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reproduction of this patent document or any related mate-
rials in the files of the United States Patent and Trademark
Office, but otherwise reserves all copyrights whatsoever.

BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates to content delivery and content
delivery networks. More specifically, to content delivery
networks and systems, frameworks, devices and methods
supporting content delivery and content delivery networks.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

FIG. 1A shows an exemplary categorization of services
types in a content delivery network (CDN) in accordance
with an embodiment;

FIG. 1B shows a generic service endpoint in an exemplary
CDN in accordance with an embodiment;

FIG. 1C shows trivial service types in accordance with an
embodiment;

FIG. 1D shows an exemplary taxonomy of service types
in a CDN in accordance with an embodiment;

FIGS. 1E to 1F show interactions between component
services of an exemplary CDN in accordance with an
embodiment;

FIG. 1G shows an exemplary taxonomy of service types
in a CDN in accordance with an embodiment;

FIG. 1H depicts aspects of information flow between
services in a CDN in accordance with an embodiment;

FIG. 11 depicts aspects of an exemplary CDN infrastruc-
ture in accordance with an embodiment;

FIG. 1J depicts a logical overview of an exemplary CDN
in accordance with an embodiment;

FIG. 1K shows feedback between logical service end-
points in a CDN in accordance with an embodiment;

FIG. 1L depicts interactions between component services
of an exemplary CDN in accordance with an embodiment;

FIG. 2A depicts aspects of a machine in an exemplary
CDN in accordance with an embodiment;

FIG. 2B depicts aspects of configuration of a machine in
a CDN in accordance with an embodiment;

FIGS. 2C to 2D depict aspects of an exemplary autonomic
service in an exemplary CDN in accordance with an
embodiment;

FIGS. 3A to 3B depict aspects of clusters of service
endpoints in an exemplary CDN in accordance with an
embodiment;

FIG. 3C depicts various aspects of exemplary bindings in
an exemplary CDN in accordance with an embodiment;

FIG. 3D depicts various aspects of binding and rendez-
vous in an exemplary CDN in accordance with an embodi-
ment;

FIG. 3E depicts aspects of request processing by a service
in an exemplary CDN in accordance with an embodiment;

FIG. 3F depicts aspects of a general purpose and con-
figurable model of request processing in accordance with an
embodiment;
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FIG. 3G depicts aspects of using the model of FIG. 3F to
encapsulate services in accordance with an embodiment;

FIG. 3H depicts aspects of a layered virtual machine in
accordance with an embodiment;

FIGS. 31-3K depict three basic service instance interac-
tion patterns in accordance with an embodiment;

FIG. 3L depicts aspects of exemplary request processing
interactions in accordance with an embodiment;

FIG. 3M depicts aspects of an exemplary distributed
request processing system in accordance with an embodi-
ment;

FIG. 3N shows an exemplary request collection lattice
with unparameterized specific behaviors in accordance with
an embodiment;

FIG. 3-O shows an exemplary request collection lattice
with parameterized generic behaviors

FIG. 3P shows an exemplary request collection lattice
with mixed parameterization styles in accordance with an
embodiment;

FIG. 4A to 4F show logical organization of various
components of an exemplary CDN in accordance with an
embodiment;

FIGS. 5A and 5B depict cache cluster sites in an exem-
plary CDN in accordance with an embodiment;

FIGS. 5C and 5D depict cache clusters in the cache cluster
sites of FIGS. SA and 5B in accordance with an embodi-
ment;

FIG. 5E depicts an exemplary cache cluster site in an
exemplary CDN in accordance with an embodiment;

FIGS. 6A to 6F depict various organizations and configu-
rations of components of exemplary CDNs in accordance
with an embodiment;

FIGS. 7A to 7C depict aspects of event logging in
exemplary CDNs in accordance with an embodiment;

FIGS. 8Ato 8D, 9A to 9B, and 10A to 10E depict aspects
of reducers and collectors in exemplary CDNs in accordance
with an embodiment;

FIG. 11 shows interactions between component services
of an exemplary CDN in accordance with an embodiment;

FIGS. 12A to 12E depict exemplary uses of feedback in
exemplary CDNs in accordance with an embodiment;

FIGS. 13A to 13F depict logical aspects of information
used by various services in exemplary CDNs in accordance
with an embodiment;

FIGS. 14A to 14F depict aspects of exemplary control
mechanisms in exemplary CDNs in accordance with an
embodiment;

FIG. 15 shows aspects of exemplary request-response
processing in exemplary CDNs in accordance with an
embodiment;

FIGS. 15A to 151 show aspects of sequences and
sequence processing

FIG. 16A to 16D show examples of sequencers and
handlers in accordance with an embodiment;

FIG. 17 is a flow chart showing exemplary request-
response processing in exemplary CDNs in accordance with
an embodiment;

FIG. 18 shows interaction between components of an
exemplary CDN in accordance with an embodiment;

FIG. 19 shows the logical structure of aspects of a typical
cache in exemplary CDNs in accordance with an embodi-
ment;

FIGS. 20 to 21 depict various tables and databases used
by a CDN in accordance with an embodiment;

FIGS. 22A to 22C is a flow chart describing exemplary
request-response processing flow in exemplary CDNs in
accordance with an embodiment;
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FIGS. 23A to 231 depict aspects of peering and load
balancing in exemplary CDNs in accordance with an
embodiment;

FIGS. 24A to 24K are flow charts depicts aspects of
starting and running services in exemplary CDNs in accor-
dance with an embodiment;

FIG. 24L is a flow chart showing an exemplary process of
adding a new machine server to an exemplary CDN in
accordance with an embodiment;

FIGS. 25A to 25F describe aspects of an executive system
of exemplary CDNs in accordance with an embodiment;

FIG. 26A to 26C depict aspects of computing in exem-
plary CDNs in accordance with an embodiment;

FIG. 27A depicts aspects of configuration of exemplary
CDNs in accordance with an embodiment;

FIG. 27B shows an example of control resource genera-
tion and distribution in an exemplary CDN in accordance
with an embodiment;

FIG. 27C shows an example of template distribution in an
exemplary CDN in accordance with an embodiment;

FIG. 28 shows an example of object derivation in accor-
dance with an embodiment;

FIG. 29 shows an exemplary CDN deployment in accor-
dance with an embodiment;

FIGS. 30A to 30H relate to aspects of invalidation in
accordance with an embodiment; and

FIGS. 31A to 31B relate to aspects of clustering.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

Glossary

As used herein, unless used otherwise, the following
terms or abbreviations have the following meanings:

API means Application Program(ing) Interface;

CCS means Customer Configuration Script;

CD means Content Delivery;

CDN means Content Delivery Network;

CNAME means Canonical Name;

DNS means Domain Name System;

FQDN means Fully Qualified Domain Name;

FTP means File Transfer Protocol;

GCO means Global Configuration Object;

HTTP means Hyper Text Transfer Protocol;

HTTPS means HTTP Secure;

IP means Internet Protocol;

IPv4 means Internet Protocol Version 4;

IPv6 means Internet Protocol Version 6;

IP address means an address used in the Internet Protocol,
including both IPv4 and IPv6, to identify electronic devices
such as servers and the like;

LCO means layer configuration object;

LRU means Least Recently Used;

LVM means layered virtual machine;

NDC means Network of Data Collectors;

NDP means Neighbor Discovery Protocol;

NDR means network of data reducers;

NIC means network interface card/controller;

NS means Name Server;

NTP means Network Time Protocol;

PKI means Public Key Infrastructure;

QoS means quality of service;

RCL means request collection lattice;

SSL means Secure Sockets Layer;

SVM means service virtual machine;
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TCP means Transmission Control Protocol;
TRC means terminal request collection;
TTL means time to live;

URI means Uniform Resource Identifier;
URL means Uniform Resource Locator; and
UTC means coordinated universal time.

BACKGROUND AND OVERVIEW

A content delivery network (CDN) distributes content
(e.g., resources) efficiently to clients on behalf of one or
more content providers, preferably via a public Internet.
Content providers provide their content (e.g., resources) via
origin sources (origin servers or origins), and a CDN can
also provide an over-the-top transport mechanism for effi-
ciently sending content in the reverse direction—from a
client to an origin server. Both end-users (clients) and
content providers benefit from using a CDN. Using a CDN,
a content provider is able to take pressure off (and thereby
reduce the load on) its own servers (e.g., its origin servers).
Clients benefit by being able to obtain content with fewer
delays.

End Users and Subscribers

In the following description, an end user is an entity (e.g.,
person or organization) that ultimately consumes some
Internet service (e.g., a web site, streaming service, etc.)
provided by a service provider entity. This provider entity is
sometimes referred to as a subscriber in this description
because they subscribe to CDN services in order to effi-
ciently deliver their content, e.g., from their origins to their
consumers. A CDN may provide value-added mediation
(e.g., caching, transformation, etc.) between its subscribers
and their end-users.

Clients and Origins

As used herein, clients are agents (e.g., browsers, set-top
boxes, or other applications) used, e.g., by end users to issue
requests (e.g., DNS and HTTP requests) within the system.
When no CDN or other intermediaries are in use, such
requests may go directly to the subscriber’s own servers
(e.g., their origin servers) or to other components in the
Internet. When a content provider subscribes to CD services
(described below), various requests may go to intermediate
CD services that may map the end-user requests to origin
requests, possibly transforming and caching content along
the way.

Typically, each distinct origin (e.g., origin server) is
associated with one subscriber, but a subscriber may be
associated with any number of origins, including subscriber-
owned and CDN provided origins.

The physical origins with which the CDN interacts may
actually be intermediaries that acquire content from a chain
of intermediaries, perhaps, e.g., elements of a separate
content acquisition system that ultimately terminates at a
subscriber’s actual origin servers. As far as the internals of
the CDN are concerned, however, the origin is that service
outside the system boundary from which content is directly
acquired.

Logical Organization

Services, Service Instances, and Machines

As used herein, a “service instance” refers to a process or
set of processes (e.g., long-running or interrupt driven)
running on a single machine. As used herein, the term
“machine” refers to any general purpose or special purpose
computer device including one or more processors, memory,
etc. Those of ordinary skill in the art will realize and
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understand, upon reading this description, that the term
“machine” is not intended to limit the scope of anything
described herein in any way.

One or more service instances (of the same or different
service types) may run on single machine, but a service
instance is the execution of a single service implementation.
As used herein, “service implementation” refers to a par-
ticular version of the software and fixed data that implement
the single service instance. A service or service implemen-
tation may be considered to be a mechanism (e.g., software
and/or hardware, alone or in combination) that runs on a
machine and that provides one or more functionalities or
pieces of functionality.

A service may be a component and may run on one or
more processors or machines. Multiple distinct services may
run, entirely or in part, on the same processor or machine.
The various CD services may thus also be referred to as CD
components.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the term “service”
may refer to a “service instance” of that kind of service.

In some cases, it may be useful or necessary to distinguish
between the code (e.g., software) for a service and an actual
running version of the service. For the sake of this descrip-
tion, the code corresponding to a service is sometimes
referred to as an application or application code for that
service. Those of ordinary skill in the art will realize and
understand, upon reading this description, that a machine
may have code for a particular service (e.g., in a local
storage of that machine) without having that service running
on that machine. Thus, e.g., a machine may have the
application code (software) for a collector service even
though that machine does not have an instance of the
collector service running. The application code for a service
may be CDN resource (i.e., a resource for which the CDN
is the origin).

There is no requirement that services running on a par-
ticular machine be of the same type. There is also no
requirement that the services running on a particular
machine, even if of the same type, be configured in the same
manner, or be the same version. Thus, e.g., a particular
machine may run two collector services, each configured
differently. As another example, a particular machine may
run a reducer service and a collector service.

Categorizing Services

A CDN may, in some aspects, be considered to consist of
a collection of mutually interconnected services of various
types. FIG. 1A depicts an exemplary categorization of major
service types, and divides them into two overlapping cat-
egories, namely infrastructure services and delivery ser-
vices. Infrastructure services may include, e.g., services for
configuration and control (to command and control aspects
of the CDN), and services for data reduction and collection
(to observe aspects of the CDN). These services support the
existence of the delivery services, whose existence may be
considered to be a primary purpose of the overall CDN. In
accordance with an embodiment, the delivery services are
themselves also used as implementation mechanisms in
support of infrastructure services.

Although not required, in preferred CDN implementa-
tions, it will likely be the case that, for most service types,
service instances will not be isolated but will, instead, be
grouped in some manner (e.g., into hierarchies or lattices)
containing multiple instances of that service type. Thus, e.g.,
a CDN may comprise groupings of the various types of
services (e.g., a grouping of control services, a grouping of
reduction services, etc.) These homogenous groupings may
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include homogenous sub-groupings of services of the same
type. Generally, these homogenous groupings form net-
works, generally comprising subnetworks.

Typical interaction patterns and peering relationships
between services of the same and different types impose not
only structure on the topology of a local service neighbor-
hood but also on the topology of interactions between the
homogenous subnetworks. These subnetworks may be inter-
nally connected or consist of isolated smaller subnetworks.
In general, for service type T, this description will refer to
the T network as that subnetwork of the CDN consisting of
all service instances of type T, regardless of whether or not
the corresponding subnetworks of type T are actually inter-
connected. Thus, e.g., the rendezvous network (for the
rendezvous service type) refers to the subnetwork of the
CDN consisting of all rendezvous service instances, regard-
less of whether or not the corresponding rendezvous service
subnetworks are actually interconnected.

In general, for service type T, as used herein, the “T
service(s)” or “T system” refers to the collection of services
of type T, regardless of whether or how those services are
connected. Thus, e.g., the “reducer services” refers to the
collection of CD services of the CDN consisting of all
reducer service instances, regardless of whether or not the
corresponding reducer services (or service instances) are
actually connected, and, if connected, regardless of how they
are connected. Similarly, e.g., the “collector system” refers
to the collection of CD services of the CDN consisting of all
collector service instances, regardless of whether or not the
corresponding collector services (or service instances) are
actually connected, and, if connected, regardless of how they
are connected; etc.

As used herein, a particular service of type T running on
one or more machines may also be referred to as a “T” or a
“T mechanism.” Thus a rendezvous service instance running
on one or more machines may also be referred to as a
rendezvous mechanism; a control service instance running
on one or more machines may also be referred to as a
controller or control mechanism; a collecting (or collector)
service instance running on one or more machines may also
be referred to as a collector or collector mechanism; and a
reducer service instance running on one or more machines
may also be referred to as a reducer or reducer mechanism.

It should be appreciated that as a particular machine may
be running more than one kind of service, the naming of a
service instance on a particular machine does not limit the
machine from running other types of services.

Information Types

Each service or kind of service may consume and/or
produce data, and, in addition to being categorized by CDN
functionality (e.g., namely infrastructure services and deliv-
ery services above), a service type may be defined or
categorized by the kind(s) of information it produces and/or
consumes. In one exemplary high-level categorization of
services, services are categorized based on five different
kinds of information that services might produce or consume
are defined, as shown in the following table (Table 1):

TABLE 1

Service Categorization

Category Description

1 (Abstract)
Delivery

Any information that can be delivered from server
to client.
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TABLE 1-continued

Service Categorization

Category Description

2 Configuration  Relatively static policies and parameter settings that
typically originate from outside the network and
constrain the acceptable behavior of the network.
Time-varying instructions, typically generated
within the network, to command specific

service behaviors within the network.

Streams (preferably, continuous) of data that capture
observations, measurements and actual actions
performed by services at specific points

in time and/or space in or around the network.
Cumulative snapshots of stored information
collected over some interval of time and/or

space in or around the network.

3 Control

4 Events

5 State

Each service or kind of service may consume and/or
produce various kinds of data. Operation of each service or
kind of service may depend on control information that
service receives. As part of the operation (normal or other-
wise) of each service or kind of service, a service may
produce information corresponding to events relating to that
service (e.g., an event sequence corresponding to events
relating to that service). For some services or kinds of
services, the data they consume and/or produce may be or
include event data. Each service or kind of service may
obtain state information from other CDN services or com-
ponents and may generate state information for use by other
CDN services or components. Each service may interact
with other services or kinds of services.

FIG. 1B shows a generic CD service instance for each
kind of service in a CDN along with a possible set of
information flows (based on the service categorization in
Table 1 above).

As shown in FIG. 1B, each service instance in a CDN may
consume (take in) control information (denoted CTRL in the
drawing) and may produce (e.g., emit or provide) control
information as an output (denoted CTRL' in the drawing).
Each service instance may consume state information (de-
noted S in the drawing) and may produce state information
(denoted S' in the drawing) as an output. Each service
instance may consume events (denoted E in the drawing)
and may produce events (denoted E' in the drawing). Each
service instance may consume configuration information
(denoted CFIG in the drawing) and may produce configu-
ration information (denoted CFIG' in the drawing). Each
service instance may consume delivery information (de-
noted D in the drawing) and may produce delivery infor-
mation (denoted D' in the drawing).

It should be appreciated that not every service instance or
kind of service instance needs to consume each kind of input
(control, state, events, config, etc.) or to produce each kind
of output. Furthermore, it should be appreciated that not
every service instance needs to use or transform or modify
any/all of its inputs (e.g., a service endpoint may pass
information through without transformation of that informa-
tion). So, e.g., with reference to FIG. 1B, in some cases
CTRL=CTRL' and/or S=S' and/or E=E', etc.

As used herein, in the context of data consumed or
produced by a service, the term “state” refers to “state
information,” the term “events” refers to “events informa-
tion,” the term “config.” (or “configuration”) refers to “con-
figuration information,” and the term “control” refers to
“control information.” When used in the context of configu-
ration information, the word “configuration” is sometimes
abbreviated herein to “config” (without a period at the end
of the word).
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A producer of a certain kind of information is referred to
as a “source” of that kind of information, and a consumer of
a certain kind of information is referred to as a “sink™ of that
kind of information. Thus, e.g., a producer of state (or state
information) may be referred to as a “state source,” a
producer of configuration information may be referred to as
a “config source,” etc.; a consumer of state may be referred
to as a “state sink,” a consumer of configuration information
may be referred to as a “config sink,” and so on.

Considering possible combinations of information flows
provides a number of different ways to categorize services.
A set of trivial service types (shown in FIG. 1C) may be
defined by constraining each service to have one kind of
information flow in one direction (i.e., to be a source or a
sink of one kind of information). The five information
categories delivery, configuration, control, events, and state
(Table 1 above), give the ten trivial service types shown in
FIG. 1C.

Using these trivial service types (FIG. 1C) as the basis,
typical combinations of flows expected to occur in CD
services may be defined, leading to the exemplary defini-
tion/taxonomy of the infrastructure services and (primary)
delivery services shown in FIG. 1D. As shown in the
drawing in FIG. 1D, CD services may be categorized as
delivery sources and/or delivery sinks. A delivery source
may be a config source, a control source, an event source,
and/or a state source. A delivery source that is a config
source is a delivery source of config information; a delivery
source that is a control source is a delivery source of control
information, a delivery source that is an event source is a
delivery source of event information, and a delivery source
that is a state source is a delivery source of state information.

A delivery sink may be a config sink, a control sink, an
event sink, and/or a state sink. A delivery sink that is a config
sink is a delivery sink of config information; a delivery sink
that is a control sink is a delivery sink of control information,
a delivery sink that is an event sink is a delivery sink of event
information, and a delivery sink that is a state sink is a
delivery sink of state information.

A minimal CD service is an event source and a control
sink. That is, a minimal CD service is a delivery source of
event information and a delivery sink of control information.

A (primary) delivery service is a minimal CD service (and
thus inherits the taxonomic properties of a minimal CD
service).

Thus, a configuration service may be categorized, accord-
ing to the taxonomy in FIG. 1D, as a config source, and a
config sink. A configuration service may also be categorized
as a minimal CD service, whereby it is also categorized as
an event source and a control sink. A configuration service
is a delivery source (of config information) and a delivery
sink of config information.

A control service may be categorized, according to the
taxonomy in FIG. 1D, as a minimal CD service (and thereby
an event source and a control sink), as a config sink, and as
a control source. A control service is a delivery sink of config
information and a delivery source of control information.

A reducer service may be categorized, according to the
taxonomy in FIG. 1D, as a minimal CD service (and thereby
an event source and a control sink), and as an event sink. A
collector service may be categorized, according to the tax-
onomy in FIG. 1D, as a minimal CD service (and thereby an
event source and a control sink), and as an event sink, a state
source, and a state sink.

Caching services, rendezvous services, object distribution
services, and compute distribution services are each (pri-
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mary) delivery services, and are therefore minimal CD
services, according to the exemplary taxonomy in FIG. 1D.

As may be seen from the diagram in FIG. 1D, in some
aspects to be a CD service means to be enmeshed in the
network of other CDN services. The Minimal CD Service in
the diagram is both a Control Sink and an Event Source,
meaning that all CDN services consume control information
and generate events.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that this example
taxonomy shown in FIG. 1D should be taken as a general
guideline for naming services in useful ways that capture
their essential similarities and differences, though it should
not be used to limit the scope of the system in any way.
While the taxonomy captures the names and definitions of
idealized services, it should be appreciated that actual ser-
vice implementations may stray from these constraints for
practical reasons. Most actual infrastructure services will
involve more information exchanges than shown above, for
example. For example, control services may consume state
information from collectors, and primary delivery services
may consume both event streams and collector state. These
variations may be considered subtypes of the versions
shown earlier. A more realistic set of information flows
between the basic CD service types is shown in FIG. 1E
(discussed below). This set of relationships can be consid-
ered as existing between individual services or between
entire subnetworks of homogeneous services (as can be seen
by comparing the diagrams in FIG. 1E and FIG. 1F).

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that several kinds of
delivery services are referred to herein (as noted by the
“Abstract” prefix in “(Abstract) Delivery” above). When not
explicitly stated, the kind of delivery service may be deter-
mined from the context.

The (abstract) delivery service category is an umbrella
term for all information exchanged by services and clients,
reflecting the fact that all services deliver information. This
observation leads to the taxonomy of information flows
shown in FIG. 1G, where each of the other four types of
information (config, control, events, and state) may be
considered as special cases of (abstract) delivery informa-
tion.

Unless stated otherwise or apparent from the context, in
the rest of this description, however, a delivery service refers
to one that is providing one of the (primary) delivery
services that CDN subscribers/customers use (e.g., caching
and rendezvous). Those of ordinary skill in the art will
realize and understand, upon reading this description, that
this distinction is arbitrary, and may change depending on
the set of services offered to subscribers/customers. The
offered set of services need not be limited to the current set
of primary deliver services

The last service variant is (controlled) delivery, referring
to any service that is being controlled by the network. Those
of ordinary skill in the art will realize and understand, upon
reading this description, that it may sometimes be useful to
distinguish the service being controlled from the services
doing the controlling, even though all services in the CDN
are controlled by it.

Logical and Physical Information Flows

Each information flow between two interacting services
will typically have an associated direction (or two). The
direction of arrows in most of illustrations here is intended
to represent the primary direction in which information
flows between a source and a sink, and not the physical path
it takes to get there.
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For example, the left side of FIG. 1H depicts a logical
flow of information across three services (config service to
control service to controlled service). It should be appreci-
ated, however, that the flow depicted in the drawing does not
necessarily imply a direct exchange of information between
the various services. The right side of FIG. 1H shows an
example of an actual path through which information might
flow, involving intermediate delivery networks (in this
example, two specific intermediate delivery networks,
object distribution service(s) for the config information from
the config service to the control service, and caching
service(s) for the control information from the control
service to the controlled service, in this example). It should
also be appreciated that the level of description of the right
side of the FIG. 1H is also a logical representation of the data
paths for the config and control information.

In addition, those of ordinary skill in the art will realize
and understand, upon reading this description, that whether
logical or physical, information flow arrows usually do not
specify any protocol(s) involved for the information
exchange or which side initiates the conversation. Multiple
protocols are conceivable and are contemplated herein, and,
in many cases, the same application level protocol could be
applied in multiple ways, e.g., where either side may push or
pull. An exception to this is when a particular protocol is
itself a defining feature of a service (for example, as may be
the case with primary delivery services).

Example CDNs

In some aspects, a CDN may be considered to exist in the
context of a collection of origin servers provided by (or for)
subscribers of the CDN service, a set of end-user clients of
the content provided by subscribers through the CDN, a set
of internal tools (e.g., tools that provision, configure, and
monitor subscriber properties), an internal public-key infra-
structure, and a set of tools provided for use by subscribers
for direct (“self-service”) configuration and monitoring of
the service to which they are subscribing (see, e.g., FIG. 11).
It should be appreciated that not every CDN need have all
of these elements, services, or components.

For the purposes of this description, all services on the
edge of and within the CDN cloud shown in FIG. 1] may be
considered part of an exemplary CDN. These services may
be distinguished from those outside the boundary in that
they are themselves configured and controlled by other
services within the CDN.

A CDN may thus be considered to be a collection of
interacting and interconnected (or enmeshed) services (or
service instances), along with associated configuration and
state information. FIG. 1J depicts a logical overview of an
exemplary CDN 1000 which includes services 1002, con-
figuration information 1004, and state information 1006.

The services 1002 may be categorized or grouped based
on their roles or the kind(s) of service(s) they provided (e.g.,
as shown in FIG. 1A). For example, as shown in FIG. 1], an
exemplary CDN 1000 may include configuration services
1008, control services 1010, collector services 1012, reducer
services 1014, and primary delivery services 1016. Recall
that, as used herein, for service type T, as used herein, the
phrase “T services” refers to the collection of services of
type T, regardless of whether or how those services are
connected. Thus, e.g., the reducer services 1014 refer to the
collection of all reducer service instances, regardless of
whether the corresponding reducer service instances are
actually connected, and, if connected, regardless of how they
are connected.

The configuration services 1008 may include, e.g., ser-
vices for configuration validation, control resource genera-
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tion, etc. The control services 1010 may include, e.g.,
services for control resource distribution, localized feedback
control, etc. The collector services 1012 may include, e.g.,
services for monitoring, analytics, popularity, etc. The
reducer services 1014 may include, e.g., services for log-
ging, monitoring, alarming, analytics, etc. The primary
delivery services 1016 may include, e.g., services for ren-
dezvous, caching, storage compute, etc.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that different and/or
other categorizations of these services may be applied. In
addition, those of ordinary skill in the art will realize and
understand, upon reading this description, that the examples
listed above for the various groups of services are merely
exemplary, and that any particular category may include
different and/or other services.

Roles and Flavors

The various CD services that a particular machine is
running on behalf of the CDN, or the various roles that a
machine may take on for the CDN, may be referred to as the
flavor of that machine. A machine may have multiple flavors
and, as will be discussed, a machine may change flavors.

Provisioning and configuration of machines is described
in greater detail below.

In some implementations, groups of services (correspond-
ing, e.g., to the services needed by a particular kind of CDN
node) may be named, with the names corresponding, e.g., to
the flavors.

The role(s) that a machine may take or the services that a
machine may provide in a CDN include: caching services,
rendezvous services, controlling services, collecting ser-
vices, and/or reducing services.

As used herein, one or more machines running a caching
service may also be referred to as a cache; one or more
machines running a rendezvous service may also be referred
to as a rendezvous mechanism or system, one or more
machines running control services may also be referred to as
a controller; one or more machines running collecting ser-
vices may also be referred to as a collector or collector
mechanism; and one or more machines running a reducer
services may also be referred to as a reducer or reducer
mechanism.

