3/027841 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 April 2003 (03.04.2003)

PCT

(10) International Publication Number

WO 03/027841 A2

(51) International Patent Classification’: GOG6F 9/45

(21) International Application Number: PCT/US02/30584
(22) International Filing Date:
25 September 2002 (25.09.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
09/964,724 26 September 2001 (26.09.2001) US
(71) Applicant: INTEL CORPORATION [US/US]; (a
Delawere Corporation), 2200 Mission College Boulevard,

Santa Clara, CA 95052 (US).

(72) Inventor: LI, Xiao, Feng; B6-1102#, Sun Garden, Hai
Dian District, Beijing 100086 (CN).

(74) Agents: MALLIE, Michael, J.; Blakely, Sokoloff, Tayor
& Zafman, 7th Floor, 12400 Wilshire Boulevard, Los An-
geles, CA 90025 et al. (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD FOR IMPLEMENTING FAST TYPE CHECKING

(57) Abstract: A method for allowing faster data structure type checking. In one embodiment, successive type hierarchy references
corresponding to a data object are cached within the data structure of the data objet. The data structure may include a sub-root log
to store successive supertypes (type hierarchy references) of the data structure type hierarchy. This allows for fast type checking as
only the sub-root log need be accessed to determine class membership. In one embodiment, three fields are used to store the three
successive references to a given type’s supertype hierarchy. In an alternative embodiment, all references to a given type’s supertype
hierarchy may be stored in a type data structure. In another alternative embodiment, the number of type hierarchy references used
may be dynamically determined at run time for a given application.

10

20

25

30

WO 03/027841 PCT/US02/30584

A METHOD FOR IMPLEMENTING FAST TYPE CHECKING

FIELD OF THE INVENTION

The present invention relates generally to the data structures of object-oriented

languages, and more specifically to methods and apparatuses to provide faster data

structure type checking.

BACKGROUND OF THE INVENTION
Object-oriented computer programming languages such as JAVA and C# typically

employ type hierarchies (concept ‘type’ and ‘class’ can be used interchangeably in this
document). In computer languages, types are used to describe a given entity. For
example, a computer language may employ a data structure having various fields used to
describe the subject type. The information contained within the fields uniquely defines the
type. Normally, types have hierarchy, i.e., one type can be a subtype or supertype of
another, e.g., type “apple” is a subtype of type “fruit”, and is a supertype of type “red
apple”. Once the type is determined for some data in computer memory, it may be
necessary to determine whether that type is a subtype of another type. The type hierarchy
may be viewed as a type tree having a root type base with subtypes of the root type, and
subtypes of the subtype, etc. At run time, these languages determine if one type is a
subtype of another. Type checking is a very common operat{on in object-oriented
languages. This checking is accomplished through use of instructions at runtime, €.g., in
virtual machines.

Figure 1 illustrates a type checking process in accordance with the prior art. The
system 100, shown in Figure 1, includes data structures 105 through 109. Typically, data
structures, that are stored in computer memory, contain among other data, a type field and
a pointer to a supertype field. To determine the type of data structure 105, the type field
105A is checked and data structure 105 is determined to be of type E. It may also be
necessary to determine if type E is a subtype of another type, for example it may be
necessary to determine if type E is a subtype of type B. This is accomplished by checking
the supertype pointer field 105b of data structure 105. Supertype pointer field 105b
provides a pointer to the supertype of type E. The pointer is dereferenced to obtain type
B’s supertype (i.e. type D located at typefield 106a of data structure 106). Likewise, the
supertype of type D is determined by obtaining a pointer to D’s supertype and

10

15

20

25

30

WO 03/02784
1 PCT/US02/30584

dereferencing the pointer. The process is continued until it is determined that type B is
supertype of type E (or conversely that type E is a subtype of type B). In general, this
process is done recursively until it is determined that a given type (e.g., type E) is a
subtype of another type (e.g., type B) or until a root type is reached. In system 100, type
A is a root type, that is type A is not a subtype of any other type. This is indicated by the
fact that supertype pointer field 109B is null.

In system 100, each time a supertype pointer is obtained and dereferenced the
process requires memory access. Such recursive memory access taxes processing

resources and is time consuming.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not limitation, by the

figures of the accompanying drawings in which like references indicate similar elements
and in which:

Figure 1 illustrates a type checking process in accordance with the prior art;

Figure 2 is a diagram illustrating an exemplary computing system 200 for
implementing a fast type checking method in accordance with an embodiment of the
present invention;

Figure 3 illustrates a type hierarchy tree and a corresponding data structure in
accordance with one embodiment of the present invention; and

Figure 4 is a process flow diagram in accordance with one embodiment of the present

invention.

