable of being controlled by a user device over a wireless connection (e.g., Wi-Fi, etc.). However, the communications that are used to interface with such electronic locks are often not overly secure, which increases the risk that an unauthorized user may gain control of the lock.

SUMMARY

[0003] Disclosed herein are methods, systems, and computer-readable media for wireless key management for authentication. One embodiment relates to a method of authentication. The method comprises: transmitting, by a mobile device, a request to a product; transmitting, by the product, a security challenge to the mobile device; transmitting, by the mobile device, a response to the challenge and an encrypted user profile for the product, wherein the response comprises data generated with an access key that is stored by both the mobile device and the product, and wherein the user profile is encrypted by a server using a secret key that is stored by the server and the product; verifying, by the product, the response to the challenge, wherein the response is verified using the access key; validating, by the product in response to verifying the response, data from the mobile device. Validating the data comprises: decrypting the encrypted user profile, wherein the user profile is decrypted using the secret key; and verifying the decrypted user profile. The method further comprises initiating, by the product in response to validating the data, an action of the product as specified by the request.
One embodiment relates to a method of authentication. The method comprises: transmitting, by a mobile device, a request to a locking device; transmitting, by the locking device, a security challenge to the mobile device; transmitting, by the mobile device, a response to the challenge and an encrypted user profile for the locking device, wherein the response comprises data generated with an access key that is stored by both the mobile device and the locking device, and wherein the user profile is encrypted by a server using a secret key that is stored by the server and the locking device; verifying, by the locking device, the response to the challenge, wherein the response is verified using the access key; validating, by the locking device in response to verifying the response, data from the mobile device. Validating the data comprises: decrypting the encrypted user profile, wherein the user profile is decrypted using the secret key; and verifying the decrypted user profile. The method further comprises initiating, by the locking device in response to validating the data, an action of the locking device as specified by the request, wherein the action comprises activating a physical locking component of the locking device to unlock the locking device.

Another embodiment relates to an electronic locking device. The electronic locking device comprises: a battery configured to supply power to the electronic locking device; a wireless transceiver; a memory; an electronically controllable locking mechanism; and a processor. The processor is configured to store a secret key in the memory, wherein the secret key is associated with a first code for the electronic locking device; store an access key in the memory, wherein the access key is associated with a second code for the electronic locking device; receive, via the transceiver, a request from a mobile device; transmit, via the transceiver, a security challenge to the mobile device; verify, using the access key, a response to the challenge, wherein the response is received from the mobile device, and wherein the response comprises data generated with a copy of the access key stored by the mobile device; validate, in response to verifying the response, data from the mobile device. Validating the data comprises: decrypting an encrypted user profile, wherein the user profile is decrypted using the secret key, and wherein the user profile is encrypted by a server with a copy of the secret key stored by the server; and verifying the decrypted user profile. The processor is further configured to initiate, in response to validating the data, an action of the electronic locking device as specified by the request.

Another embodiment relates to a system. The system comprises one or more servers comprising one or more processors configured to: obtain an secret key for a product,
wherein the secret key is associated with a unique code for the product; obtain an access key for the product, wherein the access key is associated with the unique code for the product; encrypt, using the secret key, a user profile for the product, wherein the user profile and unique code are provided by a mobile device, wherein the unique code associates the product with the user profile, and wherein the secret key and access key are obtained using the unique code; and provide the encrypted user profile and the access key to the mobile device, wherein the user profile comprises access data for the product.

[0007] Another embodiment relates to a system. The system comprises one or more servers comprising one or more processors configured to: obtain an secret key for a locking device, wherein the secret key is associated with a unique code for the locking device; obtain an access key for the locking device, wherein the access key is associated with the unique code for the locking device; encrypt, using the secret key, a user profile for the locking device, wherein the user profile and unique code are provided by a mobile device, wherein the unique code associates the locking device with the user profile, and wherein the secret key and access key are obtained using the unique code; and provide the encrypted user profile and the access key to the mobile device, wherein the user profile comprises access data for the locking device.

[0008] Another embodiment relates to an electronic locking device. The locking device includes a wireless transceiver, a memory, an electronically controllable locking mechanism, a processor, and a location determination circuit configured to determine a location of the electronic locking device. The processor is configured to receive one or more location data items indicating the location of the electronic locking device at one or more times, to store the one or more location data items in the memory, and to transmit the one or more location data items from the memory to a mobile device via the wireless transceiver.

[0009] Another embodiment relates to a mobile device including one or more processors configured to transmit a request for one or more location data items to a locking device and to receive a security challenge from the locking device. The one or more processors are further configured to transmit a response to the challenge and an encrypted user profile to the locking device. The response comprises data generated with an access key that is stored by both the mobile device and the locking device, the user profile is
encrypted by a server using a secret key that is stored by the server and the locking device, and the locking device is configured to verify the response and validate the data. The one or more processors are further configured to obtain the one or more location data items from the locking device, the one or more location data items having been generated by a location determination circuit of the locking device and each indicating a location of the locking device at one or more times. The one or more processors are further configured to generate a mapping interface illustrating the one or more locations indicated by the one or more location data items.

[0010] Yet another embodiment relates to a method including generating, using a location determination circuit of a locking device, one or more location data items indicating a location of the locking device at one or more times. The method further includes transmitting, by a mobile device, a request for the one or more location data items to the locking device and transmitting, by the locking device, a security challenge to the mobile device. The method further includes transmitting, by the mobile device, a response to the challenge and an encrypted user profile for the locking device. The response includes data generated with an access key that is stored by both the mobile device and the locking device, and the user profile is encrypted by a server using a secret key that is stored by the server and the locking device. The method further includes verifying, by the locking device, the response to the challenge, wherein the response is verified using the access key. The method further includes validating, by the locking device in response to verifying the response, data from the mobile device. The validating includes decrypting the encrypted user profile, wherein the user profile is decrypted using the secret key and verifying the decrypted user profile. The method further includes transmitting the one or more location data items from the locking device to the mobile device in response to validating the data.

[0011] Still another embodiment relates to a method of authentication. The method comprises: receiving, at a mobile device, a lock identifier from a locking device, the lock identifier associated with the locking device; determining, by the mobile device, that the lock identifier is associated with a user profile on the mobile device by comparing the lock identifier to a set of lock identifiers on the mobile device, wherein a user profile is associated with a lock identifier and is authenticated and encrypted by a server using a lock key that is stored by the server and the locking device, and wherein the user profile comprises a user key; transmitting, by the mobile device, the user profile associated with the
lock identifier to the locking device; decrypting, by the locking device, the user profile to
generate a decrypted user profile, wherein the user profile is decrypted and verified using
the lock key; transmitting, by the locking device, a security code to the mobile device;
generating, by the mobile device, an encrypted command, the encrypted command
comprising the security code and encrypted using the user key of the user profile;
transmitting, by the mobile device, the encrypted command to the locking device;
validating, by the locking device, the encrypted command from the mobile device, wherein
validating the encrypted command comprises: decrypting the encrypted command using the
user key obtained from the decrypted user profile; determining whether the security code is
valid; and authenticating the decrypted command using the user key; and initiating, by the
locking device in response to validating the command, an action of the locking device as
specified by the command.

[0012] Another embodiment relates to an electronic locking device. The device
comprises: a wireless transceiver; a memory; an electronically controllable locking
mechanism; and a processor configured to: store a lock identifier and a lock key in the
memory, wherein the lock identifier and the lock key are associated with the electronic
locking device; broadcast, via the transceiver, the lock identifier; receive, via the
transceiver, an encrypted user profile from a mobile device; authenticate and decrypt the
encrypted user profile, wherein the encrypted user profile is authenticated and decrypted
using the lock key, and wherein the user profile is encrypted by a server with a copy of the
lock key stored by the server and comprises a user key; transmit, via the transceiver, a
security code to the mobile device; receive, via the transceiver, an encrypted command from
the mobile device; validate the encrypted command, wherein validating the encrypted
command comprises: decrypting the encrypted command using the user key from the
decrypted user profile; determining whether the security code is valid; and authenticating
the decrypted command using the user key; and initiate, in response to validating the
command, an action of the electronic locking device as specified by the command.

[0013] Another embodiment relates to sharing access to a locking device. The method
comprises: receiving, by a server, from a mobile device of the user, a selection of a lock
identifier associated with a locking device to share with a mobile device of a guest user
from a set of lock identifiers stored on the mobile device of a user; receiving, by the server,
a guest user profile request from the mobile device of the user; generating, by the server, an
authenticated and encrypted guest user profile based on the guest user profile request and a
guest user key, wherein the authenticated and encrypted guest user profile is encrypted
using a lock key associated with the locking device and wherein the authenticated and
encrypted guest user profile comprises the guest user key; and when the server determines
the mobile device of the guest user can access the guest user profile; receiving, by the
server, from the mobile device of the user, a selection of the guest user, from a set of users
on the mobile device of the user; transmitting, by the server, the authenticated and
encrypted guest user profile and the guest user key to the mobile device of the guest user;
and adding, by the server, the lock identifier to the set of lock identifiers on the mobile
device of the guest user; and when the server determines the mobile device of the guest user
cannot access the guest user profile; generating and transmitting, by the server, a message
containing a link and code to the mobile device of the guest user; determining, by the
server, that the link has been used to allow access to user profiles on the mobile device of
the guest user; determining, by the server, that the code has been entered on the mobile
device of the guest user; transmitting, by the server, the authenticated and encrypted guest
user profile and the guest user key to the mobile device of the guest user; and adding, by the
server, the lock identifier to the set of lock identifiers on the mobile device of the guest user.

[0014] The foregoing summary is illustrative only and is not intended to be in any way
limiting. In addition to the illustrative aspects, embodiments, and features described above,
further aspects, embodiments, and features will become apparent by reference to the
following drawings and the detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The foregoing and other features of the present disclosure will become more
fully apparent from the following description and appended claims, taken in conjunction
with the accompanying drawings. Understanding that these drawings depict only several
implementations in accordance with the disclosure and are, therefore, not to be considered
limiting of its scope, the disclosure will be described with additional specificity and detail
through use of the accompanying drawings.

[0016] FIG. 1 is a block diagram of a system for wireless key management for
authentication, according to an embodiment.
FIG. IB is a diagram of an example electronic locking device, according to an embodiment.

FIG. 2 is a flow diagram of a process for configuring a product and user device, according to an embodiment.

FIG. 3 is a flow diagram of a process for interacting with a product with a user device, according to an embodiment.

FIG. 4 is a block diagram of a device for implementing the techniques disclosed herein, according to one embodiment.

FIG. 5 is a block diagram of a user device for implementing the techniques disclosed herein, according to one embodiment.

FIG. 6 is a block diagram of a server for implementing the techniques disclosed herein, according to one embodiment.

FIG. 7 is a block diagram of a product for implementing the techniques disclosed herein, according to one embodiment.

FIG. 8 is a flow diagram of a process for determining location data for a product and, optionally, generating a mapping interface indicating the determined location(s), according to one embodiment.

FIG. 9 is a flow diagram of a process for interacting with a product with a user device, according to an embodiment.

FIG. 10 is a flow diagram of a process for removing user profiles from a specific user device, according to an embodiment.

FIG. 11 is a flow diagram of a process for removing guest user profiles from a guest user's device, according to an embodiment.

FIG. 12 is a flow diagram of a process for granting a guest user access to a lock, according to an embodiment.
FIG. 13 is a flow diagram of a process for configuring a product and user
device, according to another embodiment.

FIG. 14 is a block diagram of a product for implementing the techniques
disclosed herein, according to another embodiment.

FIG. 15 is a data flow diagram of a data flow process for interacting with a
product with a user device, according to an embodiment. FIG. 15 is separated into a first
portion FIG. 15A and a second portion FIG. 15B for purposes of readability.

The details of one or more implementations of the subject matter described in
this specification are set forth in the accompanying drawings and the description below.
Other features, aspects, and advantages of the subject matter will become apparent from the
description, the drawings, and the claims.

Like reference numbers and designations in the various drawings indicate like
elements. Before turning to the detailed description, which describes the exemplary
embodiments in detail, it should be understood that the application is not limited to the
details or methodology set forth in the description or illustrated in the figures. It should also
be understood that the terminology is for the purpose of description only and should not be
regarded as limiting.

DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying
drawings, which form a part hereof. In the drawings, similar symbols typically identify
similar components, unless context dictates otherwise. The illustrative embodiments
described in the detailed description, drawings, and claims are not meant to be limiting.
Other embodiments may be utilized, and other changes may be made, without departing
from the spirit or scope of the subject matter presented here. It will be readily understood
that the aspects of the present disclosure, as generally described herein, and illustrated in the
figures, can be arranged, substituted, combined, and designed in a wide variety of different
configurations, all of which are explicitly contemplated and made part of this disclosure.

Described herein are techniques for wireless key management for
authentication. According to the disclosure herein, additional security is provided to
wireless communications between a user device (e.g., a mobile phone, a laptop, a tablet
device, etc.) and a product (e.g., an electronic locking device, such as a padlock, door lock,
lock box, etc.) via an authentication scheme that utilizes a server and an encryption scheme
that uses at least two keys. In scenarios where a user device is configured to control or
manage the operation of the product, the use of the disclosed authentication and encryption
systems is desirable to ensure that the product is being validly controlled. Throughout this
disclosure, embodiments are discussed with reference to a user device of a mobile phone
and a product of an electronic locking device. However, the present disclosure is not limited
to implementations that use a mobile phone and an electronic locking device, and
embodiments that utilize other types of user devices and products are within the scope of
this disclosure.

[0036] According to some exemplary embodiments, the disclosed approach is based on
encryption using two keys. One key (e.g., a secret key) is known/stored on the product (an
electronic locking device) and the server (a management system). The other key (e.g., an
access key) is known/stored on the lock and the user device (a mobile phone). Both the
secret and access keys are specific to the lock/product. In this manner, the secret and access
keys may uniquely relate to a single lock/product. The secret key may be used to encrypt a
file (e.g., a user profile) that can be used to determine a user's access rights to the
lock/product. For example, such access rights may define when a user can remotely access
the lock/product or when the user can otherwise control the device (e.g., lock or unlock an
electronic locking device). The access key can be used by the user device in initiating
communications with the lock/product, and also may be used as part of a challenge-response
exchange between the user device and lock/product.

[0037] The keys discussed herein may also be used to authenticate that data is valid,
and also came from the other holder of the corresponding key. Such data integrity and
source authentication/authenticity verification may be performed by computing a MAC
(message authentication code) of the data transmitted (e.g., using the secret key or access
key). Accordingly, as discussed further herein, when a server encrypts a user profile, a
device that receives the encrypted profile (e.g., a locking device) may use its copy of the
secret key to verify that the MAC is correct. Similarly, when a lock is transmitting data, it
may use its secret key to compute a MAC to be verified by a server (if the data is intended
for the server), and the server may use its secret key to verify the MAC. Alternatively, any
of the communications discussed herein may be unencrypted (e.g., plaintext packets, etc.), and a MAC may be computed for transmitted data and included with the transmitted data. The MAC may then be used as a security measure to verify that data is being transmitted from a legitimate source. Additionally, when a lock and mobile device are communicating, each may use their copies of the access key to compute a MAC, and each device may verify the data and authenticate its source using the access key. Accordingly, such use of a MAC can ensure that data is coming from the proper source (i.e., the server, mobile device, or the lock), and also that the data is valid.

