6/0008:7 A1 |0V 200 O 0RO

—

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 January 2006 (05.01.2006)

;ﬂ[.h A 0O O

(10) International Publication Number

WO 2006/000857 Al

(51) International Patent Classification’: GOGF 12/02, 9/45

(21) International Application Number:
PCT/IB2005/001597

(22) International Filing Date: 7 June 2005 (07.06.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/874,140 22 June 2004 (22.06.2004) US

(71) Applicant (for all designated States except US): NOKIA
CORPORATION [FI/FI]; Keilalahdentie 4, FIN-02150
Espoo (FI).

(71) Applicant (for LC only): NOKIA, INC. [US/US]; 6000
Connection Drive, Irving, TX 75039 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): PALLER, Gabor
[HU/HU]; Attila u. 86, H-1047 Budapest (HU).

(74) Agents: ALBERT, G., Peter, Jr et al.; Foley & Lardner
LLP, 321 N. Clark Street, Suite 2800, Chicago, IL. 60610
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR DECREASING THE MEMORY FOOTPRINT OF APPLICATIONS WITH AUTO-

MATIC MEMORY MANAGEMENT SYSTEMS

Bytecode
22

Compiler
24

Pre-Processor
26

\ 4

JVM

A4
Free Unused Objects

28

(57) Abstract: The techniques described ease the work of garbage collectors by reducing the garbage produced. These embodi-
& ments combine the data-flow analysis of native compilers with an extension of the Java Virtual Machine (JVM). A special bytecode
is inserted into the original bytedode to explicitly free unused objects. As a result, the garbage collector does not see the object that
was explicitly reclaimed and the object doesn’t reserve memory after it is not used anymore. The memory footprint of the JVM
decrease and the responsiveness is better because the garbage collector has less work and, thus, it interrupts the application more

rarely and for less time.

WO 2006/000857 PCT/IB2005/001597

SYSTEM AND METHOD FOR DECREASING THE MEMORY
FOOTPRINT OF APPLICATIONS WITH AUTOMATIC MEMORY
MANAGEMENT SYSTEMS

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

j00011 The present invention relates generally to memory management of
computer applications. More particularly, the present invention relates to a system
and method for decreasing the memory footprint of applications that uses an

automation memory management.

DESCRIPTION OF THE RELATED ART

o021 This section is intended to provide a background or context to the
invention that is recited in the claims. The description herein may include
-concepts that could be pursued, but are not necessarily ones that have been
previously conceived or pursued. Therefore, unless otherwise indicated herein,
what is described in this section is not prior art to the claims in this application and

is not admitted to be prior art by inclusion in this section.

ooo3] Javais a simple, object-oriented, distributed, interpreted, robust,
secure, architecture-neutral, portable, multithreaded, dynamic, buzzword-compliant,
general-purpose programming language developed by Sun Microsystems in the
1990’s. Java is similar to C++ without operator overloading (though it does have
method overloading), without multiple inheritance, and extensive automatic

coercions. It has automatic memory management which is called garbage collection.

[0o0s] Java programs can run stand-alone on small computers. The
interpreter and class support take about 40 kilobytes; adding the standard libraries
and thread support (essentially a self-contained microkernel) adds an additional

175Kb. Java extends C++'s object-oriented facilities with those of Obj'ective C for

-1-

CONFIRMATION COPY

WO 2006/000857 PCT/IB2005/001597

dynamic method resolution. Java has an extensive library of routines for TCP/IP
protocols like HTTP and FTP. Java applications can access objects across the

Internet via URLSs as easily as on the local file system.

roos] The Java compiler and linker both enforce strong type checking -
procedures must be explicitly typed. Java supports the creation of virus-free,
tamper-free systems with authentication based on public-key encryption. The Java
compiler generates an architecture-neutral object file executable on any processor
supporting theJ Java run-time system. The object code consists of bytecode
instructions designed to be both easy to interpret on any machine and easily

translated into native machine code.

ooos] Java’s garbage-collected heap is the main attraction of the Java
system because it eliminates or at least decreases the possibility of a common
programming error, the memory leak. Unfortunately, the garbage-collected heap
needs necessarily more memory than normal memory management. This is due to
the fact that there is time between the generation of the garbage object (the time '
when an object is not referenced anymore therefore its space can be freed) and the
time when the garbage collector thread finds enough spare time in the system and
can reclaim the garbage object’s space for new allocations. Java programs,
therefore, occupy more memory than conventional programs. This memory
requirement is a significant barrier to Java’s adoption in the mobile terminal
world. Java object libraries are such that certain common operations (like string
manipulations) generate large amount of garbage objects. Decreasing Java’s

memory footprint can bring big benefits.