CD Service Interactions

FIG. 1E shows the logical connectivity and flow of
different kinds of information (event, control, and state
information) between service endpoints of the various ser-
vices or kinds of services of an exemplary CDN (based, e.g.,
on the categorization of services in FIG. 1J). As shown in
FIG. 1E, configuration service instance endpoints (corre-
sponding to configuration services 1008 in FIG. 1J) may
provide configuration information to control service end-
points (corresponding to control services 1010 in FIG. 1J).

Control service instance endpoints may provide control
information (C,) to collector service instance endpoints
(corresponding to collector services 1012 in FIG. 1]), con-
trol information (C,) to reducer service endpoints (corre-
sponding to reducer services 1014 in FIG. 1J), and control
information (C;) to delivery service instance endpoints
(corresponding to all delivery services, including primary
services 1016 in FIG. 1J). Control services endpoints may
also provide control information (C,) to other control ser-
vices endpoints and control information (Cs) to configura-
tion service endpoints. The flow of control information is
shown in the drawing by solid lines denoted with the letter
“C” on each line. It should be appreciated that the letter “C”
is used in the drawing as a label, and is not intended to imply
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any content or that the control information on the different
lines is necessarily the same information.

As also shown in FIG. 1E, configuration service end-
points, control service endpoints, collector service end-
points, reducer service endpoints, and services endpoints,
may each provide event data to reducer service endpoints.
Reducer service endpoints may consume event data from the
various service endpoints (including other reducer service
endpoints) and may provide event data to collector service
endpoints. The flow of event information is shown in the
drawing by dotted lines denoted with the letter “E” on each
line. It should be appreciated that the letter “E” is used in the
drawing as a label, and is not intended to imply any content
or that the event information on the different lines is nec-
essarily the same event information.

Various components (i.e., service endpoints) may con-
sume and/or produce state information. For example, col-
lector service endpoints may produce state information for
other service endpoints, e.g., state information S, for reducer
service endpoints, state information S, for configuration
services endpoints, state information S; for control service
endpoints, state information S, for collector service end-
points, and state information S, for delivery service end-
points. The flow of state information is shown in the drawing
by dot-dash lines denoted with the letter “S” on each line. It
should be appreciated that the letter “S” is used in the
drawing as a label, and is not intended to imply any content
or that the state information on the different lines is neces-
sarily the same state information.

As can be seen from the flow of information (event data,
control data, and state data) in the diagram in FIG. 1E,
various services or components of the CDN can provide
feedback to other services or components. Such feedback
may be based, e.g., on event information produced by the
components. The CDN (services and components) may use
such feedback to configure and control CDN operation, at
both a local and a global level.

FIG. 1K shows aspects of the flow in FIG. 1E (without the
configuration services, with various flow lines removed and
with some of the branches relabeled in order to aid this
discussion). As shown in FIG. 1K, a particular service
endpoint 1016-A may provide event data (E) to a reducer
endpoint service 1014-A. The reducer endpoint service may
use this event data (and possibly other event data (E"), e.g.,
from other components/services) to provide event data (E")
to collector endpoint service 1012-A. Collector service
1012-A may use event data (E") provided by the reducer
endpoint service 1014-A to provide state information (S) to
a control endpoint service 1010-A as well as state informa-
tion (denoted S local) to the service endpoint 1016-A. FIG.
1K shows particular components/endpoints (a service end-
point) in order to demonstrate localized feedback. It should
be appreciated, however, that each type of service endpoint
(e.g., control, collector, reducer) may provide information to
other components/service endpoints of the same type as well
as to other components/service endpoints of other types, so
that the control feedback provided to the service endpoints
may have been determined based on state and event infor-
mation from other components/service endpoints.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the information
flow (and thus any feedback loops) shown in FIGS. 1E and
1K may apply equally at local and global levels, and may
apply to any and all CDN services and components. Thus, as
shown in FIG. 1L, information may flow between the
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various CDN components shown in FIG. 1J in the same
manner as information flows between service instance end-
points.

Event information from each kind of service may be
provided to reducer services 1014 from each of the other
kinds of services. The reducer services 1014 may provide
event information to the collector services 1012. Based at
least in part on event information provided by the reducer
services 1014, the collector services 1012, in turn, may
provide state information to control services 1010, configu-
ration services 1008, reducer services 1014, and primary
services 1016. Based at least in part on state information
provided by collector services 1012, the control services
1010 may provide control information to the other services.

FIG. 1E shows canonical service interactions between
individual service instances of various types, whereas FIG.
1L shows interactions and information flows between
groups of services of the same type or between classes of
service types. It should therefore be appreciated that various
boxes (labeled 1008, 1010, 1012, 1014, and 1016) in FIG.
1L may represent multiple services/components of that type.

The endpoints of each kind of service (caches, rendez-
vous, collectors, reducers, control) may be organized in
various ways. In general, the endpoints of each kind of
service form a network comprising one or more sub-net-
works of those endpoints. Thus, a CDN may include at least
one cache network of cache services, at least one rendezvous
network of rendezvous services, at least one collector net-
work of collector services, at least one reducer network of
reducer services, and at least one control network of control
services. Each of these networks may be made up of one or
more sub-networks of the same type of services. The con-
figurations and topologies of the various networks may be
dynamic and may differ for different services. Those of
ordinary skill in the art will realize and understand, upon
reading this description, that a CDN need not have all of the
kinds of services listed or described here.

Each box showing services in FIG. 1L (i.e., boxes labeled
1008, 1010, 1012, 1014, and 1016) may, e.g., comprise a
network (one or more subnetworks) of services or compo-
nents or machines providing those services.

Thus, e.g., the box labeled reducer services 1014 may
comprise a network of reducers (or machines or components
providing reducer services). That is, the reducer services
1014 may comprise a reducer network (one or more sub-
networks) of reducer services, being those subnetworks of
the CDN consisting of all service instances of type “reduce.”

Similarly, the box labeled collector services 1012 may
comprise a network of collectors (or machines or compo-
nents providing collector services). That is, the collector
services 1012 may comprise a network (one or more sub-
networks) of collector services (the collector network),
being those subnetworks of the CDN consisting of all
service instances of type “collector.” Similarly, control ser-
vices 1010 may comprise a control network (one or more
subnetworks) of control services, being those subnetworks
of the CDN consisting of all service instances of type
“control.” Similarly, config services 1008 may comprise a
config network (one or more subnetworks) of config ser-
vices, being those subnetworks of the CDN consisting of all
service instances of type “config,” and similarly, the delivery
services 1016 (which includes cache services and rendez-
vous services) may comprise a network (one or more
subnetworks) of such services. FIG. 1F shows exemplary
information flows between homogeneous service-type net-
works.
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Thus, event information may flow from any delivery
service (1016) via a network of reducer services 1014 to a
network of collector services 1012. Any of the reducer
services in the network of reducer services 1014 may
provide event information to any of the collector services in
the network of collector services 1012. Any of the collector
services in the network of collector services 1012 may
provide state information to any of the reducer services 1014
and to control services 1010.

Thus are provided various feedback loops that, in an
embodiment, operate in real time to control the various
services.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that, as used herein, the
term “real time” means near real time or sufficiently real
time. It should be appreciated that there are inherent delays
built in to the CDN (e.g., based on network traffic and
distances), and these delays may cause delays in data
reaching various components Inherent delays in the system
do not change the real-time nature of the data. In some cases,
the term “real-time data” may refer to data obtained in
sufficient time to make the data useful in providing feed-
back.

Although the term “real time” has been used here, it
should be appreciated that the system is not limited by this
term or by how much time is actually taken for data to have
an effect on control information. In some cases, real time
computation may refer to an online computation, i.e., a
computation which produces its answer(s) as data arrive, and
generally keeps up with continuously arriving data. The term
“online” computation is compared to an “offline” or “batch”
computation.

Hybrid Services

Although services are generally described as having one
role (e.g., delivery, rendezvous, collector, reducer, etc.),
those of ordinary skill in the art will realize and understand,
upon reading this description, that hybrid services may be
formed by combining the functionality of various services.
Hybrid services may be formed from services of different
types or of the same type. For example, a hybrid service may
be formed from a reducer service and a collector service.
Hybrid services may be formed from one or more other
services, including other hybrid services. Each device may
run one or more services, including one or more hybrid
services.

Events & Event Information

As noted, each service may produce information corre-
sponding to events relating to that service (e.g., an event
sequence corresponding to events relating to that service).
An event is information (e.g., an occurrence) associated with
an entity and an associated (local) time for that information.
Thus, at a local level, i.e., at an entity (e.g., service or device
or machine) that produces an event, an event may be
considered as a <time, information> pair. An event stream is
an ordered list of events, preferably time ordered, or at least
partially time ordered. The time associated with an event is,
at least initially, presumed to be the time on the entity on
which that event occurred or a time on the entity on which
the information associated with that event was current, as
determined using a local clock on or associated with that
entity. Events in event streams preferably include some form
of identification of the origin or source of the event (e.g., an
identification of the entity originally producing the event).
Thus, outside of the entity that produces an event, an event
may be considered as a tuple <entity ID; time, information>,
where “entity ID” identifies the entity that produced the
event specified in the “information™ at the local time speci-
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fied by the “time” field. Preferably the entity ID uniquely
identifies the entity (e.g., a service instance) within the
CDN. The time value is time at which the event occurred (or
the information was generated), as determined by the entity.
That is, the time value is a local time of the event at the
entity. In preferred implementations, local time is considered
to be coordinated universal time (UTC) for all CDN entities/
services.

The information associated with an event may include
information about the status of an entity (e.g., load infor-
mation, etc.), information about the health of an entity (e.g.,
hardware status, etc.), information about operation of the
entity in connection with its role in the CDN (e.g., in the case
of a server, what content it has been requested to serve, what
content it has served, how much of particular content it
served, what content has been requested from a peer, etc.,
and in the case of a DNS service, what name resolutions it
has been requested to make, etc.), etc. Those of ordinary
skill in the art will realize and understand, upon reading this
description, that different and/or other occurrences or items
of information may be included in events.

An event stream is a sequence of events, preferably
ordered. Streams are generally considered to be never end-
ing, in that they have a starting point but no assumed
endpoint.

Service Management

Service management involves a set of mechanisms
through which instances of service types are installed and
launched on specific machines, preferably in response to
signals (control information) from the control network.
Provisioning and Configuration

With reference to the drawing in FIG. 2A, a machine 300
has core programs 302 which may include an operating
system (OS) kernel 304 and possibly other core programs
306. The computer 300 may run or support one or more
services 308, denoted SO, S1 . . . Sk in the drawing. For
example, a particular computer may run one or more of:
reducer services, collector services, caching services, ren-
dezvous services, monitoring services, etc.

Autognome and Repoman

Each machine is preferably initially configured with at
least sufficient core program(s) 302 and at least one provi-
sioning service SO (i.e., the application code for at least one
provisioning service S0) to enable initial provisioning of the
machine within the CDN. The provisioning service SO may
then be used to provision the machine, both for initial
provisioning and, potentially, for ongoing provisioning, con-
figuration and reconfiguration.

In some cases the configuration/provisioning service SO
may also be referred to herein as “Autognome.” Autognome
(S0) is a preferably lightweight service, running on all CDN
machines, that provides part of a system for autonomic
control of the network. The phrase “autonomic control”
refers to changes in behavior that occur spontaneously as a
result of stimuli internal to the network, as opposed to
control driven from conscious, manual, knob-turning and the
like. At the level of individual machines providing services
in the CDN, autonomic control involves continuous reaction
to service reconfiguration commands generated elsewhere in
the network (e.g., by control nodes), and Autognome is the
service that implements this reaction. It should be appreci-
ated that while the system may use autonomic control, this
does not preclude the use of manual control, e.g., by network
operators. It should be appreciated that, as used here, auto-
nomic may also refer to there being no requirement for a
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human to intervene on a particular machine to effect a
configuration change even if the change was commanded by
some human intervention elsewhere (e.g., somewhere in the
control network) which causes Autognome to take the
necessary actions autonomously to get into the right con-
figuration.

The Autognome (SO) relies on another service (referred to
here as “Repoman” or RO) to provide the assets (e.g., the
software) Autognome needs to install. The Repoman service
(RO) provides the ability to publish and retrieve the software
artifacts needed for a specific version of any service type
implementation, along with dependency information
between services and metadata about each service version’s
state machine. A service version is generally defined by a list
of artifacts to install, a method for installing them, and a set
of other services that need to be installed (or that cannot be
installed) on the same machine. The state machine defines a
list of states with commands that Autognome (S0) can issue
to move the service from one state to another. Most services
will have at least two states reflecting whether the service is
stopped or running, but some services may have more.
Service and Constellation States

Each service has a hierarchy of state values, including a
single service-level state, an endpoint-level state for each
unique endpoint it listens to, and a state per layer per
terminal request collection (defined below) that it responds
to. The value of each of these state variables is taken from
a discrete set of states that depends on the type of state
variable, the type of service, and the service implementation
that the service instance is running.

A service can be commanded to a different state (at the
service level, endpoint, or request collection level) either via
an argument in the command that launches the service, via
control information retrieved by the service directly from the
control network, or via a command issued directly from
Autognome or some other agent to the service. Service states
may also change as a side effect of normal request process-
ing. The actual mechanisms available, and the meaning of
different states are dependent on the service type. Autog-
nome, however, preferably only attempts to control service
level state of a service.

The ability of Autognome to probe current states locally
may be limited and depend on what has been designed into
the service implementation, and in some cases the only
reliable feedback loop will be from error signals based on
external monitoring received via Autognome’s control feed.

Service constellations may also have state machines,
either defined implicitly by the set of state machines for all
services in the constellation (where the state of the constel-
lation is the vector of states for each of the services), or
defined explicitly. Explicitly defined state machines at the
constellation level are useful when not all combinations of
sub-states make sense, and/or when there is coordination
needed between state transitions across multiple services.

In general, the top-level state machine operated by Autog-
nome may correspond to a hierarchy of state machines, each
of which may be internally hierarchical and probabilistic. In
the probabilistic case, commands issued by Autognome are
known only to put the service in some target state with some
probability, and probes update the probability distribution
based on observations and the believed prior probability.
Autognome tracks the state of each service as the most
probable state based on its history of commands and the
result of probes.

Since the services on a machine can be modified (e.g.,
stopped, started, etc.) on the fly, each CD service preferably
accepts options to start, and stop. CD services may also
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accept options to restart (stop and then start), check, update,
and query. The actual set of options depends on the service
level state machine configured for that service implementa-
tion.

Service Constellations, Flavors, and Roles

A service constellation refers to an identifiable collection
of service specifications, where each service specification
defines the software artifact versions required and the state
machine of the service (a list of states, executable transitions
between states, and executable state probes that Autognome
can use to measure and control service state). A service
collection may be named.

Although service constellations can be defined on the fly,
in some cases it may be useful to define them in advance and
give them names. The term “flavor” is used herein to refer
to such a named service constellation. A flavor may be
considered to be shorthand for a symbolically named service
constellation.

A service specification may also specify additional
required services or service constellations. An Autognome
configuration preferably specifies a list of one or more
constellations, and optionally, a list of service-specific
states. Autognome’s job is to install all dependencies (in-
cluding unmentioned but implicitly required service con-
stellations or services), launch the necessary services, and
usher them through to their specified end states.

A machine may also have multiple roles, each of which
represents the machine’s functional role and its relationships
to other machines in one or more larger subnetworks of
machines. Each role maps to a service constellation (or
flavor) expected of machines performing that role in a
particular kind of network. Thus a machine’s flavors or
service constellations may, in some cases, be influenced
indirectly by the roles it performs.

While a single machine can be instructed to have multiple
roles, flavors, and service constellations, it should be appre-
ciated that roles and flavors ultimately reduce to service
constellations, and that the composition of multiple service
constellations is itself a service constellation. Therefore,
there is one service constellation that represents the set of
services running on a machine at any given time, and this
service constellation is computed dynamically from the
initial list of roles, flavors, and/or constellations Autognome
is configured to launch. This computation may be performed
partly by repoman and partly by Autognome. Due to the way
service constellations are computed and the dynamic nature
of the inputs, the ultimate service constellation launched on
a machine may not necessarily correspond exactly to any
preconfigured service constellation, role, or flavor.
Autognome’s View of Services

Autognome has an abstract view of services and constel-
lations (groups) of services. The definition of services,
constellations, and their associated state machines is defined
elsewhere (most likely in the configuration network, with
references to specific software package bundles needed for
specific services, which would be retrieved from Repoman).
A state machine for a service defines a discrete set of states
with commands for transitioning between specific states. In
addition, routes may be defined to map indirect state tran-
sitions into direct, next-hop state transitions. Commands for
state transitions would have rate-limiting delays associated
with them, and an additional set of state-dependent com-
mands would be defined to allow autognome to probe for the
current value of a service state (which could result in some
local action or could result in a request to a remote service,
like a collector, that is observing the effects of services
running on this machine).
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All state probe and transition commands are assumed to
be idempotent if successful, but not guaranteed to be suc-
cessful. In other words, any number of commands (with
appropriate delays) specified to move a service from state A
to state B must either leave it in state A or put it in state B
and have no effect if the service is neither in state A nor in
B. Autognome should also assume that services can spuri-
ously change state in response to other stimuli other than
Autognome commands. Whether or not active state moni-
toring is the responsibility of an Autognome instance (or
whether that monitoring is done by some other agent and the
results fed back into Autognome’s configuration) is variable,
depending on the configuration of that Autognome instance
(which might depend on the nature of the services to be
monitored).

Each service’s state machine as viewed by Autognome is
expected to be an abstraction of a more detailed internal
state, and it is a service design and implementation decision
as to how much of this internal state must be represented to
Autognome, how much more might be represented in inter-
nal states visible to the control network but not to Autog-
nome, and how much variation is purely internal to the
service. Thus the number of states in the Autognome view of
a service is arbitrary as far as autognome is concerned but
likely to be small (usually two).

As a corollary to all this, autognome does not care
whether a service corresponds to a single process or many
processes, since its interaction with services is done in terms
of state probe and state transition commands that it is given.
This also leads to the notion that a “service” could be defined
as a collection of subservices, with a state machine that is
based on the states of subservices. This aspect would be
useful (though not necessarily) built into autognome in order
to enable the probing of a certain composite state to be
defined as probing a list of sub services for their individual
states, and similarly for state transitions.

A Service’s View of Autognome

Services may, but need not know, anything about the
existence of autognome. As such, services that are devel-
oped outside of the framework may be integrated with it. A
service’s configuration must define the state machine
abstraction of the actual service implementation along with
other dependency information.

Autognome Vs. Control Services

Autognome exerts a controlling influence on the services
it launches, but Autognome itself is not defined as a control
service. It should be appreciated that this is a matter of
definition and does not affect that manner in which Autog-
nome or the control services operate.

Configuration Levels

Configuration may occur at multiple levels on any given
machine, from the relatively static platform installation (e.g.,
initiated out-of-band) to the highly dynamic (re)configura-
tion of a constellation of running services. The function of
Autognome (SO) may be described with respect to layers or
levels of operation of a machine, and with reference to FIG.
2B.

Configuration Level O (Platform Provisioning)

Level 0 is assumed to exist and to have been configured
in advance in the initial provisioning of the system, out-of-
band with respect to Autognome (S0). The existence of some
version of Autognome itself is preferably established as a
service as part of Level O (this version of Autognome is
denoted service SO in FIG. 2A). The only requirements of
Level O (other than the presence of some version of Autog-
nome) are the platform facilities needed to run Autognome
and any platform configurations which Autognome is not
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able or allowed to alter dynamically (e.g., at least some core
programs 302, likely to include the base OS distribution and
a particular kernel 304 and set of kernel parameters, though
kernel changes could also be initiated by Autognome).

Configuration Level 1 (Autognome) Self-Reconfiguration

The set of software installation steps that constitute for-
mation of Level 0 is essentially arbitrary, limited only by
what the current installation of Autognome is able and
authorized to change. Anything that Autognome is unable or
unauthorized to change falls within Layer 0, with the excep-
tion of Autognome itself (which must be initially installed in
Level 0 but may be changed in Level 1).

Level 1 establishes the configuration of Autognome itself.
Once initially installed (established) in Level 0, Autognome
can reconfigure itself to run any version older or newer than
the currently installed version on the machine, and other
Autognome parameters can be dynamically adjusted.

Configuration Level 2 (Service Provisioning)

Level 2 (Service Provisioning) establishes the other ser-
vices (S1 ... Sk in FIG. 2A) that need to be active on the
machine and their initial configuration environments. Part of
Autognome’s configuration is also the constellation of ser-
vices to run. With reference to FIG. 2C, Autognome may
implement Level 2 by retrieving the necessary software
artifacts or packages from Repoman and installing them on
the machine.

Each service may have dependencies on other services
and on elements of lower layers, so establishing a particular
set of services may involve both destructive changes to the
current configuration (stopping services, uninstalling pack-
ages) as well as constructive changes (installing packages,
(re)starting services) for both the explicitly mentioned ser-
vices and for other dependencies. Certain services may
support additional commands that Autognome can issue
without restarting the services. These commands may
involve writing files or issuing direct requests (e.g., via
HTTP or other protocols) to local services.

Configuration Level 3 (Service Instantiation)

In Configuration Level 3 Autognome’s next responsibility
is to stop and start services, provide initial service configu-
rations to enable them to reconfigure themselves later, and
guide them into their target states as specified by the service
constellation.

Level 4 (Service Reconfiguration)

Level 4 (Service Reconfiguration) refers to service spe-
cific dynamic configuration that falls outside the scope of
Autognome’s actions in Layer 2. Services are assumed to act
on additional (re)configuration commands (e.g., from con-
trol resources pulled from the control mechanism, or from
other sources) as appropriate for the service. For example, a
cache service may autonomously consume control resources
from the control mechanism and thereby adjust its behavior
dynamically, without any knowledge of or involvement
from Autognome. Autognome has no role in this layer, and
it is mentioned here to clarify the fact that Autognome need
not be the source of all configuration information, nor need
it be the impetus for all dynamic configuration changes.
Autognome’s focus is on the configuration of services
running on a machine, and on the service-specific state of
each service.

Configuration Monitoring

All Autognome actions regarding configuration state
changes may be logged as events to an appropriate reducer
service, provided Autognome is configured to do so. These
event streams can be reduced in the usual fashion to get
global, real-time feedback on the changes taking place in the
network.
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Health and Load Monitoring

Autognome is preferably implemented as a small service
with a few simple functions—to install, start, probe, and stop
services. Autognome’s ability to monitor service state may
be limited to its ability to execute configured probe com-
mands that allow it to infer the state of each service on the
machine at any time (or the probability of being in each
state), and it reports only service level state and configura-
tion changes. This level of monitoring is sufficient for
autognome but typically not sufficient for general health and
load monitoring. When more elaborate monitoring function-
ality is needed (as it often will be), additional services whose
sole purpose is monitoring may be added to the service
constellation, and autognome will take care of installing and
running them. Such services will typically provide their
monitoring data in the form of events delivered to reducers.
In addition, each service running on the machine (including
autognome) will typically provide its own event stream that
can also be used as a source of monitoring data.

It should thus be appreciated that Autognome is itself a
service instance (see FIG. 1B), and, as such may take
control, state and event information as inputs, and may
produce control, state and event information as outputs.
Autognome corresponds, e.g., to a service 1016-A in FIG.
1K. Thus, as shown in FIG. 2D, an Autognome service
(S0-A) may take as input control information (C) from
control endpoints and produce event information (E) to be
provided to reducer endpoint(s).

It should be appreciated that Autognome need not directly
provide any additional monitoring functionality of the ser-
vices it launches, other than the service state changes just
described. When such functionality is needed (as it typically
will be), additional services whose sole purpose is monitor-
ing may be added to the service constellation, and Autog-
nome will take care of installing and running them.

Auto(g)nomic Adapters

An autonomic adapter is an adapter that may be provided
between Autognome and a foreign service component that
does not support the interface expected by Autognome, at
least with respect to the manner in which configuration
updates and state changes work (a non-CD service). The
adaptor makes the non-CD service look like a service to
Autognome at least with respect to configuration updates
and state changes. The composition of the foreign service
component and the autonomic adapter results in a CD-
service, thereby allowing software components that were not
designed to be enmeshed as a CD-service to be enmeshed.
The adapter is able to retrieve configuration updates, launch
the service, and report service state changes by reading and
writing files, setting environment variables, and running
other commands that the foreign service component pro-
vides.

Object Distribution

Introduction to Object Distribution

The network of object distribution services provides dis-
tributed namespaces of versioned objects. An object in this
context is a mapping from a key or identity in some
namespace to a set of versioned values. Objects are distrib-
uted in the sense that two object service nodes (simply
“nodes”) may concurrently read or write the same object,
and as a result, an object may have conflicting values in
different parts of the network or even conflicting value
versions for the same object at one location. The function of
the object distribution network is to distribute object updates
to all connected nodes in a way that preserves the partial
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order of all updates and achieves eventual consistency
between all nodes, including support for implicit values,
automatic conflict resolution, and derived objects.

The initial purpose of the object distribution network is to
provide a substrate for implementation of other CD services
(such as configuration and control services), but instances of
the same service could potentially be used as delivery
services for subscriber applications.

Cohorts and Namespaces

The structure of an object services network is defined by
the set of cohorts and namespaces involved in the network.
A cohort is a collection of nodes representing a connected
graph, where there is a direct or indirect communication path
from each node in the cohort to each other node in the cohort
involving only nodes in that cohort. In addition, each node
in the cohort knows the identity of each other cohort node in
that cohort for the purpose of interpreting vector-clock based
versions. Nodes may participate in multiple cohorts.

A namespace is a distributed mapping from object iden-
tifiers to versioned values. Each node is aware of some set
of namespaces and may have different rights to access
objects in each namespace. Each object exists in exactly one
namespace and is addressable with an identifier that
uniquely identifies the object in that namespace. Other
distinct keys that uniquely identify the object are also
possible (i.e., there may be more than one way to name the
same object in one namespace).

The cohort and namespace assignments of each node are
defined by the node’s configuration, which may change
dynamically. The set of cohort assignments at any given
time implies a cohort graph, where one cohort may be
connected to another via the set of nodes common to both
cohorts.

Causal Buffering

To avoid having vector clock sizes grow with the total
number of object service nodes in the network, vector clocks
may be translated as object updates across cohort boundaries
using a technique called causal buffering. In causal buffer-
ing, all of the updates originating from nodes in a different
cohort look as if they were made either by one of the nodes
in the local cohort or by a one of a set of nodes that is
proportional in size to the number of neighboring cohorts,
not the total size of the network. Nodes on cohort boundaries
translate updates in a way that hides the node identifiers of
nodes in remote cohorts, improving scalability. This also
imposes some constraints on the interconnection topology of
cohorts, to prevent the same update from arriving in one
cohort from two different directions under two different
aliases that might not be properly orderable.

History and Incremental Delivery

The system may provide a built-in facility for object
version history, maintaining some amount of history from
the current (possibly conflicting) version frontier to some
older version, and using this to support incremental delivery
when requested for objects that support it and when there is
adequate history, otherwise defaulting to absolute delivery.
Automatic Conflict Resolution

The system may provide a built in facility for defining
conflict resolution scripts based on object type. Such a
facility would be used, e.g., for control and invalidation
manifests (discussed below).