[0038] According to some exemplary embodiments, an approach may allow for secure communication between a user device (e.g., mobile phone) and a product (e.g., lock) using two keys, without both keys being stored on the lock (e.g., during a manufacturing phase). In some such embodiments, one key (e.g., a lock key) is known/stored on the product (an electronic locking device) and the server (a management system), and the other key (e.g., a user key) is known/stored on the user device (a mobile phone) and not on the product. The lock key may be similar or equivalent to the secret key discussed above, and the user key may be similar or equivalent to an access key discussed above. Both the lock and user keys may be specific to the lock/product. In this manner, the lock and user keys may uniquely relate to a single lock/product. The user device may receive a lock identifier and compare it to a list of lock identifiers associated with one or more user profiles on the user device. If a match is found, the user device may transmit the associated user profile to the product. The user profile includes the user key. The product may decrypt the profile and transmit a security code to the user device. The user device may generate and transmit an encrypted command. The encrypted command is encrypted using the user key, and includes the security code. The product may validate the encrypted command using the user key and security code and, assuming the command is validated, initiate the action specified by the command (e.g., unlocking a physical locking component). Some such exemplary embodiments are discussed in further detail below with respect to FIGS. 9 through 15B.

[0039] Referring to FIG. 1, a block diagram of a system 100 for wireless key management for authentication is shown, according to an embodiment. System 100 includes at least one user device 102, server 104, and product 106. In an illustrative embodiment, user device 102 is a mobile device (e.g., a mobile phone) and product 106 is an electronic locking device. In general, user device 102 is configured to at least partially
manage the operation of product 106. For example, a mobile phone may be used to unlock, lock, and otherwise manage the function of an electronic locking device. User device 102 includes components necessary for such product management (e.g., a processor 102a, memory 102b, timer 102c, transceivers 102d and 102e, user input devices 102f, etc.). Processor 102a may be any commercially available processor, may represent one or more processors, and may be implemented as a general-purpose processor or an application specific integrated circuit. Memory 102b may include the memory of processor 102a (e.g., cache), RAM, or other storage (flash memory, hard disk storage, etc.). Timer 102c is configured to maintain a time value for user device 102. For example, timer 102 may be the clock of processor 102a, or may be any other time keeping circuit of device 102. The time value maintained by timer 102c may be used in secured communications as discussed further herein (e.g., in syncing time with product 106, in providing timestamps related to events for logging purposes, etc.). Transceivers 102d and 102e may include various types of transceivers for different protocols of communication. In one embodiment, transceiver 102d includes cellular components for communicating with server 104 via a cellular network. In one embodiment, transceiver 102d includes wired or wireless (e.g., Wi-Fi) components for communicating with server 104 over the Internet or other network. Wireless transceiver 102e is configured to communicate with product 106. In one embodiment, wireless transceiver 102e includes Bluetooth components for establishing a Bluetooth connection with product 106. User device 102 can manage product 106 through the use of a management application that is configured to run on the user device (e.g., via processor 102a and memory 102b). For example, an app may be installed on a mobile phone (i.e., in the memory 102b of user device 102), and the app may be used to configure and control an electronic locking device (i.e., product 106) over a wireless connection (via wireless transceiver 102e). One or more user input devices 102f (e.g., touch screens, buttons, speakers, displays, keyboards, etc.) may be included in user device 102 to allow a user to interact with device 102, server 104, product 106, and any applications running on the device.

[0040] In an embodiment where product 106 is a locking device, such an electronic locking device typically includes a processor 106a for providing logic of the electronic locking device and a high current load (e.g., a motorized locking mechanism 106g that may be controlled by the processor). The high current load may include one or more lock
mechanisms 106g (e.g., shackles, pins, memories, etc.) as discussed below. The electronic locking device may also include a battery 106d for powering the high current load and a capacitor in parallel with the processor. The electronic locking device may include one or more physical and/or digital interfaces 106e to allow a user to manage the device (e.g., keypad, touch screen, touch sensitive area, dial, combination lock interface, button, keyhole, etc.) A circuit (e.g., processor 106a) of the electronic padlock may be configured to cause the processor to be powered by the capacitor (and in some embodiments not the battery) while the battery 106d is driving the high current load 106g. In one embodiment, the circuit also includes a timer 106c that is configured to maintain a time value the product, which may be used in secured communications as discussed herein. In one embodiment, the electronic locking device includes a location determination circuit 106h, such as a GPS receiver, that may be used to provide a location of the electronic locking device. In various implementations, location determination circuit 106h may be part of or separate from wireless transceiver 106f. In one embodiment, the electronic locking device is an electronic padlock, such as an electronic combination or keypad padlock. In other embodiments, the electronic locking device may be or include, without limitation, devices such as an electronic door lock or keypad device (e.g., a keypad deadbolt), an electronic safe (e.g., a small document safe, an electronic key safe, etc.), an electronic rim or mortise lock or other type of cabinet lock, an electronic auto accessory lock (e.g., a coupler lock, a hitch pin lock, a trailer lock, etc.) and/or a steering wheel or door lock for an automobile, a vehicle lock (e.g., a wheel lock or ignition lock) for other motorized or non-motorized vehicles such as a bicycle, a motorcycle, a scooter, an ATV, and/or a snowmobile, a storage chest, a case with an electronic lock (e.g., a document case or a case for small valuables), an electronic cable lock (e.g., a cable lock enabled with an alarm, such as for securing a computing device), a safety lockout/tagout device for securing access for safety purposes (e.g., for securing an electrical control box while electrical work is being performed), a locker with an electronic lock, and/or an electronic luggage lock. In one embodiment, the locking device is configured to provide access to secured data (e.g., stored in a memory, etc.) or to store secured data. For example, rather than containing physical locking components (or in addition to physical locking components), lock mechanisms 106g may include a secured memory (e.g., memory 106b may include an encrypted hard drive, etc.). Such a locking device may communicate (e.g., via wireless transceiver 106f) based on the authentication techniques discussed herein. For example, upon authentication, the locking device may use
its stored secret key to decrypt secured content that is stored in memory 106b. Decrypted content may then be provided to another device (e.g., via wireless transceiver 106f). In one embodiment, the electronic locking device includes touch detection devices and/or proximity detection devices configured to detect the presence of a user (e.g., based on a user’s touch, based on motion of a user, etc.).

[0041] Referring to FIG IB, an example of an electronic locking device 100b is showing, according to one embodiment. Electronic locking device 100b typically includes one or more lock mechanisms (e.g., lock mechanisms 106f). For example, electronic locking device may include shackles 160 and interface 162. In one embodiment, interface 162 includes a touch sensor configured to awake the electronic locking device 100b in response to a user’s touch, as is discussed further herein. In one embodiment, interface 162 includes a proximity sensor configured to awake the electronic locking device 100b in response to detecting a nearby user, as is discussed further herein. In one embodiment, interface 162 includes a mechanical dial configured to allow a user to enter a code to the lock (e.g., to unlock shackles 160, etc.). Various processing and mechanical components 164 may be embedded within the case 166 of electronic locking device 100b. For example, the processing and mechanical components 164 may include one or more of the components (e.g., processor 106a, memory 106b, timer 106c, battery 106d, wireless transceiver 106f, lock mechanisms 106g, etc.) discussed with references to product 106 of FIG. 1.

[0042] Referring again to FIG. 1, in an illustrative embodiment, product 106 includes a wireless transceiver 106f for communications according to one or more wireless technologies (e.g., radio frequency, radio frequency identification (RFID), Wi-Fi, Bluetooth, ZigBee, near field communication (NFC), etc.). For example, wireless transceiver 106g may be a Bluetooth transceiver configured to establish a Bluetooth-based connection with user device 102 (e.g., via wireless transceiver 102f). Accordingly, the electronic locking devices discussed herein may be equipped to be locked or unlocked using another user interface device (e.g., user input devices 102f of user device 102, network interface 104e of server 104, etc.), via a wireless transceiver, other than a combination input or keypad input on the lock. For example, wireless communications may be used to lock/unlock/control the electronic locking device wirelessly (e.g., an application on a mobile phone may be used to lock or unlock the device). In one embodiment, the circuit of product 106 also includes an input/output port (e.g., a USB port, a COM port, a networking port, etc.) that may be used to
establish a physical connection to another device. For example, such a physical connection may be used by a manufacturer to program or otherwise communicate with product 106.

[0043] Server 104 generally includes components (e.g., a processor 104a, memory 104b, network interface 104e, etc.) to communicate with user device 102 and provide authentication keys and encryption functions. Communications between server 104 and user device 102 may be direct or via an intermediate network (e.g., an internet network, a cellular network, etc.). For example, networking interface 104e may include physical network components (e.g., a network card, etc.) configured to allow server 104 to establish a connection to transceiver 102d of device 102. In one embodiment, communications from network interface 104e are routed through a cellular interface, allowing server 104 to communicate with device 102 via a cellular network. In one embodiment, network interface 104e allows server 104 to establish an Internet-based connection with device 102. Server 104 may be one server (a physical or virtual server), or may include multiple servers. Server 104 may include one or more services configured to generate and store keys (e.g., secret key, access key, etc.) used for authentication and encryption. In one embodiment, various modules of memory 104b provide different functions of server 104. For example, a device interface module 104c may be used to establish and manage communications with user device 102. A security module 104d may be used for security related functionality (e.g., generating and storing keys, encrypting a user profile, etc.). The output of security module 104d may be provided to device interface module 104c, such that device interface module may then communicate the security related data to device 102. In one embodiment, an access key and an encrypted user profile may be provided by security module 104d at the request of device interface module 104c. Upon receiving the access key and encrypted user profile, device interface module 104c may transmit (e.g., via a cellular network through network interface 104e) the access key and encrypted user profile to user device 102. In this manner, user device 102 does not directly access security module 104d. In one embodiment, device interface module 104c and security module 104d are located on two separate servers 104.

[0044] The following discussion describes embodiments having an electronic locking device (i.e., product 106) and a mobile device (i.e., user device 102). When the lock is manufactured, or soon thereafter, two keys (secret key and access key) can be generated and affiliated with the lock. For example, the secret key and access key may each be related to a
unique serial ID or other identification number for the lock, and may be stored in a memory of the lock. In one embodiment, one or both keys are unique and/or randomly generated keys. In one embodiment, a unique code that represents the product is generated (e.g., by server 104) and this unique code can be used to link the lock to its corresponding keys. For example, such a unique code may be secured in product packaging of the lock so that a user may appropriately configure the lock and mobile device. In one embodiment, a separate unique code is provided for each of the security and access keys, and each unique code may be associated with their respective security or access key by the manufacturer. In one embodiment, server 104 also generates the secret and access keys. For example, server 104 may provide a key generation service that may be accessed during the manufacturing process. The keys may be generated according to any generation algorithm; however, the secret key and access key are typically not derived from one another. After generation, the secret is key is only stored on server 104 and the lock. The secret key is not transmitted to the mobile device. However, the access key may be provided to both the lock and the mobile device.

[0045] When a user acquires a lock, the user may configure both the lock and the user's mobile device using the unique code that is used to link the lock to its keys. Referring to FIG. 2, a flow diagram of an illustrative process 200 for configuring a product and user device is shown, according to an embodiment. In alternative embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a flow diagram is not meant to be limiting with respect to the order of steps performed.

[0046] The unique code is retrieved (202). For example, the user may refer to included product packaging to retrieve the unique code, or the user may otherwise contact a manufacturer to receive the unique code (e.g., via a manufacturer website, phone, etc.). The unique code is then provided to the management server (204) in order to associate the lock with the user. For example, a user may enter the unique code on a user interface of an application running on the mobile device, which then transmits the unique code to the server. In one such example, the user may enter the unique code within a frontend interface provided by the management server and accessed via a browser application on the mobile device. Alternatively, the user may use the mobile device to scan packaging of lock to retrieve and transmit the unique code. For example, the unique code may be encoded by a barcode, QR code, optical code, etc., and a camera of the mobile device may be used to scan
and determine the unique code. In response to receiving the unique code from the mobile device, the server can retrieve or newly generate (e.g., on demand) the secret key and access key, which may then be associated with the unique code.

[0047] The server may then generate a user profile (206), which may also be associated with the unique code. If a user profile does not yet exist, default values, or values provided by the user via the mobile device may be used to generate the new profile. For example, the user may enter profile data into an application of the mobile device, which transmits the profile data to the server along with the unique code. If the user has already created a profile, the server may instead update the user profile with new values provided by the user via the mobile device.

[0048] In general, a user profile may include one or more files that include data related to operation of the product, which is the lock in the above embodiment. For example, a user profile may contain a user schedule of when the lock may be accessed (unlocked, locked, etc.). The schedule may specify lock access permissions, e.g., by day of the week, including starting times (hours, minutes, etc.) and ending times (hours, minutes, etc.) for each corresponding permission. For example, a schedule may specify the time spans in which an electronic lock may be unlocked via the mobile device. As another example, the schedule may specify time periods in which typical interactions are expected to occur, and a level of trust may be determined based on these time periods. Accordingly, an unlock request sent within an expected time period may be more trusted by the lock than a request sent at an unexpected/atypical time. The mobile device may also automatically adjust a schedule. For example, the mobile device may log/record a user's interactions with the lock, and may set a schedule based around the user's anticipated actions. In one embodiment, a default user schedule is set (e.g., by the manufacturer, etc.). Additionally, a list of typical user schedules may also be provided to allow a user to select from one of many configuration options. In this manner, a manufacturer may provide various recommended operational settings to a user. A user may also customize a schedule to tailor the schedule as he or she desires.

[0049] A user profile may further specify a model/serial number of the lock and what types of accesses are available for that user. For example, such accesses may include: reading software/hardware version information of the lock, updating software of the lock, reading a shackle state of the lock, locking, unlocking, disarming, reading/setting a
time/clock value, reading a battery level, reading/clearing event related data (e.g., flags, counters, etc.), reading a log of the lock, reading/setting/resetting a keypad code of the lock, reading communications data for the lock (e.g., transmission statuses, transmission power levels, channel information, addressing information, etc.), reading/setting default values stored for the lock (e.g., default disarm times, default unlock times, etc.), among others. A user profile may also specify a start time and a revocation date/time for the profile (i.e., when the profile begins to be valid and when the profile expires and is no longer valid). A user profile may provide maximum disarm/unlock times for the lock. A user profile may also provide an indication of a trust level of a corresponding mobile device (e.g., whether a time value/timestamp provided by the mobile device is trusted or not). The lock may be configured to allow or disallow certain functionality based on the trust level of a device. The trust level may be stored as an independent permission that the user may or may not have access to (e.g., the trust level may be managed/adjusted by the software of the lock, mobile device, or server, etc.). As an example, only a highly trusted device may be able to upgrade the firmware of the lock or change certain settings. Additionally, the lock may have a security algorithm that factors in a trust level and time value. For example, as a device successfully interacts with the lock more often, the lock may increase (or adjust) a trust level for the device. However, if a time value is out of sync with the lock's maintained time or authentication fails, the lock may decrease (or adjust) a trust level for the device.