[ooo7] Prior attempts to solve the memory requirements of Java have been
made. For example, Java runtimes have included more and more efficient garbage
collectors génerational garbage collectors being state of the art. (See,
http://java.sun.com/docs/hotspot/gel.4.2/faq.html) Native Java compilers have
used data-flow analysis to find out which objects can be allocated on the stack
instead of the garbage-collected heap. (See Choi, Gupta, Serrano, Sreedhar and
Midkiff (IBM T.J Watson Research Center): Escape analysis for Java.
OOPSLA99, Denver, 1999.) Another attempted solution requires the programmer

2-

WO 2006/000857 PCT/IB2005/001597

to mark what objects can be allocated on what heap section. (See JSR-1, Real-time

specification for Java, http://www.jcp.org/en/jsr/detail?id=1) The Microsoft NET
framework uses a similar garbage collection system as Java. Other programming
languages use bytecode and garbage collection, including—for example—CH#,
Lisp, Objective-C, PHP, Perl, Python, Smalltalk, VBA, Visual Basic and
VBScript.

ooos] Thus, there is a need to ease the work of the garbage collector by
significantly reducing the garbage produced, thereby allowing programs to run
faster and need less memory. Further, there is a need to decrease memory
footprint to facilitate adoption in the mobile terminal world. Even further, there is
a need for a system and method for decreasing the memory rootprint of

applications.

SUMMARY OF THE INVENTION

ooos] In general, exemplary embodiments described herein ease the work of
garbage collectors by reducing the garbage produced. These embodiments combine
the data-flow analysis of the Java bytecode with an extension of the Java Virtual
Machine (JVM). Information is added to the Java bytecode that explicitly describes
which object can be freed at certain location of the program. For example a special
bytecode can be inserted into the original bytecode to explicitly free unused objects.
As a result, the garbage collector does not see the object that was explicitly reclaimed
and the object doesn’t reserve memory after it is not used anymore. The memory
footprint of the JVM decreases and the responsiveness is better because the garbage
collector has less work and, thus, it interrupts the application more rarely and for less
time.

o010 One exemplary embodiment relates to a method of decreasing
memory footprints produced in an object-oriented programming environment.
This method includes analyzing compiled code to identify objects to be reclaimed
and modifying the compiled code to include instruction to reclaim objects found

from said analysis.

WO 2006/000857 PCT/IB2005/001597

ooo11] Another exemplary embodiment relates to a system for decreasing
memory footprints in an object-oriented programming environment. The system
includes a pre-processor configured to find no escape points in object-oriented
code and insert an unused object flag into the code to free unused objects in the
object oriented code, a virtual machine that executes the object-oriented code, and
a garbage collector that frees objects in a garbage collection heap containing used
objects from executed object-oriented code. The code having the unused object
flag does not go into the garbage collection heap and does not have to be freed by

the garbage collector.

00012} Another exemplary embodiment relates to a device that has object-
oriented programming code executed thereon. The device includes a memory
configured to contain object-oriented code, a processor that performs a data flow
analysis on the object-oriented code to determine objects that can be reclaimed,
wherein the processor inserts special instructions in objects that can be reclaimed,
and a garbage collection heap configured to store unneeded objects until said
unneeded objects can be freed. The garbage collection heap is a space in the
memory and the garbage collection heap does not contain objects determined in

data flow analysis.

000131 Another exemplary embodiment relates to a computer program
product that reduces memory needed to execute object-oriented code. The
computer program product includes computer code to insert a special bytecode
into an original bytecode to identify objects to be reclaimed, wherein identified
objects are no longer in use and computer code to reclaim the identified objects

such that the identified objects do not reserve memory after not being used

anymore.

rooo14] Yet another exemplary embodiment relates to a module that
decreases memory requirements for object-oriented code. The module includes a
memory structure and a pre-processor. The memory structure contains a garbage
collection heap. The pre-processor performs a data flow analysis on the object-

oriented code to determine objects that can be reclaimed and inserts a special

WO 2006/000857 PCT/IB2005/001597

bytecode in objects that can be reclaimed. Objects having the special bytecode are

not placed in the garbage collection heap but are explicitly freed.