Derived Objects

The system may provide a built in facility for configurable
generation of new versions of objects based on the values of
dependency object(s), with support for derivation peering
across a set of object service peers. FIG. 28 shows an
example of derived objects.
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Trusted and Untrusted Values
The system may use knowledge about compromised
nodes (where a node is believed to have been compromised
from times T1 to T2) to find all object versions that are
causally affected by values that originated in the compro-
mised interval.

Compute Distribution

Introduction to Compute Distribution

The compute distribution service is a network of configu-
rable application containers that define computations in
response to requests (usually over HTTP). As with other
services, request collections define mappings from actual
requests to underlying behaviors. Each behavior involves
the execution of some program or set of programs based on
inputs derived from the request (including the environment
derived from the request collection lattice as well as other
attributes the scripts may themselves extract from the
request). The program implied by the behavior is executed
in a container according to some invocation style (which
determines the invocation API and callback APIs, where the
APIs may dictate either a buffered or streamed processing
style, for example). In preferred implementations the pro-
grams themselves are assumed to be web resources located
somewhere on the network.

Invocation Protocols

The invocation protocol for a computation defines the
way in which a given request to the computation service
corresponds to calls to underlying entry points in a config-
ured computation. Rather than simply invoke a program in
response to a request and expect the program to determine
what it really needs to re-compute, invocation protocols may
be selected that divide up the process into a number of
stages, not all of which need to be run on each request. Each
invocation protocol should implicitly deal with changes to
the program itself, knowing enough to rerun the whole
process if the program ever changes.

For example, an invocation protocol for a GET request
might partition the computation involved in a request into
the following that can be invoked separately when needed:

1. Computation of the set of input names based on the
request (URL, query string, headers, etc.).

2. Retrieval of the set of input resource values based on
the input resource names (from wherever they are
supposed to come from, which could be a cache or
another compute service).

3. Computation of a new output resource based on the
new states of input resources.

Each invocation protocol implies a set of entry points into
the program that can be executed to perform each step. At
each level there may be expirations or invalidations config-
ured to determine whether or not the previous value for
something is reusable, allowing re-computations to be
avoided unless absolutely necessary.

It should be appreciated that other protocols are conceiv-
able and may be necessary, especially in cases where the
computation of the output resource is best represented as a
stream computation. Such other protocols are contemplated
herein.

Buffered Vs. Stream Computations

In some cases computations may be configured to use a
buffered vs. streamed generator/yield approach.
Engine Isolation

In some cases the system may provide facilities for
controlling the degree of isolation between the execution of
computations assigned to different subscribers.
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Localization

It should be appreciated that, in some cases it may be
useful for computations to return different results depending
on the location of the compute service and/or the location of
the client invoking the compute service. This can be
achieved in various ways, such as via localization of the
definition of the computation based on locality or direct use
of location parameters computed by local collectors or other
compute services in an otherwise location-invariant compu-
tation.

Control Distribution and Invalidation

Introduction to Control Distribution and Invalidation

This section describes how control information produced
by control services is consumed by the services being
controlled. Control information is transported via control
manifests that are evaluated by controlled services to pro-
duce their control trees. Each service instance constructs a
single logical control tree from a root control manifest, and
this control tree either directly includes or indirectly refer-
ences all control information needed by the controlled
service. Periodic re-evaluation of the control tree results in
a continual absorption of new information from the rest of
the network.

This section discusses two related mechanisms used for
the flow of information across the system. For control
resources that all services must consume, control distribu-
tion is the mechanism by which control manifests are
transmitted from originating control service to consuming
service. For other content or resources that flow through the
caching network or through other services that cache infor-
mation on behalf of future requests from other consumers,
invalidation is a mechanism that may be used to manage the
flow. Control distribution is also the means through which
invalidation manifests are themselves distributed, providing
the basic signaling mechanism(s) needed to implement
invalidation.

As used herein, a “control resource” refers to a represen-
tation of a controlling configuration of a service virtual
machine (described below in the section on request process-
ing) that is directly usable by a running service instance.

In general, any service, not just services specifically
providing caching services, may, in effect, be caching infor-
mation for later delivery to other clients, and invalidation
may be a mechanism useful to manage updates to this
information. Such services may be able to arrange to sub-
scribe to invalidation manifests that govern those resources,
provided there is some other service in the network that
generates invalidation commands (to the configuration net-
work) when needed, and the nature of the origin of those
resources is such that the invalidation mechanism can handle
it. For all other control information (including invalidation
manifests themselves), subscribing to control manifests
delivered via the basic control notification mechanism and
pulling resources when necessary is preferable.
Implications of Distributed Configuration and Control

The design of preferred embodiments of the system for
configuration and control represents a conscious choice to
sacrifice consistency in order to optimize availability and
tolerate network partitions. This means there are no global
transactions, and concurrent updates to the “same” object in
two different locations are possible. This in turn results in
unavoidable conflicts that the system must detect and
resolve, in most cases automatically. Subject to certain
assumptions on the maximum number of concurrent com-
ponent failures, the overall system can and will guarantee,
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however, that updates are never lost once they have entered
the system, and that the evolving state of the system will
respect the partial causal ordering of distributed events
(which defines which updates are conflicts and which are
not). Configuration objects and control resources are
examples of distributed objects with distributed state subject
to these very guarantees (or lack thereof).

Each service must consume control resources specifying
its local configuration. A distributed sub-network of con-
figuration and control services is responsible for managing
updates to original configuration objects and transforming
those objects and other data into control resources. Control
services are, in effect, origin servers providing control
resources to the rest of the CDN.

A controlled service may get its control resources directly
from a control service origin or from an intermediate deliv-
ery agent, such as a cache. Which source it uses at any given
time will be determined by the controlled service’s current
configuration (which is based on its past consumption of
earlier control resources and may change dynamically).
Control resources flowing through a caching network may
be subject to invalidation, like all other resources that might
flow through a caching network, but control resources are
also the means through which instructions about invalida-
tion are communicated to the caching network.

Control Notification Vs. Invalidation

The basic function of the control services network is to
provide readable control resources that tell services what
their configuration is. It is assumed herein that all services
consume their configuration by reading a single root
resource intended for them (the binding to which was
established by the consumer’s initial configuration and iden-
tity). The root resource represents a tree of control informa-
tion containing data or metadata sufficient to lead the service
to all other control resources it might need. The transfer of
this information from control service to controlled service is
the basic function of control notification.

Given that services are identified and registered with the
control network in advance, either the controlling service or
the controlled service could initiate the transfer of a new root
resource. For example, the method may be one where the
client initiates a request to a control service on a periodic
basis, where the period is established (and changes dynami-
cally) based on the expiration time of the root resource, or
on a separate configuration period that is defined somewhere
in the control resource tree.

As each service reads and consumes the tree of control
resources, it interprets the control tree as a set of updates on
its internal state in order to change how it should behave in
the future. How this is done, what the control tree looks like,
and what internal state is affected may be service specific,
though all services must implement control tree evaluation
to some degree as described in general terms below. The
internal control state representation of the consumed control
resource is referred to herein as the working control copy of
that resource, though it is not necessarily a contiguous copy
of the bytes of the control resource but refers to the effect of
“loading” the control resource and thereby modifying the
behavior of the service. A service’s control tree is the
working control copy of its root control manifest combined
with all other control information it needs.

Caches are particular examples of content delivery ser-
vices that store and forward essentially literal copies of
resources from origins (or intermediate caches) to clients
(which could also be other caches, other content delivery
services, or external clients). Cache-invalidation is the mark-
ing of such cached literal copies stored locally at one cache
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for the purpose of affecting subsequent requests for that
literal copy by other caches or clients. It does not affect the
cache’s internal control state unless the cache is also a client
of (i.e., controlled by) the very same resource. In fact, a
cache may have none, either, or both of the two different
images of a given control resource stored in its local state,
the working control copy and/or the cached literal copy.

Thus, the basic control notification mechanism deter-
mines the flow of updates through control copies, whereas
cache-invalidation and other policies defined by the HTTP
protocol determine the flow of updates through cached
literal copies. The information to implement the latter is
tunneled over the mechanism providing the former, using
special control resources called invalidation manifests that
are embedded directly or indirectly in the tree of control
information.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the distinction
between basic control notification and cache invalidation is
a subtle one, but the mechanisms in effect here are distinct,
non-redundant, and dependent—invalidation depends on
notification to be able to exist. The control notification
mechanism is needed at least for the root of the control tree
and may be used for additional levels of information for
services that are not caches, and caches necessarily rely on
the more basic mechanism for the communication of invali-
dation commands that represent a subtree of the overall
control tree. In addition, control distribution typically
involves eager consumption (refresh occurs on notification)
of changed resources for a service’s own behalf, whereas
invalidation involves lazy consumption (resources are just
marked for later refresh) on behalf of other clients.

Furthermore, neither caches nor any other controlled
service should assume that the delivery mechanism for its
control resources involves caches or invalidation. The tree of
control information provided by notification ultimately iden-
tifies a set of resources in the most general sense, resources
that must be consumed by the controlled service, along with
a protocol for consuming them. The caches that might be
involved in delivery of those resources from their origin to
the client are determined based on which caches bind the
property containing the resource and on what the results of
rendezvous are for the particular client. A cache, for
example, should not assume that a control resource it is
supposed to consume will be part of a property that it binds
(i.e., supports requests for), so consuming it via fills through
its own cache may not be appropriate. Granted, nothing
prevents a cache service from using its local cache to
fill/store resources that it needs but it is not bound to serve
to other clients, but this means that the control service will
not know anything about the existence of such resources (at
least as far as invalidation is concerned), because they are
not contained in any bound property of which the control
network is aware.

Control Trees and Manifests

Both control trees and control manifests can be consid-
ered as hierarchical dictionaries, tables mapping symbolic
names (slots) to information about names, where the names
have some predetermined meaning to the consuming ser-
vice. The information associated with a slot in the dictionary
could itself be another dictionary, or something simpler (like
a number).

An initial configuration of a service specifies a root
dictionary (the root control manifest) with a small number of
items, and each item provides information about the con-
figuration of the service or specifies a way to get it. The
consumption of this initial resource thus leads recursively to
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the consumption of other resources, ultimately ending the
recursion with a set of service-specific subtrees or leaf
resources that have purely local interpretations and no
unresolved references. At each level, the client requests the
referenced information indicated only if the information is
applicable to the service and has not already been consumed.
The net effect of this absorption process is to update the
service’s working control copy of all the control resources
that govern its behavior. This is how control manifests are
transformed into the control tree.

Although the terms “control tree” and “control manifest”
are sometimes used interchangeably, a control manifest
actually refers to an external serialization of part of one
control tree, whereas the control tree for a service instance
refers to its internal hierarchical representation of one or
more control manifests. Consider the following concrete
example of a root control manifest written in one possible
language (described later):

{
“agent”: 99,
“control”: “C0”,
“@agent-config”: {
“%host”: “%(control)s”,
“get”: [
{ “%resource™:*/agent/%(agent)s” }
]
¥
¥

This is simply a hierarchical collection of name/value
settings. Certain nodes in a control manifest (like the node
labeled @agent-config above) will be interpreted as sym-
bolic references to other resources whose identities and
values are resolved and merged into the control tree dynami-
cally. The full control tree used by a controlled service is the
result of constructing an initial control tree representation T,
from its top-level manifest M, and continuously (periodi-
cally) re-evaluating T,, recursively expanding references to
referenced manifests M,®, . . . , M, o as they become
known and/or change:

This process produces a new value of the control tree as
a function of the previous control tree and the state of the
network, and it enables the service instance to continuously
absorb new information from the network as it becomes
available. In general, resources incorporated into a control
tree evaluation round need not be limited to control mani-
fests originating from control services, but may also include
other resources (e.g., from collectors) that are meaningful to
the service.

A control tree is defined recursively as follows:

Leaf Rule: If X is a number, string, or otherwise opaque
object (an un-interpreted, internal representation of
some control resource that is not a control manifest),
then X is a control tree.

List Rule: If X=[X,, X,, . . ., X,], where each Xi is a
control tree, then X is a control tree.

Table Rule: If X={N,: X, N;: X, ..., N:X,}, where each
name N; defines a slot in the table and each X, is the
value of slot N, for some control tree X,. Also assume
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there is metadata meta(N,) about the value X, (though
this was not shown in the example above).

Only well-formed control trees will be considered here,
and additional well-formedness constraints will be defined
as needed. The most basic constraint for a useful control tree
is to have a non-trivial root consisting of a table. We may
also distinguish certain kinds of slot naming conventions
and slot value patterns, as well as define different evaluation
rules in order to implement pattern substitution and deref-
erencing of symbolic references. The metadata of interest
contained in meta(N,) will be related to the expiration or
version of the value X,, or the identity or name of the object
from which that value was retrieved.

Control Slots and Evaluation Rules

In order for control trees to be useful, it must be possible
to compute a new control tree from an old one. For that
evaluation rules may be defined based on the type of each
part of the tree, allowing different structures to be interpreted
differently. Slot evaluation is where most of the interesting
work is done.

Though it is conceivable to allow different service types
to define different evaluation rules, for the purpose of
explaining the evaluation process concretely a particular
style of slot evaluation will be assumed. In this example
three slot types are assumed:

Reference slots: A slot with a name beginning with a
single “@” is a reference slot. In an embodiment, its value
is a reference instruction table specifying resource retrieval
instructions such as protocol, host, and resource path infor-
mation. These instructions will be used to expand (derefer-
ence) the reference and include the contents of the resource
in the tree at that point.

Escaped reference slots: A slot with a name beginning
with “@@” is an escaped reference slot. Its value should
also be a reference instruction (but its dereferencing will be
deferred). This is intended for the case where the evaluation
of a reference wishes to return a new value of the reference
that may be used to retrieve it on a subsequent evaluation
round.

Pattern slots: A slot with a name beginning with “%” is a
pattern slot. In an embodiment, its value is a string with
embedded variable references (where each variable refer-
ence has the form %(name)s, where name must refer to a
plain sibling or parent slot).

Plain slots: All other slots are plain slots.

Evaluation will be defined relative to an environment
(e.g., atable), where the initial environment for a control tree
evaluation is empty, and as we descend into a table the set
of'slot values for that table augments the environment for all
slots in that table, and so on, recursively. The notation
T,T, is used to represent the table that results from
applying the slot definitions of T, to override or extend the
slot definitions in T,. Also assume a special slot assignment
that can be used to delete a single slot, {S: delete}, and
another special slot assignment that can be used to delete all
slots, {*: delete}, allowing T, to represent either an absolute
or incremental update to T,. As a convenience a function
mktable(s, X) is defined to return X if X is already a table,
or {s:X} if X is not a table.

Rules for evaluation eval(E, X) of control tree T with
environment E may then be defined in two stages:

eval(E,X)=eval,(eval | (E,X))

Most of the work is done in the first stage, where eval,
expands references that need to be (re)expanded and inter-
polates patterns, followed by the use of eval, in stage 2 to
translate escaped references into references.
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The rules for eval,(E, X) are:

A leaf node X evaluates to itself.

A list node X=[X,, . . ., X,]| evaluates to [eval,(E,
Xo)s - . . eval (E, X))].

A table node X={S;X,, . . ., S;:X,} evaluates to
XDZ,D . . . BZ,, where Z=evalslot,(EDX, S,, X,).

The evalslot, function provides the slot-type dependent
evaluation. Assuming X is well formed based on the require-
ments of the type of S, the result of evalslot,(E, S, X) is
defined as follows:

If S=@@s is an escaped reference slot, the result is

mktable(@@s, X) (no change).

If S=@s is a reference slot, the result is mktable(s,
CGET(I)), a table created from the conditional GET of
the resource implied by the reference instructions I,
where I[=eval, (E, X). This is where the metadata asso-
ciated with the current value of s is used, compared to
the metadata contained in the instruction I, which could
indicate that a newer version of the same object, or a
different object should be retrieved for the value
of slot s. Note that the result of this evaluation could
return not just a new value for s but also a new value
for other slots (such as @@s for the purpose of
changing the reference that will be used on the next
evaluation round).

It S=% s is a pattern slot, the result is mktable(s, subst(E,
X)), where subst(E, X) is the string resulting from
substituting the variables referenced in the pattern X
with their values taken from the environment E. The
effect of mktable here is to assign the interpolated string
as the value of the slot s, not % s.

If S=s is a plain slot, the result is mktable(s, eval, (E, X)).
The value of the slot just gets re-evaluated and assigned
back to itself.

Finally, to complete the evaluation rules eval,(X) is
defined in order to replace all escaped references with
references. The rules for eval,(X) are:

A leaf node X evaluates to itself.

A list node X=[X,, . . . X,] evaluates to [eval,(X,), . . .

eval,(Xp)].

A table node X={S;X,, . . ., S;:X,} evaluates to
XDZ,D . . . BZ,, where Z=evalslot,(S;, X,).

The rules for evalslot,(S, X) are:

If S=@@s is an escaped reference slot, the result
is {@s:X, @@s: delete}.

Otherwise, the result is {S:X}.

Tracking Manifests

The reason why control manifests intended for a given
service might contain information not applicable to the
service is to allow the control network to optimize the
delivery of information to a large population of services,
where cacheability will depend on the specificity and update
frequency of any given resource. The optimal delivery
package may be a manifest that contains more than a given
service needs but less than what all services need. The issue
of cacheability also affects the path through which clients
will be told to request resources—sometimes it makes sense
to go through the caching network, sometimes it does not.
Invalidation Manifests

Invalidation manifests are examples of control resources
that may be referenced in control manifests. They are the
means through which caches or other services making use of
the invalidation mechanism learn what to invalidate. A
cache’s control tree will include direct or indirect references
to at least all invalidation manifests for properties that are
currently bound to the cache (maybe more). Services that are
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not using invalidation will not have invalidation manifests in
their control tree (or if they do, they will ignore them as not
applicable).

Invalidation

Introduction

Invalidation is a mechanism through which information
stored in a service (information that is used to derive
responses to future requests) is marked as no longer directly
usable for response derivation, thus indicating that some
form of state update or alternate derivation path must be
used to derive a response to a future request. Services
making use of invalidation consume invalidation manifests
delivered via the control distribution mechanism and locally
execute the commands contained in the manifest.

A caching service is the typical example of a service that
makes use of invalidation. A cache stores literal copies of
resources and responds to future requests for the resource
using the stored literal copy as long as the copy is not stale.
Staleness in this case could be based on an age-based
expiration of the original copy that was stored, or based on
whether or not the copy has explicitly been invalidated since
the copy was stored. When an invalidation command is
received with the target of the command already in cache, it
suffices to mark the cached copy to implement the com-
mand. When the resource is not in cache, or when the
command refers to a group of many resources, additional
steps must be taken to ensure that a copy retrieved later from
some other cache satisfies the constraints of the last appli-
cable invalidation command.

This section (below) defines embodiments of the invali-
dation mechanism with a focus on its use in cache invali-
dation. It should be appreciated, however, that caches are not
the only service type that could make use of the invalidation
mechanism, and stored literal copies in caches are not the
only kinds of responses that may be affected. Those of skill
in the art will realize and understand, upon reading this
description, that if a service instance has stored state that
affects the response to a future request, whether that state
corresponds to a literal copy of the response itself or some
other data from which the response will be derived on
demand, and provided that validity is expressible in the form
of minimum origin version constraints, then invalidation
may be used.

Minimum Origin Version Invalidation

Invalidation manifests implement an approach to invali-
dation based on origin versions. When content is invalidated
via an invalidation command to a configuration service, a
minimum origin version for that invalidated content is
incremented. Minimum origin version invalidation assumes
each origin is a single resource namespace and non-distrib-
uted, and all invalidation commands are relative to some
origin threshold event at a single origin location. This
approach allows invalidation to be defined as the setting of
a minimum origin version, where each cache in the system
estimates the minimum origin version as content enters from
origins.

To see how this works, let each origin have a minimum
origin version mov and a latest origin version by in effect at
any given time, where mov<lov. The minimum origin ver-
sion changes as a result of invalidation commands. It should
be appreciated that it is also possible to have per resource-
group and per resource movs, to enable finer grained invali-
dations. The by is an origin specific timestamp that needs to
change only when successive origin states need to be
distinguished, but it can change more often. Each node in the
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system that receives cache fills from the origin or invalida-
tion commands from outside the system must estimate the
corresponding lov. Each peer fill request, invalidation com-
mand, or origin fill generates a new lov' for the correspond-
ing resource scope based on the previous by and other
information. In particular, on an origin fill use:

lov'=max(lov,clock)

where clock is the local clock, and on peer fill requests and
invalidation commands set:

lov'=max(lov,mov)

where mov is the constraint from the peer fill or invalidation
command.

A cache learns initial mov and by values from its property
specific configuration, and learns new values from the
invalidation data stream that each cache consumes to detect
invalidations.

When a cache requests content directly from an origin
server, the origin’s updated by is assigned as the resource
origin version rov when the resource is stored in cache and
is communicated via an HTTP header whenever the resource
is served to another cache. The rov remains as the actual
origin version of that copy of the resource wherever it goes
until it is revalidated or refreshed. If a cache requests content
from another cache, the client cache uses whatever rov the
server provides as the rov it stores in cache.

A cache learns the minimum and latest origin versions
(per property and optionally per resource or other group
level) from its invalidation data stream for the property. To
cause an origin level invalidation, a new minimum origin
version is established for the entire property. To cause a
resource level invalidation, a minimum origin version is
established at the level of individual resources or groups of
resources in the cache. All resource specific movs may be
overridden by a new group or origin level mov, as described
next.

A cached resource R is considered stale if the rov of the
cached copy is less than the largest of the version minima
that govern it, or, in the case of resource-level and origin-
level constraints:

stale(R)=,,#ov(R)<max(mov(R),mov(Origin(R)))

In general, the CDN may have more than just resource
level and origin level invalidations, and have invalidations
in terms of arbitrary groups of resources. Each of multiple
resource groups G(R)=G,, . . . , G, could provide a
minimum version constraint on each resource in the group,
where GO is the resource itself, G, is the origin, and
Gy, ..., Gy are other groups or expressions in between that
contain R. This results in the generalized form:

stale(R)=g,#0v(R)<max{mov(g)|lgE G (R}

Ignoring expressions for the moment, and considering
only configured resource groups, the cache would simply
have to maintain a lattice of group labels per origin that is
part of the corresponding property’s configuration, and each
resource would be directly associated with one or more
groups as defined (which could be computed dynamically
based on anything about the request or response, not just the
URL). The set of groups G (R) would then be the transitive
closure of the parent group relation, and the staleness rule
above would apply to that set of groups.

Ground Vs. Group, Cached Vs. Uncached

An invalidation command specifies an mov and some
resource descriptor that identifies a single resource or group
of resources that may or may not currently be in cache. The
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handling of the invalidation command may need to be
different depending on whether it refers to a single cached
resource or a group, and whether or not the identified
resources are currently in cache.

It is assumed here that it is possible to syntactically
distinguish invalidation commands based on whether they
specify individual resources or groups of resources (that
may consist of zero or more resources). A ground resource
specifier identifies exactly one resource by name, whereas a
group resource specifier identifies a group of resources by
some set of constraints (on the name or other properties of
the resource). Thus the set of resources identified by a group
is not necessarily known in advance, but for any specified
resource (or request for a resource) it is known whether it is
a member of the group (i.e., what is known is a method for
testing whether or not any given resource is a member of the
group).

Group invalidations may need to be handled differently
than ground invalidations because they may affect a large
number of resources and the information stored in the cache
may be insufficient to determine group membership. In such
cases it may be preferable to evaluate group membership on
demand as opposed to walking the caching and marking
entries (that may never be requested again) at invalidation
time. Invalidations for uncached resources are special
because, by definition, there is no cache entry available to be
marked. A ground invalidation applies to a single resource
that is either in cache or not, but a group invalidation may
apply to some resources in cache and other resources not in
cache.

Safety and Accuracy, Invalidation Vs. Implication

When an invalidation command is processed by a cache,
the effect of the invalidation command must be captured in
a permanent way, such that all subsequent behavior of the
cache is consistent with the constraint imposed by the
invalidation command. This applies whether the command
is ground or group, and whether the resources identified are
in cache or not. It also applies regardless of how many times
the identified resources enter and leave the cache after the
identifying invalidation command was processed.

Assuming safety is a requirement (within the physically
achievable limitations), and assuming there is a continu-
ously varying stream of invalidation commands from mul-
tiple command sources identifying a continuously growing
population of resources, there is a tradeoff to be made
between avoiding unnecessary refreshes (accuracy) and stor-
ing an unbounded amount of information (cost). In other
words, the system might store less information but as a result
need to refresh more often in order to remain safe.

In particular, one possible side effect of handling invali-
dations for uncached resources is that it may be desirable to
expand the scope of the invalidation in order to ensure the
effect persists indefinitely without expecting storage to grow
without bound or to grow in proportion to the size of the
invalidation distribution network. As used herein, the correct
processing of an invalidation command I may invalidate
some resources as well as implicate a possibly larger set of
resources, including but not limited to the invalidated
resources. The (strictly) invalidated resources Inv(I) are
those resources that were intended to be invalidated by the
semantics of the command, and the implicated resources
Imp(I) may additionally include resources that were not
intended to be invalidated but were refreshed before their
time due to the limited accuracy of the invalidation mecha-
nism.
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Thus, the safety requirement for an invalidation mecha-
nism can be restated as the following assertion for any
invalidation command I:

Inv()< Imp(1)

and the accuracy goal is:

Inv(Zy=Imp(J)

Ideally, the implicated set is at least as big as the invali-
dated set, but no bigger.
The Effective Mov

The effective mov of a requested resource in cache is the
maximum mov of all mov constraints that apply to, or
implicate the resource in question, including but not limited
to the resource-level mov. Depending on the invalidation
mechanisms implemented, this could be some combination
of mov values tracked in multiple places (e.g., for resource
groups that contain the resource in question). The resource
in cache is valid if rovamov g, .,;,.. If not, an origin or peer
fill must be done (depending on policy), and if a peer fill is
done, the mov constraint is based on the mov g ..
Methods for Invalidation of Uncached Resources

There are a number of possible ways to handle the
invalidation of uncached resources. The approaches dis-
cussed below are all safe mechanisms that differ in accuracy
and storage requirements. To illustrate the differences in
accuracy that result from different implementation strategies
consider two general models of implication are considered,
with and without command tracking. Certain connections to
the implementation of group commands are deferred to a full
discussion of group (expression) based invalidation.

Consider the diagram in FIG. 30A showing the following
sequence of events:

1. Cache A receives a ground invalidation command
implicating a resource RX that is not in A’s cache.
Before this command was received there was another
resource RY=RX that was in cache and considered
fresh at cache A.

2. Some client requests resource RY from cache A.
Depending on how A processed the invalidation com-
mand, it may have implicated resources other than RX
that it does have in cache, such as RY. Assume RY was
implicated, and is therefore (conservatively) consid-
ered stale by cache A.

3. Cache A then requests RY from cache B, communicat-
ing some information about its expectations to B
(which were derived from I(RX)). Cache B uses these
expectations to decide if its copy of RY (previously
considered fresh in B) can be returned to cache A, or
whether it needs to refresh. In this case, it also consid-
ers RY implicated by the constraints in the peering
request, and must therefore be conservative and con-
sider it stale.