DETAILED DESCRIPTION

The present invention provides methods and apparatuses for allowing faster data

structure type checking. Inone embodiment, the prior art data structure that includes a
type field, and a field for storing a pointer to the supertype of the data structure type is
replaced by a data structure that includes a sub-root log to store successive supertypes
(type hierarchy references) of the data structure type hierarchy. Alternatively, the type
data structure may not contain the sub-root log, but may contain a pointer to the sub-root
log. Currently, typical applications have at most seven type-hierarchy references with a
majority having no more than three. This means that by implementing a sub-root log

storing six hierarchy references within the data structure, virtually all, typical, applications

10

15

20

25

30

WO 03/02
7841 PCT/US02/30584

can be type checked without recourse to the recursive prior art method. In one
embodiment, three fields are used to store the three successive references to a given type’s
supertype hierarchy. In an alternative embodiment, all references to a given type’s
supertype hierarchy may be stored in a type data structure. In another alternative
embodiment, the number of supertype references used may be dynamically determined at
run time for a given application.

Figure 2 is a diagram illustrating an exemplary computing system 200 for
implementing a fast type checking method in accordance with an embodiment of the
present invention. A data structure containing multiple, successive, type hierarchy
elements can be implemented and utilized within computing system 200, which can
represent a general-purpose computer, portable computer, or other like device. The
components of computing system 200 are exemplary in which one or more components
can be omitted or added. For example, one or more memory devices can be utilized for
computing system 200.

Referring to Figure. 2, computing system 200 includes a central processing unit
202 and a signal processor 203 coupled to a display circuit 205, main memory 204, static
memory 206, and mass storage device 207 via bus 201. Computing system 200 can also
be coupled to a display 221, keypad input 222, cursor control 223, hard copy device 224,
input/output (I/O) devices 225, and audio/speech device 226 via bus 201.

Bus 201 is a standard system bus for communicating information and signals.
CPU 202 and signal processor 203 are processing units for computing system 200. CPU
202 or signal processor 203 or both can be used to process information and/or signals for
computing system 200. CPU 202 includes a control unit 231, an arithmetic logic unit
(ALU) 232, and several registers 233, which are used to process information and signals.
Signal processor 203 can also include similar components as CPU 202.

Main memory 204 can be, e.g., a random access memory (RAM) or some other
dynamic storage device, for storing information or instructions (program code), which are
used by CPU 202 or signal processor 203. Main memory 204 may store temporary
variables or other intermediate information during execution of instructions by CPU 202
or signal processor 203. Static memory 206, can be, e.g., a read only memory (ROM)
and/or other static storage devices, for storing information or instructions, which can also

be used by CPU 202 or signal processor 203. Mass storage device 207 can be, e.g., @ hard

10

15

20

25

30

WO 03/027841

or floppy disk drive or optical disk drive, for storing information or instructions for
computing system 200.

Display 221 can be, e.g., a cathode ray tube (CRT) or liquid crystal display (LCD).
Display device 221 displays information or graphics to a user. Computing system 200 can
interface with display 221 via display circuit 205. Keypad input 222 is an alphanumeric
input device with an analog to digital converter. Cursor control 223 can be, e.g., a mouse,
a trackball, or cursor direction keys, for controlling movement of an object on display 221.
Hard copy device 224 can be, e.g., a laser printer, for printing information on paper, film,
or some other like medium. A number of input/output devices 225 can be coupled to
computing system 200. Data structures containing multiple type hierarchy references, in
accordance with the present invention, can be implemented by hardware and/or software
contained within computing system 200. For example, CPU 202 or signal processor 203
can execute code or instructions stored in a machine-readable medium, e.g., main memory
204.

The machine-readable medium may include a mechanism that provides (i.e., stores
and/or transmits) information in a form readable by a machine such as computer or digital
processing device. For example, a machine-readable medium may include a read only
memory (ROM), random access memory (RAM), magnetic disk storage media, optical
storage media, flash memory devices. The code or instructions may be represented by
carrier-wave signals, infrared signals, digital signals, and by other like signals.

Figure 3 illustrates a type hierarchy tree and a corresponding type data structure in
accordance with one embodiment of the present invention. System 300, shown in Figure
3, contains a type hierarchy tree 310 in which type A is a root type. The type hierarchy
tree 310 may also illustrate a portion of a Jarger type hierarchy tree. As illustrated by the
type hierarchy tree, type A is a supertype of type B, type B is a supertype of type C,type C
is a supertype of type D, and type D is a supertype of type E. As shown, type Aisalso a
supertype of type S. In languages such as JAVA and C#, a given type may have more
than one subclass, but each type may have at most one supertype. That is, multiple
inheritances are not allowed, a type may inherit from at most one supertype.