BRIEF DESCRIPTION OF DRAWINGS

jooo1s] Fig. 1 is a general diagram depicting a garbage reduction system in

accordance with an exemplary embodiment.

ooots] Fig. 2 is a diagram depicting an exemplary garbage reduction

system in operation.

o017 Fig. 3 is a diagram depicting a communication system including the

garbage reduction system of Fig. 1.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

ooo18] There exists several different programming languages tﬁat interpret
and include automatic memory management with garbage collection. Among the
most popular are Java™, Visual C#, NET™, Lisp, Objective-C, PHP, Perl, Python,
Smalltalk, VBA, Visual Basic™ and VBScript™. In the following exemplary
embodiments Java is used, but the same methods can be applied also other suitable
languages.‘

ooote; The Java Virtual Machine (JVM) is a program that interprets Java
bytecodes into machine code. The JVM is'what makes Java portable. A vendor
such as Microsoft Corporation of Redmond, Washington, or Sun Microsystems of
Santa Clara, California, writes a JVM for their operating system, and any Java
program can run on that JVM. |

oo20) The JVM is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulates various memory areas at run
time. The JVM knows nothing of the Java programming language, only of a
particular binary format, the class file format. A class file contains JVM
instructions (or bytecodes) and a symbol table, as well as other ancillary

information.

WO 2006/000857 PCT/IB2005/001597

jooo21] For the sake of security, the TVM imposes strong format and
structural constraints on the code in a class file. However, any language with
functionality that can be expressed in terms of a valid class file can be hosted by
the JVM. Attracted by a generally available, machine-independent platform,
implementors of other languages are turning to the JVM as a delivery vehicle for

their languages.

poo22] Referring now to the Figures, Fig. 1 illustrates operations performed
in a garbage refluction process. Additional, fewer, or different operations may be
performed depending on the embodiment. In an operation 14, source code 12 is
subject to a data-flow analysis to determine points in the code when certain objects
can be reclaimed. The source code 12 is the Java bytecode program. A data flow
pre-processor inserts a special bytecode into the original source code 12 in an
operation 16. The special bytecode allows the source code 12 to be reclaimed. In
an operation 18, the garbage collector does not see the object with the inserted

special bytecode.

o023} The object from the source code 12 that is reclaimed doesn’t reserve
memory after it is not used anymore. As a result, the memory footprint of the
JVM decreases and the responsiveness is better because the garbagé collector has
less work and, therefore, it interrupts the application less frequently and the

interruptions are shorter.

oo24] Fig. 2 illustrates a garbage reduction system 20. Bytecode 22 is
processed by a compiler 24 and then run through a pre-\processor 26. The
compiler 24 can be a Just-In-Time compiler. The pre-processor 26 finds no-
escape points and inserts bytecode that explicitly frees unused objects in block 28.
A Java Virtual Machine (JVM) 29 runs the bytecode 22 and supports the inserted

bytecode that frees certain objects.

ooo2s] The modification of the compiled code by the pre-processor 26 can
include inserting a data structure which can be used to deduce when objects can be
reclaimed. For example, the data structure can be a table where there is a table per

Java class that contains information for which object is deallocated at what location,

-6-

WO 2006/000857 PCT/IB2005/001597

rooo26] Alternatively, although not preferred, method calls can be inserted
into the Java source file to carry out the object reclaiming. Another alternative
implementation is to perform data-flow analysis when the Java code is installed on
a target system. This solution has the advantage of not breaking code
compatibility because the Java bytecode is extended with the new instructions

only if the JVM is able to execute the new bytecode statement.

ooo271 Fig. 3 illustrates a communication system 50 including the garbage
reduction features described herein. The exemplary embodiments described
herein can be applied to any telecommunications system including an electronic
device with a speech recognition application, and a server, between which data can

be transmitted.

ooo28)1 Communication system ‘50 includes a terminal equipment (TE)
device 52, an access point (AP) 54, a server 56, and a network 58. The TE device
52 can include memory (MEM), a central processing unit (CPU), a user interface
(UT), and an input-output interface (I/0). The memory can include non—volatil‘e
memory for storing applications that control the CPU and random access memory
for data processing. A context control module can be implemented by executing
in the CPU programmed instructions stored in the memory. The I/O interface can
include a network interface card of a wireless local area network, such as one of

the cards Based on the IEEE 802.11 standards.

oooze] The TE device 52 can be connected to the network 58 (e.g., a local
area network (LAN), the Internet, a phone network) via the accéss point 54 and
further to the server 56. The TE device 52 can also communicate directly with the
server 56, for instance using a cable, infrared, or a data transmission at radio
frequencies. The server 56 can provide various processing functions for the TE

device 52.