4. Cache B requests a fresh copy of RY (RY") (e.g., from
the origin).

5. The origin returns RY".

6. Cache B returns RY' to cache A.

7. Cache A returns RY' to the client.

In this example, fresh copies of RY at both caches A and

B were passed over and refreshed due to RY being impli-
cated by an invalidation directed at the uncached resource
RX.

Now consider a slightly different scenario where invali-
dations are tracked via command tracking at some prede-
termined level of grouping (e.g., per property). In this case,
assume RY is in cache A and B prior to the invalidation
command being received at A, and assume the invalidation
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command affects RX but not RY (and both are in the same
property group). With reference to FIG. 30B:

1. Cache A receives a ground invalidation command I
implicating only a resource RX (in this case the system
does not care whether RX is in cache or not). Before
this command was received it was assumed that
resource RY was not in cache at A, where RY=RX.
Since command tracking is being used, RY is not
implicated by I(RX).

2. Some client requests resource RY from cache A.

3. RY is not in cache A, so A requests it from cache B,
specifying the constraints for use in invalidation com-
mand tracking.

4. Cache B notices that, since it has not processed
command I, its otherwise fresh copy of RY must
conservatively be assumed stale. Cache B therefore
requests a fresh copy of RY (e.g., from the origin).

5. The origin returns RY".

6. Cache B returns RY' to cache A.

7. Cache A returns RY' to the client.

In this example, a fresh copy of RY at cache B was passed
over and refreshed due to RY being included in the same
invalidation tracking group as RX, and since cache B was
behind cache A for that group.

Those of skill in the art will realize and understand, upon
reading this description, that variations on either or both of
these two scenarios may occur in just about any method, and
that accuracy (avoiding unnecessary conservative refreshes)
may be increased by adding storage. The following seven
methods that make different storage/accuracy tradeofls are
discussed here:

1. Cache entry method (always store a cache entry);

2. Treat ground invalidation of an uncached resource as a

group command;

3. Maintain an auxiliary data structure indexed by the
hash of a resource;

4. Command tracking at the property or resource level;

. MOV-based command tracking (property level);

6. MOV-based command tracking with synchronization
(property level);

7. MOV-based command tracking with synchronization
(approximate resource level).

Cache Entry Method

The most accurate and least space efficient way is to
always generate a cache entry (empty if necessary) to hold
the mov constraint associated with the invalidated resource.
This stub resource can be deleted if the property-specific
mov exceeds the resource-level mov. When cached objects
are evicted from cache a stub for them must be retained if
there was an invalidation implicating it since the last prop-
erty-level mov update. The set of resource entries in this
method grows with the total number of unique resources
invalidated since the last property-level mov update, so
additional measures may be needed to deal with this effect,
and these measures could implicate additional resources.

Treat Ground Uncached as a Group

Similar to the cache entry method, the ground command
may also be treated as if it referred to a group that identifies
exactly one resource, and process it with all other group
commands (as described later). This has storage and accu-
racy properties similar to just storing an empty cache entry,
but provides a different way to age the effect of the command
out of the cache, which in turn implicates additional
resources in a different way.

UCMOV Method

Another way is to maintain an auxiliary data structure,
e.g., an array called UCMOV (uncached mov), capturing a

W
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conservative mov value to use for all uncached resources.
The value of UCMOVJi] is maintained such that all
resources hashing to location i have had an invalidation
constraint implicating them that is less than or equal to
UCMOV]i], and then UCMOVTi] is used as a group mov
that applies to all uncached resources hashing to location i.

This satisfies the effect of invalidation commands, but
implicates unintended resources. Whenever an invalidation
command [ is processed for a ground resource R (not an
expression) and the resource is not cached, update the
conservative mov for one entry in this data structure as
follows:

UCMOVThash(R)]=max{mov(I(R)),UCMOV [hash
@

Then, when a resource is requested that is not in cache, the
mov constraint used for that resource is UCMOV[hash(R)],
and we are guaranteed that:

UCMOVhash(R)=I(mov(R))

In the extreme case where UCMOV has one entry, this is
equivalent to using the maximum mov seen in any invali-
dation of an uncached resource for the mov constraint used
for all uncached resources. This allows us to trade off storage
against accuracy (a larger UCMOYV array implicates fewer
additional resources with each update since fewer resources
hash to the same location, so a larger UCMOYV increases
accuracy).

When resources are deleted from cache, the state of their
invalidation constraints must be rolled back into UCMOV as
follows:

UCMOVThash(R)]=max{mov(R),UCMOV[hash(R)]}

The use of this UCMOYV data structure is equivalent to
providing an additional group command I(hash(R)) with
each ground invalidation I(R), but handles the application of
these special group commands differently from other group
commands. There is no need with a UCMOV to collapse
commands over time, the storage overhead is fixed.

Command Tracking

The known and seen tokens of coherent peering provide
a means to deal with invalidation of uncached resources.
This is a concrete form of command tracking, and could be
used to eliminate the problem discussed earlier in FIG. 30B
if it were applied at the resource level. When applied at a
higher group level it will necessarily have the effect, as
illustrated in FIG. 30B of conservatively implicating fresh
resources when the server is behind the client in invalidation
command processing. However, command tracking requires
maintenance of invalidation-source based vector clocks for
all invalidation sources, something that is difficult to scale,
especially when applied at the resource level.

MOV-Based Command Tracking (Property Level)

It is possible to combine command tracking’s unique
benefits for uncached resources with some additional facts
about movs and invalidation command sources in order to
minimize the growth of command tracking information that
needs to be maintained.

Let each cache also maintain an mov per invalidation
command source that it has ever seen, per property. Call this
the source level mov, or sov. Assume that, with respect to a
given source of invalidation commands (a control node),
invalidation commands are delivered in order and with
non-decreasing mov constraints.

Each time an invalidation command from a particular
source is received, the local sov for that source is changed
to the maximum of the last sov and the mov of the invali-
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dation command (per property). If the property-level mov
ever exceeds the sov for a source for that property, that
source’s entry can be dropped from consideration until
another invalidation command is received from that source.

Whenever a fill is requested from a peer because of an
uncached resource, a set of constraints must be computed
based on the local sov values, the property level mov, and
any applicable group movs, and these constraints must be
specified in a request header to the peer. Only those sov
constraints that are both greater than the effective mov of the
uncached resource need to be communicated. The effective
mov should also be provided.

If the server has the resource in cache and has processed
all the listed sources through at least the listed sovs, then it
can assume the sovs’ effects, if any, have been applied to the
resource in cache and are reflected by the stored mov. It can
then make its freshness decision based on the supplied mov
constraint for the resource and its own effective mov for the
resource.

This provides the benefits of command tracking for
uncached resources in a more scalable way, thus avoiding
the problem of FIG. 30A but still suffering from the problem
shown in FIG. 30B.

MOV-Based Command Tracking with Synchronization
(Property Level)

The next change may be arrived at by realizing that, for
the problem illustrated in FIG. 30B, the constraints provided
in the previous method can be used to catch up with
invalidations for those sources which are known to have
invalidation commands not yet processed. The invalidation
commands that the receiving cache knows it has not pro-
cessed yet (but the client has) can be requested from the
invalidation command source, using the last sov as the point
to start from. The catch-up processing is work that would be
performed anyway, and performing it proactively allows the
system to confirm whether certain resources are implicated
or not by missed commands.

In cases where the source in question is not reachable it
may still be desirable to conservatively assume that its
invalidation commands processed by our client affect the
resource the client is asking for, and refresh it.

MOV-Based Command Tracking with Synchronization
(Approximate Resource Level)

Both of the previous solutions do command tracking at
the property level. The use of sovs prevents the source list
from growing without bound, but since sovs are tracked at
the property level, caches do not know which resources are
affected by a given command state and this leads to the need
for conservative refreshes as shown in FIG. 30B. Note that
this is only a problem for resources that are not in cache,
because there is resource level mov information for entries
that are in cache.

To improve the resolution of command tracking for
uncached resources, the system may apply a technique
similar to the UCMOYV data structure. Instead, maintain a
UCSOV array that is indexed by hash(R) and stores the most
recent command state that affected any resource with that
hash. In this case, the stored command state would be a list
of sources and their sov values, together with an mov for the
overall group mapping to index hash(R).

Thus, when a cache fills from a peer due to an uncached
resource, it uses UCSOV[hash(R)] trimmed by any other
mov constraints implicating R as the constraint it commu-
nicates to the peer. This command state is in general older
than the most recent command state, so it is in general more
likely to be achieved by the peer, and less likely to force a
conservative refresh. The peer uses its own UCSOV[hash
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(R)] to determine whether or not it has processed enough
commands to satisfy the request from its cache. If not, it
attempts synchronization or simply fills.

Finally, the processing of a ground invalidation command
now needs to update the value of UCSOVT[hash(R)] to be the
command state at that point, regardless of whether the
resource is cached or not. Group command processing is
unchanged, however—it is neither feasible nor necessary for
a group command to update UCSOV for all values of
hash(R) where R is a resource contained in the group. The
effect of group commands on the effective mov is handled
separately and in addition to sov processing.

Groups and Expressions

A group is a collection of resources defined by intension,
i.e., by some set of constraints over the set of possible
resources (as opposed to a definition by extension, which
involves an explicit listing of resources).

The approaches described here use patterns and pattern
matching. As is well known, a pattern language may be used
to express patterns. Different pattern languages define dif-
ferent grammars for representing patterns. Some pattern
languages may also express operations and interactions to be
performed when patterns match (or do not match). Some
pattern languages use so-called metacharacters. As used
herein, a glob pattern language is any pattern language
where the “*” metacharacter is used to match any sequence
of characters, although other metacharacters may also exist.
A glob is a pattern written in a glob pattern language.
A *-glob (star glob) pattern language is a glob pattern
language with only the “*” metacharacter and literal char-
acters. A *-glob (star-glob) (or *-glob pattern) is a pattern
written in a *-glob pattern language. It should be appreciated
that the system is not limited in any way by the pattern
matching algorithms or languages used or described herein.
Nor is the system in any way limited by the particular
language or program used to implement the patterns or
pattern matching (or related operations) described herein. In
particular, it should be appreciated that regular expressions
or glob patterns defined on the request URL are just some of
many possible ways to define groups. Those of skill in the
art will realize and understand, upon reading this descrip-
tion, that different and/or other ways of describing groups
are contemplated herein.

As used here, “resource” means a (potentially) cached
response to a particular request, so theoretically any attri-
butes of the request or the response may be considered to
define a group. An actual implementation of a resource
group based invalidation system might impose additional
constraints on how groups can be defined for efficiency, but
such constraints need not be imposed at the architectural
level.

A group may be defined to be a set of constraints on the
values of named attributes of the resource (where it is
assumed to be clear in the naming of the attributes whether
it applies to the request or the response). The set of resources
that are members of the group is the set of all possible
resources (cached or uncached) that satisfy all of the attri-
bute constraints. In general, the constraints may be treated as
an “and/or” tree of constraints over attributes. However, for
simplicity of explanation, the constraint set may be consid-
ered as a flat conjunction of simple constraints on individual
attribute names. Although it is possible for resource origins
to declare specific named groupings in advance, this is not
required in order to be able to use group-based invalidation.
Groups can simply be mentioned as needed as arguments to
invalidation commands.
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Thus an invalidation command I(mov, G ) can be speci-
fied by a mov constraint and a constraint set G. The
denotation [[ G ]] of the constraint set G is the set of all
resources that satisfy all of the constraints in § . This leads
to the following interpretation:

I(mov, G )=ensure rov(R)=mov whenever R in [[ G n

where:

RE[[G1]] if and only if (Ve in G )(c(R))

Some examples are provided here:

A command to invalidate everything specifies just an mov
constraint and lists an empty set of additional con-
straints on the resources to which it applies (so it
applies to all resources for the property):

{rovzmov, 0}

A command to invalidate a resource with a specific URL:
{rovzmov, {url=“http://foo.com/index htm1”}}

A command to invalidate all resources that match a glob
pattern:

{rov=mov, {url~,,, “http://foo.com/* jpg”}}

A command to invalidate all resources that match a
regular expression:

{rovzmov, {url=__“http://foo.com/[0-9]+.%\jpg”}}

A command to invalidate all varied responses on User-
Agent where the agent was a certain browser:
{rovamov, {Vary~__ ... “User-Agent”,

Agent=,_,.... “MSIE 10”}}

Note that the UCMOV data structure described earlier
may be replaced with a group constraint. When a specific
resource R is invalidated, the following group constraint
may be entered:

lrov=mov, {hash=hash(R)}
and then rely on the fact that earlier group constraints with
lesser movs on the same hash bucket will be subsumed by
this one (or this one will be ignored, if it is subsumed by
another command with a greater mov). As mentioned earlier,
however, it still might be useful to separate the handling of
the two kinds of constraints, and preserve the UCMOV array
as an optimization. The choice of attribute names and the
expressiveness of the value constraints have performance
implications (discussed below).

Safety and Exactness of Group Handling

The safety requirement in this context is that once a cache
has processed an invalidation it must respect the invalidation
indefinitely in terms of how it services all resources that are
implicated by the command. The effect of the command
must persist in the cache indefinitely, regardless of how
often implicated resources come and go.

There is a fundamental tradeoff that must be made here
between implementing this exactly (i.e., achieving the safety
requirement but never invalidating resources that are not
implicated by an invalidation command), and implementing
it efficiently, because an exact implementation requires
unbounded storage, and an implementation with bounded
storage is necessarily inexact. The only possible alternatives
are to relax the safety constraint or use a safe but inexact
solution.

Relaxing the safety constraint would relieve the cache of
respecting the effect of certain invalidation commands past
a certain period of time. This is not unlike the effect that
ensuring the safety constraint has on the effective average
time to live of items in the cache (assuming bounded
storage).

Assuming again that ensuring safety is a requirement,
only generalizations that achieve the safety objective with a
bounded amount of storage are considered. The storage
bound rules out trivial and unhelpful generalizations where

User-
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the new group is defined to simply be the disjunction of the
original groups. If the number of groups is unbounded, this
kind of generalization also has unbounded size and is not
helpful because the size of a specification with an
unbounded number of groups is itself unbounded, so it is
preferable to discard some information in order to bound the
storage requirements. Discarding this information from the
group specification has the effect of expanding the extent of
resources impacted by the group, eventually reaching the
entire cache (assuming a sufficiently variable and continuous
stream of invalidation commands), which is what leads to a
bound on the average time to live of cached resources.

The way to safely but inexactly implement group based
invalidation is to transfer the mov constraints of old invali-
dation commands to be constraints on larger and larger
population of resources that are guaranteed to include the
originally implicated resources, thereby ensuring safety but
invalidating additional resources, but allowing us to forget
the old invalidation commands As shown in FIG. 30C,
inaccuracies due to generalization arise in both the resource
extent dimension and the mov dimension.

Efficiency of Group Handling

A simplistic approach to computing the effective mov
takes time proportional to the length of the list of groups that
are outstanding, where a groups are outstanding if they have
mov constraints that are greater than the mov constraint of
the property as a whole. When the property level mov
constraint advances, all outstanding groups with lesser movs
can be discarded. But the property itself can be thought of
as just another group, a group that anchors and subsumes all
other groups, and whenever an invalidation command rela-
tive for one group (property level or otherwise) subsumes
another group and has a greater mov, the subsumed group
can be deleted from the list. It is not necessary to always
know if one group subsumes another, but it will be useful to
be able to handle certain cases.

A requested resource must be compared with each appli-
cable group (that defines a greater mov) to determine which
groups match, and the max of all their movs is taken as input
to the effective mov calculation. To mitigate the effect of this
processing on request handling time, a couple of strategies
are possible.

First, if the request is for a resource for which there is also
a cached entry with a mov constraint, then only those groups
that define larger mov constraints need to be consulted,
because they are the only groups that can change the
ultimate effective mov.

Another strategy is to note that the group list needs to be
consulted only if it has changed since the last time this
resource was compared against the group list. The cache
entry for the resource can store the effective mov and a
purely local sequence number for the group list (such as the
lov of the property at the time the group command was
inserted, which is referred to as the group lov, or glov). On
a subsequent request with the resource still in cache, the
group list needs to be consulted only if it has changed, only
the changed part needs to be consulted, and only those
entries with sufficiently large movs need to be examined.

Another strategy is to have a mov that applies to all
groups (but is separate from and greater than the property
level mov). If the size of the group list exceeds a configu-
rable threshold, the size can be reduced by advancing this
background mov and deleting all outstanding group con-
straints that are less than that mov. This maintains safety and
reduces the size of the list at the cost of some extra refresh
fills.
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The most general strategy is to be able to collapse two or
more old groups down into a single group that subsumes the
older groups with an mov that it at least as large as any of
the older movs, and to apply this strategy as needed to fit the
invalidation command list into some limited space. This
turns the oldest part of the invalidation command list into a
“crumple zone,” an area in which commands may be
crumpled together if needed to stay within the allocated
space. Combining this with the UCSOV approach for com-
mand tracking results in the approach shown in FIG. 30D.
The next section describes what happens in the crumple
zone in more detail.

Crumple Zones

Using crumple zones, invalidation commands may be
inserted into a mov ordered list (there may also be a separate
list ordered by time of arrival), and once the length of the list
passes a certain threshold, the tail of the list is subject to
being crumpled. Crumpling takes the oldest entry in the list,
chooses an earlier entry in the crumple zone to crumple it
with, and replaces the two commands with one, repeating
the process as necessary until the length is reduced by some
configurable amount.

With reference now to FIG. 30E, in step 1 the command
list has plenty of space. By step 2 the area of original groups
is full and there are commands (CO, C1, C2) overflowing
into the crumple zone (but no crumpling has occurred yet).
In step 3 the crumple zone hits a threshold and CO is
crumpled with C3, creating a new command C3' as shown
in step 4. In this example, the new crumpled command
masks an older command because it just happens to be the
same as C2, so in step 5 delete command C2. Continue by
crumpling the new oldest command C1 with C4 in step 6,
creating a command that specifies the group “*” in step 7.
This corresponds to the property level group and masks all
older commands, and these commands are deleted, resulting
in the state shown in step 8.

Crumpling commands requires two steps, a canonicaliza-
tion step and a generalization step.

Multi-Attribute Invalidation and Crumpling

The extension of both invalidation commands and crum-
pling operations to the multi-attribute case is straightfor-
ward. If a single-attribute invalidation command identifies a
resource or group of resources by a constraint on the value
that one particular attribute must satisfy, then a multi-
attribute command simply specifies a constraint for each of
several attributes. A resource is implicated by a multi-
attribute command if it is implicated by all of its constraints.

Crumpling of a group of multi-attribute commands is then
defined as taking a subset of the intersection of attributes
mentioned in all commands, crumpling the single-attribute
constraints for the chosen attributes, and taking the maxi-
mum of the mov constraints.

Constraint Languages, Canonicalization, and Generaliza-
tion

For many applications of invalidation, constraints
expressed as patterns over strings will be adequate. Other,
more general constraint languages than string patterns, are
however contemplated herein, and canonicalization and
generalization operations may be defined for thee languages.

For example, the implicit handling of $mov$ constraints
above is an example of a simple constraint language over
version numbers, where each constraint states that a version
must be greater than or equal to some constant. Canonical-
ization in this case is trivial, because all constraints have one
form, rov=M. The generalization of two mov constraints
rov=M1 and rov=M2 is to simply to take the maximum,
resulting in rov=max(M1, M2).
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For other numeric attributes, and for other data types in
general, other constraint languages may be defined with
their own canonical forms and generalization rules, and the
invalidation mechanism can make use of them. In the next
two sections, however, we focus on the example of canoni-
calization and generalization of constraints based on string
matching Those of skill in the art will realize and under-
stand, upon reading this description, that the system is not
limited by the specific string-matching implementations
described or by any examples provided.

Canonicalization Via *-Glob Translation

For constraints that are expressions on strings, the initial
constraint specified in an invalidation command might be
expressible in various languages, including regular expres-
sions or globs. In order to be able to process and compare
expressions, all string constraints will eventually be con-
verted in the crumple zone into more general constraints that
are *-globs, where a *-glob is defined to be a glob expression
containing only constant characters and any number of
instances of the “*” metacharacter (each of which matches
any number of any character).

The translation to a *-glob must guarantee that all strings
matched by the initial expression are matched by the trans-
lated expression, but there may be strings matched by the
translated expression that are not matched by the initial
expression. The goal of the translation is to canonicalize the
language and produce an expression that has a length
bounded by some configurable maximum length.

The translation of some expression e to a canonical *-glob

proceeds as follows:

Translate all non-constant regions of the expression e to
stars, combining adjacent stars into a single star (“*”).

while length(e)>maximum and the number of stars >1:
Replace the first contiguous constant string between

two stars with a single star.

Now, either length(e) is less than the maximum (in which
case the process is done), or the length is still too long
but just one star is left.

Remove chop(length(e)-maximum, length(x)) characters
from the star-side of the longest string constant x to the
right or left of the star.

If length(e)>maximum then remove chop(length(e)-
maximum, length(y)) from the string constant y on the
other side of the star, where:

if have — need > MIN,

otherwise

need

chop(need, have) =
have - MIN

This assumes maximum=1+2xMIN and is designed to
take information out of the middle of the expression and
retain information on the edges, where MIN is the minimum
amount of a constant prefix or suffix that will be retained on
the edges of the expression.

Generalization Via *-Glob Alignment

Now, equipped with canonical *-globs in the crumple
zone of some maximum length, periodically need to take
two globs and determine their generalization. This can be
viewed as a sequence alignment problem and solved using
the usual dynamic programming technique. This requires
O(n?) time and space, where n is the length of an expression,
and that is the reason for the maximum length in the
translation described above. If the alignment cost function
aligns only characters (including the “*” [star| character)
that match exactly, and gaps in the alignment are translated
to stars, then a generalized expression from the minimum

10

15

20

25

30

35

40

45

50

55

60

65

42

cost alignment may be determined. This is done by follow-
ing the alignment path and emitting the character for each
exact match and emitting a single star for each contiguous
set of gaps in the alignment, then collapsing multiple con-
tiguous stars down to one.

As an example, FIG. 30F shows glob alignment of “a*bc”
with “a*c*d”.

To bias the alignment to prefer matching material at the
edges over material in the middle, the cost function may be
biased such that matches take into account the position of the
characters in their respective expressions relative to the
edges.

Invalidation Command Affinity and Protection

The crumpling of commands has the effect that resources
not implicated by any of the original commands may be
implicated by the crumpled version. The extent of this
expansion of the implicated resource set may be more or less
severe, depending on the nature of the commands involved.
Affinity captures the notion that it is preferable to combine
similar commands together, and protection deals with the
case that some commands should remain uncombined longer
than others.

Affinity provides a static grouping mechanism. Affinity
groups constrain how invalidation commands may be
grouped and crumpled, but they do not directly define
resource groups per se.

Let there be a set of affinity groups defined per property
with symbolic names. One special affinity group is defined
for the property as a whole (and has no parent group), and
all other affinity groups are defined with exactly one other
parent group. Affinity groups other than the property level
group are optional.

Now, only commands of the same affinity group may be
crumpled together.

The affinity group of an invalidation command could
potentially be computed in some predetermined way from
the command itself, but assume here that it is assigned by the
submitter or the mechanism that submits the command to the
system. The crumpling mechanism is free to further restrain
itself by using other information gleaned from invalidation
commands (such as constraint prefixes) in addition to the
information provided by affinity groups.

Protection provides a means to throttle the crumpling
mechanism. Each invalidation command can be assigned a
protection value, a number in the range [0, 1] that maps to
how long the command will remain uncrumpled relative to
some configured time interval for the property. A protection
ot 0 is the minimum protection (gets crumpled earliest) and
1 is the maximum (gets crumpled the latest). At some point,
assuming safety must be ensured with a bound on the
invalidation command list, and assuming invalidation com-
mands keep coming, all stored invalidation commands get
crumpled down to a constraint that implicates all resources,
which in effect moves the property level mov forward and
thus affects the average TTL of all cached resources in the
property.

These two factors modulate the behavior of the invalida-
tion system in cases where there is room to maneuver, they
don’t override the need to discard and crumple invalidation
commands when all affinities and protections have been
taken into account and there are still too many. It just
represents advice to the system.

Other Methods of Expression Based Invalidation

Expression based invalidation can be handled in several
different ways (including methods described above). Either
the cache implements an efficient map of cached URLs, or
a separate service based on reduction of cache events can
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maintain an index of cached resources, and it can translate
invalidation patterns into the list of cached resources per
cache. This service can be used by the control network in a
feedback loop that takes invalidation manifests containing
patterns and localizes them for cache consumption by
expanding the patterns into ground URLs.

Gradual Invalidation

Invalidations can potentially cause abrupt and large
changes in fill traffic patterns, with undesirable side effects
on clients and origins. Although invalidations just mark
content as stale and it is subsequent requests of stale content
that increase fill traffic, if an invalidation is not an emer-
gency it might be preferable to not force the inevitable to
happen too fast. Ideally it would be possible instead to
request that the process take place over some minimum time
interval T, such that the invalidation will complete gradually
and no faster than T units of time.

To accomplish this, the definition of staleness is aug-
mented to be a stochastic one, where the staleness of a
resource is based not only on its version-based staleness but
also on how much time has elapsed since the invalidation
was processed at the cache. The staleness of each resource
may, e.g., be based on a random number relative to a
threshold that approaches zero as T ticks away. For example:

gstale(R, T, Loy, 1) =

T — Imoy
if (random(O, 1= (1 - T) then stale(R)else false

where t is the current time in the cache, t,,,, is the time the
cache received the applicable mov update, and T is the
length of the gradual invalidation period. The value of the
condition is more and more likely to be true as t gets larger,
and is certain to be true if t-t,  =T.
Other Methods of Expression Based Invalidation

Expression based invalidation may be handled in several
different ways (including the approaches described above
for minimum origin version invalidation). The cache may
implement an efficient map of cached URLs, or a separate
service based on reduction of cache events can maintain an
index of cached resources, and it can translate invalidation
patterns into the list of cached resources per cache. This
service can be used by the control network in a feedback
loop that takes invalidation manifests containing patterns
and localizes them for cache consumption by expanding the
patterns into ground URLs.
Invalidation Completion Tracking

Propagation of invalidation commands can be tracked to
closure by tracking mov change events using the reduction
mechanism.
System Performance and Customer Experience

The memory required to guarantee safety depends on the
number of unique invalidation commands submitted since
the beginning of time for the cache. As used here, unique
invalidation commands means unique resource specifiers
(whether ground or group). Commands for the same group
resource submitted over and over occupy only one slot in the
command list, and have the effect of updating that slot’s
mov. So if the set of resource specifiers in invalidation
commands for a property is bounded, the space needed to
ensure safety is bounded. This situation is shown in FIG.
30G (which shows a bounded population of invalidation
commands).

On the other hand, if the set of resource specifiers is not
bounded, a different situation arises, as shown in FIG. 30H
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(which shows an unbounded population of invalidation
commands). In this case, the number of unique resource
specifiers seen in invalidation commands keeps growing
without bound. Some of these commands are eventually
candidates for crumpling, and by a certain time, they are
assured of being crumpled. The time from the arrival of a
command to the time where a crumpled version of the
command might implicate other unintended resources is the
time-to-implication (TTI) for this property, and it is a
function of the invalidation command rate and the memory
allocated to the invalidation command list, as described
next.