In accordance with an embodiment of the present invention, at run time, objects
that are of type E are represented with data structure 320 that contains multiple references
to the type hierarchy tree. A small piece of memory is used to cache the references. In

one embodiment, the cache may contain some subset of the entire type hierarchy tree, for

PCT/US02/30584

10

15

20

25

30

WO 03/027841 PCT/US02/30584

example, three references. Alternatively, all of the references to type E’s supertypes may
be cached.

- Therefore, the present invention allows, in one embodiment the quick
determination of type hierarchy. For example, if it is necessary to determine if type Bisa -
supettype of type E, it is only necessary to examine the data structure of E which contains
three supertype reference levels including type B. If the supertype level to be checked is
greater than that contained within the type data structure, then a recursive process may be
used. For example, if it is necessary to determine whether type A is a supertype of type E,
the data structure of type E is examined. Type B is determined to be the highest
referenced supertype of type E. The data structure of type B is then examined and type A
is determined to be supertype of type B, and hence type A is determined to be a supertype
of type E as well.

Empirically it is found that a data structure containing three type hierarchy
reference levels is sufficient to allow type checking without resort to a recursive process
for a majority of applications. The type hierarchy tree for most typical applications
contains no more than seven levels. A data structure containing a root tree log with six
references, therefore, may suffice to provide fast type checking without referring to the
data structure of an intermediate supertype.

It will be appreciated that the method of the present invention contemplates any
number of root tree log references, with the number implemented dependent on the
specific application and such practical concerns as memory resources versus processing
resources.

Figure 4 is a process flow diagram in accordance with one embodiment of the
present invention. The process 400 may be used to determine if object X is of type Y;
typically, is type Y (a query type) a supertype of the type of which object X is a member
(the object type). The process 400, shown in Figure 4, begins at operation 405 in which
an evaluation is made to determine if the type of object X is equal to type Y (that is, is
object X of type Y). If so, the process returns true at operation 410. If not, the process
continues at operation 415 in which the depth of type X and type Y within the type
hierarchy tree is compared. An index value equal to the depth value of type X minus the
depth value of type Y is computed. Ifthe index value is less than or equal to zero (i.e.,
type Y is deeper than type X)), this indicates that type Y is impossible to be a supertype of

type X and the process returns false at operation 420. If the index value is more than zero

10

15

20

WO 03/027841 PCT/US02/30584

then the index value is compared to the number of type hierarchy references within the
sub-root log at operation 425. If the index is equal to or smaller than the number of type
hierarchy references then the corresponding type cached in the data structure is obtained
and compared to type Y at operation 430. The process returns true if the two types are
equal.

If the index is larger than the number of type hierarchy references in the sub-root
log, then type Y is not cached within the data structure. The highest referenced type is
obtained at operation 435 and repeat the process recursively from operation 415.

An exemplary pseudo-code implementation for a JAVA language instruction to
determine an object’s type is included as Appendix A. The pseudocode of Appendix A
begins by reverting to the recursive method of the prior art for the more complex cases
where the query type (classT) is an array or an interface type. An array type is a type that
comprises multiple components of another type and an interface type is a type without real
features. In one embodiment, the recursive method of the prior art can be employed to
handle these more complex types.

In the foregoing specification, the invention has been described with reference to
specific exemplary embodiments thereof. It will, however, be evident that various
modifications and changes may be made thereto without departing from the broader spirit
and scope of the invention as set forth in the appended claims. The specification and
drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive

sense.

5

10

15

20

25

WO 03/027841 PCT/US02/30584

APPENDIX A

The exemplary pseudo-code below is an implementation for a JAVA language

instruction to determine an object’s type. The source object is ObjectX and the query type
for checking is ClassY.
if (! (ClassY is array | | ClassY is interface)) {

/ | get the depth in type hierarchy

DepthY = getClassDepth (ClassY) ;

// get type of instance ObjectX, jitted instructions start here

ClassX = getClassType (ObjectX) ;

if (ClassX == ClassY) // fastest path for common case
return TRUE;

DepthX = getClassDepth (ClassX) ;

/ / get the slot index in superclasses cache array,

/ / here we use three slots for type hierarchy cache,

// slot #0 for its father type, #1 for father’s father,

/ 1 #2 for father’s father’s father

index = DepthX — DepthY;

if (index <= 0)

return FALSE;

// SLOT_NUMBER == A

if (index > SLOT_NUMBER) { //not cached here
/ / recursively get father’s father’s father type
ClassX = getSlot (SLOT_NUMBER —1);
goto retry;

/ / get the cached type for real comparison

getSlot (index — 1) == ClassY;

15

20

25

30

WO 03/02
7841 PCT/US02/30584

CLAIMS

What is claimed is:

1. A method comprising:

caching a plurality of successive type hierarchy references corresponding to a data
object within the data structure of the data object; and

accessing the cached type hierarchy references at run time to perform type

checking of the data object.