The time value provided by the mobile device may be compared to a time value maintained by the lock, and a degree of closeness between the two times may be used to indicate a trust level for the device (e.g., the closer the two times are to being in sync, the higher the trust level, etc.). If a trust level decreases below a certain threshold, the lock may discontinue or limit interactions with the mobile device. A trust level may also be based on the schedule discussed above. For example, a mobile device may be regarded as more or less trusted based on the time the device is accessing the lock, and whether that time falls within certain time periods as defined by the schedule. The time value provided by the mobile device may also be used to sync the clock of the lock with that of the mobile device, or may be used otherwise during authenticated communications. Any of the profile items discussed may have default values (e.g., manufacturer defaults) or user provided values. A profile is not limited to the above data, and additional data may be included. A profile may also be stored on a server for later retrieval.
In addition to generating a profile for the user (e.g., the owner of the lock), the user may desire to create additional guest profiles (208) to be shared with friends, family, co-workers, etc. In this manner, a user may grant another person access to the lock, based on the guest profiles. To do so, a user may enter in desired profile values (using the mobile device) for the additional person(s). Similar to the creation of the user's profile, the guest profile data may be transmitted to the server to be processed as discussed further below.

The guest profile data may be transmitted to the server simultaneously or separately (e.g., at a later time) from when the user initially generates his or her profile. The mobile device includes information that differentiates the types of profiles (e.g., owner vs. guest) being provided to the server.

After at least one profile is generated, the user is associated with the particular lock as an owner of the lock. In some embodiments, the association may be based solely on the unique code that was provided to the server (e.g., in step 204). In one embodiment, after providing a unique code, the mobile device may use the unique code to automatically retrieve additional information related to the lock (e.g., a serial ID, a model number, etc.) from a database or a server of the lock's manufacturer. In alternative embodiments, a serial ID, a model number, or other code may also be provided by a user (e.g., by referring to product packaging, etc.), and such additional data may be utilized, along with the unique code, in associating a user with a lock. In some embodiments, additional authentication of a user may also be required prior to associating a user with a lock as an owner, and such authentication may be provided via the mobile device.

The management server then may verify received profile data. To verify the received profile data, the management server may perform a cyclic redundancy check (CRC) on the profile to ensure the data's integrity. Other data verification methods may also be utilized. For example, in an illustrative embodiment, a message authentication code (MAC) (e.g., a keyed-hash message authentication code (HMAC)) may be generated using the secret key and used for verification of data integrity. The scope of the present disclosed is not limited to a certain data integrity validation mechanism. The sever can then encrypt the profile data using the secret key in order to transform the profile data into an encrypted profile (e.g., ciphertext). The profile may be encrypted according to any known encryption standards. In an illustrative embodiment, the profile is encrypted using CCM mode (NIST/FIPS counter mode encryption with cipher block chaining MAC) based algorithms,
and the secret key, which is used as the cipher key, has a length of 128 bits. Accordingly, the server may encrypt the user profile and also generate a MAC using the secret key. Alternatively, other standards could also be used, such as performing encryption and generating a MAC with different keys.

[0053] In one embodiment, the management server discussed herein is one of a group of management servers. In such an embodiment, a first management server may be configured to handle communications with mobile devices, and a second management server may be configured to handle security functionality (e.g., storage of keys, generation of keys, encryption/decryption processes, etc.). In this manner, the first server may receive communications from a mobile device and may communicate with the second server when security functions are required. For example, the first server may request a service provided by the second server to encrypt profile data that was initially received by the first server. The second server may then encrypt and provide the encrypted data to the first server, which may then transmit the encrypted data to the mobile device. Other server configurations are also envisioned.

[0054] After encryption, the encrypted profile is transmitted from a server to the mobile device (210). The server also transmits the corresponding access key to the mobile device (210). In an illustrative embodiment, the access key has a length of 128 bits. The access key can be determined by the server using the unique code (e.g., as discussed in steps 202-204). The received encrypted profile and access key are then stored in a memory of the mobile device in order to complete the association of the mobile device with the lock. The user may then use his or her mobile device to interact with the lock (212).

[0055] In the scenario that a guest profile was generated, in some embodiments, the server may perform similar security procedures as performed for the user profile. For example, the guest profile may be stored and encrypted using the secret key. In some embodiments, in the case of a guest profile, the server may first transmit a notification to the guest prior to encrypting and transmitting the encrypted guest profile. For example, the server may send a notification email or text/SMS message/alert to the guest based on information that the user provided (e.g., an email address, phone number, etc.) when the user set up the guest profile. Upon reception of a notification, a guest may then activate his or her profile that was created by the user. For example, the notification may include an
activation link to be clicked (e.g., within the email or message) or code that the guest is required to provide. The guest may also install the management application discussed herein and use the application to activate the guest profile using an activation code. Upon activation and installation of the management application, the server can then generate and transmit the encrypted guest profile and access key to a mobile device of the guest via the management application. After receiving the encrypted guest profile and access key, each may be stored in the guest's mobile device to associate the guest's device with the lock. The guest may then use his or her mobile device to interact with the lock (212).

[0056] After a profile is configured, the user (or guest) may interact with the lock wirelessly via the mobile device. For example, a user may lock, unlock, or adjust settings of the lock, etc. In one embodiment, the lock may wake up/detect the presence of a nearby user and begin an interaction process. For example, the lock may include proximity detection features, or the user may actively touch the lock (e.g., a touch sensitive location on the lock, a physical button, etc.), or the user's mobile device may transmit a signal on a common channel in order to wake up the lock, etc. When the lock has been woken up, it can attempt to connect with the mobile device of the user. For example, the lock may broadcast its model and serial number information (or other unique lock ID information) and wait for a response from the mobile device. The mobile device can receive the lock information and compare it to the profiles maintained by the management application. For example, the management application can maintain profiles for multiple different locks at a time. If a match is found (e.g., if a profile is found for that particular type of lock), an authentication procedure may commence to verify the matched profile. If the profile is verified, and the user has access at that particular time (i.e., based on scheduling data of the profile), and the user's time/device is trusted, the user may unlock the lock and perform other interactions with the lock. After authentication, the lock's time and mobile device's time may also be synced, if necessary.

[0057] Referring to FIG. 3, a flow diagram 300 of an illustrative process for interacting with a product with a user device is shown, according to an embodiment. In alternative embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a flow diagram is not meant to be limiting with respect to the order of steps performed.
In some embodiments, the lock may be woken up out of a low power standby or sleep state (302). For example, the lock may be touched by a user, or the proximity of the user may be automatically detected. The standby/sleep state may utilize less power (e.g., battery power) than if the lock is in a fully operational, awake state. In some embodiments, the lock may always be in a fully functional state, and may not be woken up out of a standby/sleep state.

The lock may advertise its type information (304), for example, by broadcasting a unique ID (e.g., an identifier that is formed from its model and/or serial number). The communications between the lock and device may be over any type of wireless communications protocol. In one embodiment, the mobile device and lock communicate via a Bluetooth connection. In another embodiment, the mobile device and lock communicate via a Wi-Fi connection. In another embodiment, the mobile device and lock communicate via a ZigBee connection. In another embodiment, the mobile device and lock communicate via an NFC connection. Additionally, any of the data communicated (e.g., the packets transmitted) between the mobile device and the lock may be further secured according to any known security protocol (e.g., WEP, WPA, user/manufacturer passwords, etc.). In one embodiment, data transmitted between the mobile device and lock is encrypted using the access key. In this embodiment, both the mobile device and lock are able to encrypt and decrypt data, as each has a stored copy of the access key. Upon decrypting a received data, both the mobile device and lock may further ensure the integrity of the decrypted data, for example, by using a MAC validation scheme, running a CRC check, etc., on the decrypted data. Such a MAC validation scheme also allows the mobile device and lock to verify that the data originated from its proper source (i.e., the other holder of the key used to generate the MAC, etc.).

The user device receives and confirms the lock's information (e.g., the lock's ID) (306). In one embodiment, the lock's ID is compared to a list of profiles stored on the mobile device to determine whether the mobile device is associated with the lock (e.g., whether a profile exists that corresponds to the lock's ID). If a matching profile is not found, a user may be prompted to create a profile (e.g., via process 200) using the unique code that links the lock to the secret key. If a profile is found for the lock, the user device may then transmit a request to the lock (e.g., an unlock request, etc.), and an authentication procedure can commence prior to complying with the request.
The lock generates a challenge and transmits the challenge to the user device (308). In one embodiment, the lock generates a long random number as the challenge. In another embodiment, the lock generates data that varies by communication session (e.g., a unique number (a session identifier) may be generated as the challenge for each communication session). In one embodiment, the challenge is transmitted as plaintext to the mobile device; however, in another embodiment the challenge may be encrypted using the access key. The mobile device calculates the response (e.g., a long response) for the challenge using a security algorithm and the access key (which was received from the server during configuration as discussed above) (310). In one embodiment, the mobile device uses the access key to generate the response and a MAC that is transmitted with the response. In some embodiments, the communications between the mobile device and lock are secured further based on sequential identification (e.g., sequential identification of packets or messages). For example, with sequential identification, the mobile device may transmit a field that should follow a particular sequence for each received packet. The lock may then verify the received packets against a known sequence. Such a known sequence may be predetermined or generated by the lock, and also may be provided to the mobile device by the lock during communications. Accordingly, this sequencing may be used along with one or more of the other methods described above (e.g., a session identifier may be used along with a predetermined initial sequence field value), or sequencing may be used by itself (e.g., the lock may provide the initial value of the sequence field upon connection). In one embodiment, upon connection, the mobile device receives an initial sequence number from the lock, and the lock verifies that subsequently received messages contain the initial number incremented once for each message received. The lock may further verify that the received messages are encrypted using the access key and/or include a MAC computed therefrom.

The mobile device can then transmit to the lock the response and the corresponding encrypted profile (which was encrypted by the server using the secret key as discussed above) (312). In one embodiment, the mobile device also transmits a current timestamp based on the mobile device’s clock. As the lock stores both the secret key and access key, it may use these keys to authenticate the data received from the mobile device. In one embodiment, the lock uses the access key to verify that the response to the challenge is correct and to verify the MAC (314). In one embodiment, the lock requires the response
to be verified prior to then accepting and attempting to decrypt the profile. Upon successful completion of the challenge-response process, the lock can validate the received data (314). The lock can use the secret key to decrypt the encrypted profile, and the lock may also validate the data (e.g., using the MAC generated from the secret key or other validation scheme, e.g., performing a CRC check) of the decrypted profile data to ensure that the decryption was successful and that the data in fact came from the correct source (e.g., that the encrypted profile was generated by the server, etc.). The lock may also ensure that the profile has access at that verified time (e.g., by referring to the scheduling information included in the decrypted profile). In an embodiment where the mobile device transmitted a timestamp, the lock may verify the timestamp by comparing the timestamp with a current time of the lock. If the response and decrypted profile are each verified, then the lock may comply with the request of the mobile device and initiate a corresponding action (316). In an embodiment utilizing the timestamp discussed above, a received timestamp may also be required to be within a threshold amount of time from a time maintained by the lock. In this example, the lock can unlock its shackle as requested.

[0063] In another embodiment where the lock is configured as a digital locking device (e.g., to store secured data in its memory), the lock may use its copy of the secret key to decrypt content that is stored in the lock. Accordingly, if a request is received from a mobile device to retrieve or store certain data such a locking device, a transfer of such data may be initiated in response to the request. For example, if a mobile device requests to store data, and the corresponding encrypted profile that was provided during authentication allows such an action, and authentication as discussed above was successful, the mobile device may proceed to transmit data (and the locking device may receive such data) to the locking device. The locking device may then store the received data in its memory. If the received data is not yet encrypted, the locking device may use its secret key to encrypt the data to be stored. As another example, if a mobile device requests to retrieve data, and the corresponding encrypted profile that was provided during authentication allows such an action, and authentication as discussed above was successful, the lock may decrypt and transmit requested data to the mobile device. Alternatively, the lock may transmit encrypted data, and the mobile device may then communicate with the server (which also stores a copy of the secret key) for decryption purposes. Any typical data interactions (e.g., deleting data, renaming files, copying data, organizing data, etc.) may also be supported by the digital
locking device, which may be based on the types of accesses specified in the corresponding user profile.

[0064] Additional security related features may also be implemented by the server discussed herein. For example, in the instance an access key or secret key is compromised, an operator of the server or the user (via the mobile application) may initiate a protective measure. For example, the user may request a new key pair to be generated. In one embodiment, the server can generate a new key pair consisting of a newly generated secret key and the old access key, and encrypt the new key pair using the old secret key (similar to the encryption of a profile as discussed above). The server may then communicate with the mobile device to queue a key pair change request. If a user has multiple devices, or guest profiles, the user may select one or more particular devices on which the key pair change request is queued. Upon the next access attempt by the mobile device with the lock, a challenge-response sequence as discussed above may be initiated; however, the requested action can be a "key change request." As part of the challenge response transmission, the mobile device may include the encrypted new key pair. For example, the mobile device may transmit the response, and then the encrypted new key pair. Upon validation of the response, the lock may decrypt the encrypted new key pair using the old secret key and verify the data. If successful, the lock may access the new secret key from the decrypted new key pair, and then store the new secret key to be used in future interactions. In addition to updating the secret key, other functionality may be provided through similar challenge-response exchanges and encryption using the secret key. In one embodiment, instead of transmitting a "key change request," the mobile device may transmit a "firmware update request" along with new firmware version that is encrypted with the secret key. Upon successful authentication, the lock may proceed to decrypted the new firmware, and then update its firmware to the new version.

[0065] Any of the devices discussed herein (e.g., user device, product, server) may also be configured to generate an audit trail related to its operations. For example, a log may be formed to detail the events that occur throughout the interaction of a user device and a product. This may include server-to-user device events (e.g., sending an encrypted profile, sending a new key pair request, etc.), user device-to-product events (e.g., sending/responding to an unlock request, logging when authentication succeeds and fails, etc.), device-only events (e.g., logging application errors, logging shackle status of an
electronic locking device, etc.), among others. The scope of the present disclosure not limited to a particular log formatting.