The invalidation system imposes some configurable
memory limit M on the number of unique invalidation
commands that can be retained at any given time. Let IR be
the average rate of submission of unique invalidation com-
mands (i.e., commands with unique resource specifiers):

# of unique invalidation commands submitted during AT

IR(AT) =
(AT) =gpr AT

This can be related to the average time-to-implication
(TTT) for a resource in cache by using the value of M, the
size of the invalidation command memory:

TTI =g R

because as commands roll off the end of invalidation com-
mand memory (or into the crumple zone), their mov con-
straints may become constraints on all resources in the
property in order to ensure safety.

Therefore, to avoid implicating content that would not
otherwise be aging out of the system naturally, a sufficiently
large TTI should be ensured based on the average age of
content for the property, defined as wage(P), where:

size, X age,

2, sizey
reP

wage(P) =gr

reP

The average age of content should be arranged to be less
than the TTI:

wage(P)<ITI

and this may be achieved by constraining IR based on the
allocated M and wage(P):

M
<
wage(P)

In practice, wage(P) will initially be an estimate when a
property is configured, and M will be determined based on
an estimated peak value for IR. If the value of M exceeds the
configurable limits, IR will be constrained based on some
maximum M (unless it is acceptable to reduce the age). If the
configured age is less than the actual age, then some fresh
content will be implicated (and eventually refreshed) before
it ages out. However, given a configured IR limit the
ingestion of invalidation commands may be throttled to stay
within this limit and thereby avoid implicating resources
before their time.
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Overall, this approach provides a reasonable way of
predicting the resources needed to support a certain level of
invalidation activity. Configuring a property to work within
those resources constrains the invalidation mechanism
enough to support the desired level of invalidation activity
while also ensuring a predictable refresh behavior for all of
the content in a property.

Alternate Invalidation Approach

An exemplary approach to resource invalidation can be
found in U.S. Pat. No. 8,060,613, which is hereby fully
incorporated herein by reference for all purposes. U.S. Pat.
No. 8,060,613 describes a resource invalidation approach in
which a server in a content delivery network (CDN) main-
tains a list of resources that are no longer valid. When the
server gets a request for a resource, it checks whether that
resource is on the list, and, if so, it replicates the resource
from a content provider’s content source (such as an origin
server). If the requested resource is not on the list (of
resources that are no longer valid), the server tries to serve
a copy of the requested resource or to obtain a copy from
another location in the CDN.

Such an exemplary resource invalidation approach is
described in greater detail below:

A server in the CDN maintains a list of invalid resources.
The server receives an indication that at least one resource
is no longer valid. This indication may be received from a
so-called “master server.” In response to receiving this
indication of invalidity, the server causes the at least one
resource to be listed as invalidated.

In response to a request of the server to serve a resource
associated with a content provider to a client, the server
determines whether the requested resource is listed as invali-
dated. If the requested resource is listed as invalidated, then
the server attempts to replicate an updated copy of the
requested resource on the server from at least one content
source associated with the content provider. The server then
serves the updated copy of the requested resource to the
client. If the requested resource is not listed as invalidated,
then, if a copy of the requested resource is not available on
the server, the server attempts to replicate a copy of the
requested resource on the server from another location in the
system, and, if successful, then serves the copy of the
requested resource to the client. If a copy of the requested
resource is available on the server, then the server serves the
copy of the requested resource to the client.

The other location (from which the server attempts to
obtain a copy) may be another server in the CDN or at least
one content source associated with the content provider.

The indication that the at least one resource is no longer
valid may be in the form of a resource invalidation message
identifying one or more resources that are no longer valid.
The message identifying one or more resources that are no
longer valid may use an identifier/identifiers of the resource
(s). The message may use one or more patterns (e.g., regular
expressions) to identify invalid resources. The regular
expressions may describe one or more sets of resources to be
invalidated. Regular expressions are well-known in the field
of computer science. A small bibliography of their use is
found in Aho, et al., “Compilers, Principles, techniques and
tools”, Addison-Wesley, 1986, pp. 157-158.

In some embodiments, the server may send an acknowl-
edgement message for the resource invalidation message.

In some embodiments, the server may cause the resource
invalidation message to propagate to other servers in the
CDN.
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A resource may be considered to be no longer valid
(invalid), e.g., if the resource is stale and/or if the resource
has changed.

In some embodiments the server may delete at least some
of the resources that are no longer valid. This deletion may
occur prior to any request for the at least some of the
resources.

The server may be a caching server, and the master server
may be another caching server.

In another embodiment, as described in U.S. Pat. No.
8,060,613, a server receives a first message identifying at
least one resource that is stale. The first message may be
received from a master server. In response to the first
message, the server lists the at least one resource as pending
invalidation. In response to a request of the server from a
client to serve a resource that has been listed as pending
invalidation, the request being the first request for the
resource that is received by the server after the first message
has been received, the server attempts to replicate an
updated copy of the requested resource on the server (e.g.,
from at least one content source associated with the content
provider), and the server then attempts to serve the updated
copy of the requested resource to the client.

In some embodiments, the server may propagate the first
message to other servers in the CDN.

The first message may identify the at least one resource
that is stale using an identifier of the at least one resource.
The first message may identify the at least one resource that
is stale using one or more patterns (e.g., regular expres-
sions). The regular expressions may describe one or more
sets of resources to be invalidated.

In some embodiments, after listing the at least one
resource as pending invalidation: the server may send an
acknowledgement message indicating that the particular
server has listed the at least one resource as pending invali-
dation.

In some embodiments, the first message may be sent (e.g.,
by the server) to others servers in the CDN. The server may
wait for the others of the plurality of servers to acknowledge
the first message.

In some embodiments, if a server in the CDN fails to
acknowledge the first message within a given period, that
server may be disconnected from the CDN. In some embodi-
ments, when the server reconnects, the server may be
instructed to flush its entire cache.

In some cases, if a server in the CDN fails to acknowledge
the first message within a given period, then the server may
be instructed to flush at least some of its cache.

In some embodiments, when all servers have either
acknowledged the first message or have timed out, a second
message may be broadcast, the second message comprising
an invalidation request to all servers to cause the servers to
remove the corresponding resource identifiers from the list
of resource identifiers pending invalidation.

In some embodiments, a first message is received from a
server (e.g., a master server). The first message identifying
at least one resource of a content provider that is no longer
valid. Then, responsive to the next request from a client of
a server to serve the at least one resource that has been
identified as no longer valid, the server obtains an updated
copy of the resource on the server from at least one content
sources associated with the content provider, and then the
server serves the updated copy of the particular resource to
the client.
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Clusters, Clustering and Peering

Clusters and Clustering

As designated intermediaries for given origin service, a
CDN generally provides a redundant set of service endpoints
running on distinct hardware in different locations. These
distinctly addressed but functionally equivalent service end-
points provide options to the rendezvous system (discussed
below). Each distinct endpoint is preferably, but not neces-
sarily, uniquely addressable within the system, preferably
using an addressing scheme that may be used to establish a
connection with the endpoint. The address(es) of an end-
point may be real or virtual. In some implementations, e.g.,
where service endpoints (preferably functionally equivalent
service endpoints) are bound to the same cluster and share
a virtual address, the virtual address may be used.

In the case of an IP-based system, each distinct endpoint
may be defined by at least one unique IP address and port
number combination. In an IP-based system where service
endpoints are logically bound to the same cluster and share
an IP address, each distinct endpoint may be defined by at
least one unique combination of the IP address and port
number. In some cases, service endpoints that are logically
bound to the same cluster may share a VIP, in which cases
each distinct endpoint may be defined by at least one unique
combination of the VIP and a port number. In the latter case,
each distinct endpoint may be bound to exactly one physical
cluster in the CDN.

It should be appreciated that not all service types will
require or have multi-agent logical clusters. In such cases,
the endpoint may be defined in terms of a real address rather
than a virtual address (e.g., an IP address rather than a VIP).
A virtual address may, in some cases, correspond to or be a
physical address. For example, a VIP may be (or correspond
to) a physical address (e.g., for a single machine cluster).

It should be appreciated that the term VIP is used in this
description as an example of a virtual address (for an
IP-based system). In general any kind of virtual addressing
scheme may be used and is contemplated herein. Unless
specifically stated otherwise, the term VIP is intended as an
example of a virtual address, and the system is not limited
to or by IP-based systems or systems with IP addresses
and/or VIPs.

It should be appreciated that, as used herein to describe
endpoints in a cluster, the term “functionally equivalent”
does not require identical service endpoints. For example,
two caching endpoint services may have different capabili-
ties yet may be considered to be functionally equivalent.

For example, as shown in FIG. 3A, service endpoints SEP
1, SEP 2 .. . SEP n are logically bound to the same cluster
and share an address. When a logical cluster is within a
physical cluster (e.g., when the services are on machines
behind a switch), the shared address may be a virtual address
(e.g., a VIP).

A physical cluster of service endpoints may have one or
more logical clusters of service endpoints. For example, as
shown in FIG. 3B, a physical cluster 304 includes two
logical clusters (Logical Cluster 1 and Logical Cluster 2).
Logical cluster 1 consists of two machines (M0, M1), and
logical cluster 2 consists of three machines (M2, M3, M4).
The machines in each logical cluster share a heartbeat signal
(HB) with other machines in the same logical cluster. In this
example, the first logical cluster may be addressable by a
first unique virtual address (address #1, e.g., a first VIP/port
combination), whereas the second logical cluster may be
addressable by a second unique virtual address (address #2,
e.g., a second VIP/port combination).
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In a typical case, a machine may only be part of a single
logical cluster; although it should be appreciated that this is
not a requirement.

The machines that share a heartbeat signal may be said to
be on a heartbeat ring. In the example cluster shown in FIG.
3B, machines MO and M1 are on the same heartbeat ring,
and machines M2, M3, and M4 are on the same heartbeat
ring.

When a service endpoint is bound to a cluster, it means
that a bank of equivalent services are running on all the
machines in the cluster and listening for service requests
addressed to that cluster endpoint address. Preferably a local
mechanism (e.g., a load-balancing mechanism) ensures that
exactly one service instance (e.g., machine) in the cluster
will respond to each unique service request. This may be
accomplished, e.g., by consistently hashing attributes of
each request to exactly one of the available machines and
(and of course it is impossible to have more than one service
instance listening per machine on the same endpoint). Each
service instance running on machines in the cluster can be
listening to any number of other endpoint addresses, each of
which will have corresponding service instances running on
all other machines in the cluster. Those of ordinary skill in
the art will realize and understand, upon reading this
description, that various mechanisms may be used to allo-
cate/distribute service requests to service instances in a
cluster. It should be appreciated that not all types of services
need use the same allocation/distribution mechanisms, and
that not all clusters of the same kind of service need use the
same allocation/distribution mechanisms.

In some preferred implementations, each machine is
installed on a physical cluster of machines behind a single
shared switch. One physical cluster may be divided up into
multiple logical clusters, where each logical cluster consists
of those machines on the same physical cluster that are part
of the same HB ring. That is, each machine runs an HB
process with knowledge of the other machines in the same
logical cluster, monitoring all virtual addresses (e.g., VIPs)
and updating the local firewall and NIC (network interface
card/controller) configurations in order to implement local
load balancing across the cluster.

U.S. Pat. No. 8,015,298 titled “Load-Balancing Cluster,”
filed Feb. 23, 2009, issued Sep. 6, 2011 (the entire contents
of which are fully incorporated herein by reference for all
purposes) describes various approaches to ensure that
exactly one service instance in a cluster will respond to each
unique service request. In a first allocation approach, service
endpoints on the same HB ring select from among them-
selves to process service requests. In a second allocation
approach, also for service endpoints on the same HB ring,
having selected a service endpoint from among themselves
to process service requests, the selected service endpoint
may select another service endpoint (preferably from service
endpoints on the same HB ring) to actually process the
service request. This handoff may be made based on, e.g.,
the type of request or actual content requested.

Since, in some cases, each machine may be considered to
be a peer of all other machines in the cluster, there is no need
for any other active entity specific to the cluster. The
database records in the configuration and control networks
of'the CDN are the only things that are needed to declare the
cluster to exist. When cluster configurations change,
machines detect the changes, e.g., via their local Autognome
processes (described above). Autognome then launches all
services (including HB) and communicates logical cluster
changes to HB via updates to distinguished local files.
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A subcluster is a group of one or more (preferably
homogenous) machines sharing an internal, local area net-
work (LAN) address space, possibly load-balanced, each
running a group of one or more collaborating service
instances. To external clients, i.e., those not connected to the
internal LAN of the subcluster, the collection of service
instances is addressed as a single service image, meaning
that individual externally visible physical addresses can be
used to communicate with all machines in the subcluster,
though usually one at a time.

Service instances within the subcluster’s internal LAN
address space can preferably address each other with inter-
nal or external LAN addresses, and may also have the ability
to transfer connections from one machine to another in the
midst of a single session with an external client, without the
knowledge or participation the client.

A supercluster is a group of one or more (preferably
homogenous) subclusters, each consisting of a group of one
or more collaborating but distinctly addressed service
images. Different service images in the same supercluster
may or may not share a common internal LAN (although it
should be appreciated that they still have to be able to
communicate directly with each other over some network).
Those connected to the same internal LAN may use internal
LAN addresses or external LAN addresses, whereas others
must use external network addresses to communicate with
machines in other subclusters.

Clusters may be interconnected in arbitrary topologies to
form subnetworks. The set of subnetworks a service partici-
pates in, and the topology of those networks, may be
dynamic, constrained by dynamically changing control poli-
cies based on dynamically changing information collected
from the network itself, and measured by the set of currently
active communication links between services.

An example showing the distinction between physical
clusters, logical subclusters, and logical superclusters is
shown in FIG. 31A. In this example, the machines of
physical clusters A and B are subdivided into groups form-
ing logical subclusters R, S, and T from the machines of A
and logical subclusters X, Y, and Z from the machines of B.
These subclusters are then recombined to form logical
superclusters | from R and S, J from T and X, and K from
Y and Z. The number of machines that may be combined
into one subcluster is limited by the number of machines in
a physical cluster, but theoretically any number of logical
subclusters may be grouped into one supercluster that may
span multiple physical clusters or be contained within one.
Peering, Parenting, and Topology

Peering is a general term referring to collaboration
between different service instances, service images, sub-
clusters, and clusters of the same service type in some larger
sub-network in order to achieve some effect, typically to
improve performance or availability of the service. Though
the effect may be observable by the client, the peers involved
and the nature of their collaboration need not be apparent to
the client.

Typically peering occurs between two or more services of
the same rank in a larger sub-network, but may also be used
to refer to services of similar rank in some neighborhood of
the larger sub-network, especially when the notion of rank is
not well defined (as in networks with a cyclic or lattice
topology). Parenting is a special case of peering where a
parent/child relationship is defined between services.

Note that the formation of logical clusters from physical
elements is distinct from the formation of larger subnet-
works of service instances running on the machines in a
cluster. Service specific subnetworks comprised of interact-
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ing service instances may span multiple superclusters, which
means the superclusters on which those service instances are
running may be considered as forming a network (typically
a lattice or hierarchy, see, e.g., FIG. 31B).

Clustering Assumptions

For preferred implementations, a two-level cluster archi-
tecture is assumed, where machines behind a common
switch are grouped into logical sub-clusters, and sub-clus-
ters (whether behind the same switch or on different racks/
switches) are grouped into super-clusters. In some preferred
implementations, using, e.g., the systems described in U.S.
Pat. No. 8,015,298 titled “Load-Balancing Cluster,” all
machines in a logical sub-cluster are homogeneous with
respect to the virtual address (e.g., VIPs) they serve (each
machine serves the same virtual addresses—VIPs—as all
other machines in the sub-cluster), and machines in distinct
logical clusters will necessarily serve distinct (non-overlap-
ping) sets of virtual addresses—VIPs.

A single switch may govern multiple sub-clusters and
these sub-clusters need not be in the same super-cluster. It is
logically possible to have any number of machines in one
sub-cluster, and any number of sub-clusters in a super-
cluster, though those of ordinary skill in the art will realize
and understand that physical and practical realities will
dictate otherwise.

Other features described in U.S. Pat. No. 8,015,298 could
be made available as an optional feature of sub-clusters,
enabling the transfer of connections from one machine to
another in the same sub-cluster.

Recall, from above, that U.S. Pat. No. 8,015,298 describes
various approaches to ensure that exactly one service
instance in a cluster will respond to each unique service
request. These were referred to above as the first allocation
approach and the second allocation approach. In the first
allocation approach, service endpoints on the same HB ring
select from among themselves to process service requests. In
the second allocation approach, also for service endpoints on
the same HB ring, having selected a service endpoint from
among themselves to process service requests, the selected
service endpoint may select another service endpoint (pref-
erably from service endpoints on the same HB ring) to
actually process the service request. This handoff may be
made based on, e.g., the type of request or actual content
requested.

It is assumed here that for some implementations an
additional level of heartbeat-like functionality (referred to
herein as super-HB) exists at the level of virtual addresses
(e.g., VIPs) in a super-cluster, detecting virtual addresses
that are down and configuring them on machines that are up.
This super-HB allows the system to avoid relying solely on
DNS-based rendezvous for fault-tolerance and to deal with
the DNS-TTL phenomenon that would cause clients with
stale IP addresses to continue to contact VIPs that are known
to be down. It should be appreciated that a super-HB system
may have to interact with the underlying network routing
mechanism (simply bringing a VIP “up” does not mean that
requests will be routed to it properly). For example, if a
sub-cluster is to take over another sub-cluster’s VIP because
the second sub-cluster is completely down or has lost
enough capacity that the system will consider it to be down,
the routing infrastructure is preferably informed that the VIP
has moved to a different switch. As noted earlier, while this
discussion is made with reference to VIPs, it should be
appreciated that the system is not limited to an IP-based
scheme, and any type of addressing and/or virtual address-
ing may be used.
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Heartbeat(s) provide a way for machines (or service
endpoints) in the same cluster (logical and/or physical
and/or super) to know the state of other machines (or service
endpoints) in the cluster, and heartbeat(s) provide informa-
tion to the various allocation techniques. A heartbeat and
super-heartbeat may be implemented, e.g., using the
reducer/collector systems. However, those of ordinary skill
in the art will realize and understand, upon reading this
description, that a local heartbeat in a physical cluster is
preferably implemented locally and with a fine granularity.
A super-heartbeat may not have (or need) the granularity of
a local heartbeat.

This leads to two extreme approaches to configuring a
super-cluster, one relying on the first allocation approach
described above (with reference to U.S. Pat. No. 8,015,298),
with optional super-HB, the other with super-HB and
optional first allocation approach:

A Super-Cluster Containing N>1 Sub-Clusters with 1
Machines

First allocation approach required, second allocation

approach optional. A super-HB is unnecessary.

A Super-Cluster Containing N>1 Sub-Clusters with 1
Machine Each

First allocation approach not required, second allocation

approach not supported. This requires a super-HB.

Depending on the overhead of the first allocation
approach and the fail-over properties of virtual address (e.g.,
VIP) reconfiguration and rendezvous, it may be advanta-
geous to actually configure a super-cluster somewhere in
between these two extremes. On the one hand, the First
allocation approach system described in U.S. Pat. No. 8,015,
298 provides the most responsive failover at the cost of
higher communication overhead. This overhead determines
an effective maximum number of machines and VIPs in a
single logical sub-cluster based on the limitations of the
heartbeat protocol. The First allocation approach mecha-
nisms described in U.S. Pat. No. 8,015,298 also imposes
additional overhead beyond that of heartbeat due to the need
to broadcast and filter request traffic. On the other hand, a
VIP-level failover mechanism that spans the super-cluster
would impose similar heartbeat overhead but would not
require any request traffic broadcasting or filtering.

It may be that the optimal case is to have logical clusters
with at least two machines but not much more in order to
provide reliable VIPs but minimize communication over-
head due to the First allocation approach. The benefits of
going beyond two machines would be increased capacity
behind a single VIP, and the enabling of localized content
striping (described in the section titled “Higher Level Load
Balancing” below as Approach A) across a larger group of
machines, but the costs would be increased HB overhead
which increases as the size of the subcluster increases, and
the broadcast and filtering overhead. Detection of down
VIPs in the cluster may potentially be handled without a
heartbeat, using a reduction of log events received outside
the cluster. A feedback control mechanism could detect
inactive VIPs and reallocate them across the cluster by
causing new VIP configurations to be generated as local
control resources.

General Responsibility-Based Peering

In responsibility-based peering, each node in a peer group
may assume one or more discrete responsibilities involved
in collaborative processing of a request across the peer
group. The peer group can be an arbitrary group of service
instances across the machines of a single super-cluster. The
nature of the discrete responsibilities depends on the service
type, and the processing of a request can be thought of as the
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execution of a chain of responsibilities. The applicable chain
of responsibilities and the capacity behind each are deter-
mined by the peering policy in effect based on the actual
capacity of nodes in the peering group and a dynamically
computed type for each request. This allows different
request types to lead to different responsibility chains and
different numbers of nodes allocated per responsibility.

Each node has a set of capabilities that determine the
responsibilities it may have, and responsible nodes are
always taken from the corresponding capable set. A node’s
capability is further quantified by a capacity metric, a
non-negative real number on some arbitrary scale that
captures its relative capacity to fulfill that responsibility
compared to other nodes with the same responsibility. Both
capabilities and capacities may change dynamically in
response to events on the machine or instructions from the
control network, in turn influencing the peering decisions
made by the peer group.

Each service type defines a discrete set of supported
request peering types, and a discrete set of responsibilities.
A configurable policy defines a mapping from an arbitrary
number of discrete resource types to the request peering type
with a capacity allocation for each responsibility in the
request peering type. This capacity could, for example, be a
percentage of total capacity across all nodes capable of
fulfilling that responsibility. The policy also defines a
responsibility function per request peering type that maps a
request and a responsibility to a set of nodes that have that
responsibility for that request. This function is expected to
make use of the capacity allocation for that responsibility
type, using each node’s capacity for each responsibility it
can handle.

There are no specific requirements on the responsibility
function other than the fact that it should return responsi-
bility sets that are largely consistent with the current node
capabilities and capacity allocations over a sufficiently large
number of requests.

Ideally responsibilities should change in a predictable
way in the face of capability losses due to node failures, but
there is a tradeoff to be made between the goals of consis-
tency (as exemplified by consistent hashing techniques) and
load balancing. Ideally, the initial adjustment to a capacity
loss is consistent, but over time consistency should be
relaxed in order to balance the load.

One approach is to manage a ring of nodes per capability,
with some arbitrary number of slots on each ring such that
Nslots>>Nnodes, and with an assignment of nodes to inter-
vals of contiguous slots where the number of slots assigned
to a node is proportional to the node’s capacity for that
capability, and the node’s centroid on the ring is based on its
node identifier’s position in the sorted list of all node
identifiers for available nodes (nodes with capacity greater
than zero). The responsibility function would consult the
ring for the responsibility in question, consistently hash the
resource to a slot on the ring, and take the slot interval
proportional to the capacity allocation for the resource’s
type. It would then return the set of nodes allocated to those
slots.

In the steady state, all nodes in the peer group should
compute the same assignment of responsible nodes for the
same resource, and thus make the same expectations about
which nodes are responsible for what. Under transient
conditions, such as when capabilities and capacities change
and not all nodes have yet become consistent with the same
policies, different nodes may temporarily compute slightly
different responsibility sets. The effect of this inconsistency
is mitigated by several configurable approaches.
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The first of the approaches to mitigate inconsistency
depends on the implementation of the responsibility func-
tion. If chosen correctly and consistent hashing is used to
connect a resource to a responsible node, then disruptions in
responsibility assignments can be reduced.

The second of the approaches to mitigate inconsistency is
that all capable nodes are expected to take responsibility
when necessary, even when they believe they are not respon-
sible, but no node ever asks another node to be responsible
unless it believes that other node is responsible. If a sup-
posedly responsible node is contacted that actually is not
responsible, then if that node is available it must take
responsibility. If it does not respond, the client should
choose another node from the responsibility set until some
upper limit of attempts is reached or the responsibility set is
exhausted, at which point the client should take responsi-
bility and continue on in the responsibility chain.

The third of the approaches to mitigate inconsistency is
that when a new responsibility allocation is provided (due to
a node becoming completely unavailable or having its
capacity metric degraded), the previous allocation and the
new allocation are combined over some fade interval to
determine the actual responsibility set used by any node.
Depending on the type of service, it may be desirable to
more or less gradually adapt to the new allocation, and this
adaptation is controlled by a responsibility adaptation policy
that combines the output of multiple responsibility func-
tions, a current fading function and zero or more newer
emerging functions. The fading function is used with some
probability that fades to zero (0) over some fade interval,
otherwise the emerging function is used. If the fading
function identifies a node that the emerging function claims
is unavailable, the emerging function overrides the fading
function and it uses the emerging function’s node set. This
general approach can be extended to an arbitrary number of
pending emerging functions, to handle periods where the
capacity allocations change faster than the length of the fade
interval.

Consistency, Balance, and Hash Distributions

When a node loses capacity (completely or partially), the
typical approach is to use consistent hashing to allocate just
the workload that was lost (i.e., the requests that hash to the
node that lost capacity) to other nodes. A consistent reallo-
cation is one in which the amount of work reallocated is the
same as the amount of capacity that was lost. In consistent
hashing, where the workload (responsibility for dealing with
certain resources) is allocated based on their hash, consis-
tency may be achieved if loss of one of N nodes of capacity
causes no more than K/N resources to be reassigned to other
nodes, where K represents the size of the key space, in this
case the number of unique request hashes.

The rationale for this is to minimize disruption, which
makes sense in the short term. But minimizing disruption
maximizes imbalance, which is undesirable over the long
term. Therefore it is desirable to have an approach that
smoothly adjusts from a consistent adaptation immediately
following a capacity loss to a balanced adaptation eventu-
ally. It should be appreciated that consistent hashing alone
does not achieve this.

Another issue with hashing in general, even without
capacity loss, is the actual distribution of workload over a set
of hash value intervals based on the actual distribution of
those request parameters that factor into the hash. If this is
not both stationary and uniform, balance will not be
achieved. Capacity loss exacerbates the issue.

By hashing requests to slots as opposed to directly hash-
ing them to responsible nodes, the system retains the ability
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to adjust a node’s coverage of slots ever so slightly over time
in order to balance its capacity with respect to the load
represented by the slots. Assuming suitable information
sources based on reductions of the actual request workload,
the system can compute the actual distribution of workload
(i.e. request hashes) over the slots, and use this to adjust a
node’s centroid and extent on the slot circle such that its
current capacity covers the current estimate of load across
some slot interval. This kind of adjustment improves balance
at the expense of consistency, and this may be done gradu-
ally after the initial consistent adjustment to capacity loss,
and eventually reach a new point where load is balanced.

Slot Circles Vs. Metric Spaces

The slot circle provides a simple means to implement
consistent hashing Typically nodes are assigned to slots
where the number of slots is equal to the total number of
nodes, and holes (capacity dropouts) are reassigned to a
neighbor. Thus the hashing of resources to nodes in this case
(and to slots) is consistent.

With a number of slots much larger than the number of
nodes, can consistent hashing may still be achieved if the
number of slots is fixed, the position of each node on the
circle is fixed, and only reassignment of holes to neighbors
is dealt with. By nudging nodes around the circle, and
expanding or shrinking the intervals they cover, consistent
hashing to nodes is sacrificed, even though the number of
slots has not changed, but this allows us to rebalance the
load.