2. The method of claim 1 wherein the plurality of successive type hierarchy

references are cached in a data structure of the data object.

3. The method of claim 2 wherein the data structure is a data structure of an object

oriented computer language.

4. The method of claim 3 wherein the object oriented computer Janguage is selected

from the list consisting of JAVA, C++, C#, and CLIL.

5. The method of claim 1 wherein the plurality of successive type hierarchy

references comprises three successive type hierarchy references.

6. The method of claim 1 wherein the plurality of successive type hierarchy
references comprises a maximum number of successive type hierarchy references required

by a specific application.

7. The method of claim 1 wherein the plurality of successive type hierarchy
references comprises a number of successive type hierarchy references, the number of

successive type hierarchy references dynamically determined at run time.

8. The method of claim 1 further comprising:
a) determining that the plurality of successive type hierarchy references is
insufficient to check the type of the data object;

b) obtaining a highest type hierarchy feference from the cache;

10

15

25

30

WO 03/027841 PCT/US02/30584

¢) accessing a subsequent data object, the subsequent data object referenced by the
highest type hierarchy reference, the subsequent data object having a subsequent plurality
of cached successive type hierarchy references corresponding to the subsequent data
object; and

d) accessing the subsequent plurality of cached successive type hierarchy
references; and

e) repeating operations a) though d) such that type checking of the data object is

accomplished.

9. A machine-readable medium provides executable instructions which, when executed
by a processor, cause the processor to perform a method, the method comprising:

caching a plurality of successive type hierarchy references corresponding to a data
object within the data structure of the data object; and

accessing the cached type hierarchy references at run time to perform type
checking of the data object.
10. The machine-readable medium of claim 9 wherein the plurality of successive type

hierarchy references are cached in a data structure of the data object.

11. The machine-readable medium of claim 10 wherein the data structure is a data

structure of an object oriented computer language.

12. The machine-readable medium of claim 11 wherein the object oriented computer

language is selected from the list consisting of JAVA, C++, C#, and CLIL

13. The machine-readable medium of claim 9 wherein the plurality of successive type

hierarchy references comprises three successive type hierarchy references.

14. The machine-readable medium of claim 9 wherein the plurality of successive type
hierarchy references comprises a maximum number of successive type hierarchy

references required by a specific application.

10

15

20

25

30

WO 03/027841 PCT/US02/30584

15. The machine-readable medium of claim 9 wherein the plurality of successive type
hierarchy references comprises a number of successive type hierarchy references, the

number of successive type hierarchy references dynamically determined at run time.

16. The machine-readable medium of claim 9 wherein the method further comprises:

a) determining that the plurality of successive type hierarchy references is
insufficient to check the type of the data object;

b) obtaining a highest type hierarchy reference from the cache;

¢) accessing a subsequent data object, the subsequent data object referenced by the
highest type hierarchy reference, the subsequent data object having a subsequent plurality
of cached successive type hierarchy references corresponding to the subsequent data
object; and

d) accessing the subsequent plurality of cached successive type hierarchy
references; and

¢) repeating operations a) though d) such that type checking of the data object is

accomplished.

17. A machine-readable medium having stored thereon at least one data object, the at
least one data object having a data structure comprising:
a type field to specify the data object type; and

an identifier that identifies successive type hierarchy references of the data object.

18. The machine-readable medium of claim 17 wherein the identifier is a sub-root log

to store the plurality of successive type hierarchy references of the data object.

19. The machine-readable medium of claim 17 wherein the identifier is a pointer to a
sub-root log, the sub-root log to store the plurality of successive type hierarchy references

of the data object.

20. The machine-readable medium of claim 17 wherein the data objects are data

objects of an object oriented computer language.

10

10

15

25

30

WO 03/027841 PCT/US02/30584

21. The machine-readable medium of claim 20 wherein the object oriented computer

language is selected form the list consisting of JAVA, C++, C#, and CLL

22. The machine-readable medium of claim 17 wherein the plurality of successive type

hierarchy references comprises three successive type hierarchy references.