[0066] In one embodiment, the lock is additionally equipped with a location determination circuit, such as a GPS device/receiver, and may transmit its location information (e.g., GPS coordinates) to the mobile device during interactions with the mobile device. The location information may then be stored by the mobile device (e.g., within the profile created for the lock, etc.) as a last known location of the lock. The mobile device’s management application can also be equipped with mapping functionality so that the last known location of the lock may be displayed on a map, based on the provided location information. Alternatively, the management application may allow the location information to be exported to a third party mapping application. These location features can allow a user to open the management application on his or her mobile device, and then view a map that indicates where the lock was located when the last known location (e.g., GPS coordinates) was provided. Additionally, navigational directions or other features may be provided to guide a user to the lock. In an alternative embodiment, the mobile device may also include a GPS device. In this manner the mobile device may also record its location information during interactions with the lock and server.

[0067] In any of the embodiments discussed herein, the devices may form a portion of a processing subsystem including one or more computing devices having memory, processing, and communication hardware. The devices (e.g., servers, user devices, products) may be a single device or a distributed device, and the functions of the devices may be performed by hardware and/or as computer instructions on a non-transient computer readable storage medium, and functions may be distributed across various hardware or computer based components. Referring to FIG. 4, a device 400 is shown, which may represent any of the devices discussed herein. Device 400 may also be used to implement the techniques and methods discussed herein. For example, device 400 may comprise the processing components of user device 102 (e.g., the processing components of a mobile phone). As another example, device 400 may comprise the processing components of server 104. As another example, device 400 may comprise the processing components of product 106 (e.g., the processing components of an electronic locking device). In addition, device 400 may be configured to perform the computations discussed herein (e.g., the computations related to processes 200 and 300, etc.) and generate the signals necessary to communicate
with other devices, encrypt and decrypt data, authenticate data, etc., in order to implement the techniques of this disclosure.

[0068] Device 400 typically includes at least one processor 402 coupled to a memory 404. Processor 402 may be any commercially available CPU. Processor 402 may represent one or more processors and may be implemented as a general-purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a digital-signal-processor (DSP), a group of processing components, or other suitable electronic processing components. Memory 404 may include random access memory (RAM) devices comprising a main storage of the device 400, as well as any supplemental levels of memory, e.g., cache memories, non-volatile or back-up memories (e.g., programmable or flash memories), read-only memories, etc. In addition, memory 404 may include memory storage physically located elsewhere, e.g., any cache memory in the processor 402 as well as any storage capacity used as a virtual memory, e.g., as stored on a mass storage device, etc. Device 400 also includes transceiver 406, which includes any additional networking components or transmitters necessary to communicate with other devices (e.g., Wi-Fi networking components, Bluetooth components, ZigBee components, NFC components, etc.). For example, in an embodiment where device 400 comprises an electronic lock, transceiver 406 may be a Bluetooth transceiver configured to communicate with a user's mobile device. As another example, in an embodiment where device 400 comprises a server, transceiver 406 may be a networking interface configured to couple the server to a network to communicate with a mobile device. As another example, in an embodiment where device 400 comprises a mobile device, transceiver 406 may include a Wi-Fi or cellular transceiver configured to communicate with a server, and transceiver 406 may further include Bluetooth components configured to communicate with a product (e.g., an electronic locking device).

[0069] In general, the routines executed to implement the embodiments may be implemented as part of an operating system or a specific application, module, or sequence of instructions. In certain embodiments, device 400 includes one or more modules structured to functionally execute the respective operations necessary for wireless key management for authentication as described herein. The description herein including modules emphasizes the structural independence of the aspects of a device and illustrates one grouping of operations and responsibilities of a device. More specific descriptions of certain
embodiments of a device’s operations are described by the sections herein referencing FIGS. 1-3. Other groupings that execute similar overall operations are understood within the scope of the present application. The modules typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processors in a computer, cause the computer to perform operations necessary to execute elements of disclosed embodiments. Moreover, various embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that this applies equally regardless of the particular type of computer-readable media used to actually effect the distribution.

[0070] Referring to FIG. 5 a block diagram of a user device 500 for implementing the techniques disclosed herein is shown, according to one embodiment. For example, user device 500 may correspond to the mobile devices discussed herein. In one embodiment, user device 500 is a mobile phone. In another embodiment, user device 500 is a laptop computer. In another embodiment, user device 500 is a tablet computer. In another embodiment, user device 500 is a desktop computer. In general, user device 500 includes a processing circuit 502, which may include a processor 502a, a memory 502b, and a timer 502c. Processor 502a may be any commercially available processor or any of the processors discussed herein (e.g., processor(s) 402, etc.). Memory 502b includes any of the memory and/or storage components discussed herein. For example, memory 502b may include RAM and/or cache of processor 502a. Memory 502b may also include one or more storage devices (e.g., hard drives, flash drives, computer readable media, etc.) either local or remote to user device 500.

[0071] Memory 502b includes various software modules configured to implement the techniques disclosed herein with respect to user devices. For example, memory 502b includes an access key module 504, which is configured to store and provide the access key as requested by the other modules of memory 502b. Application module 506 is configured to provide the management application as discussed herein. For example, in an embodiment where user device 500 is a mobile phone, application module 506 includes the software corresponding to a mobile phone app, which may be used to interface with a server and/or product. Application module 506 may include a profile module 508, which is configured to
manage the profile generation process, including interactions with the server and product. For example, a user may interact with user device 500 (e.g., via user input devices 502f) through the application provided by application module 506. The user may create one or more profiles corresponding to one or more products, which are transmitted (e.g., via transceiver 502d) to a server. The server may encrypt a user profile, and profile the encrypted user profile, access key, MAC, etc., to the user device 500 as discussed herein.

Application module may also interact with a product (e.g., an electronic locking device) via wireless transceiver 502e as discussed herein. A response module 510 may include the security algorithms required for generation a response to a challenge sent by a product. Additionally, the response module 510 may include encryption/decryption and MAC authentication algorithms, which may be accessed by application module 506 during secured communications. Memory 502b may further include a timer 502c, which may include the clock components of processor 502a, for maintaining a device time to be used as described herein.

[0072] In some implementations, memory 502b may include a mapping module 512 that may be used to generate one or more mapping interfaces based on location data received from a product (e.g., locking device). One such implementation is described below with respect to FIG. 8.

[0073] User device 500 further includes transceiver 502d and wireless transceiver 502e (which may correspond to transceiver 102d and wireless transceiver 102e of user device 102, etc.), which include various communication circuitry. For example, in one embodiment, transceiver 502d may include cellular components and/or Wi-Fi components and wireless transceiver 502e may include Bluetooth components, etc. User input devices 502f may include one or more user input devices for interaction with user device 500. For example, user input devices 502f may include one or more buttons, touch screens, displays, speakers, keyboards, stylus inputs, mice, track pads, etc.).

[0074] Referring to FIG. 6 a block diagram of servers 600 for implementing the techniques disclosed herein is shown, according to one embodiment. Servers 600 include one or more physical or virtual servers/server slices, etc. For example, servers 600 may correspond to server(s) 104. In general, servers 600 are configured to interact with a user device (e.g., user device 500, etc.). A server 600 may include a processing circuit 602.
Processing circuit 602 includes a processor 602a and memory 602b. As an example, processor 602a may include any commercial available processor, e.g., a server processing chip, a virtual processor, etc. Memory 602b includes any of the memory and/or storage components discussed herein. For example, memory 602b may include RAM and/or cache of processor 602a. Memory 602b may also include any mass storage devices (e.g., hard drives, flash drives, computer readable media, etc.).

[0075] Memory 602b may include an access key module 604 and security key module 606. The access key module 604 and security key module 606 may be configured to securely store access keys and security keys, respectively. The access and security keys may correspond to products as discussed herein. As an example, access key modules 604 and security key module 606 may correspond to databases of keys, and may include the software configured to store and retrieve such keys. Profile module 608 includes the software configured to interact with a product (e.g., to manage the process of user and guest profile generation, storage, and communication with a user device). Profile module 608 may also interact with security module 610, which may include the security algorithms as discussed herein. For example, security module 610 may be configured to generate an access key, a security key, encrypt/decrypt data, generate a MAC based on data, etc., and provide such data to profile module 608. In one embodiment, the security functions of security module 610 and access key module 604 and security module 606 are located on separate servers 600 from profile module 608. In this embodiment, various services may be provided by appropriate servers such that profile module 608 may access security functions and retrieve keys as necessary to implement the techniques discussed herein. In some embodiments, servers 600 are also configured to interact with a product (e.g., product 106). For example, during a manufacturing process, servers 106 may provide an access key and security key to be stored in a corresponding product.

[0076] In some implementations, memory 602b may include a mapping module 612 that may be used to generate one or more mapping interfaces based on location data received from a product (e.g., locking device). One such implementation is described below with respect to FIG. 8.

[0077] Referring to FIG. 7 a block diagram of a product 700 for implementing the techniques disclosed herein is shown, according to one embodiment. For example, product
700 may be a lock as discussed herein. In general, product 700 includes a processing circuit 702, which may include a processor 702a, a memory 702b, and a timer 702c (which may include the clock components of processor 702a, for maintaining a product time to be used as described herein). Processor 702a may be any commercially available processor or any of the processors discussed herein (e.g., processor(s) 402, etc.). Memory 702b includes any of the memory and/or storage components discussed herein. For example, memory 702b may include RAM and/or cache of processor 702a. Memory 702b may also include one or more storage devices (e.g., hard drives, flash drives, computer readable media, etc.).

[0078] Memory 702b includes various software modules configured to implement the techniques disclosed herein with respect to products (e.g., electronic locking devices, etc.). For example memory 702b may include an access key module 704, a security key module 706, a security module 708, and a control module 710. The access key module 704 and security key module 706 are configured to store the product's corresponding access key and security key, respectively. Other modules of memory 702b may interact with access key module 704 and security key module 706. For example security module 708, which includes the security algorithms for the product (e.g., encryption/decryption algorithms, MAC generation/verification algorithms, etc.), may retrieve an access key from access key module 704 when generating a challenge to be sent to a user device. As another example, security module 708 may access security key module 708 to retrieve a security key to decrypt an encrypted user profile received from a user device. Control module 710 contains the software configured to interact with the other modules of memory 702b to implement the techniques disclosed herein with respect to a product. For example, in an embodiment where product 700 is a lock, after being awoken, control module 710 may attempt to pair/communicate with a user device (via wireless transceiver 702d). Control module 710 may also include operating system (e.g., an embedded operating system, firmware, etc.) software for product 700. As another example, control module 710 may request security module 708 to access a user profile and request to determine an action to be taken. Based on the permissions of the user profile and the request, control module 710 may determine whether or not to take a request action. For example, control module 710 may generate the signals necessary to control mechanical (and electronic) components of product 700 (e.g., lock mechanisms 702f) in response to a request (e.g., an unlock request for a lock, etc.). As another example, control module 710 may interface with lock mechanisms 702f to control a
user's physical interactions with a lock (e.g., control module 710 may receive input from a dial interface, a key code interface, buttons, touch interface, etc.) in order to unlock a shackle of the lock.

[0079] In some embodiments, product 700 may include a location determination circuit 702g, such as a Global Positioning System (GPS) device/receiver, that may determine one or more locations of product 700 at one or more times. In some such embodiments, memory 702b may include a position tracking module 712 configured to receive the location data from location determination circuit 702g and store data indicative of the location or position of product 700 at one or more times. One such embodiment is discussed below with respect to FIG. 8.

[0080] Wireless transceiver 702d includes communications hardware (e.g., Bluetooth components, radiofrequency components, NFC components, ZigBee components, RFID components, Wi-Fi components, etc.) for wirelessly communication with another device (e.g., user devices 500, servers 600, etc.). In some embodiment, product 700 includes a battery 702e for providing power to the product. In an embodiment where product 700 is a lock, lock mechanism(s) 702f includes one or more physical and/or electronic locking mechanisms (e.g., pins, shackles, dials, buttons, shafts, keyholes, etc.) as discussed herein. For example, lock mechanism(s) 702f may correspond to lock mechanisms 106g.

[0081] In some embodiments, a product (e.g., locking device) may include a location determination circuit (e.g., GPS receiver), and may generate and store location information for the lock. Referring now to FIG. 8, a flow diagram of a process 800 for collecting location data for a product and displaying the location data on a mapping interface of a mobile device is shown according to an exemplary embodiment. While process 800 illustrates providing a mapping interface, it should be appreciated that, in some embodiments, the product may generate/receive location data for the locking device, store the data, and/or transmit the data to the mobile device and/or one or more servers without the mobile device/server(s) generating mapping interfaces.

[0082] The product may generate and/or receive one or more location data items indicating a location of the product at one or more times (802). In some embodiments, the location data items may be generated by a location determination circuit, such as a GPS
receiver, and may be transmitted to one or more processors of the product. The location data items may be stored in a memory (804).

[0083] The product may receive a request to transmit data to a mobile device. In some embodiments, the request may specifically request location data from the product. In other embodiments, the request may be a connection request, and the product may transmit location data in response to successfully connecting with the mobile device. In some embodiments, the product may validate data from the mobile device before providing the mobile device with the location data (806). In some such embodiments, validation of the data may be performed using a process similar to that described above with reference, for example, to FIGS. 2 and 3 (e.g., transmitting a challenge, verifying the response to the challenge, validating the data using a secret key, etc.). The product may transmit the location data items to the mobile device (808). In some embodiments, the product may only transmit the location data items to the mobile device if the data is validated.

[0084] The mobile device may obtain the location data item(s) from the product (810). In some embodiments, the mobile device may also obtain location and/or time parameters from a user for use in generating a mapping interface (812). For instance, location parameters may specify one or more location areas (e.g., buildings, geographic areas, etc.) to which locations displayed in the mapping interface should be restricted. In one such implementation, the location parameters may be based on current settings (e.g., geographic focus and/or zoom level) of a mapping interface. Time parameters may restrict a time associated with the results. For instance, in some embodiments, the user may indicate a desire to see only the last known location of the product. In some embodiments, the user may wish to see only locations during the past week. The mobile device may filter the location data item(s) based on the location and/or time parameters (e.g., before generating the mapping interface) (814). For example, items that do not fulfill the parameters may be removed from the set of data to be displayed within the mapping interface.

[0085] The mobile device may generate a mapping interface illustrating one or more locations indicated by the one or more location data items (e.g., filtered items) (816). In some implementations, the mobile device may be configured to generate the entire rendered mapping interface, including buildings, points of interest, and/or other mapping elements. In some implementations, the mobile device may illustrate the location information as an
overlay on a mapping interface generated by a third party, such as a mapping interface that permits the addition/overlay of custom location points. The mapping interface may be transmitted to a display of the mobile device. In some implementations, the location data item(s) may be transmitted to one or more server(s) (818). For instance, in one implementation, the mobile device may be configured to illustrate a last known location of the product, and an interface administered by the server(s) may allow a user to see several different locations over a specified timeframe.

[0086] Referring generally to FIGS. 9 through 15B, further embodiments for use in interaction with a product, such as a locking device, using a user device (e.g., a mobile device) are shown according to exemplary embodiments. In some embodiments, the features discussed below may be used to allow for secure communication between the user device and product without storing (e.g., permanently) a user key on the product (e.g., during a manufacturing phase). For instance, the user key may be communicated from the user device to the product and stored and used temporarily (e.g., during a communication session). It should be understood that features described above with reference to FIGS. 1 through 8 may be utilized with the embodiments described below with reference to FIGS. 9 through 15B, and vice-versa, according to various implementations of the present disclosure.