A slot circle is a simple one-dimensional approach, just
one of many ways to divide up the workload, assign to
capacity carrying nodes, and deal with capacity losses in a
consistent fashion. In general, a finite multidimensional
metric space with a suitable distance metric could replace
the slot circle, provided requests hash to contiguous regions
in the space, nodes cover intervals of the space, and a
scheme exists for initially consistent adjustments that evolve
into eventual load balance. This multidimensionality may
also be useful as a means to address different load require-
ments in different dimensions.

Cache Peering

This section describes an example of how a set of peering
policies based on the type of resource may be arranged.
Those of ordinary skill in the art will appreciate and under-
stand, upon reading this description, that different and/or
other peering policies may be arranged. A responsibility
based peering policy for a super-cluster determines for each
resource r whether the resource is rejectable, redirectable, or
serveable. Serveable resources are further subdivided into
non-cacheable and cacheable types. For cacheable
resources, the policy assigns each node one or two respon-
sibilities taken from the list non-responsible, cache-respon-
sible, and fill-responsible. Non-responsible nodes will avoid
caching a resource and tend to proxy it from cache-respon-
sible nodes; cache-responsible nodes will cache the resource
but defer to fill-responsible nodes for the task of filling it
remotely. Only fill-responsible nodes will issue fill requests
to remote parents or origin servers. If a node is non-
responsible it cannot be cache-responsible or fill-respon-
sible, but a node that is cache-responsible may also be
fill-responsible. It should be appreciated that (in this
example) a fill-responsible node must also be cache-respon-
sible

This approach assumes that any two nodes in a super-
cluster are potential peers with respect to filling and serving
a given resource. Other than the manner in which peers
address each other, it does not matter whether the peers are
in the same logical sub-cluster or in two different sub-
clusters. It is assumed that it is possible for peers in the same
sub-cluster to communicate over back channel IP addresses,
whereas peers in different sub-clusters can use public VIPs.
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A policy does not actually assign responsibility for spe-
cific nodes in advance, but rather specifies the sizes of the
various responsibility sets relative to the size of the super-
cluster, where All is the set of all nodes in the super-cluster,
and N _,=IAlll.

Nxr(0)=N_;;, the number of cache-responsible nodes in

the super-cluster for r;

Nzz(1)=Nx(r), the number of fill-responsible nodes in
the super-cluster for r;

RFT(r), the set of remote fill targets outside the super-
cluster for r.

Policy types are defined in advance for each property
based on thresholds for popularity, cacheability, and size of
the resource being requested. The policy type governing a
cacheable response is determined at request time based on
estimates of the resource’s popularity, cacheability, and size
together with the capabilities of the receiving cluster. The
node receiving the request determines its responsibility
relative to the request by its membership in the following
responsibility sets which are determined per request by a
consistent hash of the request to the ring of nodes in the
super-cluster:

CR(r) is the set of cache-responsible nodes located on the
contiguous interval of Nx(r) nodes on the hash ring
centered at the node to which r hashes.

FR(r) is the set of fill-responsible nodes on the contiguous
interval of N, (r) nodes on the hash ring centered at the
node hashed by the request. Generally FR(r) = CR(r).

NR(r) is the set non-responsible nodes.

NR(F)=All-(CR(-UFR(r))

For each request r, the receiving node knows what degree
of responsibility it has based on its membership (or not) in
each of these sets (which, in the rest of this document, are
referred to as CR, FR, NR, and RFT). If a node x is not
cache-responsible (xCR), it will either transfer the con-
nection or proxy the request to a node that is cache-
responsible. If it is cache-responsible but not fill-responsible
(x2CR but x#FR) and does not have the resource in cache,
it will fill from a node that is fill-responsible. If it is
fill-responsible but does not have the resource in cache, it
will fill the resource from a remote fill target. See Table 2,
Peering Behaviors (below). Similar variations exist when
the resource is in cache but is stale. In all cases, the choice
of a node to proxy or fill from is by default an unbiased,
random choice of any node in the governing responsibility
set.

This policy structure is self-reinforcing—it not only relies
on but also ensures the fact that the system will eventually
reach a state where cacheable content is most likely to be
cached at all cache-responsible nodes, and (assuming ren-
dezvous and load balancing distribute requests evenly over
the super-cluster) that all cache-responsible nodes are
equally likely to have the given piece of content for which
they are responsible.

TABLE 2
Peering Behaviors
Responsi- Target
Case Policy Type Cache bility Action Set
0 Rejectable — — Reject —
1 Redirectable Redirect  RFT

CR=FR=0
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TABLE 2-continued

Peering Behaviors

Responsi- Target
Case Policy Type Cache bility Action Set
2 Serveable, Proxy RFT
non-cacheable
CR=FR=0
3 Serveable, & Cache x@&FR, Proxy CR
cacheable x & CR
@ = FR < CR
4 Serveable, r & Cache x@&FR, Transfer CR
cacheable, x & CR
@ = FR < CR
5 Serveable, r & Cache x@&FR, Fill FR
cacheable, x € CR
@ = FR < CR
6 Serveable, r & Cache x €EFR Fill RFT
cacheable,
@ = FR c CR

Content is effectively striped across the cluster, with each
node n storing only those resources which hash to a CR set
that contains the node n. The number of cache-responsible
nodes per resource can be set to an arbitrarily large subset of
the cluster based on popularity, with more popular resources
resulting in larger values of N, thus increasing the chances
that requests to the cluster will hit nodes which have the
resource in cache.

This responsibility structure may be extended to distin-
guish different caching/filling responsibilities, based on dif-
ferent levels in the memory hierarchy.)

Configuration and Tuning of Cache Peering

It is possible to assign planned quality of service levels to
a property by defining tiers, and compute the popularity and
cacheability thresholds necessary to achieve it based on the
properties of the library and traffic profile. The library could
be divided up into tiers, where each tier corresponds to that
portion of the library with expected popularity (request rate)
over some threshold, and a desired performance metric (say
a cache hit rate) is assigned to each tier, with special tiers for
redirectable, ejectable, and non-cacheable resources. Tier
boundaries could be defined based on popularity thresholds
or total size of the library tier (i.e., the K most popular GB
of resources, etc.).

Focusing on the cacheable resources, it is possible to
estimate the CPU, memory, and network capacity needed to
achieve the QoS targets per tier. Network and memory
would likely be the gating factors (combining memory and
disk into one category for now, considering a resource “in
cache” if it is on disk or in memory).

An example of how this may be done for the memory part
of the estimation, ignoring the effects of invalidations, is
shown here. The memory in needed to ensure the hit rate for
the given tier of the library may be estimated by:

HitR Ner m
tKate = —— X ————
Rare= =5 X Tibsize(ten)

Imposing a minimum number of machines N =N .
compute an upper bound m* on the amount of memory per
machine as:

. _ HitRatex N X LibSize(tier)
- Nonin
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Let m* be the total size of the library tier, LibSize (tier),
then estimate another lower bound on N :

Np*=HitRatexN
Then, if N g*<N,,, set:

m=m*

Ner=Npuin

but if Nz*>N, . then set:

Ner =Negg

HitRare x N x LibSize(tier)
m=
Neg

Similar computations are needed to estimate the client
side, fill side, and peer-to-peer bandwidth needed to achieve
the targets.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the above tech-
nique is only given by way of example, and is not intended
to limit the scope of the system in any way.

As actual traffic profiles change dynamically, the total size
and/or popularity thresholds corresponding to the boundar-
ies between QoS tiers will change. The same date reduction
mechanism that computes popularity metadata can aggre-
gate over the whole library to determine new popularity
thresholds for a given resource data volume, and these new
thresholds can be used to adjust responsibility set sizes for
resources based on their new tiers.

Invalidation and Peering Protocol Issues

It is likely that in some implementations HTTP headers
will be used to confirm the responsibility expected of a
server by another peer in a peer to peer request and to track
the peers that have been involved within the super-cluster in
the service of a request, in order avoid cycles and deal with
the effect of responsibilities changing dynamically. If a node
receives a request for a resource with an expected respon-
sibility that does not match its current responsibility, it is
likely that it had that responsibility very recently or it will
have it in the near future, so it should just behave as if it had
it now.

Cached Location Indexing

The approach described above both relies on and ensures
that resources will be located at certain nodes in the steady
state. Since this relies on a source of popularity and cache-
ability metadata, it may be useful to compute and use an
index of cached locations, and to use this information in
choosing the fill target.

If such an index were used, the system may have to be
sure that the new choices are just a refinement of the choices
that could have been made by the responsibility based
approach, otherwise the steady state guarantees would no
longer be guaranteed. This generally means that choices of
target have to be taken from the intersection of the original
target sets with the location index if that intersection is
nonempty, otherwise it must be taken from the original
target set. For example, nodes#CR would instead choose
their proxy or transfer target from Index(r)NCR if it is
nonempty, otherwise from CR. Similarly for nodes choosing
from FR.
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This has no effect on performance in the steady state,
since in that state:

Index(¥)NCR=CR
Index(r)NFR=FR

In dynamic transitions due to new versions of content,
however, the use of the index (if the latency is low enough)
could cause a transient period where more of the peer
transfers occur from the first targets to get the new version
of the resource. This approach may not improve overall
performance in the transient state.

NR—-CR—FR vs. NR—=FR

Similarly, in some cases it may be considered better to fill
directly from FR when a non-responsible node receives a
request. As defined above, it is possible for two-levels of
local peering before the fill-responsible node reaches out to
a remote fill target. In the steady state when a cache-
responsible node is always contacted first, there is no
difference between contacting a cache-responsible versus a
fill-responsible node, because both will have it in cache with
the same probability. In transient conditions, it is possible
for two local hops to be performed.

Going directly to a fill-responsible node from a non-
responsible node may resolve the transient condition more
quickly for that one node, but it slows the appearance of the
steady state.

Biasing the Peer Choice

The unbiased random choice of a node in a target set can
be replaced with a choice that is more biased, in order, e.g.,
to control transient behaviors or further influence load
balancing. For example, in some cases, since a machine in
a sub-cluster is seeing traffic which is representative of the
traffic being seen by all the other members of the cluster,
then it is feasible to have each machine make its own local
decision about resource popularity and therefore the size of
the various responsibility sets. Since the machines are
observing the same basic request stream, a decision made
locally by one of them will be made approximately simul-
taneously by all of them without them needing to commu-
nicate with each other.

One example would be cache warming. If a new node is
added to a cluster, for example, the system might want to
reduce the probability with which the newly added cache
would be chosen as a cache-responsible or fill-responsible
node, until its cache crosses some threshold. It could even be
effectively taken out of the externally visible rotation by not
listening directly to the sub-cluster VIPs and just respond to
indirect traffic from other sub-cluster peers through local IP
addresses.

Another example is load balancing. If the load distribu-
tion that emerges naturally from the policy is not balanced,
it will tend to stay that way until the traffic pattern changes.
Biasing the peer choice can be achieved by choosing a node
with a probability that is based the ratio of its actual load to
expected load. As this ratio goes up, the probability of
choosing it should go down.

Local, Distributed, and Centralized Responsibility
Assignment

It is important for all peers in a peer group to use a
consistent view of responsibility assignments. However, it is
neither necessary nor feasible for this view to be identical,
since the altruistic approach of accepting responsibility
when asked ensures that each requestor gets what they ask
for. The larger the differences between each node’s view of
responsibility assignments, however, the less efficient the
system will be. In practice, the computation of responsibili-
ties could be computed by some combination of centralized,
distributed, and local computations.

For example, an external centralized source could per-
form some reduction on data captured from the peer group
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to determine popularity, and peering policies could be based
on that. Nodes could also perform their own local compu-
tations, assuming the inputs to these computations are rea-
sonably similar across different nodes (which should be true
in a subcluster but may not hold across the nodes of different
subclusters), and these results could be distributed to other
nodes. The centralized computation could also be merged
with the local computation. The advantage of including the
local computation more directly as opposed to relying solely
on a centralized or distributed computation is reduced
latency.

Multi-Level Peering

The manner in which machines in a peer group collabo-
rate may also be extended across distinct peer groups in a
hierarchy or lattice of peer groups. The responsibility chain
that governs the flow of work within one peer group may
terminate with a task that involves reaching outside the peer
group, and the idea of multi-level peering is to use knowl-
edge of the target peer group’s responsibility structure to
make that handoff more efficient.

For example, as described in the previous section, one
possible responsibility chain involves the responsibility
types non-responsible (NR), cache-responsible (CR), and
fill-responsible (FR), where:

NR nodes proxy to a CR node,

CR nodes fill from an FR node (unless they are also FR),

FR nodes fill from some remote fill target (RFT)

When a request enters an edge peer group from a client
outside the system, it will arrive at some arbitrary node in a
peer group and be handled with some subsequence of the
following sequence:

NR—-CR—>FR—=RFT
where a possible subsequence must be non-empty and may
omit a leading prefix or a trailing suffix (because a possible
subsequence starts at any node where a request may enter,
and stops at a node where the response to the request is
found to be cached). The FR node’s responsibility may
involve reaching out to an RFT that is considered outside the
local peer group at this level, and this RFT may refer either
to a remote peer group or to an origin server external to the
network.

A multi-level peering approach may, for example, identify
the CR nodes for the resource being requested in the target
peer group represented by RFT, and submit the request to
one of the CR nodes directly. The manner in which this is
done may depend, e.g., on the manner in which peer groups
are networked together. It should be appreciated that it may
or may not be possible to address individual machines in the
supercluster, and it may be desirable to target just a single
image subcluster via its VIPs.

If it is possible to address machines directly, individual
CR nodes across the entire remote supercluster may be
targeted, and hitting a node that is NR for the request may
be avoided, and the rest of the supercluster’s internal peering
proceeds as usual. If it is not possible to address individual
machines directly then subclusters need to be addressed. In
this scenario, the remote supercluster’s responsibility struc-
ture may be partitioned, e.g., into two levels, one of which
assigns CR responsibilities for specific resources to entire
subclusters, and then the usual responsibility chain within
the subcluster to decide which nodes within the subcluster
are going to cache and fill. Alternatively, the target CR node
could be identified and its subcluster determined, and the
result used. In either case the probability of hitting an NR
node is reduced (although the chances of the request arriving
at an NR node are not eliminated).
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It should also be appreciated that the choice of a particular
supercluster as the RFT for a request can be chosen dynami-
cally from among multiple available choices based on a
number of factors (what property the request is for, other
resource metadata, etc.) In addition, it should be appreciated
that the choice of a remote fill target supercluster can be
based on feedback (i.e., reduction over request log informa-
tion that results in an estimate of the relative cost to
retrieving content from a particular supercluster for a spe-
cific property). The estimated cost (i.e., latency) from each
client (cluster) to each server (cluster) for a specific property
may be a result of a reduction, and each client (cluster) may
use this to make their remote fill choices.

Domain and Binding Names

Domain and Binding Names Concepts

Domain (Host) Names

Each request reaching the CDN originates with a request
to a subscriber domain name (e.g., a host or domain name
that subscribers advertised to their users). That subscriber
domain host name may be different from the name submitted
to the CDN’s rendezvous system (which will typically be the
CNAME name for the subscriber’s host name defined in the
CDN domain).

Canonical Domain Names (CNAMEs, Supernames)

A subscriber may have one or more subscriber domain
names associated with their resources/origins. The CDN
may assign each subscriber domain name a canonical name
(CNAME). DNS resolution of each subscriber domain name
subject to CDN service must be configured to map to the
corresponding CNAME assigned by the CDN for that sub-
scriber domain name.

As an example, a subscriber may associate the subscriber
domain name “images.subscriber.com” with that subscrib-
er’s resources. The CDN may use the CNAME, e.g., “ima-
ges.subscriber.com.cdn.fp.net” (or “cust1234.cdn.fp.net” or
the like) with the subscriber domain name “images.subscrib-
er.com.” The CNAME is preferably somewhat related to the
customer (e.g., textually) in order to allow this name to be
visually differentiated from those used by other subscribers
of the CDN. In this example the supername is “cdn.fp.net”.

In some cases the subscriber domain host name may be
retained in a proxy style URL and Host header in an HTTP
request that reaches the CDN.

The CNAME assigned by the CDN may be referred to
herein as a supername. When a client name resolution
request for a subscriber host name is directed to a CDN
CNAME the name will be resolved using a CDN DNS
service (rendezvous) which is authoritative for the CNAME,
and the rendezvous service will return a list of VIPs in the
CDN that are suitable for the client to contact in order to
consume the subscriber’s service (e.g., for that subscriber’s
content). Preferably, the rendezvous service will return VIPs
that are not only available but have sufficient excess capacity
and are in close network proximity to the client.

In the example above, the subscriber domain name “ima-
ges.subscriber.com” will be resolved using a CDN DNS
service that is authoritative for the CNAME. The DNS
service that is authoritative for “images.subscriber.com”
may be outside of the CDN DNS service, in which case it
will typically return a CNAME record indicating the super-
name. From the above example, that might, e.g., be “ima-
ges.subscriber.com.cdn.fp.net”. Subsequent resolution of
that name would then be from the CDN DNS service, and
would return a list of VIPs in the CDN. Those of ordinary
skill in the art will realize and understand, upon reading this
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description, that other methods may be employed to deter-
mine the supername associated with the subscriber domain
name, and that the subscriber domain name may directly be
a supername.

A similar process may apply within the CDN, when one
CDN service requests resolution of the domain name of
another CDN service (not necessarily a caching service).
The rendezvous may return a list of VIPs directly or could
redirect the resolution to a CNAME for the internal service
that should be used.

Binding Names (BNAMES)

A binding name (BNAME) is the name to which a
CNAME maps for the purpose of binding physical
addresses. CNAMES with the same BNAME are, by defi-
nition, bound to the same physical addresses. While binding
names are usually the same as CNAMEs, it is possible to
have multiple CNAMES map to the same BNAME (the
effect of which is to ensure that certain CNAMES will
always be bound together).

A mapping or binding (BNAME) is established, mapping
binding names (BNAMESs) to subsets of clusters in the CDN.
Thus, each BNAME is bound to some subset of clusters in
the CDN. (Clusters are discussed in greater detail below.)

It should be appreciated that the concept of a binding
name (BNAME) is internal to the CDN and is not a standard
DNS concept. Those of ordinary skill in the art will realize
and understand, upon reading this description, that the same
effect as BNAMEs may be achieved in DNS by mapping
different CNAMEs to the same physical address.

When DNS-based rendezvous occurs, the CNAME in the
request is mapped internally to a BNAME, for which a set
of VIPs currently bound to that BNAME is defined. The
rendezvous service and/or the client then selects the appro-
priate subset of this binding list.

Binding

Binding is the process of establishing that requests for
certain subscriber services (or other internal requests) will
be available at certain endpoints in the CDN. In an embodi-
ment, each request collection lattice (described below) has
an upper subset (a contiguous collection of ancestor nodes,
starting with the maximal nodes in the lattice) consisting
solely of domain-limited request collections (i.e., request
collections that depend only on the domain name). From this
subset of the lattice the binding domain of the lattice can be
derived, the set of BNAMES that all matching requests must
be relative to. Binding is then accomplished in two steps,
first each BNAME is bound to some subset of clusters in the
CDN, and then the binding domain (BNAME) projection of
the original request collection lattice is bound to each cluster
based on the BNAMEs bound there. The projection of the
original request collection lattice is an equivalent subset
based on the subset of BNAMES (every path in the lattice
that does not match at least one of the BNAMESs is removed
from the projection). If the BNAME to virtual address (e.g.,
BNAME to VIP) mapping changes, or if the BNAME to
terminal request collection mapping changes, then the effec-
tive binding from properties (terminal request collections) to
virtual addresses (e.g., VIPs) changes, and this information
will be reflected in the mapping used by rendezvous.

While the BNAMEs in the binding domain of a given
request collection do not all have to be bound to the same
physical clusters, all request collections that have a given
BNAME must be bound everywhere that domain name is
bound. This is preferable for correctness, because in an
embodiment, the rendezvous decision is based solely on the
BNAME, so the system must be sure that all clusters
provided as rendezvous targets for a given domain name will
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have the ability to handle all request collections based on
that domain name. The binding of domain projections as just
described ensures that all relevant request collections will be
bound, and that all irrelevant ones will not.

Finally, rendezvous services make use of the current state
of BNAME bindings, and may combine this with knowledge
of network weather and each endpoint’s availability, load,
and proximity to the client’s resolver to decide how to
resolve canonical domain names to endpoint addresses.
Rendezvous

Rendezvous is the binding of a client with a target service.
Rendezvous may occur within and across network bound-
aries:

internal services may rendezvous to other internal ser-
vices;

external clients may rendezvous to internal services;

internal services may rendezvous to external services; and

external clients may rendezvous to external services.

In general, rendezvous may involve several stages, some
or all of which may need to be repeated on subsequent
contacts to target service. While rendezvous may be DNS-
based, it should be appreciated that the process need not
involve a DNS-based rendezvous service:

1. A client-side service binding policy is evaluated by the
client, resulting in a list of symbolic service locators
and a reuse policy for the service locator list. This
evaluation may use any information available to the
client to determine the result.

2. The list of service locators is evaluated by a rendezvous
service, resulting in a list of physically addressable
service endpoints and a reuse policy for the endpoint
list. The location of the rendezvous service used here is
itself resolved using an earlier instance of rendezvous.
The evaluation may use any information available to
the rendezvous service to determine the result.

3. A client-side service binding policy is evaluated by the
client, resulting in a choice of one of the physically
addressable service endpoints, and a reuse policy for
that endpoint. This evaluation may use any information
available to the client to determine the result.

4. Any attempted contact of the rendezvous service and or
the target service using the previously determined
endpoint may result in a command to redirect to a
different rendezvous service or target, with a new reuse
policy for the result. The redirection may use any
information available to the target service to determine
the result, may specify the new target in terms of a new
client side binding policies, service locators, or physi-
cal endpoints. Depending on the form in which the
redirect command is specified, the client may need to
restart the rendezvous process at an earlier step in order
to re-derive a new endpoint to contact. The client’s
response to the redirect may also be influenced by the
previously established client-side binding policy. Any
finite number of redirects is possible.

For example:

The policy in step [1] could specity an explicit list of
domain names or URLs, or it could specify a script to
be executed locally which returns such a list, or it could
specify a query to another service (e.g., a compute
service, collector service, state service, or content
delivery service).

The policy in step [2] could be a policy, e.g., as described
in U.S. Pat. No. 7,822,871 (the entire contents of which
are fully incorporated herein for all purposes), and
information retrieved from other services could be
information about the location of the resolving client
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(or the likely client on whose behalf the request is being
made), and information about the state of the network
(both the CDN and the underlying IP network).

The policy in step [3] could be a simple as a random
choice, or another local or remote computation or
collector-based query.

The reuse policies in each step specify whether the results
of that step may be reused over multiple service contacts,
and if reusable, the time period over which the result of that
step may be reused. Time periods may be relative to the
passage of real time and/or the occurrence of future asyn-
chronous events.

In general, each service endpoint is addressable within the
system so that it can be identified using the rendezvous
system and so that it can be contacted and/or connected to
using whatever connection protocol(s) is (are) in use. In the
case of a DNS-based rendezvous system, each service
endpoint is preferably addressable by one or more domain
names so that it can be found using the DNS-based rendez-
vous. A service endpoint may be operated as a multihomed
location with multiple IP addresses. Thus, when a client asks
a DNS-based rendezvous server to resolve the endpoint’s
domain name the rendezvous system will return one or more
of the addresses associated with that name. That client may
then access the service endpoint at one of those addresses.
End to End

As shown in FIG. 3C, binding occurs at/in many levels:
subscriber domain names (hostnames) map to canonical
names (CNAMEs) in the CDN. The CDN’s CNAMEs map
to BNAMEs that are bound/mapped to virtual addresses
(e.g., VIPs) corresponding to subsets of clusters in the CDN.
Each virtual address (e.g., VIP) corresponds to one or more
physical addresses. It should be appreciated that in cases
where the virtual addresses are actual addresses (e.g., where
VIPs are actual IP addresses), the mapping from BNAMEs
to virtual addresses to actual addresses is essentially a
mapping from BNAMEs to actual addresses (e.g., to IP
addresses).

As an example (involving DNS based rendezvous), as
shown in FIG. 3D, the end to end process from request to
response may traverse several levels of indirection.

Request Processing

Request Collections and Binding Domains

Binding is a concept that applies to all service types, not
just caching Bindings are based on request collections and
their binding domains. Each request collection defines a set
of matching requests to a particular kind of service based on
various attributes of the request. Since each matching
request implies a hostname (which implies a CNAME,
which in turn implies a BNAME), the binding domain of a
request collection is the set of BNAMEs implied by the set
of matching requests.

When a request collection is bound to a service instance
at some endpoint it means that all requests that match the
request collection may be served from that service instance
at that endpoint. Service types include not only caching but
also rendezvous, as well as other CDN services such as
configuration, control, reduction, collection, object distribu-
tion, compute distribution, etc.

Examples of request collections include regular expres-
sions over domain names (for DNS rendezvous), and regular
expressions over URLs (for HTTP services), but, as will be
discussed below, other more complex characteristics of
requests may be incorporated in the definition of request
collections, including any information that is contained in or
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derivable from the request and its execution environment
within and around the service processing the request.
Request collections are organized into a set of lattices, one
per service type per layer, as described next.

Service Configuration Layers

Each service type T defines an arbitrary but fixed number
NT of configurable layers of request processing, analogous
to an application-level firewall. The idea is that the process-
ing of each request proceeds through each layer in turn,
possibly rejecting, redirecting, proxying from a peer, or
allowing the request to continue to the next layer with a
possibly modified runtime environment.

For each layer, a mapping is defined from the request
collections into behavior configurations. The bindings and
behavior mappings are delivered to the service in advance
via one or more layer configuration objects (LCDs) or their
equivalent. As each layer is processed in turn for each
request (from layer (NT-1) to layer 0), the behavior of the
layer is defined by the configuration assigned to the match-
ing request collection at that layer, and by a discrete local
state variable for that request collection at that layer. The
local state variable captures the service’s disposition toward
responding to requests of that collection (and changes in this
state variable can be used to denote transitions in the
service’s local readiness to respond to requests in that
collection). Each layer also defines a default behavior to
apply to requests that do not match any node in the hierar-
chy.

Any given time, the design and implementation of a
particular service instance may dictate a certain fixed num-
ber of layers, any number of layers up to some maximum, or
an unbounded number of layers. As the implementation of
that service evolves the constraints on the number of layers
may change to accomplish additional degrees of freedom
and levels of modularity in the configuration of that service
type. Different layers of a service could also potentially be
reserved for specific purposes (such as using some to handle
subscriber-specific behaviors, using others to handle behav-
iors derived from system or service level policies).

Not all request collections in a lattice need to be the
terminal result of matching a request—some are intended as
preliminary matches for descendant request collections. A
terminal request collection is a node in the lattice that may
be the terminal result of a request match (all bottoms of the
lattice must be terminal, interior nodes may be either ter-
minal or nonterminal).

Request Collection Lattices

Each version of a service is designed to have one or more
request processing layers. The configuration of a layer is
defined via a request collection lattice (RCL) and a behavior
mapping. The RCL is computed from the set of request
collections bound to the layer (and all their ancestors), and
the behavior mapping maps the behavior identifiers pro-
duced by each terminal request collection to the control
resources that implement the behavior.