23. The machine -readable medium of claim 17 wherein the plurality of successive
type hierarchy references comprises a maximum number of successive type hierarchy

references required by a specific application.

24. An apparatus comprising:

a cache memory having stored therein a plurality of successive type hierarchy
references corresponding to a data object;

a main memory having stored therein instructions; and

a processor to execute the instructions such that execution of the instructions
causes the processor to access the cached type hierarchy references at run time to perform

type checking of the data object.

25. The apparatus of claim 24 wherein the data object includes a data structure, the

data structure storing the plurality of successive type hierarchy references.

26. The apparatus of claim 24 wherein the data object includes a data structure, the
data structure storing a pointer to a sub-root log, the sub-root log storing the plurality of

successive type hierarchy references.

27. The apparatus of claim 24 wherein the instructions include code of an object

oriented computer language.

28. The apparatus of claim 24 wherein the plurality of successive type hierarchy
references comprises a maximum number of successive type hierarchy references required

by a specific application.

11

10

15

WO 03/027841 PCT/US02/30584

29. The apparatus of claim 24 wherein the plurality of successive type hierarchy
references comprises a number of successive type hierarchy references, the number of

successive type hierarchy references dynamically determined at run time.

30. The apparatus of claim 24 wherein the main memory stores further instructions
such that execution of the further instructions causes the processor to:

a) determine that the plurality of successive type hierarchy references is
insufficient to check the type of the data object;

b) obtain a highest type hierarchy reference from the cache;

¢) access a subsequent data object, the subsequent data object referenced by the
highest type hierarchy reference, the subsequent data object having a subsequent plurality
of cached successive type hierarchy references corresponding to the subsequent data
object;

d) access the subsequent plurality of cached successive type hierarchy references;
and

e) repeat operations a) though d) such that type checking of the data object is

accomplished.

12

PCT/US02/30584

WO 03/027841

1/4

Gol

601

0 Do (L4Y HOIYd)
AINIOd-Q3dAL | 20 IE
:13dAL 40 SSY10HIdNS
,/v V90l
a:3dAL ~
WAINIOd-03dAL | 200
| :03dAL40 SSY1043dNS
901 //+ V.01
9 :3dAL ~
ganod-gadaL | 20
—~ | :93dAL40 Ssv10H3dNS
L01 //v V80t
g:3dAL —
HILNIOd-Y dAL 8801
—~ | 83dAL40SSV1043dNS
80t //v V60}
Y V 3dAL —
00! J— 8601
| 3dAL40 SSV104dNS

SUBSTITUTE SHEET (RULE 26)

WO 03/027841

DISPLAY
221

]

KEYBOARD
222

2/4

PCT/US02/30584

CURSOR

CONTROL
223

HARD COPY

DEVICE224

INPUT/
OuUTPUT
DEVIGES

NS
($2]

AUDI0/
SPEECH
DEVICE 9

(@]

7L 1]

MAIN STATIC MASS STORAGE
BUS 201
DISPLAY CPU PR%l(():‘AEIE\IS.I\SLOR
CIRCUIT CONTROL
205 UNIT 231 203
ALU 232
REGISTERS
233
—
s
I I I
202
200
e e e e e e . — — — — . — . ——— — — — — et

SUBSTITUTE SHEET (RULE 26)

PCT/US02/30584

WO 03/027841

3/4

I~~ [1ISSy1043dns

........... L [2lssy1943dns

L [glssy1943adns

o
—— -
——
——

SUBSTITUTE SHEET (RULE 26)

WO 03/027841 PCT/US02/30584

4/4
400

e

START

405
410

RETURN f\/

TRUE

OBJECT TYP
EQUALTO
QUERY TYPE?

415

COMPARE OBJECT TYPE DEPTHAND |~/
QUERY TYPE DEPTH. CREATE INDEX
EQUAL TO OBJECT TYPE DEPTH MINUS
QUERY TYPE DEPTH.

INDEX VALUE
LESS THAN OR
EQUAL TO ZERO?

YES | RETURN A A
FALSE

425
COMPARE INDEX VALUE TO THE ~/
NUMBER OF TYPE HIERARCHY
REFERENGES WITHIN THE SUB-ROOT
LOG.

INDEX NUMBER YES | OBTAIN HIGHEST

GREATER THAN THE NUMBER REFERENCED TYPE

OF TYPE HIERARCHY AS OBJECT TYPE
REFERENCES?
435
OBTAIN CORRESPONDING TYPE CAGHED ||
IN THE DATA STRUCTURE AND
COMPARE TO QUERY TYPE.

CACHED TYPE YES

FIG. 4

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