[0087] Referring specifically to FIG. 9, a flow diagram 900 of an illustrative process for interacting with a product with a user device is shown, according to an embodiment. In alternative embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a flow diagram is not meant to be limiting with respect to the order of steps performed. In some embodiments, the lock key referenced below may be similar or equivalent to the secret key discussed above, and the user key referenced below may be similar or equivalent to the access key discussed above.

[0088] In some embodiments, the lock may be woken up out of a low power standby or sleep state (902). For example, the lock may be touched by a user (e.g., a button on the lock may be pressed), or the proximity of the user may be automatically detected (e.g., using a proximity sensor, such as an NFC sensor). The standby/sleep state may utilize less power (e.g., battery power) than if the lock is in a fully operational, awake state. In some embodiments, the lock may always be in a fully functional state, and may not be woken up
out of a standby/sleep state. In some embodiments, upon waking out of the low power sleep state, the lock may broadcast or otherwise advertise a unique lock identifier associated with the lock (e.g., an identifier that is formed from its model and/or serial number).

[0089] The user device receives the lock identifier (904). In one embodiment, the lock identifier is compared to a set of lock identifiers stored on the mobile device to determine whether the mobile device is associated with the lock (e.g., whether a profile exists that corresponds to the lock identifier). For example, each user profile may have a list of lock identifiers identifying locks that the user associated with the user profile has permission to access. If a matching profile is not found, a user may be prompted to create a profile (e.g., via process 200) using the unique code that links the lock to the lock key. If a profile is found for the lock, the user device may then transmit the profile to the lock (906). The profile is associated with at least one lock identifier (and thus a lock) and is authenticated and encrypted by a server using a lock key that is stored by the server and the lock. In some embodiments, the lock key may be stored only in the server and the lock, and not in the mobile device of the user. If the lock key is hacked, the key could be used only on that one lock, and getting it out of the lock may destroy the lock in the process. The lock key may be used to authenticate and encrypt/decrypt the profile of one or more users (e.g., every user) of the lock associated with the lock key. The profile includes a user key.

[0090] The lock receives the profile and uses the lock key to decrypt and authenticate the profile. In one embodiment, the lock generates a security code (908). In some embodiments, the security code may be a sequence number or sequential identification (e.g., sequential identification of packets or messages). For example, with sequential identification, the mobile device may transmit a field that should follow a particular sequence for each received packet or command. The lock may then verify the received packets against a known sequence. In one embodiment, the mobile device receives an initial sequence number from the lock, and the lock verifies that subsequently received messages contain the initial number incremented once for each message received.

[0091] In some embodiments, the security code may be valid for a limited time frame. For example, in some embodiments, the security code may be valid for a particular amount of time after a first use of the code. In some embodiments, the security code may be valid only for a certain number of commands, transactions, and/or communication sessions. In
some such embodiments, the security code may be used only for a single command or single communication session, and may not be used again thereafter.

[0092] Such a known sequence may be predetermined or generated by the lock, and also may be provided to the mobile device by the lock during communications. Accordingly, this sequencing may be used along with one or more of the other methods described above (e.g., a session identifier may be used along with a predetermined initial sequence field value), or sequencing may be used by itself (e.g., the lock may provide the initial value of the sequence field upon connection). The lock may further verify that the received messages are encrypted using the user key and/or include a MAC computed therefrom.

[0093] The mobile device can then generate and transmit to the lock an encrypted command, the encrypted command including the security code and encrypted using the user key (910). Authenticating and encrypting/decrypting communications using the user key, in combination with a security code that is unique to a particular command and/or communications session such as a sequence number, may help prevent replay of communications, sniffing, and manipulation attacks. In one embodiment, the mobile device also transmits a current timestamp based on the mobile device's clock. In some embodiments, the security code is included in the generation of a user authentication MAC and is not included in the encrypted command.

[0094] The lock can validate the encrypted command (912). In some embodiments, the lock validates the encrypted command by decrypting the encrypted command using the user key obtained from the decrypted user profile, determining whether the security code is valid, and/or authenticating the decrypted command using the user key. In some embodiments, both the lock and mobile device may verify that the security code field is as expected, and may establish the initial state of expectations upon connection. In some embodiments, the server may also generate a code to link the product to the lock key in which it was generated. In some embodiments, that code may ship with the lock (e.g., as a label on an instruction sheet secured within the packaging). As discussed above, the server may also generate a unique identifier for the lock (e.g., serial identifier) that may be different from a product code to prevent attackers from trying to guess serial numbers and own access to locks that are still on the shelf.
In some embodiments, the security code may be used in generating a separate code for a communication session, such as a user authentication MAC. In some such embodiments, the security code may be transmitted from the lock to the mobile device in a first instance, and the security code may be included in a first encrypted command sent from the mobile device to the lock. In subsequent communications, the security code may or may not be included. The lock may verify the user authentication MAC in the subsequent communications, and by verifying the MAC, the lock is in turn indirectly verifying the security code. Thus, in some embodiments, the security code may not be included in the payload of one or more messages/commands.

In some embodiments, the lock may also ensure that the profile has access at that verified time (e.g., by referring to the scheduling information included in the decrypted profile). In an embodiment where the mobile device transmitted a timestamp, the lock may verify the timestamp by comparing the timestamp with a current time of the lock. In an embodiment utilizing the timestamp discussed above, a received timestamp may also be required to be within a threshold amount of time from a time maintained by the lock. In an embodiment (e.g., if permitted by user profile permissions), the timestamp from the mobile device may be used to synchronize or update a time of the lock.

If the profile and command are both verified, then the lock may comply with the request of the mobile device and initiate a corresponding action (914). In an embodiment, the lock can activate a physical locking component. In an embodiment, the lock, after activating a physical locking component, broadcasts its lock identifier, the mobile device transmits the user profile, the lock transmits a new security code, and the mobile device transmits another encrypted command including the new security code (e.g., read status, synchronize time, audit data, modify configuration, etc.).

Referring to FIG. 10, a flow diagram 1000 of an illustrative process for removing user profiles from a specific user device is shown, according to an embodiment. In alternative embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a flow diagram is not meant to be limiting with respect to the order of steps performed. A process of removing user profiles from a specific user device may be used, for example, to prevent a third party from having access to locks when the specific user device is lost, stolen, or otherwise not in the possession of the user.
[0099] In an embodiment, the server may receive a selection of a specific user device from a trusted device of the user (1002). In some embodiments, the server may determine that the device from which a request to remove user profiles is received is trusted by receiving authentication data from the device. For instance, the user may use the device to access an application on the device and/or frontend interface hosted by the server and log into an account using authentication data, such as a username and password. The user may then provide an indication that the selected specific user device has been lost.

[00100] In an embodiment, the server may remove all of the user's profiles on the specific user device (1004). In some embodiments, the server may remove the profiles by transmitting a command to the application running on the lost device. The application operating on the lost device may then remove the user profile data from the device.

[00101] The server may notify the user regarding whether the user's profiles were successfully removed (1006). If all of the user's profiles were successfully removed, then the process ends (1016). In this instance, the keys may be considered still secure, and no key change may be instituted. In some embodiments, a key change command may still be transmitted even if all the profiles are successfully removed. For instance, in some embodiments, changing the profiles/keys may be a default response even if removing the profiles from the lost device is successful.

[00102] In some embodiments, the operation to remove the profiles from the lost device may not be successful. For instance, the phone may not be online (e.g., may be turned off, may have a network connection disabled or be in a location without network access, etc.). In an embodiment, in response to removing of all user profiles being unsuccessful, the server generates and transmits a key change command for each user profile on the specific mobile device that was not successfully removed to all trusted devices containing lock identifiers associated with the user profiles that were not successfully removed (1010). The key change command includes a new lock key to be associated with the lock encrypted using the original lock key by the server. Because a lost or stolen mobile device may be used to gain access to a lock and affect all trusted users of the lock, in some embodiments, each trusted user may have the ability to effect the key change through trusted devices. In an embodiment, when a trusted device visits a lock, the process of interacting with a lock (e.g. process 900) occurs and the key change command is received, validated, and initiated
by the lock. In some embodiments, how quickly the key changes occur within the locks may be a factor of how concerned the user is and the geographic distribution of the locks. A user may visit all locks as soon as possible to remove the threat of someone using an old phone, or it could be done over time as the locks are visited in normal use. The ability to send key change commands to other users allows for someone else to visit the lock and change the lock key on behalf of the user. In some embodiments, the key change commands may be transmitted directly to the locks (e.g., using a wireless transceiver in the locks). In an embodiment, the server confirms successful storing of the new lock key in the lock (1012). In an embodiment, the server transmits to trusted devices updated user profiles (1014). The updated user profiles may be authenticated and encrypted by the server using the new lock key, and the updated user profile may include a new user key.

[00103] Referring to FIG. 11, a flow diagram 1100 of an illustrative process for removing guest user profiles from a guest user's device is shown, according to an embodiment. In alternative embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a flow diagram is not meant to be limiting with respect to the order of steps performed. A process of removing specific user profiles of a guest user may be used, for example, to revoke access to locks previously granted to the guest by the user.

[00104] In an embodiment, the server receives a selection of one or more specific user profiles of a guest user to revoke from the mobile device of the user (1102). In some embodiments, before receiving the selection, the mobile device may first be authenticated (e.g., by receiving authentication credentials from the user, such as a username and password). In an embodiment, the server may remove the one or more specific user profiles from the mobile device of the guest user (1104). In some embodiments, the server may remove the one or more specific user profiles from all mobile devices of the guest user.

[00105] In an embodiment, the server may notify the user regarding whether the specific user profiles were successfully removed (1106). If all of the user's profiles were successfully removed, then the process ends (1016). In some embodiments, a key change command may still be transmitted even if all the profiles are successfully removed.

[00106] In some embodiments, the removal of the user profiles may be unsuccessful (e.g., due to a guest device being offline or otherwise unreachable). In an embodiment, in response to removing of all user profiles being unsuccessful, the server generates and
transmits a key change command for each specific user profile on the mobile device of the
guest user that was not successfully removed to all trusted devices containing lock
identifiers associated with those specific user profiles that were not successfully removed
(1010). The key change command includes a new lock key to be associated with the lock
encrypted using the original lock key by the server. Because a guest user may still gain
access to a lock and affect all trusted users of the lock if a specific user profile is not
removed, in some embodiments, each trusted user may have the ability to effect the key
change through trusted devices. In an embodiment, when a trusted device visits a lock, the
process of interacting with a lock (e.g., process 900) occurs and the key change command is
received, validated, and initiated by the lock. In an embodiment, the server confirms
successful storing of the new lock key in the lock (1112). In an embodiment, the server
transmits to trusted devices updated user profile, where the updated user profile is
authenticated and encrypted by the server using the new lock key and where the updated
user profile comprises a new user key (1114).

[00107] In some embodiments, instead of, or in addition to, using key changes to revoke
profiles from a guest device, a blacklist may be utilized. For instance, a unique and/or
persistent identifier of one or more guest devices for which access is to be revoked may be
added to a blacklist of prohibited devices and stored within the lock(s). Such a method may
allow access control without redistributing new keys/user profiles. However, in some
instances, if a guest user is actively trying to avoid access being revoked, the user may keep
the guest device offline and attempt to retrieve the key. In such instances, it may be more
secure to replace the keys and user profiles. In some embodiments, a blacklist may be
utilized in combination with a key change procedure to provide an extra layer of security.

[00108] Referring to FIG. 12, a flow diagram 1200 of an illustrative process for granting
a guest user access to a lock is shown, according to an embodiment. In alternative
embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a
flow diagram is not meant to be limiting with respect to the order of steps performed.

[00109] In an embodiment, the server receives, from the mobile device of the user, a
selection of one or more lock identifiers associated with the one or more locks to share with
the guest user from set of lock identifiers stored on the mobile device of the user (1202). In
some embodiments, the selection may be from a lock list associated with one or more user profiles of the user granting the access.

[00110] In an embodiment, the server receives a guest user profile request from the mobile device of the user (1204). In some embodiments, the guest user profile request may be configured, and configuring the guest profile request may include modifying guest user schedule data that defines when the lock may be accessed by the guest, revocation data that sets an expiration time of the guest user profile, where upon expiration the guest user profile is invalid, and/or an indication of whether a time kept by the mobile device is trusted. In some embodiments, one or more of these characteristics and/or other characteristics of the guest profile may be configurable by the user granting guest access.

[00111] In an embodiment, the server generates an authenticated and encrypted guest user profile based on the guest user profile request and a guest user key (1206). In some embodiments, the authenticated and encrypted guest user profile is encrypted using a lock key associated with the lock to be shared, and the authenticated and encrypted guest user profile includes the guest user key. In some embodiments, the guest user key is stored both inside the guest user profile and in a manner readable by the mobile device. The guest user key is uniquely generated for each individual guest user. This prevents a guest user from using another user's key.

[00112] The server may determine whether the mobile device of the guest user can access the guest user profile (1208). In some embodiments, the server may determine whether the guest user is a registered user and/or has the application used for interfacing with locks installed on the guest user's mobile device.

[00113] In an embodiment, when the server determines the mobile device of the guest user can access the guest user profile (e.g., the guest user is a registered user and/or the guest user mobile device has the application installed), the server receives from the mobile device of the user a selection of the guest user (e.g., from a set of registered users) on the mobile device of the user granting guest access (1210). In some embodiments, the selection of the guest user may be from a search on the mobile device for the guest user. In an embodiment, the server transmits the guest user profile and the guest user key to the mobile device of the guest user after receiving the selection (1212). In an embodiment, the server
adds the lock identifier associated with the guest user profile to the set of lock identifiers on
the mobile device of the guest user (1214).

[00114] In an embodiment, when the server determines the mobile device of the guest
user cannot access the guest user profile (e.g., the guest user is not a registered user and/or
no application is installed on the guest user's mobile device), the server generates and
transmits a message to the mobile device of the guest user (1216). In some embodiments,
the message may include a code used to allow access to the lock key(s) and/or a link to a
authentication resource (e.g., webpage) through which the guest user may enter the code
and/or download the application and/or the guest profile. In some embodiments, this
message may be an email or SMS/text. In some embodiments, the link may an activation
link. In some embodiments, the code may be an invitation code or an authorization code.

[00115] In an embodiment, the server determines the link has been used to allow access
to user profiles on the mobile device of the guest user (1218). In some embodiments, the
link may allow the guest user to download the application to the mobile device, and the user
may enter registration information to create a new guest account on the linked resource
and/or through the downloaded application. In some embodiments, the server determines
the mobile device of the guest user can now access user profiles. In an embodiment, the
server determines the code has been entered on the mobile device of the guest user (1220).
In an embodiment, the server transmits the guest user profile and the guest user key to the
mobile device of the guest user (1212). In an embodiment, the server adds the lock
identifier associated with the guest user profile to the set of lock identifiers on the mobile
device of the guest user (1214).