Each request collection specifies its parent request col-
lections, a set of constraints on matching requests, and an
associated configuration (environment settings and a behav-
ior) to be applied to those requests. To compute the con-
figuration applicable to a request the service layer performs
a breadth first search of the hierarchy starting with the tops
of the lattice, capturing information along the way, until the
request matches a node that is either a bottom of the lattice
or has no matching child nodes. If multiple nodes would
match at a given level in the lattice, only one is chosen (the
implementation may order the sibling request collections
arbitrarily, search them in that order, and take the first
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match). Additionally, there may optionally be at most one
request collection descendant of any given request collection
that is defined as the collection to use if no other descendant
collection is matched at that level (the “else” collection).

The mechanism for computing this function may be
configurable in a number of different ways. There may be a
number of discretely identifiable languages or schemes for
defining request constraints based on the needs and capa-
bilities of a particular service layer, and the configuration of
a service layer specifies the scheme and the lattice of request
collections to process. Some example constraint schemes
might be based on glob patterns or regular expressions
evaluated over attributes of the request (such as the source
1P, request URL, request headers, etc. in the case of an HTTP
request). Constraint schemes should be such that constraints
are easy to evaluate based on information taken directly
from the request or on the result of request collection
processing to that point in the lattice. This is not strictly
necessary, however, and it is conceivable that a constraint
scheme would allow functional computation of values that
depend not only on the request but on other information
retrievable in the network (e.g., geographic information
inferable from the request).

The effects of matching a request collection are to con-
strain the next set of nodes to examine and to specify one or
more of the following optional attributes:

1. A control environment: (CE) (a list { . . . } of
Name=Value assignments which must be constants, not
functions of the request);

2. A request environment: (RE) (another list [ . . . | of
Name=Value assignments which may be functions of
the request);

3. A behavior identifier: B (a string); and

4. A single layer control instruction <I> (where I is one of
a small number of predefined opcodes governing the
flow from layer to layer).

These attributes incrementally update a single control
environment, request environment, behavior identifier, and
layer control instruction that are accumulated as request
collections match. In effect, each matching node inherits the
settings for these attributes by the nodes which have previ-
ously matched, and may override them.

Control environments are intended as symbolic categori-
zation labels of the requests that match to that point, whereas
request environments capture information from the particu-
lar request matched. In the end, the combination of both of
these environments can be thought of as a single environ-
ment of name value pairs.

Each terminal request collection (TRC) must be associ-
ated with a unique BNAME and behavior label. Once a
terminal request collection is matched and none of its
children matches, the accumulated control environment,
request environment, behavior identifier, and request collec-
tion state completely specify the behavior of that service
layer for that request.

The BNAME of a request collection may be established
by an explicit constraint or implied by another Host or
CNAME constraint together with the mapping:

Host—=CNAME—BNAME
which is known by the configuration system. To bind a
BNAME to a layer of some service instance means to
include the set of all terminal request collections with that
BNAME (and all their ancestors) in the request collection
lattice for that layer. So the bindings for a service instance
are defined by the set of BNAMEs assigned to each of its
layers. This request collection lattice is derived automati-
cally from the set of all applicable request collection defi-
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nitions and the current bindings, and it must respond auto-
matically to changes in binding assignments.
The scope of BNAMES will generally be per service type,
per layer (though it is also possible to reuse the same request
collection lattice across multiple layers, in which case the
same BNAMEs would be used, as discussed later).
Layered Request Processing
The general algorithm for processing a request is to
compute the applicable configuration for each layer from the
request collection lattice bound to that layer, apply it, and
conditionally move to the next layer until the last layer is
reached or a stop control is issued (see FIG. 3G). To apply
the configuration means to execute the specified behavior in
the context of the environment.
The effect of “executing” a behavior, as far as the layered
(request processing) virtual machine (LVM) is concerned
can be anything. It could add the behavior to a list to be
executed later, or execute it now, it is entirely up to the
service. For example, the net effect could be to augment or
modify the subscriber/coserver sequence from what it might
have been had the preceding layers not been executed.
The act of applying the configuration may result in
various service specific side effects that are of no concern to
the layered configuration flow, as well as one side effect that
is relevant—the modification of versions of the original
request. It is assumed that there will be one or more named,
possibly modified versions of the original request, along
with the unmodified original request. These are of interest to
the flow only because one of them must be used when
searching the request collection hierarchy of the next layer.
The layer control instruction indicates not only control flow
(whether processing should stop after application or con-
tinue to the next layer), but it also specifies the named
request variant that should be used to index the next layer’s
request collection lattice in cases where the flow continues
to the next layer. Thus there are essentially two variants of
the layer control instruction:
stop causes all subsequent layers to be ignored and the
request processing to be considered complete, or

next(R) which indicates that control should flow to the
next layer using named resource variant R as the index
of the request collection hierarchy (where if R is
omitted it defaults to the same request used as the index
in the previous layer).

Thus, as shown in FIG. 3M, the LVM provides a general
purpose and configurable model of request processing that
can be configured and controlled in a common way across
different service types, and an LVM implementation inter-
acts with the service specific virtual machine using a com-
mon interface for executing behaviors in the context of
environments. It is even conceivable that the LVM and SVM
components could be distributed across two remotely
located implementation components. This technique could
be used, for example, to encapsulate services as layer-
programmable services (see, e.g., FIG. 3N). FIG. 3-O illus-
trates how each service has its own LVM front-end, and
external services may or may not be outfitted with an
encapsulating LVM of their own.

Reuse of a request collection lattice across multiple layers
can be useful to define behaviors that are dependent on or
associated with a property but are not delivered to the
service in the same package as the main configuration for
that property. In a sense, the TRC that results from matching
a request against a request collection lattice can be used to
index a behavior that changes from layer to layer, and the
matching process need only be done once. To implement this
optimization, recognize that two layers have exactly the
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same bindings (though perhaps different behavior map-
pings), and use the same lattice for each.

One way to model what happens at a layer is the following
set of statements showing the match of a request R against
a request collection lattice RCL, for a given layer L,
resulting in an environment E, that encodes everything
needed to know about the match (static and dynamic). Then
merge that environment with the environment inherited from
the previous layer E, and execute the behavior implied by
the environment.

E;:=rclmatch(RCL;,R)
E:=E®E;

Ry=execute(E",R)

In this model the rclmatch function models the process of
traversing the request collection lattice, finding the matching
request collection, and computing the resulting environ-
ment. The execute function abstracts the interface between
the layer machine and the underlying service virtual
machine.

Note that the control and request environments have been
combined, and it is assumed that the behavior is identified
with an environment variable. But separating out the part of
the matching process which is relatively static from the part
that is captured based on the request is more likely to be the
way it is implemented efficiently. It is also useful to factor
the behavior specification out of the environment, so that a
behavior mapping can be specified separately from a request
collection lattice, which also allows them to be reused
independently.

In this next model, a match now returns a TRC (which has
associated with it a set of attributes corresponding to the
static environment of that node in the lattice, including a
behavior label, TRC.B) along with a request specific
dynamic environment that is computed by the matching
process from the request. The dynamic state of the request
collection can also be modeled as a variable in this envi-
ronment. Using the matched TRC, index the layer-specific
behavior mapping Behavior; to retrieve the control resource
(s) that define the behavior for this layer, and execute them:

(TRC,E;):=rclmatch(RCL;,R)
E:=E®E;
Control:=Behavior;(7RC.B)

R'=execute(E',Control,R)

In general, TRC.B may be considered as a set of any
number of behavior specifying variables that are used to
look up the service specific instructions to execute at this
layer. In some systems, the symbolic behavior label could be
identified by the subscriber and coserver identifiers which
were extracted from the matching request collection node,
where the request collection lattice in this case is a flat list
of aliases with no environment settings (e.g., a GCO). Using
the behavior labels (subscriber and coserver), look up the
control resource(s) that specity the behavior implementa-
tion, resulting in the control resource (e.g., a CCS file).

The layered approach to request processing may provide
for separate levels of configuration for each service. Each
layer may be configured with request collection(s) (with
patterns) that cause a reject, redirect, or continue to the next
step (possibly with a configurable delay for throttling).

For example, some or all of the following checks may be
made at various layers:
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SRCIPCHECK layer {Source IP black/whitelist}

ALIASCHECK layer {Is it a bound property?}

VIPCHECK {Is it over an acceptable VIP and protocol for
this property?}

CRICHECK layer {compute CRI from alias/property,
path, and relevant headers (Content Encodings, lan-
guages, Vary headers), and may allow additional black/
whitelist}

POPCHECK layer {popularity service check}

STRIPECHECK layer {peering (responsibility) check
(may result in special instructions for the next layer
e.g., proxy vs. fillPeer vs. fillSuper)}

Normal Application Level request/response processing
(with a set of environment variables, a set of data, and
a script).

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the above list is
given only by way of example, and that different and/or
other layers or functions may be used. In addition, some or
all of the layers described in the examples above may be
combined.

Service-Specific Virtual Machines

Each service implementation defines a virtual machine
model of its behavior in response to service requests. This
virtual machine model specifies a configurable interface, in
effect making the service’s behavior programmable by poli-
cies, parameters, and executable procedures defined in a
configuration specified external to the service implementa-
tion. Different configurations may be in effect at different
times in the same service implementation.

To enable human users to easily understand and specify
behaviors for the service’s virtual machine, a separate con-
figuration language may be used to specify the desired
behavior, and an original configuration expressed in this
language may require translation or compilation through one
or more intermediate representations, ultimately resulting in
a controlling configuration defined in the language of the
service’s virtual machine. The controlling configuration is
defined by the request collection lattices per layer, and the
set of behavior mappings. Each behavior mapping relates
behaviors to control resources. A behavior identifier (to-
gether with an environment) is the outcome of one layer’s
worth of processing described in the previous section, and
the behavior mapping defines the set of control resources to
“invoke” to implement that behavior.

A controlling configuration is delivered in the form of one
or more control resources that may provide parameters,
policies, and executable instructions to the service virtual
machine, and the service’s behavior for the original con-
figuration is defined by the execution or interpretation of the
control resources that were derived from it. Control
resources may be self-contained or make references to other
control resources available in the network.

Though the virtual machine model interface and its con-
figurability are fixed for a given implementation of a service
and each service instance executes a single implementation,
the controlling configuration for a service instance may be
changed dynamically in response to changes in the original
configuration or changes to any other inputs to any step in
the control resource translation process, including any infor-
mation available to the network. A controlling configuration
may also be divided up into any number of parts which are
independently derived from separate original configurations,
change dynamically at different times, and affect different
aspects of the service’s behavior. Furthermore, the relation-
ship between original configuration objects as viewed by a
configuration service, and the controlling configurations as
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viewed by a service virtual machine is many-to-many—
changes to one original configuration object may affect the
value of many derived controlling configurations, and one
controlling configuration may be derived from many origi-
nal configurations.

Notes on Request Processing

The request processing discussion presented two variants
of what happens at a layer. The preferred of which was:

(TRC,E;):=rclmatch(RCL;,R)
E:=E®E;
Control:=Behavior;(7RC.B)

R'=execute(E',Control,R)

It should be appreciated that implicit here is that execute
depends on the current state of the underlying service virtual
machine, and may change it as a result. Note too that E' is
a changed version of E, which affects the next layer’s
processing, as does R' (a modified version of the layer’s
input request). To make the service state change more
explicit the execute step may be described or modeled as:

(R'S"):=execute(Control,R,E,S)

This may be wrapped in a procedure (called process here)
that performs one layer of processing (for layer L):

(RLES)=process(L,(R,E,S))

This essentially captures all available state that can be
used in the processing of a request, given that interactions of
the service with other services (such as processing responses
from outgoing requests) ultimately result in changes
to state S.

To simplify this explanation, the opcode part (e.g., next
(R) vs. stop) is omitted from this description. Those of skill
in the art will realize and understand, upon reading this
description, that the opcode part is included in the iteration
from layer to layer.

By way of example, FIGS. 31-3K depict three basic
service instance interaction patterns (compose, redirect, and
delegate, respectively).

As shown in FIG. 31, service A constructs the response to
R by composing one or more (in this case, two) sub-requests
to service instances B and C together. It should be appreci-
ated that sub-requests to service instances B and C can be
invoked in any order, including in series or in parallel. It
should further be appreciated that the client need not be
aware of the involvement of B or C. In FIG. 3] (redirect),
service D replies to the client that generated R with a
redirecting response, and the client follows this redirect by
issuing a request (preferably immediately) to service E. In
the case of a redirecting response, the client is aware of and
participates in the redirect. As shown in FIG. 3K (delegate),
service F delegates the response to R via a hidden request to
service G, and G responds directly to the client. In this case
of a delegated response, the client need not be aware that the
response is coming from a delegate service instance. As used
herein, a hidden request is one not visible to the client. This
interaction may also cascade over arbitrary combinations of
redirect, compose and delegate steps, as shown in FIG. 3L.

As will be appreciated, the executed behavior may also
cause state changes in other systems and the client. A
behavior may involve returning no response, a redirecting
response, or a terminal response to the client. A redirecting
response may direct the client to issue another request to
some other service (preferably immediately), possibly lead-
ing to further redirecting responses and ultimately leading to
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termination via a terminal response or non-response. Each
response or non-response may affect the state of the client,
possibly altering future requests issued by the client. A
response received by the client can also have the effect of
redirecting future independent requests to the extent that a
response to an earlier request encodes information the client
may use for future requests (e.g., as in HTML rewriting).

A behavior may also delegate a request to another service
that will respond directly to the client, or may involve
processing of responses to sub-requests issued to other
services, where in each case the requests issued to other
services are derived from the current values of R, E, and S
(request, environment, state), which may change from layer
to layer.

This interaction may also cascade over a network of
service instances, ultimately terminating at service instances
that do not issue any more outside requests, or at requests to
external services.

FIG. 3L depicts request processing interactions, and FIG.
3M depicts aspects of an exemplary distributed request
processing system according to embodiments of the system.

It should be appreciated that the interaction patterns
shown in the figures here are only examples, and are not
limiting. In addition, these examples focus on location
interactions, whereas, as those of skill in the art will realize
and understand, upon reading this description, a response
may affect the manner in which subsequent requests are
issued (since the state of a service or client receiving a
response may be changed).

It should also be appreciated that a request directed to a
CD service may have information associated therewith, and
a request preferably refers to a request and at least some of
its associated information. For example, in the case of an
HTTP GET request, the request may be considered to
include the GET request itself and HTTP headers associated
with the request (i.e., the HTTP headers correspond to
information associated with an HTTP GET request). As
another example, a request (e.g., an HTTP POST) may have
a body or payload associated therewith, and such a request
may be considered to include some or all of the associated
body/payload.

Applications

Configuration information may be distributed in various
ways across the elements of the request processing system.
Information-carrying elements of the system that may affect
the processing of the request may include, without limita-
tion:

the request itself;

the lattice of request collections bindable to a service

instance at some layer;

behaviors and other identifiable configuration objects that

can be referred to from requests, request collections,
and configuration objects;

the service design (i.e., the particular service implemen-

tation that a service instance executes);

the state of the service at the time the request is processed.

The request, behavior, and environment that result at each
layer of the matching process may be a function of any and
all information available from these sources. As the request,
behavior, and environment may be modeled simply as an
environment (variables and their values), the term “environ-
ment” is used here as a general way to refer to all of these
items.

As will be apparent to those of ordinary skill in the art,
upon reading this description, the amount of information
that the system may determine from a request spans a
spectrum. At one end of the spectrum, a minimal amount of
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configuration information is received from the request itself,
whereas at the other end of the spectrum the request may
provide the basis for much more configuration information.
In each case, required configuration information not sup-
plied via the request will come from the other elements.

Two example cases provided here show how information
can be distributed across these elements. As with all
examples herein, these are given for purposes of explanation
and description only, and are not intended to be in any way
limiting of the system.

Example

Case A

In this example, at one end of the spectrum, the environ-
ment resulting from the matching process receives minimal
configuration information from the request itself (e.g., just
the protocol, host, and a component of a URL path), along
with a behavior (e.g., a CCS file) assigned to a specific
subscriber property. All information needed to execute any
behavior (e.g., CCS) is embedded in the design of the
service, and all other information needed to specify how to
serve content (e.g., resources) for this specific property is
embedded in the contents of the identified behavior (CCS).
The behavior has no parameters.

In the examples described here, behaviors may be
expressed in CCS files. Those of skill in the art will realize
and understand, upon reading this description, that different
and/or other schemes may be used to specify behavior, and
the system is not limited to CCS files.

The environment resulting from the matching process in
this case is minimal, only specifying the behavior as the
name of the behavior control resource (e.g., a CCS file),
while the other information in the environment is just the
representation of the (possibly modified) request itself.

In these examples, each node is defined as a set of
constraints on the environment, plus a set of outputs to the
environment. The set of outputs is the set of assertions that
will be made into the environment if the constraints in the
first set are satisfied. That is, if the constraints of a node of
the request collection lattice are satisfied, then the corre-
sponding assertions are made and processing continues. The
constraints (or their evaluation) may also have side effects of
capturing values into the environment, and the outputs may
refer to values in the environment.

In the examples shown in the drawings the two sets
(constraints and outputs/assertions) are shown in curly
braces.

As used herein, “%(VAR)” in a string refers to the value
of an environment variable VAR in a string, either
in the capture case or the output case. The notation @func
(args, . . . ) refers to values that are computed by built-in
functions on the environment (and the state of the network),
and these values may be used to constrain values in the
environment or to define them. It should be appreciated that
this is just one possible way to represent constraints used by
the matching process, and that this notation is used only by
way of example.

FIG. 3N shows an example request collection lattice
(RCL) for case A with unparameterized specific behaviors.
In the example in FIG. 3N, the request collection lattice has
a number of nodes (at the same level), each having a
different set of constraints. As shown in the example in FIG.
3N, in one node the constraints are

{Protocol: PROTA1, Host: HOSTA1, Path: PATHA1}
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and the corresponding outputs/assertions are

{Subscriber: A, Coserver: Al, Behavior: “ccs-A-A1"}

In this case “Protocol”, “Host”, and “Path” are determined
from the request, and “Subscriber,” “Coserver,” and “Behav-
ior” are environment values that are used by the request
collection lattice. Accordingly, in this case, if the constraints
in this node are satisfied (i.e., if the protocol is “PROTA1”,
the host is “HOSTA1”, and the path is “PATHA1”), then
“Subscriber” is set to “A”, “Coserver” is set to “Al1”, and
“Behavior” is set to “ccs-A-Al1”. Note that the values of the
variable constraints may be constants (e.g., strings or num-
bers interpreted literally), patterns, or other symbolic expres-
sions intended to determine whether the actual value is an
acceptable value, possibly capturing values from the actual
value that will be stored in the environment if the constraint
is satisfied. When these conditions are satisfied, the configu-
ration will be set to the behavior based on the “Behavior”
variable (i.e., “ccs-A-Al”):

Behavior[“ccs-A-Al”].get_config( )

Example
Case Z

At the opposite end of the spectrum, one or more generic
behaviors may be defined that accept parameters from the
environment. The more generic the behavior, the more
parameters it will tend to rely on. FIG. 3-O shows an
example of this case—an exemplary request collection lat-
tice with parameterized generic behaviors.

In this example, for the sake of simplicity, it is assumed
that the service implementation is the same for either of
these cases, is designed such that behavior files (e.g., CCS
files) can be executed (e.g., via execution of a distinguished
function present in all CCS files, such as get_config) with
parameters from the environment, and the result of that
execution will specify everything about the subscriber as
constants embedded in a data structure passed to the under-
lying service virtual machine.

As shown in FIG. 3-O, a node (“Reseller with Embedded
Config Entry”) has the constraints:

{ Authorization: “Level3/%(Reseller)%(Principal):%(Sig-
nature)”}
and the corresponding assertions:

{BillingID1: “%(Reseller)”,

BillingID2: “%(Principal)”,

Secret: @lookupsecret: (“%(Reseller)”, “%(Principal)”)}

If the constraints are satisfied (i.e., if the value of “Autho-
rization” matches the indicated string pattern, where the
embedded references to %(Reseller), %(Principal), and
%(Signature) may match any substring), then the environ-
ment values for Reseller, Principal, and Signature are
assigned to those substrings captured from the value of
Authorization. The secondary statements further assign the
value of BillingID1, BillingID2, and Secret to new values
that make use of the recently updated values of Reseller and
Principal.

Note that the value of “Secret” is determined as a function
(lookupsecret) of two environment variables (Reseller and
Principal).

It should be appreciated that the comments in the nodes
(text after the “#”) are given only to aid description.

If the constraints on the node “Reseller with Embedded
Config Entry” are satisfied, then the system will check the
sub-nodes of that node in the RCL. If any node in the RCL.
reached, the environment will have values passed down
(inherited) along the path in the RCL to that node.
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One sub-node (“Reseller subcategory”) has constraints:

{Category: “Foo”,

Signature: @signature([V1, V2, V3])}
and corresponding assertions

{Behavior: “Generic1”}

If this path is taken, (i.e., if the “Category” is “Foo”, and
the Signature is @signature([V1,V2,V3)), then the configu-
ration will be either

Config=Behavior[“Generic1”].get_config(Env[V1], Env

[V2], Env[V3])

or

Config=Behavior[“Generic1”].get_config(Env)
depending on whether the get_config function expects the
parameters to be passed as arguments, or is, itself, respon-
sible for retrieving the parameters from the passed Environ-
ment.

Another sub-node (“# Reseller subcategory”) has con-
straints:

{Category: “Bar”,

Signature: @signature([V4, V5, V6])}
and corresponding assertions

{Behavior: “Generic2”}

If this path is taken, the behavior will be

Config=Behavior[“Generic2”].get_config(Env[V4], Env

[V5], Env[V6])

or

Config=Behavior[“Generic2”].get_config(Env)
again, depending on how the get_config function expects the
parameters to be passed as arguments.

In case A, behavior (CCS) files may be generated with
embedded constants (e.g., represented as a sequence of
named handler expressions, with the constants as argu-
ments), and the distinguished function used to invoke the
behavior (CCS) would take no arguments. The resulting
configuration is then executed by the service virtual machine
with the rest of the (possibly modified) request as an
argument.

In case Z, a more generic behavior (CCS) file may be
generated, where the configuration settings are not embed-
ded as constants, but are parameters to the distinguished
function that will be called to return the configuration. These
parameters must therefore come from the environment.

The entire request collection lattice may be recast from
case A for all properties to use this representation, or it may
just be used for selected properties.

Thus the two cases are just styles of configuration that can
be adopted on a property-by-property basis (or over groups
of related properties), differing in the way information is
distributed across the information-carrying elements.

As an example, the configuration of a case Z-style class
of properties (i.e., a meta-property) may expose parameters
for billing ID and origin server hostname. A suitably generic
behavior (e.g., CCS) that accepts at least these two param-
eters with defaults for other parameters would have to exist
in advance. Some other information in the request (e.g.,
URL or headers) could be determined in advance in order to
be able to distinguish a request as a case Z-style request, e.g.,
a pattern on the hostname, or a pattern on an authorization
value. An authorization value in the request would prefer-
ably contain a valid signature of the critical request param-
eters, and the presence of the authorization value may be
used to indicate a case Z-style request.

A parent request collection may define a hostname con-
straint, and may have patterns that capture the values of the
exposed parameters from the request into the environment,
including a reference to the behavior that corresponds to the
parameterized behavior (e.g., CCS).
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A child request collection may then define a constraint on
the authorization value that is a function of the values of the
parameters and some secret, where the secret (or a key that
can be used to look up the secret) is declared in the request
collection lattice or computed as a result of the matching
process, and the secret is also known by the signer of the
request. Any number of these child request collections may
be defined with different secrets. If there are constraints on
the configuration parameters that are allowable for a given
secret (e.g., ranges of billing IDs), these constraints may also
be expressed at this level (or below) in the request collection
lattice.

The matching process at this level applies the secret to
selected values in the environment to compute the signature
and compare it to the one in the request (environment) taken
from the authorization value. At this point, a matching
request is considered authorized if the signatures match and
the environment has defined values for the exposed con-
figuration parameters. The generic behavior may now be
invoked (e.g., the generic CCS) with the extracted param-
eters to instantiate the configuration for this request (if not
already instantiated). The matching process may also con-
tinue further down in the lattice, adding additional param-
eters to the environment, until it reaches a terminal request
collection that matches, so different generic behaviors may
be used for requests administered under the same secret.

The process may continue over a collection of subsequent
requests, as derived requests are submitted to other services
(e.g., external, peer, or parent services) in order to construct
a response to the original request.

Note also that if the matching process fails for any reason
(e.g., if the computed signature does not match the contained
signature, or parameters needed for the signature are miss-
ing, such as the origin), other lattice nodes may be tried for
a match, and if no match is found the request may be
rejected. This is true in general for all nodes in the lattice.

As noted elsewhere herein, a rejection may be active or
passive and may or may not provide an indication of the
rejection. Whether a rejection is active or passive and the
indication (or not) provided may be configured as part of a
behavior.

The following are some variations of these non-limiting
examples:

There may be multiple “meta-properties,” since the con-
cept applies to defining classes of configurations and
may be useful for implementing classes of configura-
tions (e.g., something that is common across all prop-
erties of a subscriber, or certain subscriber types).

An extreme case may involve encoding the entire behav-
ior (e.g., a CCS file) as the value of a request attribute
(parameterized by other headers in the request).

The configured meta-property behavior may be in an
initial layer, the result of which is just to change the
bindings in subsequent layers, possibly involving
dynamic loading of new portions of the request collec-
tion lattice for those layers, allowing them to recognize
properties that were not previously bound.

These various examples (and others) may be combined.
For example, FIG. 3P shows an exemplary request collection
lattice with mixed parameterization styles, combining sub-
lattices of cases A and Z and others. Other approaches
representing intermediate cases between the two extremes of
cases A and Z are also possible and are contemplated herein.

Request Redirection Through Request/Response Modifi-
cation

As discussed earlier, an incoming request may be modi-
fied so that subsequent processing of the request uses a
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modified form of the request. Similarly, the requested con-
tent may be modified during the response processing. Modi-
fied request and response processing may cause the client’s
request to be directed elsewhere for subsequent processing,
e.g., to another instance of the delivery service, another
delivery service, another CD service, another CDN, an
origin server, or even some combination thereof. This can be
implemented by having the client direct its (possibly modi-
fied) request elsewhere, or by directing the (possibly modi-
fied) request elsewhere on behalf of the client. As examples,
a protocol specific to the service could be used (e.g., the
redirect response code 302 for HTTP), or references in an
HTML resource could be modified, or a client connection
could be handed off to other service instance, or the (pos-
sibly modified) request could be proxied to another service
instance over a different connection.

The modified content may be HIML, which may involve
modifying references in the content (e.g., URLs). For
example, the references may be modified so that subsequent
requests associated with those references will be directed
somewhere other than to the origin server, such as to one
CDN or another. The modified references may refer more
generally to a CD service, requiring a rendezvous step to
identify the service instance, or to a specific CD service
instance. Such modified references could also incorporate
location information in a modified hostname for later use by
a rendezvous service. E.g., the location information could be
the IP address of the client, or some other location infor-
mation derived from the client location and subscriber
configuration.

This redirection functionality may be implemented within
a CD service, or in request processing logic external to the
service itself, or as a special redirection CD service.

If the redirection does not require any non-standard
behavior by the client, it is referred to as transparent
redirection.