oozo; The TE device 52 can be any portable electronic device, in which
speech recognition is performed, for example a personal digital assistant (PDA)
device, remote controller or a combination of an earpiece and a microphone. The

TE device 52 can be a supplementary device used by a computer or a mobile

J7-

WO 2006/000857 PCT/IB2005/001597

station, in which case the data transmission to the server 56 can be arranged via a
computer or a mobile station. In an exemplary embodiment, the TE device 52 is a
mobile station communicating with a public land mobile network, to which also
the server 56 is functionally connected. The TE device 52 connected to the
network 58 includes mobile station functionality for communicating with the
network 58 wirelessly. The network 18 can be any known wireless network, for
instance a network supporting the GSM service, a network supporting the GPRS
(General Packet Radio Service), or a third generation mobile network, such the
UMTS (Univeksal Mobile Telecommunications System) network according to the
3GPP (3" Generation Partnership Project) standard. The functionality of the
server 56 can also be implemented in the mobile network. The TE device 56 can
be a mobile phone used for speaking only, or it can also contain PDA (Pérsonal

Digital Assistant) functionality.

000317 While several embodiments of the invention have been described, it
is to be understood that modifications and changes will occur to those skilled in
the art to which the invention pertains. For example, although particular
embodiments and implementations described contemplate use of the garbage
reduction functionality with a communication device, such as a phone, other
electronic devices may also include the functionalities described herein.
Moreover, while the exemplary embodiments are described using the Java
programming language, any object-oriented programming language may include
the functionality as well. The invention is not limited to a particular embodiment,
but extends to various modifications, combinations, and permutations that

nevertheless fall within the scope and spirit of the appended claims.

WO 2006/000857 PCT/IB2005/001597

CLAIMS

1. A method of decreasing memory footprints produced in an
programming environment, the method comprising:
analyzing compiled code to identify objects to be reclaimed;
modifying the compiled code to include instructions to reclaim

objects found from said analysis.

2. The method of claim 1, further comprising reclaiming the identified

objects at runtime based on instructions inserted to said modification.

3. The method of claim 1, wherein modifying the compiled code is

done using a pre-processor.

4. The method of claim 1, wherein modifying the compiled code is

done using a Just-In-Time compiler.

5. The method of claim 1, wherein modifying the compiled code

comprises inserting bytecode.
6. The method of claim 1, wherein the compiled code is Java bytecode.

7. The method of claim 1, wherein modifying the compiled code

comprises inserting method calls

8. The method of claim 1, wherein modification of bompiled code
comprises inserting a data structure which can be used to deduce when objects

can be reclaimed.

9. The method of claim 1, wherein the modifications of compiled

code are supported by a Java virtual machine that runs the modified code.

10. A system for decreasing memory footprints in an object-oriented

programming environment, the system comprising:

WO 2006/000857 PCT/IB2005/001597

a pre-processor configured to find no escape points in object-
oriented code and insert an unused object flag into the code to free unused objects
in the object oriented code;

a virtual machine that executes the object-oriented code; and

a garbage collector that frees objects in a garbage collection heap
containing used objects from executed object-oriented code, wherein code having
the unused object flag does niot go into the garbage collection heap and does not

have to be freed By the garbage collector.
!

11. The system of claim 10, wherein virtual machine is a java virtual

machine.

12. The system of claim 10, further comprising a compiler that compiles

the object-oriented code.

13. The system of claim 10, wherein the pre-processor performs a data
flow analysis to determine objects that can be reclaimed, said determined objects

having the unused object flag inserted therein.

14. A device that having object-oriented programming code executed
thereon, the device comprising:

a memory configured to contain object-oriented code;

a processor that performs a data flow analysis on the object-oriented
code to determine objects that can be reclaimed, wherein the processor inserts
special instructions about objects that can be reclaimed; and

a garbage collection heap configured to store unneeded objects until
said unneeded objects can be freed, wherein the garbage collection heap is a space

in the memory and the garbage collection heap does not contain determined in

data flow analysis.

15. The device of claim 14, wherein the object-oriented code is Java

bytecode.

16. The device of claim 14, wherein the data flow analysis is performed

when the object-oriented code is installed.

-10-

WO 2006/000857 PCT/IB2005/001597

17. The device of claim 14, wherein reclaiming the identified objects are

reclaimed at runtime based on instructions inserted by the processor.