[00116] Referring to FIG. 13, a flow diagram of an illustrative process 1300 for
configuring a product and user device is shown, according to an embodiment. In alternative
embodiments, fewer, additional, and/or different steps may be performed. Also, the use of a
flow diagram is not meant to be limiting with respect to the order of steps performed.

[00117] The lock identifier is retrieved (1302). For example, the user may refer to
included product packaging to retrieve the lock identifier, or the user may otherwise contact
a manufacturer to receive the lock identifier (e.g., via a manufacturer website, phone, etc.).
If the user is a registered user, the user may open and/or log into the application on the
mobile device of the user before retrieving and/or entering the lock identifier. If the user is
not registered, the user may create a new account and register it with a management server. In some embodiments, the user may download an application to the mobile device of the user and create the account through the application. In some embodiments, the user may create the account through a frontend interface provided to the mobile device from the server (e.g., through a browser application on the mobile device).

[00118] The lock identifier is then provided to the management server (1304) in order to associate the lock with the user. For example, a user may enter the lock identifier on a user interface of an application running on the mobile device, which then transmits the lock identifier to the server. In one such example, the user may enter the lock identifier within a frontend interface provided by the management server and accessed via a browser application on the mobile device. Alternatively, the user may use the mobile device to scan packaging of lock to retrieve and transmit the lock identifier. For example, the lock identifier may be encoded by a barcode, QR code, optical code, etc., and a camera of the mobile device may be used to scan and determine the unique code. In response to receiving the lock identifier from the mobile device, the server can retrieve or newly generate (e.g., on demand) the lock key and user key, which may then be associated with the lock identifier. In some embodiments, the server may verify that the lock identifier (e.g., product code) is valid, for example, by comparing the lock identifier to a set of identifiers known to be valid identifiers.

[00119] The server may then generate a user profile (1306), which may also be associated with the lock identifier. If a user profile does not yet exist, default values, or values provided by the user via the mobile device may be used to generate the new profile. For example, the user may enter profile data into an application of the mobile device, which transmits the profile data to the server along with the lock identifier. If the user has already created a profile, the server may instead update the user profile with new values provided by the user via the mobile device.

[00120] In general, a user profile may include one or more files that include data related to operation of the product, which is the lock in the above embodiment. For example, a user profile may contain a user schedule of when the lock may be accessed (unlocked, locked, etc.). The schedule may specify lock access permissions, e.g., by day of the week, including starting times (hours, minutes, etc.) and ending times (hours, minutes, etc.) for each
corresponding permission. For example, a schedule may specify the time spans in which an
electronic lock may be unlocked via the mobile device. As another example, the schedule
may specify time periods in which typical interactions are expected to occur, and a level of
trust may be determined based on these time periods. Accordingly, an unlock request sent
within an expected time period may be more trusted by the lock than a request sent at an
unexpected/atypical time. The mobile device may also automatically adjust a schedule. For
example, the mobile device may log/record a user's interactions with the lock, and may set a
schedule based around the user's anticipated actions. In one embodiment, a default user
schedule is set (e.g., by the manufacturer, etc.). Additionally, a list of typical user schedules
may also be provided to allow a user to select from one of many configuration options. In
this manner, a manufacturer may provide various recommended operational settings to a
user. A user may also customize a schedule to tailor the schedule as he or she desires.

[00121] A user profile may further specify a model/serial number of the lock and what
types of accesses are available for that user. For example, such accesses may include:
reading software/hardware version information of the lock, updating software of the lock,
reading a shackle state of the lock, locking, unlocking, disarming, reading/setting a
time/clock value, reading a battery level, reading/clearing event related data (e.g., flags,
counters, etc.), reading a log of the lock, reading/setting/resetting a keypad code of the lock,
reading communications data for the lock (e.g., transmission statuses, transmission power
levels, channel information, addressing information, etc.), reading/setting default values
stored for the lock (e.g., default disarm times, default unlock times, etc.), among others. A
user profile may also specify a start time and a revocation date/time for the profile (i.e.,
when the profile begins to be valid and when the profile expires and is no longer valid). A
user profile may provide maximum disarm/unlock times for the lock. A user profile may
also provide an indication of a trust level of a corresponding mobile device (e.g., whether a
time value/timestamp provided by the mobile device is trusted or not). The lock may be
configured to allow or disallow certain functionality based on the trust level of a device.
The trust level may be stored as an independent permission that the user may or may not
have access to (e.g., the trust level may be managed/adjusted by the software of the lock,
mobile device, or server, etc.). As an example, only a highly trusted device may be able to
upgrade the firmware of the lock or change certain settings. Additionally, the lock may
have a security algorithm that factors in a trust level and time value. For example, as a
device successfully interacts with the lock more often, the lock may increase (or adjust) a trust level for the device. However, if a time value is out of sync with the lock's maintained time or authentication fails, the lock may decrease (or adjust) a trust level for the device. The time value provided by the mobile device may be compared to a time value maintained by the lock, and a degree of closeness between the two times may be used to indicate a trust level for the device (e.g., the closer the two times are to being in sync, the higher the trust level, etc.). If a trust level decreases below a certain threshold, the lock may discontinue or limit interactions with the mobile device. A trust level may also be based on the schedule discussed above. For example, a mobile device may be regarded as more or less trusted based on the time the device is accessing the lock, and whether that time falls within certain time periods as defined by the schedule. The time value provided by the mobile device may also be used to sync the clock of the lock with that of the mobile device, or may be used otherwise during authenticated communications. Any of the profile items discussed may have default values (e.g., manufacturer defaults) or user provided values. A profile is not limited to the above data, and additional data may be included. A profile may also be stored on a server for later retrieval.

[00122] In addition to generating a profile for the user (e.g., the owner of the lock), the user may desire to create additional guest profiles (1308) to be shared with friends, family, co-workers, etc. In this manner, a user may grant another person access to the lock, based on the guest profiles. To do so, a user may enter in desired profile values (using the mobile device) for the additional person(s). Similar to the creation of the user's profile, the guest profile data may be transmitted to the server to be processed as discussed above in relation to FIG. 12. The guest profile data may be transmitted to the server simultaneously or separately (e.g., at a later time) from when the user initially generates his or her profile. The mobile device includes information that differentiates the types of profiles (e.g., owner vs. guest) being provided to the server.

[00123] After at least one profile is generated, the user is associated with the particular lock as an owner of the lock. In some embodiments, the association may be based solely on the lock identifier that was provided to the server (e.g., in step 1304). In one embodiment, after providing a lock identifier, the mobile device may use the lock identifier to automatically retrieve additional information related to the lock (e.g., a serial ID, a model number, etc.) from a database or a server of the lock's manufacturer. In alternative
embodiments, a serial ID, a model number, or other code may also be provided by a user (e.g., by referring to product packaging, etc.), and such additional data may be utilized, along with the lock identifier, in associating a user with a lock. In some embodiments, additional authentication of a user may also be required prior to associating a user with a lock as an owner, and such authentication may be provided via the mobile device.

[00124] In some embodiments, the management server may verify received profile data. To verify the received profile data, the management server may perform a cyclic redundancy check (CRC) on the profile to ensure the data's integrity. Other data verification methods may also be utilized. For example, in an illustrative embodiment, a message authentication code (MAC) (e.g., a keyed-hash message authentication code (HMAC)) may be generated using the lock key and used for verification of data integrity. The scope of the present disclosed is not limited to a certain data integrity validation mechanism. The server can then authenticate and encrypt the profile data using the lock key in order to transform the profile data into an authenticated and encrypted user profile (e.g., ciphertext). The profile may be encrypted according to any known encryption standards. The user profile also includes the corresponding user key. The user key can be determined by the server using the lock identifier (e.g., as discussed in steps 1302-1304).

[00125] After encryption, the encrypted profile is transmitted from a server to the mobile device (1310). The received encrypted profile and user key are then stored in a memory of the mobile device in order to complete the association of the mobile device with the lock. The user may then use his or her mobile device to interact with the lock (1312). In some embodiments, the user may use the application on the mobile device to customize the lock entry. For instance, the user may select a lock profile and edit the configuration to provide customized information such as, but not limited to, lock name, description, GPS coordinates, picture, allowed guest users, etc.

[00126] Referring to FIG. 14, a block diagram of a product 1400 for implementing the techniques disclosed herein is shown, according to another embodiment. For example, product 1400 may be a lock as discussed herein. In general, product 1400 includes a processing circuit 1402, which may include a processor 1402a, a memory 1402b, and a timer 1402c (which may include the clock components of processor 1402a, for maintaining a product time to be used as described herein). Processor 1402a may be any commercially
available processor or any of the processors discussed herein (e.g., processor(s) 402, etc.). In an embodiment, processor 1402a may be configured to store a lock identifier and a lock key in the memory, broadcast the lock identifier via the transceiver, receive an encrypted user profile from a mobile device via the transceiver, authenticate and decrypt the encrypted user profile using the lock key, transmit a security code to the mobile device via the transceiver, receive an encrypted command from the mobile device via the transceiver, validate the encrypted command, wherein validating the encrypted command includes: decrypting the encrypted command using the user key from the decrypted user profile; determining whether the security code is valid; and authenticating the decrypted command using the user key; and initiating, in response to validating the command, an action of the electronic locking device as specified by the command. In some embodiments, the security code may be a sequence number. In some embodiments, the security code may be valid for a limited time.

[00127] Memory 1402b includes any of the memory and/or storage components discussed herein. For example, memory 1402b may include RAM and/or cache of processor 1402a. Memory 1402b may also include one or more storage devices (e.g., hard drives, flash drives, computer readable media, etc.). Memory 1402b includes various software modules configured to implement the techniques disclosed herein with respect to products (e.g., electronic locking devices, etc.). For example memory 1402b may include a lock key module 1406, a security module 1408, and a control module 1410. The lock key module 1406 is configured to store the product’s corresponding lock key. In some embodiments, a product 1400 performing the process of 1300, for instance, where the user key is part of the user profile, there is no need to separately store user keys. Other modules of memory 1402b may interact with lock key module 1406. For example, security module 1408 may access lock key module 1408 to retrieve a lock key to decrypt an encrypted user profile received from a user device. Control module 1410 contains the software configured to interact with the other modules of memory 1402b to implement the techniques disclosed herein with respect to a product. For example, in an embodiment where product 1400 is a lock, after being awoken, control module 1410 may attempt to pair/communicate with a user device (via wireless transceiver 1402d). Control module 1410 may also include operating system (e.g., an embedded operating system, firmware, etc.) software for product 1400. As another example, control module 1410 may request security module 1408 to
access a user profile and command to determine an action to be taken. Based on the permissions of the user profile and the command, control module 1410 may determine whether or not to take a command action. For example, control module 1410 may generate the signals necessary to control mechanical (and electronic) components of product 1400 (e.g., lock mechanisms 1402f) in response to a request (e.g., an unlock request for a lock, etc.). As another example, control module 1410 may interface with lock mechanisms 1402f to control a user's physical interactions with a lock (e.g., control module 1410 may receive input from a dial interface, a key code interface, buttons, touch interface, etc.) in order to unlock a shackle of the lock.

[00128] In some embodiments, product 1400 may include a location determination circuit 1402g, such as a Global Positioning System (GPS) device/receiver, that may determine one or more locations of product 1400 at one or more times. In some such embodiments, memory 1402b may include a position tracking module 712 configured to receive the location data from location determination circuit 1402g and store data indicative of the location or position of product 1400 at one or more times.

[00129] Wireless transceiver 1402d includes communications hardware (e.g., Bluetooth components, radiofrequency components, NFC components, ZigBee components, RFID components, Wi-Fi components, etc.) for wirelessly communication with another device (e.g., user devices 500, servers 600, etc.). In some embodiment, product 1400 includes a battery 1402e for providing power to the product. In an embodiment where product 1400 is a lock, lock mechanism(s) 1402f includes one or more physical and/or electronic locking mechanisms (e.g., pins, shackles, dials, buttons, shafts, keyholes, etc.) as discussed herein. For example, lock mechanism(s) 1402f may correspond to lock mechanisms 106g.

[00130] Referring to FIG. 15, a data flow diagram of an illustrative data flow process for interacting with a product with a user device is shown, according to an embodiment. FIG. 15 is separated into a first portion FIG. 15A and a second portion FIG. 15B for purposes of readability. The illustrated data flow diagram illustrates a flow of data that may be utilized to accomplish secure communication between a server, mobile application, and lock for the purposes of performing one or more of the functions discussed above (e.g., with respect to FIGS. 9 through 14), according to one exemplary embodiment.
Reference in this specification to "one embodiment," "some embodiments," or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearance of the phrase "in one embodiment" or "in some embodiments" in various places in the specification is not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.

The disclosure is described above with reference to drawings. These drawings illustrate certain details of specific embodiments that implement the systems and methods and programs of the present disclosure. However, describing the disclosure with drawings should not be construed as imposing on the disclosure any limitations that may be present in the drawings. The present disclosure contemplates methods, systems and program products on any machine-readable media for accomplishing its operations. The embodiments of the present disclosure may be implemented using an existing computer processor, or by a special purpose computer processor incorporated for this or another purpose or by a hardwired system. No claim element herein is to be construed under the provisions of 35 U.S.C. § 112, sixth paragraph, unless the element is expressly recited using the phrase "means for." Furthermore, no element, component or method step in the present disclosure is intended to be dedicated to the public, regardless of whether the element, component or method step is explicitly recited in the claims.

Embodiments within the scope of the present disclosure include program products comprising machine-readable storage media for carrying or having machine-executable instructions or data structures stored thereon. Such machine-readable media can be any available media which can be accessed by a general purpose or special purpose computer or other machine with a processor. By way of example, such machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor. Combinations of the above are also
included within the scope of machine-readable media. Machine-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing machine to perform a certain function or group of functions. While a computer or machine-readable storage medium is not a propagated signal (i.e., is tangible and non-transitory), a computer or machine-readable storage medium can be a source or destination of computer program instructions encoded in an artificially-generated and propagated signal.

[00134] Embodiments of the disclosure are described in the general context of method steps which may be implemented in one embodiment by a program product including machine-executable instructions, such as program code, for example, in the form of program modules executed by machines in networked environments. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Machine-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represent examples of corresponding acts for implementing the functions described in such steps.

[00135] Embodiments of the present disclosure may be practiced in a networked environment using logical connections to one or more remote computers having processors. Logical connections may include a local area network (LAN) and a wide area network (WAN) that are presented here by way of example and not limitation. Such networking environments are commonplace in office-wide or enterprise-wide computer networks, intranets and the Internet and may use a wide variety of different communication protocols. Those skilled in the art will appreciate that such network computing environments will typically encompass many types of computer system configurations, including personal computers, hand-held devices, mobile phones, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, servers, minicomputers, mainframe computers, and the like. Embodiments of the disclosure may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination of hardwired or wireless links) through a communications network. In a
distributed computing environment, program modules may be located in both local and remote memory storage devices.