18. The device of claim 14, wherein the special instructions that the

processor inserts comprises inserting bytecode.

19. The device of claim 14, wherein the special instructions that the

processor inserts comprises inserting method calls.

20. The device of claim 14, wherein the special instructions that the
processor inserts comprises inserting a data structure which can be used to deduce

when objects can be reclaimed.

21. The device of claim 14, further comprising a virtual machine to

- interpret bytecode.

22. The device of claim 21, wherein the virtual machine supports the

special instructions inserted by processor.

23. The system of claim 14, further comprising a java virtual machine

that interprets Java bytecodes into machine code.

24. A computer program product that reduces memory needed to

execute object-oriented code, the computer program product comprising:

computer code to insert a special bytecode into an original bytecode to
identify objects to be reclaimed, wherein identified objects are no longer in use; and
computer code to reclaim the identified objects such that the

identified objects do not reserve memory after not being used anymore.

25. The computer program product of claim 24, further comprising
computer code to perform a data flow analysis to determine objects to be

reclaimed.

26. The computer program product of claim 25, wherein the data flow

analysis when the object-oriented code is installed.

-11-

WO 2006/000857 PCT/IB2005/001597

27. The computer program product of claim 24, wherein the special

bytecode is inserted after the original Abytecode is compiled.

28. A module that decreases memory requirements for object-oriented

code, the module comprising:

a memory structure containing é garbage collection heap; and

a pre-processor that performs a data flow analysis on the object-
oriented code to determine objects that can be reclaimed, wherein the pre-
processor inserts a special bytecode in objects that can be reclaimed, wherein
objects having the special bytecode are not placed in the garbage collection heap ‘

but are explicitly freed.

29. The module of claim 28, wherein the object-oriented code is Java

code.

30. The module of claim 28, wherein the data flow analysis is

performed when the object-oriented code is installed.

31. The module of claim 28, further comprising a Java Virtual Machine
that supports the special bytecode.

-12-

WO 2006/000857

Source Code 12

A4

Data Flow
Analysis
14

1/2

PCT/IB2005/001597

Bytecode
22

Insert Garbage Collector
Bytecode | Cannot See
16 Objects with
Bytecode 18
Fig. 1
Compiler Pre-Processor
24 - 26

JVM

A\ 4
Free Unused Objects

28

WO 2006/000857 PCT/1B2005/001597
2/2
A
/52
MEM ul
Server
| <~ 54 56
CPU I/O

Network
58

Fig. 3

INTERNATIONAL SEARCH REPORT International application No.
PCT/IB 2005/001597

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: GO6F 12/02, GO6F 9/45

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, se arch terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6047125 A (OLE AGESEN ET AL), 4 April 2000 1-9
(04.04.2000), abstract

A 10-31

A US 6625808 B1 (DAVID R. TARDITI), 23 Sept 2003 10-31
(23.09.2003)

A WO 02054235 A2 (SUN MICROSYSTEMS, INC.), 10-31
11 July 2002 (11.07.2002)

A US 5392432 A (STEVEN L. ENGELSTAD ET AL), 10-31
21 February 1995 (21.02.1995)

D Further documents are listed in the continuation of Box C. m See patent family annex.

* Speaal categones of ated documents: “T* later document published after the international filing date or priority
”A” document defining the general state of the art which is not considered date and not in conflict with the apphcation but cited to understand
1o be of particular relevance the principle or theory underlying the invention
“E" earlier application or patent but published on or after the international +x» goeument of particular relevance: the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other o . . .
special reason (as specified) Y” document of particular relevance: the claimed invention cannot be

considered to involve an inventive step when the document is

#” " : 3 oq tes
O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

me . . . being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than Y
the priority date claimed - &” document member of the same patent farmly

Date of the actual completion of the international search Date of mailing of the international search report

21 Sept 2005 2 6 -09- 2005

Name and mailing address of the ISA/ Authorized officer

Swedish Patent Office '

Box 5055, §-102 42 STOCKHOLM Oskar Pihlgren/MN
Facsimile No. +46 8 666 02 86 Telephone No. +46 8 782 25 00

"Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

31/08/2005

International application No.

PCT/IB 2005/001597

us 6047125 A 04/04/2000 us 6192517 B 20/02/2001

us 6625808 Bl 23/09/2003 NONE

WO 02054235 A2 11/07/2002 GB 0310983 D 00/00/0000
GB 2384349 A,B 23/07/2003
us 6757890 B 29/06/2004

us 5392432 A 21/02/1995 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