[00136] An exemplary system for implementing the overall system or portions of the disclosure might include a general purpose computing device in the form of a computer, including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit. The system memory may include read only memory (ROM) and random access memory (RAM). The computer may also include a magnetic hard disk drive for reading from and writing to a magnetic hard disk, a magnetic disk drive for reading from or writing to a removable magnetic disk, and an optical disk drive for reading from or writing to a removable optical disk such as a CD-ROM or other optical media. The drives and their associated machine-readable media provide nonvolatile storage of machine-executable instructions, data structures, program modules, and other data for the computer.

[00137] It should be noted that although the flowcharts provided herein show a specific order of method steps, it is understood that the order of these steps may differ from what is depicted. Also, two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. It is understood that all such variations are within the scope of the disclosure. Likewise, software and web implementations of the present disclosure could be accomplished with standard programming techniques with rule based logic and other logic to accomplish the various database searching steps, correlation steps, comparison steps and decision steps. It should also be noted that the word "component" as used herein and in the claims is intended to encompass implementations using one or more lines of software code, and/or hardware implementations, and/or equipment for receiving manual inputs.

[00138] The foregoing description of embodiments of the disclosure have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosure. The embodiments were chosen and described in order to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the disclosure in various
embodiments and with various modifications as are suited to the particular use contemplated.
WHAT IS CLAIMED IS:

1. A method of authentication, comprising:
 transmitting, by a mobile device, a request to a locking device;
 transmitting, by the locking device, a security challenge to the mobile device;
 transmitting, by the mobile device, a response to the security challenge and an encrypted user profile for the locking device, wherein the response comprises data generated with an access key that is stored by both the mobile device and the locking device, and wherein the user profile is encrypted by a server using a secret key that is stored by the server and the locking device;
 verifying, by the locking device, the response to the security challenge, wherein the response is verified using the access key;
 validating, by the locking device in response to verifying the response, data from the mobile device, wherein validating the data comprises:
 decrypting the encrypted user profile, wherein the user profile is decrypted using the secret key; and
 verifying the decrypted user profile; and
 initiating, by the locking device in response to validating the data, an action of the locking device as specified by the request, wherein the action comprises activating a physical locking component of the locking device to unlock the locking device.

2. The method of claim 1, wherein verifying the decrypted user profile comprises validating a message authentication code (MAC) based on the secret key and the user profile.

3. The method of claim 1, further comprising transmitting, by the mobile device, a timestamp of the mobile device, wherein validating the data from the mobile device further comprises verifying the timestamp by comparing the timestamp to a time maintained by the locking device.
4. The method of claim 3, wherein verifying the decrypted user profile further comprises comparing, using the time maintained by the locking device, an access schedule of the user profile, wherein the access schedule specifies a time when the mobile device may access the locking device.

5. The method of claim 3, further comprising determining, by the locking device, whether the mobile device is a trusted device by comparing the timestamp to the time maintained by the locking device.

6. The method of claim 1, wherein the security challenge comprises a unique session identifier corresponding to a communication session between the mobile device and the locking device.

7. The method of claim 1, wherein the user profile is encrypted by the server based on a CCM mode encryption algorithm, and wherein the secret key has a length of 128 bits.

8. The method of claim 1, further comprising:
 - waking the locking device from a sleep function;
 - broadcasting, by the locking device, a unique identifier corresponding to the locking device, wherein the unique identifier is broadcasted in responding to waking the locking device from the sleep function; and
 - receiving, at the mobile device, the unique identifier, wherein transmitting the request to the locking device is based on determining that the unique identifier is associated with the user profile.

9. The method of claim 8, wherein determining that the unique identifier is associated with the user profile comprises:
 - comparing the unique identifier to a list of user profiles on the mobile device, wherein the list of user profiles comprises the user profile, and wherein user profiles of the list are each associated with at least one locking device; and
 - determining that the unique identifier matches identifier information of the user profile.
10. The method of claim 1, wherein the mobile device receives the encrypted user profile and the access key from the server during a user profile generation process.

11. The method of claim 1, wherein the locking device and mobile device are each configured to wirelessly transmit data using at least one of a Bluetooth protocol, a near field communications protocol, a ZigBee protocol, and a radio frequency identification (RFID) protocol.

12. An electronic locking device, comprising:
 a wireless transceiver;
 a memory;
 an electronically controllable locking mechanism; and
 a processor configured to:
 store a secret key in the memory, wherein the secret key is associated with a first code for the electronic locking device;
 store an access key in the memory, wherein the access key is associated with a second code for the electronic locking device;
 receive, via the wireless transceiver, a request from a mobile device;
 transmit, via the wireless transceiver, a security challenge to the mobile device;
 verify, using the access key, a response to the security challenge, wherein the response is received from the mobile device, and wherein the response comprises data generated with a copy of the access key stored by the mobile device;
 validate, in response to verifying the response, data from the mobile device, wherein validating the data comprises:
 decrypting an encrypted user profile, wherein the user profile is decrypted using the secret key, and wherein the user profile is encrypted by a server with a copy of the secret key stored by the server;
 verifying the decrypted user profile; and
 initiate, in response to validating the data, an action of the electronic locking device as specified by the request.

13. The electronic locking device of claim 12, wherein initiating the action comprises providing access to secured data storage of the electronic locking device.
14. The electronic locking device of claim 13, wherein providing access to the secured data storage of the electronic locking device comprises:

 decrypting, by the electronic locking device using the secret key, data of the secured data storage and transmitting the decrypted secured data storage data to the mobile device; or

 encrypting, by the electronic locking device using the secret key, additional data received from the mobile device and storing the encrypted additional data in the secured data storage.

15. The electronic locking device of claim 12, wherein the action comprises activating a physical locking component of the electronic locking device.

16. The electronic locking device of claim 12, wherein verifying the decrypted user profile comprises validating a message authentication code (MAC) based on the secret key and the user profile.

17. The electronic locking device of claim 12, wherein validating the data further comprises verifying a timestamp of the mobile device by comparing the timestamp to a time maintained by the electronic locking device.

18. The electronic locking device of claim 17, wherein verifying the decrypted user profile further comprises comparing, using the time maintained by the electronic locking device, an access schedule of the user profile, wherein the access schedule specifies a time when the mobile device may access the electronic locking device.

19. The electronic locking device of claim 12, wherein the processor is further configured to:

 wake from a sleep function of the electronic locking device; and

 broadcast, via the wireless transceiver, a unique ID corresponding to the electronic locking device, wherein the unique ID is broadcasted in response to waking from the sleep function.

20. The electronic locking device of claim 12, wherein the wireless transceiver comprises at least one of a Bluetooth transceiver, a near field communication transceiver, a ZigBee transceiver, and a radio frequency identification (RFID) transceiver.
21. The electronic locking device of claim 12, wherein the first code and the second code are a same code that is unique to the electronic locking device.

22. The electronic locking device of claim 12, further comprising a battery configured to supply power to the electronic locking device.

23. The electronic locking device of claim 12, further comprising a GPS device configured to provide location information based on a location of the electronic locking device, and wherein the processor is further configured to transmit, via the wireless transceiver, the location information to the mobile device.

24. A system, comprising:
 one or more servers comprising one or more processors configured to:
 obtain an secret key for a locking device, wherein the secret key is associated with a unique code for the locking device;
 obtain an access key for the locking device, wherein the access key is associated with the unique code for the locking device;
 encrypt, using the secret key, a user profile for the locking device, wherein the user profile and the unique code are provided by a mobile device, wherein the unique code associates the locking device with the user profile, and wherein the secret key and the access key are obtained using the unique code; and
 provide the encrypted user profile and the access key to the mobile device, wherein the user profile comprises access data for the locking device.

25. The system of claim 24, wherein the user profile is encrypted based on a CCM mode encryption algorithm, and wherein the secret key and the access key each have a length of 128 bits.

26. The system of claim 24, wherein the user profile further comprises:
 user schedule data that defines when the locking device may be accessed;
 revocation data that sets an expiration time of the user profile, wherein upon expiration the user profile is invalid; and
 an indication of whether a time kept by the mobile device is trusted.
27. The system of claim 24, wherein the one or more processors are further configured to provide an encrypted guest user profile and the access key to a guest user, wherein the encrypted guest user profile is provided in response to a request from the mobile device, wherein the request specifies profile information for the guest user.

28. The system of claim 27, wherein the request comprises an unlock request.

29. A method comprising:
 receiving, at a mobile device, a lock identifier from a locking device, the lock identifier associated with the locking device;
 determining, by the mobile device, that the lock identifier is associated with a user profile on the mobile device by comparing the lock identifier to a set of lock identifiers on the mobile device, wherein a user profile is associated with a lock identifier and is authenticated and encrypted by a server using a lock key that is stored by the server and the locking device, and wherein the user profile comprises a user key;
 transmitting, by the mobile device, the user profile associated with the lock identifier to the locking device;
 decrypting, by the locking device, the user profile to generate a decrypted user profile, wherein the user profile is decrypted and verified using the lock key;
 transmitting, by the locking device, a security code to the mobile device;
 generating, by the mobile device, an encrypted command, the encrypted command comprising the security code and encrypted using the user key of the user profile;
 transmitting, by the mobile device, the encrypted command to the locking device;
 validating, by the locking device, the encrypted command from the mobile device, wherein validating the encrypted command comprises:
 decrypting the encrypted command using the user key obtained from the decrypted user profile;
 determining whether the security code is valid; and
 authenticating the decrypted command using the user key; and
 initiating, by the locking device in response to validating the encrypted command, an action of the locking device as specified by the decrypted command.
30. The method of claim 29, further comprising:
 waking the locking device from a sleep function; and
 broadcasting, by the locking device, the lock identifier, wherein the lock
 identifier is broadcasted in responding to waking the locking device from the sleep function.

31. The method of claim 29, further comprising transmitting, by the mobile
device, a timestamp of the mobile device, wherein validating the encrypted command from
the mobile device further comprises verifying the timestamp by comparing the timestamp to
a time maintained by the locking device.

32. The method of claim 31, wherein verifying the user profile further comprises
comparing, using the time maintained by the locking device, an access schedule of the user
profile, wherein the access schedule specifies a time when the mobile device may access the
locking device.

33. The method of claim 31, further comprising determining, by the locking
device, whether the mobile device is a trusted device by comparing the timestamp to the
time maintained by the locking device.

34. The method of claim 29, wherein the security code is a sequence number.

35. The method of claim 29, wherein the security code is valid for a limited time
frame.

36. The method of claim 29, wherein validating the encrypted command further
comprises determining whether the decrypted command is allowed per user profile
permissions.

37. The method of claim 29, wherein the action of the locking device initiated in
response to validating the encrypted command comprises activating a physical locking
component of the locking device.

38. The method of claim 37, further comprising:
 broadcasting, by the locking device, the lock identifier, after activating the
 physical locking component of the locking device;
 transmitting, by the mobile device, the user profile to the locking device;
transmitting, by the locking device, a new security code to the mobile device;
and
transmitting, by the mobile device, an encrypted command including the new security code.

39. The method of claim 29, further comprising:
receiving, by the server, a selection of a specific mobile device of a user containing a first set of one or more user profiles from a trusted device of the user;
removing, by the server, all user profiles of the user on the specific mobile device;
notifying, by the server, the user whether the removing of all user profiles is successful;
in response to removing of all user profiles being unsuccessful, generating and transmitting, by the server, a key change command for each user profile on the specific mobile device of the user not successfully removed to all trusted devices containing those lock identifiers, wherein the key change command comprises a new lock key to be associated with the locking device encrypted using the original lock key, and wherein the action of the locking device initiated in response to validating the key change command comprises decrypting and storing the new lock key in the locking device;
confirming, by the server, a successful storing of the new lock key in the locking device; and
transmitting, by the server, to trusted devices updated user profile, wherein the updated user profile is authenticated and encrypted by the server using the new lock key and wherein the updated user profile comprises a new user key.

40. The method of claim 29, further comprising:
receiving, by the server, a selection of one or more specific user profiles of a guest user to revoke from the mobile device of a user;
removing, by the server, the one or more specific user profiles from a mobile device of the guest user;
notifying, by the server, the user whether the removing of all specific user profiles is successful;
in response to removing of all specific user profiles being unsuccessful, generating and transmitting, by the server, a key change command for each specific user
profile on the mobile device of the guest user not successfully removed to all trusted devices containing those user profiles, wherein the key change command comprises a new lock key to be associated with the locking device encrypted using the original lock key, and wherein the action of the locking device initiated in response to validating the key change command comprises decrypting and storing the new lock key in the locking device;

confirming, by the server, a successful storing of the new lock key in the locking device; and

transmitting, by the server, to trusted devices updated user profile, wherein the updated user profile is authenticated and encrypted by the server using the new lock key and wherein the updated user profile comprises a new user key.

41. An electronic locking device, comprising:

a wireless transceiver;

a memory;

an electronically controllable locking mechanism; and

a processor configured to:

store a lock identifier and a lock key in the memory, wherein the lock identifier and the lock key are associated with the electronic locking device;

broadcast, via the wireless transceiver, the lock identifier;

receive, via the wireless transceiver, an encrypted user profile from a mobile device;

authenticate and decrypt the encrypted user profile, wherein the encrypted user profile is authenticated and decrypted using the lock key, and wherein the user profile is encrypted by a server with a copy of the lock key stored by the server and comprises a user key;

transmit, via the wireless transceiver, a security code to the mobile device;

receive, via the wireless transceiver, an encrypted command from the mobile device;

validate the encrypted command, wherein validating the encrypted command comprises:

decrypting the encrypted command using the user key from the decrypted user profile;

determining whether the security code is valid; and
authenticating the decrypted command using the user key; and initiate, in response to validating the encrypted command, an action of the electronic locking device as specified by the decrypted command.

42. The electronic locking device of claim 41, wherein the decrypted command comprises activating a physical locking component of the electronic locking device.

43. The electronic locking device of claim 41, wherein validating the data further comprises verifying a timestamp of the mobile device by comparing the timestamp to a time maintained by the electronic locking device.

44. The electronic locking device of claim 43, wherein verifying the user profile further comprises comparing, using the time maintained by the electronic locking device, an access schedule of the user profile, wherein the access schedule specifies a time when the mobile device may access the electronic locking device.

45. The electronic locking device of claim 41, wherein the security code is a sequence number.

46. The electronic locking device of claim 41, wherein the security code is valid for at least one of a limited time frame or a limited number of uses.

47. The electronic locking device of claim 41, wherein the processor is further configured to:

- wake from a sleep function of the electronic locking device;
- broadcast, via the wireless transceiver, the lock identifier, in response to waking from the sleep function.

48. The electronic locking device of claim 41, further comprising a GPS device configured to provide location information based on a location of the electronic locking device, and wherein the processor is further configured to transmit, via the wireless transceiver, the location information to the mobile device.
49. A method comprising:
receiving, by a server, from a mobile device of a user, a selection of a lock identifier associated with a locking device to share with a mobile device of a guest user from a set of lock identifiers stored on the mobile device of the user;
receiving, by the server, a guest user profile request from the mobile device of the user;
generating, by the server, an authenticated and encrypted guest user profile based on the guest user profile request and a guest user key, wherein the authenticated and encrypted guest user profile is encrypted using a lock key associated with the locking device and wherein the authenticated and encrypted guest user profile comprises the guest user key;
when the server determines the mobile device of the guest user can access the guest user profile:
receiving, by the server, from the mobile device of the user, a selection of the guest user, from a set of users on the mobile device of the user;
transmitting, by the server, the authenticated and encrypted guest user profile and the guest user key to the mobile device of the guest user; and
adding, by the server, the lock identifier to the set of lock identifiers on the mobile device of the guest user; and
when the server determines the mobile device of the guest user cannot access the guest user profile:
generating and transmitting, by the server, a message containing a link and code to the mobile device of the guest user;
determining, by the server, that the link has been used to allow access to user profiles on the mobile device of the guest user;
determining, by the server, that the code has been entered on the mobile device of the guest user;
transmitting, by the server, the authenticated and encrypted guest user profile and the guest user key to the mobile device of the guest user; and
adding, by the server, the lock identifier to the set of lock identifiers on the mobile device of the guest user.
50. The method of claim 49, wherein the guest user profile comprises:
 guest user schedule data that defines when the locking device may be accessed by the mobile device with the guest user profile;
 revocation data that sets an expiration time of the guest user profile, wherein upon expiration the guest user profile is invalid; and
 an indication of whether a time kept by the mobile device is trusted.
Retrieve unique code

Provide code to server, associate user account with product

Generate user profile

Generate profile for additional user

Receive encrypted user profile and access key

Use encrypted profile and access key to interact with product
Lock is woken up

Lock advertises its information

User device confirms information and transmits a request for the lock

Lock generates a challenge and transmits to user device

User device calculates response to challenge

User device transmits response and encrypted user profile to lock

Lock verifies the response and validates the additional received data

Initiate action based on request

FIG. 3
Device

Processor(s)

Memory

Transceiver

FIG. 4
User Device 500

- Processing Circuit 502
 - Processor 502a
 - Memory 502b
 - Access Key Module 504
 - Application Module 506
 - Profile Module 508
 - Response Module 510
 - Mapping Module 512
 - Timer 502c

- Transceiver 502d
- Wireless Transceiver 502e
- User Input Devices 502f

FIG. 5
Server(s) 600

Processing Circuit 602

Processor 602a

Memory 602b

- Access Key Module 604
- Security Key Module 606
- Profile Module 608
- Security Module 610
- Mapping Module 612

Network Interface 602c

FIG. 6
Product 700

Processing Circuit 702

Processor 702a

Memory 702b

Access Key Module 704

Security Key Module 706

Security Module 708

Control Module 710

Position Tracking Module 712

Timer 702c

Wireless Transceiver 702d

Battery 702e

Lock Mechanism(s) 702f

Location Determination (e.g., GPS) Circuit 702g

FIG. 7
Generate and/or receive location data item(s)

Store location data item(s) in memory

Validate data from mobile device

Transmit location data item(s) to mobile device (e.g., in response to validation)

Obtain location data item(s) at mobile device

Obtain location and/or time parameters from user

Filter location data item(s) based on location and/or time parameters

Generate mapping interface illustrating location(s) indicated by location data item(s)

Transmit location data item(s) from mobile device to server(s)
Lock is woken up and broadcasts lock identifier

User device receives lock identifier

User device determines and transmits associated user profile

Lock decrypts user profile and transmits security code

User device generates and transmits encrypted command

Lock validates encrypted command

Lock initiates action specified by command

FIG. 9
Server receives selection of a specific device from trusted device

Server removes all of user’s profiles on specific device

Server notifies user whether user profile removal is successful

Profiles successfully removed?

Server generates and transmits a key change command for each user profile on specific device not removed to trusted devices

Server confirms successful storing of new lock key in lock

Server transmits updated user profile to trusted devices

End
Server receives selection of specific profile(s) to revoke

Server removes the specific profile(s) from guest’s device

Server notifies user whether profile removal(s) is successful

Profile(s) successfully removed?

Server generates and transmits a key change command for each specific user profile not removed to all trusted devices

Server confirms successful storing of new lock key in lock

Server transmits updated user profiles to trusted devices

End

FIG. 11
1200

Server receives selection of lock to share

Server receives guest user profile request

Server generates guest user profile and guest user key

Guest can access profile on device?

Server creates and transmits message to guest device

Server determines link used on guest device

Server determines invite code entered on guest device

Server receives selection of guest

Server transmits guest user profile and guest user key to guest device

Server adds lock identifier associated with guest user profile to set of lock identifiers on guest device

FIG. 12
1300

Retrieve lock identifier

Provide identifier to server, associate user account with product

Generate authenticated and encrypted user profile

Generate profile for additional user

Receive authenticated and encrypted user profile

Use user profile to interact with product

FIG. 13
Product 1400

Processing Circuit 1402

Processor 1402a

Memory 1402b

Lock Key Module 1406

Security Module 1408

Control Module 1410

Position Tracking Module 1412

Timer 1402c

Wireless Transceiver 1402d

Battery 1402e

Lock Mechanism(s) 1402f

Location Determination (e.g., GPS) Circuit 1402g

FIG. 14
INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 15/42743

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) . G06C 19/00 (2015.01)

CPC - G07C 9/00182

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC (8) - G06C 19/00 (2015.01)

CPC - G07C 9/00182

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CPC - G07C 9/00817; G07C 2009/00793 (See Keywords below)

USPC - 340/5.28, 340/5.26, 340/5.54, 380/281, 340/5.7, 340/5.28, 705/18, 380/270, 380/284, 705/5, 340/5.6, 340/4.62

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Thomsoninnovation.com; Patbase; Google Scholar; Google Patents; Google.com; Freepatentsonline; ProQuest Dialog

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2012/0221203 A1 (BLIDING et al.), 30 August 2012 (30.08.2012), entire document, especially Abstract; Para [0017], [0046]-[0049], [0088], [0124], [0129], [0134]</td>
<td>1-23</td>
</tr>
<tr>
<td>Y</td>
<td>US 2005/0264397 A1 (COELHO et al.), 01 December 2005 (01.12.2005), entire document, especially Abstract; Figures 2-3; Para [0024], [0030], [0035], [0037]-[0038]</td>
<td>1-23</td>
</tr>
<tr>
<td>Y</td>
<td>US 201/0291803 A1 (BAJIC et al.), 01 December 2011 (01.12.2011), entire document, especially Para [0064]-[0088], [0109]-[0110], [0139]-[0142]</td>
<td>2, 6-7 and 16</td>
</tr>
<tr>
<td>A</td>
<td>US 2013/0127593 A1 (KUENZI et al.), 23 May 2013 (23.05.2013), entire document</td>
<td>1-23</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

19 November 2015 (19.11.2015)

Date of mailing of the international search report

28 December 2015 (28 DEC 2015)

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorization of officer.

Lee W. Young

PCT Hub: 571-272-4300

PCT O/S: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 15/42743

Box No. II Observations where certain claims were found un searchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

- **Group I**: Claims 1-23 directed to a method and locking device for authenticating a mobile device and servicing a request.
- **Group II**: Claims 24-28 directed to a system for registering and associating a mobile device with a locking device.
- **Group III**: Claims 29-48 directed to a method and locking device for authenticating a lock identifier and executing a command.
- **Group IV**: Claims 49-50 directed to a method for granting guest access to a locking device.

— (See Continuation in Supplemental Box) —

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos. 1-23.

Remark on Protest

□ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.
Continuation of:
Box III. Observations where unity of invention is lacking

The inventions listed as Groups I-IV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Special Technical Features:

The invention of Group I included the features of storing a secret key in the memory, wherein the secret key is associated with a first code for the electronic locking device; store an access key in the memory, wherein the access key is associated with a second code for the electronic locking device; transmitting, by the locking device, a security challenge to the mobile device; transmitting, by the mobile device, a response to the security challenge, wherein the response comprises data generated with an access key that is stored by both the mobile device and the locking device, and verifying, by the locking device, the response to the security challenge, wherein the response is verified using the access key; validating, by the locking device in response to verifying the response data from the mobile device, the action comprises activating a physical locking component of the locking device to unlock the locking device, not required in any other groups.

The invention of Group II included the features of one or more servers comprising one or more processors configured to obtain an secret key for a locking device, wherein the secret key is associated with a unique code for the locking device; obtain an access key for the locking device, wherein the access key is associated with the unique code for the locking device; encrypt, using the secret key, a user profile for the locking device, wherein the user profile and the unique code are provided by a mobile device, wherein the secret key and the access key are obtained using the unique code; and provide the encrypted user profile and the access key to the mobile device, wherein the user profile comprises access data for the locking device, not required in any other groups.

The invention of Group III included the features of storing a lock identifier and a lock key in the memory, wherein the lock identifier and the lock key are associated with the electronic locking device; broadcasting, via the wireless transceiver, the lock identifier; receive, via the wireless transceiver, an encrypted user profile from a mobile device; receiving, at a mobile device, a lock identifier from a locking device, the lock identifier associated with the locking device; determining, by the mobile device, that the lock identifier is associated with a user profile on the mobile device by comparing the lock identifier to a set of lock identifiers on the mobile device, wherein a user profile is associated with a lock identifier and is authenticated and wherein the user profile comprises a user key; transmitting, by the locking device, a security code to the mobile device; generating, by the mobile device, an encrypted command, the encrypted command comprising the security code and encrypted using the user key of the user profile; validating, by the locking device, the encrypted command from the mobile device, wherein validating the encrypted command comprises: decrypting the encrypted command using the user key obtained from the decrypted user profile; determining whether the security code is valid; and authenticating the decrypted command using the user key, not required in any other groups.

The invention of Group IV included the features of receiving, by a server, from a mobile device of a user, a selection of a lock identifier associated with a locking device to share with a mobile device of a guest user from a set of lock identifiers stored on the mobile device of the user; receiving, by the server, a guest user profile request from the mobile device of the user; generating, by the server, an authenticated and encrypted guest user profile based on the guest user profile request and a guest user key; wherein the authenticated and wherein the authenticated and encrypted guest user profile comprises the guest user key; when the server determines the mobile device of the guest user can access the guest user profile: receiving, by the server, from the mobile device of the user, a selection of the guest user, from a set of users on the mobile device of the user; transmitting, by the server, the authenticated and encrypted guest user profile and the guest user key to the mobile device of the guest user; and adding, by the server, the lock identifier to the set of lock identifiers on the mobile device of the guest user; and when the server determines the mobile device of the guest user cannot access the guest user profile: generating and transmitting, by the server, a message containing a link and code to the mobile device of the guest user; determining, by the server, that the link has been used to allow access to user profiles on the mobile device of the guest user; determining, by the server, that the code has been entered on the mobile device of the guest user; transmitting, by the server, the authenticated and encrypted guest user profile and the guest user key to the mobile device of the guest user; and adding, by the server, the lock identifier to the set of lock identifiers on the mobile device of the guest user, not required in any other groups.

Groups I-IV share the technical features of one or more servers: a user profile encrypted by a server using a secret key that is stored by the server and the locking device; lock identifier to the locking device; mobile device.

Groups I and III share the technical features of transmitting, by a mobile device, a request/command to a locking device; transmitting, by the mobile device, an encrypted user profile associated with the lock identifier of the locking device; decrypting the encrypted user profile, wherein the user profile is decrypted using a key; verifying the decrypted user profile; and initiating, by the locking device in response to validating, an action of the locking device as specified by the request/command; a wireless transceiver; a memory; an electronically controllable locking mechanism; and a processor.

Groups I and II share the technical features of secret key for a locking device; access key for the locking device.

Groups II-III share the technical feature of a unique code associates the locking device with the user profile.
Continuation of:
Box II. Observations where unity of invention is lacking

However, the shared technical features do not represent a contribution over prior art as being obvious over US 2011/031 1052 A1 to Myers et al. (hereinafter 'Myers'), 22 December 2011 (22.12.2011) in view of US 2013/0127593 A1 to Kuenzi et al. (hereinafter 'Kuenzi'), 23 May 2013 (23.05.2013).

Myers teaches one or more servers (para [0005] - system includes a security server); a user profile encrypted by a server using a secret key that is stored by the server and the locking device (Para [0006], [0027], [0066] - generating an encryption message comprising a plurality of unique identifiers; executing an encryption engine that checks whether the space values of the first encryption module, which are received from the web portal 106 (see FIG. 4, step 404) via the phone 100, match the serial number and command stored in the lock. In step 504, the encryption engine of the lock 100 performs a check whether the pattern shapes of the second encryption module; The system uses an algorithm for random number generation, e.g., a Public Key. The Public key, along with an encryption algorithm, is used to generate the Encryption Key; lock identifier to the locking device (Para [0024] - Lock ID); mobile device (Para [0024] - mobile device 104). Myers further teaches the groups I and III share the technical features of transmitting, by a mobile device, a request/command to a locking device (Para [0021], [0032] - an authentication request from the mobile device 104 in connection with gaining control of the lock 100; upon wirelessly connecting to the lock 100 whether the a lock open request needs to be initiated via the user interface of the phone 104; transmitting, by the mobile device, an encrypted user profile associated with the lock identifier to the locking device (Para [0027] - executing an encryption engine that checks whether the space values of the first encryption module, which are received from the web portal 106 (see FIG. 4, step 404) via the phone 100, match the serial number and command stored in the lock. In step 504, the encryption engine of the lock 100 performs a check whether the pattern shapes of the second encryption module; decrypting the encrypted user profile, wherein the user profile is decrypted using a key; verifying the decrypted user profile; and initiating, by the locking device in response to validating, an action of the locking device as specified by the request/command; a wireless transceiver (Para [0031] - communication board 902 includes a short range transceiver); a memory; (Para [0031] - computer readable memory that stores executable instructions comprising the lock encryption engine); an electronically controllable locking mechanism (Para [0031] - mechanical lock opening mechanism 906); a processor (Para [0030]; The lock 100, in turn, includes a processor).

Kuenzi teaches the groups I and III shared technical features of secret key for a locking device (Abstract - secret key contained in the wireless lock); access key for the locking device (Para [0012] - obtain access to a region protected by lock 12, a user must provide lock controller 20 with a valid digital credential indicating that such access is permitted. This digital credential is retrieved from server 16, and is validated by lock processor 26.) and groups II-III shared technical feature of a unique code associates the locking device with the user profile (Para [0019] - certificate of ownership provides proof of ownership, and ensures that an illegitimate possessor of lock 12 cannot register lock 12 by associating their user account with the lock ID of lock 12 at server 16).

As the common features were known in the art at the time of the invention, this cannot be considered a common technical feature that would otherwise unify the groups.

Therefore, Groups I-IV lack unity under PCT Rule 13.