For example, a request for content (e.g., a resource), may
result in one or more of the following:

content is served by the delivery service.

content is modified before or while being served by the

delivery service.

the request (possibly modified) is directed elsewhere.

In another example, in the case of a rendezvous service,
the client request may be a request to be directed to a service
instance. The rendezvous service may modify the request
and then respond based on that modified request. That
response may direct the client to another instance of the
rendezvous service or another rendezvous service for sub-
sequent processing.

In some embodiments, a CD service may be located in
front of or at ISP caches (between client and origin server)
to perform redirection of client requests made to an origin
server or client requests made directly to the cache.

In some embodiments, a CD service may be located at (in
front of) a subscriber’s origin server to perform redirection
of client requests made to the origin server.

In such embodiments, the CD service may determine
which content is preferably, but not necessarily, served by
the CDN instead of by the origin server, and, to cause
delivery of such content by the CDN when desired. Several
factors could be used to determine whether the content is
preferably, but not necessarily, served by the CDN, such as,
e.g., CD configuration, subscriber configurations, content
popularity, and network and server load at the origin server.

CDN Structure & Topology

FIG. 4A shows an exemplary CDN 100, which includes
multiple caches (i.e., cache services) 102-1,102-2 . .. 102-m
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(collectively caches 102, individually cache 102-i), rendez-
vous mechanisms/systems 104-1 . . . 104-%, (collectively

rendezvous mechanism(s)/system(s) 104, made up of one or
more rendezvous mechanisms 104-f), collector mechanism/
system 106 (made up of one or more collector mechanisms
106-1 . . . 106-»), reducer mechanism/system 107 (made up
of one or more reducer mechanisms 107-1 . . . 107-p),
control mechanism/system 108, and configuration mecha-
nism/system 105. The CDN 100 also includes various other
mechanisms (not shown), including operational and/or
administrative mechanisms, which together form part of an
operation/measurement/administration system (OMA sys-
tem).

Caches 102 implement caching services (which may be
considered primary services 1016 in FIG. 1]); rendezvous
mechanism(s)/system(s) 104 implement rendezvous ser-
vices (which may also be considered primary delivery
services 1016 in FIG. 1J); collectors 106 implement collec-
tor services e.g., services for monitoring, analytics, popu-
larity, logging, monitoring, alarming, etc. (1012 FIG. 1J),
and reducers 107 implement reducer services (1014 FIG.
1.

With reference to FIG. 4A, components of the caches 102,
rendezvous system 104, collectors 106, and control system
108, each provide respective event streams to reducers 107.
The event stream(s) from the collectors 106 to the reducers
107 contain event information relating to collector events.
Reducers 107 provide event streams to the collectors based,
at least in part, on event streams they (reducers) obtain from
the other CDN components. Collectors 106 may provide
ongoing feedback (e.g., in the form of state information) to
the control system 108 regarding ongoing status and opera-
tion of the CDN, including status and operation of the
caching network 102 and the rendezvous system 104. Col-
lectors 106 may also provide ongoing feedback (state infor-
mation) to other CDN components, without going through
the control system 108. Thus, as shown in the drawing,
collectors 106 may also provide feedback (e.g., in the form
of state information) to reducers 107, caches 102, and
rendezvous mechanisms 104. The control system 108 may
provide ongoing feedback (e.g., in the form of control
information) to the various components of the CDN, includ-
ing to the caches 102, the rendezvous mechanisms 104, the
collectors 106, and the reducers 107.

It should be appreciated that other components (not
shown) may also provide event streams to reducers 107 and
may also receive feedback (e.g., state information) from
collectors 106 and control information from the control
system 108.

Thus, as will be described in greater detail below, caches
in the caching network 102 may provide information about
their status and operation as event data to reducers 107. The
reducers 107 reduce (e.g., process and filter) this information
and provide it to various collectors 106 which produce
appropriate data from the information provided by the
reducers 107 for use by the control 108 for controlling and
monitoring operation of the CDN. The collectors 106 may
also provide state information directly to other CDN com-
ponents (e.g., to rendezvous mechanisms 104, caches 102,
and/or reducers 107). Similarly, entities in the rendezvous
mechanism or system 104 may also provide information to
reducers 107 about their status and operation. The reducers
107 reduce this information as appropriate and provide it to
the appropriate collectors 106. The collectors 106 produce
appropriate data from the information provided by the
rendezvous system 104 via reducers 107, and provide the
data in some form to the control 108 and possibly directly to
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the rendezvous system 104. Data provided by the rendez-
vous system 104 may include, e.g., load information, status
information of the various rendezvous mechanisms, infor-
mation about which particular requests have been made of
the rendezvous system, etc.

As will be explained, data from the caching network
components and the rendezvous components are preferably
provided to the reducers 107 in the form of event streams.
The reducers, in turn, provide event stream data to the
collectors 106. The caching network components 102 will
preferably pull control data from the control 108, although
some control data may be pushed to the caching network
components. The control 108 may pull data from the col-
lectors 106, although some or all of the data may be pushed
to the control 108 from the collectors 106. The rendezvous
system 104 may pull control data, as needed, from the
control 108, although data may also be pushed by the control
mechanism to the rendezvous system. Data provided to the
content providers may be pushed or pulled, depending on the
type of data, on arrangements with the content providers,
and on interfaces used by the content providers.

Collectors 106 may also be considered to be part of the
operation/measurement/administration  (OMA)  system.
With reference to FIG. 4B, the roles or functions of collec-
tors (or collector services) 106 may be classified (logically)
within the OMA 109 as one or more of:

monitors and gatherers 120,

measurers 122,

analyzers 124,

reporters 126,

generators 128, and

administrators 130.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that these logical clas-
sifications are provided merely as descriptive aids, and are
not intended to limit the scope of the system in any way. In
addition, it should be appreciated that some collectors or
components of the OMA system may have more than one
classification. While shown in the diagram in FIG. 4B as
separate components, the functionality provided by these
various components may be integrated into a single com-
ponent or it may be provided by multiple distinct compo-
nents. Thus, for example, a particular collector service may
monitor and gather a certain kind of data, analyze the data,
and generate other data based on its analysis.

The measurers 122 may include load measurers 123 that
actively monitor aspects of the load on the network and the
CDN. Measurers or measurement data generators (including
load measurers 123) may be dispersed throughout the CDN
100, including at some caches, at some rendezvous mecha-
nisms, and at network locations outside the CDN, and may
provide their load information to the collectors 106 via
reducers 107.

The monitors and gatherers (monitoring and gathering
mechanisms) 120 may include load monitors 132, health
monitoring and gathering mechanisms 134, mechanisms 136
to monitor and/or gather information about content requests
and content served by the CDN, and rendezvous monitoring
mechanisms 137 to monitor and/or gather information about
rendezvous. Each of these mechanisms may obtain its infor-
mation directly from one or more reducers 107 as well as by
performing measurements or collecting other measurement
data from the CDN. For example, load monitoring and
gathering mechanisms 132 may gather load information
from event streams coming via the reducers 107 and load
information from load measurers 123. As will be appreci-
ated, the load information from load measurers 123 may be
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provided to the load monitors 132 directly or via one or more
reducers. When the rendezvous mechanisms are imple-
mented using the DNS, each rendezvous mechanism may
provide (as event data) information about the name resolu-
tions it performs. The rendezvous monitoring mechanisms
137 may obtain this information from appropriate reducers.

The reporters (reporter mechanisms) 126 may include
reporting mechanisms 138, billing mechanisms 140, as well
as other reporter mechanisms.

The analyzers 124 may include load analyzers 142 for
analyzing load information gathered by the load monitors
and/or produced by the load measurers 123; network ana-
lyzers 144 for analyzing information about the network,
including, e.g., the health of the network; popularity ana-
lyzers 146 for analyzing information about the popularity of
resources, and rendezvous analyzers 147 for analyzing
information about the rendezvous system (including, e.g.,
information about name resolution, when appropriate), as
well as other analyzer mechanisms.

The generators (generator mechanisms) 128 may include
rendezvous data generators 148 for generating data for use
by the rendezvous system 104, configuration data generators
150 generating data for the control mechanism 108, and
popularity data generators 152 for generating data about
popularity of properties for use, e.g., by the caches 102,
rendezvous mechanism 104 and/or the control mechanism
108, as well as other generator mechanisms. Those of
ordinary skill in the art will realize and understand, upon
reading this description, that data generated by various
generators 128 may include state information provided to
other CDN components or services. For example, the ren-
dezvous data generators 148 generate rendezvous state
information for use by the rendezvous system 104.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that different and/or
other mechanisms may be used or provided in each of the
categories. In addition, those of ordinary skill in the art will
appreciate that new mechanisms may be added to the
collectors as needed. In particular, customized collector
mechanisms may be provided, as needed, to obtain and
analyze information from the event streams produced or
provided by the reducers.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the ability to
provide customized reducer and collector mechanisms for
monitoring, gathering, analyzing, reporting, and generating,
provides the CDN operators the ability to customize opera-
tion of the CDN with or without modification of the CDN
components. That is, once CDN components have been
deployed and configured, the CDN can modify its operation
based on the information/event logs streamed from the CDN
components (e.g., caches) without having to modify the
CDN components themselves to produce such information.
However, as discussed herein, CDN components may be
modified in order to change their roles or flavors, and such
changes may include reconfiguring the event streams pro-
duced by a CDN component.

FIGS. 4C and 4D are simplified versions of FIG. 4A,
showing the use of feedback and control for caches 102 (i.e.,
machines running cache services) and rendezvous mecha-
nisms 104 (i.e., machines running rendezvous services),
respectively. FIGS. 4E and 4F correspond to FIG. 1K, and
show feedback and control of cache services and rendezvous
services, respectively.

It should be appreciated that the various loggers, reducers,
gatherers, and other mechanisms are able to provide and/or
obtain information about components of the CDN and its
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operation in real-time. As noted, in some cases, collectors
may also act as reducers (in that they can consume event
streams directly from service instances). In those cases the
feedback may be provided without reducers.

CDN Services

Various CDN services, including caches, rendezvous ser-
vices, reducer services, and collector services are each
described here in greater detail.

Caches and Cache Organization

Caches, Cache Clusters, Cache Cluster Sites

As shown in FIG. 5A, each CDN cache 102 may be a
cache cluster site 202 comprising one or more cache clusters
204. The cache cluster site 202 may include a routing
mechanism 206 acting, inter alia, to provide data to/from the
cache clusters 204. The routing mechanism 206 may per-
form various functions such as, e.g., load balancing, or it
may just pass data to/from the cache cluster(s) 204. Depend-
ing on its configuration, the routing mechanism 206 may
pass incoming data to more than one cache cluster 204. F1G.
5B shows an exemplary cache cluster site 202 with p cache
clusters (denoted 204-1, 204-2 . . . 204-p).

As shown in FIG. 5C, a cache cluster 204 comprises one
or more servers 208 (providing server services). The cache
cluster preferably includes a routing mechanism 210, e.g., a
switch, acting, inter alia, to provide data to/from the servers
208. The servers 208 in any particular cache cluster 204 may
include caching servers 212 (providing caching server ser-
vices) and/or streaming servers 214 (providing streaming
server services). The routing mechanism 210 provides data
(preferably packet data) to the server(s) 208. Preferably the
routing mechanism 210 is an Ethernet switch.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that a server 208 may
correspond, essentially, to a mechanism providing server
services; a caching server 212 to a mechanism providing
caching server services, and a streaming server 214 to a
mechanism providing streaming server services.

The routing mechanism 210 may perform various func-
tions such as, e.g., load balancing, or it may just pass data
to/from the server(s) 208. Depending on its configuration,
the routing mechanism 210 may pass incoming data to more
than one server 208. FIG. 5D shows an exemplary cache
cluster 204' comprising k servers (denoted 208-1,
208-2 . . . 208-k) and a switch 210". The routing mechanism
210 may be a CDN service providing routing services.

The cache cluster site routing mechanism 206 may be
integrated with and/or co-located with the cache cluster
routing mechanism 210.

FIG. 5E shows an exemplary cache cluster site 202" with
a single cache cluster 204" comprising one or more servers
208". The server(s) 208" may be caching servers 212" and/or
streaming servers 214". As shown in the example in FIG. 5E,
the cache cluster routing mechanism 210" and the cache
cluster site’s routing mechanism 206" are logically/func-
tionally (and possibly physically) combined into a single
mechanism (routing mechanism 209, as shown by the dotted
line in the drawing).

A cache server site may be a load-balancing cluster, e.g.,
as described in U.S. published Patent Application No. 2010-
0332664, filed Feb. 28, 2009, titled “Load-Balancing Clus-
ter,” and U.S. Pat. No. 8,015,298, titled “Load-Balancing
Cluster,” filed Feb. 23, 2009, issued Sep. 6, 2011, the entire
contents of each of which are fully incorporated herein by
reference for all purposes.

In presently preferred implementations, some of the cache
cluster servers 208 that are connected to a particular switch
210 will share the same virtual IP (VIP) addresses. (Each
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cache cluster server 208 will also preferably have a different
and unique IP address.) In these presently preferred imple-
mentations, for the purposes of CDN control, the cache
cluster routing mechanism 210 and the cache cluster site’s
routing mechanism 206 are logically/functionally (and pref-
erably physically) combined into a single mechanism—a
switch. In these implementations the cache cluster site refers
to all of the machines that are connected to (e.g., plugged in
to) the switch. Within that cache cluster site, a cache cluster
consists of all machines that share the same set of VIPs.

An exemplary cache cluster 204 is described in U.S.
published Patent Application No. 2010-0332664, titled
“Load-Balancing Cluster,” filed Sep. 13, 2010, and U.S. Pat.
No. 8,015,298, titled “Load-Balancing Cluster,” filed Feb.
23, 2009, issued Sep. 6, 2011, the entire contents of each of
which are fully incorporated herein for all purposes.

It should be appreciated that the servers in a CDN or even
in a cache cluster site or cache cluster need not be homo-
geneous, and that different servers, even in the same cache
cluster may have different capabilities and capacities.

Hypothetical CDN Deployment

FIG. 29 shows a hypothetical CDN deployment (e.g., for
a small data center).

CDN Organization—Tiers and Groups

As noted above, endpoints of each kind of service
(caches, rendezvous, collectors, reducers, control) may be
organized in various ways. Exemplary cache service net-
work organizations are described here. It should be appre-
ciated that the term “cache” also covers streaming and other
internal CDN services.

A CDN may have one or more tiers of caches, organized
hierarchically. It should be appreciated that the term “hier-
archically” is not intended to imply that each cache service
is only connected to one other cache service in the hierarchy.
The term “hierarchically” means that the caches in a CDN
may be organized in one or more tiers. Depending on
policies, each cache may communicate with other caches in
the same tier and with caches in other tiers.

FIG. 6A depicts a content delivery network 100 that
includes multiple tiers of caches. Specifically, the CDN 100
of FIG. 6A shows j tiers of caches (denoted Tier 1, Tier 2,
Tier 3 . . . Tier j in the drawing). Each tier of caches may
comprise a number of caches organized into cache groups.
A cache group may correspond to a cache cluster site or a
cache cluster (202, 204 in FIGS. 5B to 5D). The Tier 1
caches are also referred to as edge caches and Tier 1 is
sometimes also referred to as the “edge” or the “edge of the
CDN.” The Tier 2 caches (when present in a CDN) are also
referred to as parent caches.

For example, in the CDN 100 of FIG. 6A, Tier 1 has n
groups of caches (denoted “Edge Cache Group 17, “Edge
Cache Group 27, . . . “Edge Cache Group n”); tier 2 (the
parent caches’ tier) has in cache groups (the i-th group being
denoted “Parent Caches Group i”); and tier 3 has k cache
groups, and so on. There may be any number of cache
groups in each tier, and any number of caches in each group.
The origin tier is shown in the FIG. 5A as a separate tier,
although it may also be considered to be tier (j+1).

FIG. 6B shows the logical organization/grouping of
caches in a CDN of FIG. 6A. In the exemplary CDN 100 of
FIG. 6B, each tier of caches has the same number (n) of
cache groups. Those of ordinary skill in the art will know
and understand, upon reading this description, that each
cache group may have the same or a different number of
caches. Additionally, the number of caches in a cache group
may vary dynamically. For example, additional caches may
be added to a cache group or to a tier to deal with increased
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load on the group. In addition, a tier may be added to a CDN.
It should be appreciated that the addition of a cache to a tier
or a tier to a CDN may be accomplished by a logical
reorganization of the CDN, and may not require any physi-
cal changes to the CDN.

While it should be appreciated that no scale is applied to
any of the drawings, in particular implementations, there
may be substantially more edge caches than parent caches,
and more parent caches than tier 3 caches, and so on. In
general, in preferred implementations, each tier (starting at
tier 1, the edge caches) will have more caches than the next
tier (i.e., the next highest tier number) in the hierarchy.
Correspondingly, in preferred implementations, there will be
more caches in each edge cache group than in the corre-
sponding parent cache group, and more caches in each
parent cache group than in the corresponding tier 3 cache
group, and so on. FIG. 6C, while also not drawn to scale,
reflects this organizational structure.

The caches in a cache group may be homogeneous or
heterogeneous, and each cache in a cache group may com-
prise a cluster of physical caches sharing the same name
and/or network address. An example of such a cache is
described in co-pending and co-owned U.S. published Pat-
ent Application No. 2010-0332664, titled “L.oad-Balancing
Cluster,” filed Sep. 13, 2010, and U.S. Pat. No. 8,015,298,
titled “Load-Balancing Cluster,” filed Feb. 23, 2009, issued
Sep. 6, 2001, the entire contents of which are fully incor-
porated herein by reference for all purposes.

A cache may have peer caches. In some cases caches in
the same tier and the same group may be referred to as peers
or peer caches. In general, for each Tier j, the caches in Tier
j may be peers of each other, and the caches in Tier j+1 may
be referred to as parent caches. In some cases, caches in
different groups and/or different tiers may also be considered
peer caches. In some aspects, a peer of a particular cache
may be any other cache that could serve resources that the
particular cache could serve. It should be appreciated that
the notion of peers is flexible and that multiple peering
arrangements are possible and contemplated herein. In addi-
tion, peer status of caches is dynamic and may change. It
should further be appreciated that the notion of peers is
independent of physical location and/or configuration.

A CDN with only one tier will have only edge caches,
whereas a CDN with two tiers will have edge caches and
parent caches. (At a minimum, a CDN should have at least
one tier of caches—the edge caches.)

The grouping of caches in a tier may be based, e.g., on one
or more factors, such as, e.g., their physical or geographical
location, network proximity, the type of content being
served, the characteristics of the machines within the group,
etc. For example, a particular CDN may have six groups—
four groups of caches in the United States, Group 1 for the
West Coast, Group 2 for the mid-west, Group 3 for the
northeast, and Group 4 for the southeast; and one group each
for Europe and Asia.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that cache groups may
correspond to cache clusters or cache cluster sites.

A particular CDN cache is preferably in only one cache
group and only one tier.

Various logical organizations/arrangements of caches
(e.g., cache groups) may be achieved using BNAMEs, alone
or in combination with CNAMEs.

In general, some or all of the caches in each tier can
exchange data with some or all of the caches in each other
tier. Thus, some or all of the parent caches can exchange
information with some or all of the edge caches, and so on.
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For the sake of simplicity, in the drawing (FIG. 6A), each
tier of caches is shown as being operationally connectable to
each tier above and below it, and Tier 3 is shown as
operationally connected to Tier 1 (the Edge Tier). In some
CDNs, however, it may be preferable that the caches in a
particular tier can only exchange information with other
caches in the same group and/or with other caches in the
same group in a different tier. In some cases, peers may be
defined to be some or all of the caches in the same group. For
example, in some CDNs, the edge caches in edge cache
group k, can exchange information with each other and with
all caches in parent cache group k, and so on.

A content provider’s/customer’s server (or servers) may
also be referred to as origin servers. A content provider’s
origin servers may be owned and/or operated by that content
provider or they may be servers provided and/or operated by
athird party such as a hosting provider. The hosting provider
for a particular content provider may also provide CDN
services to that content provider. With respect to a particular
subscriber/customer resource, a subscriber/customer origin
server is the authoritative source of the particular content.
More generally, in some embodiments, with respect to any
particular resource (including those from elements/machines
within the CDN), the authoritative source of that particular
resource is sometimes referred to as a coserver.

A CDN may also include a CDN origin/content cache tier
which may be used to cache content from the CDN’s
subscribers (i.e., from the CDN subscribers’ respective
origin servers). Those of ordinary skill in the art will know
and understand, upon reading this description, that a CDN
can support one or more content providers or subscribers,
i.e., that a CDN can function as a shared infrastructure
supporting numerous content providers or subscribers. The
CDN origin tier may also consist of a number of caches, and
these caches may also be organized (physically and logi-
cally) into a number of regions and/or groups. The cache(s)
in the CDN origin tier obtain content from the content
providers’/subscribers’ origin servers, either on an as needed
basis or in advance on an explicit pre-fill.

An origin/content cache tier could also be used to provide
a “disaster recovery” service—e.g., if the normal subscriber
origin server becomes unavailable, content could be fetched
from the CDN origin server (a form of customized error
responses, minimal/static version of the site, etc.). It would
be useful to be able to take a periodic snapshot of content of
a web site in this way.

When a cache is associated with a cache group, that cache
is said to be bound to that cache group, and when a cache is
associated with a tier, that cache is said to be bound to that
tier. The binding of caches to groups and tiers can be
modified during the normal operation of the CDN. It should
be appreciated that binding/association is logical, and
applies to a service running on a machine (server). That is,
there may be independent logical groups overlaid on a
physical set of machines (servers). These logical groups may
overlap.

Mapping Properties to Caches

Each property (or coserver) may be mapped or bound to
one or more caches in a CDN. A property is said to be bound
to a cache when that cache can serve that property (or
resources associated with that property) to clients. As used
here, a client is any entity or service, including another CDN
entity or service.

One way to map properties to caches is to impose a logical
organization onto the caches (e.g., using sectors). This
logical organization may be implemented, e.g., using
BNAMESs and request collections. Sectors may be mapped
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to (or correspond to) cache groups, so that all of the
properties in a particular sector are handled by the caches in
a corresponding cache group. It should be appreciated that
a sector may be handled by multiple groups and that a cache
group may handle multiple sectors. For example, as shown
in FIG. 6D, the properties in sector S1 may be handled by
the caches in group 1, the properties in sector S2 may be
handled by the caches in group 2, and so on. This exemplary
logical organization provides a mapping from sectors (an
organizational structure that may be imposed on properties)
to groups in the CDN (an organizational structure that may
be imposed on caches in the CDN). Those of ordinary skill
in the art will realize and understand, upon reading this
description, that some or all of the properties in any par-
ticular sector may be handled by more than one group,
although preferentially, properties in a sector will be handled
by the same group or groups. Thus, as shown in FIG. 6E, the
properties in Sector 3 are handled by the services (including
caches) in Group 3 and the services (including caches) in
Group K. It should be appreciated that the mapping of
sectors to groups may be dynamic, and may be changed
during operation of the CDN.

When a property is associated with a sector, that property
is said to be bound to that sector. When a sector is associated
with a group, that sector is said to be bound to that group.
The binding of properties to sectors and the binding of
sectors to groups may be made independent of each other.
The binding of properties to sectors may be modified during
normal operation of the CDN. Similarly, the binding of
sectors to groups may be modified during normal operation
of the CDN.

Each group (or some collection of groups) can be con-
sidered to correspond to a separate network, effectively
providing multiple CDNs, with each group corresponding to
a CDN or sub-CDN that provides some of the CDN services
and sharing some or all of the remaining CDN infrastructure.
For example, the K groups shown in FIG. 6E may each be
considered to be a CDN (or a sub-CDN) for the properties
in the corresponding sectors for which the group is respon-
sible. These multiple CDNs (or sub-CDNs) may fully or
partially share various other CDN components such as the
control mechanism, reducers, and collector infrastructure.
The rendezvous system may also be fully or partially shared
by sub-CDNs, and components of the rendezvous system
may be partitioned in such a way that some rendezvous
system components (e.g., DNS servers) are only responsible
for a particular group or groups. In this manner, properties
of various content providers may be segregated in order to
provide greater control and security over their distribution.
In some cases, each group (sub-CDN) may be unaware of
the other groups (sub-CDNs) and of all other properties,
other than those in its sectors.

As shown in FIG. 6F, the services in the K groups of FIG.
6F are treated as separate services in separate sub-CDNs.
Therefore, e.g., the edge services (including caches) in
Group 1 are effectively independent of the edge services
(including caches) in Group K and the other groups. Simi-
larly, the parent services (including caches) in Group 1 are
effectively independent of the parent services (including
caches) in each of the other groups, and so on for each tier
of services (including caches).

It should be appreciated that the configuration and topol-
ogy of the services in each sub-CDN may differ from those
in other sub-CDNs. For example, one sub-CDN may have a
different configuration/topology for its reducer network than
those of the other sub-CDNs.
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Preferably, a cache’s peers will be defined to only include
caches in the same sub-CDN. A peer of a cache may be
considered to be any element in the CDN that can provide
that cache with content (or data) instead of the cache having
to obtain the content from an origin server (or the control
mechanism). That is, a peer of a cache may be considered to
be any element in the CDN that can provide the cache with
information that cache needs or may need (e.g., content,
configuration data, etc.) in order for the cache to satisfy
client requests.

One or more groups of caches (sometimes referred to
herein as a segment) may, in conjunction with shared CDN
components, form an autonomous CDN. The configuration
of the CDN components into one or more sub-CDNs or
autonomous CDNs may be made, e.g., to provide security
for content providers.

With reference to the drawing in FIG. 6F, an exemplary
CDN 100 may comprise one or more sub-CDNs (denoted in
the drawing 101-A, 101-B . . . 101-M——collectively sub-
CDNs 101). Each sub-CDN may have its own dedicated
CDN services, including dedicated caches (denoted, respec-
tively, 102-A, 102-B . . . 102-M in the drawing), dedicated
rendezvous mechanism(s) (denoted, respectively, 104-A,
104-B . . . 104-M in the drawing), dedicated collector(s)
(denoted, respectively, 106-A, 106-B . . . 106-M in the
drawing), dedicated reducer(s) (denoted, respectively, 107-
A, 107-B . . . 107-M in the drawing), and/or dedicated
control mechanisms (denoted, respectively, 108-A,
108-B . . . 108-M in the drawing). There is, however, no
requirement that a sub-CDN have any particular kind of
dedicated CDN services—e.g., dedicated rendezvous
mechanisms, or dedicated collectors, or dedicated reducer(s)
or dedicated caches or dedicated control mechanisms. Thus,
e.g., a sub-CDN may have dedicated caches and use the
shared CDN services for its other CDN services. As another
example, a sub-CDN may have dedicated caches, reducers,
collectors, rendezvous services and control services and may
use some of the shared CDN services.

The exemplary CDN 100 includes various components
that may be shared among the sub-CDNs. In particular, the
CDN 100 includes a shared control mechanism 108, shared
rendezvous mechanisms 104-1, shared collectors 106-1, and
a shared reducer(s) 107-1. A sub-CDN may rely in whole or
in part on the shared CDN components. In the cases where
a sub-CDN has dedicated rendezvous mechanisms, those
dedicated mechanisms preferably interact with the shared
rendezvous mechanisms. Similarly, in cases where a sub-
CDN has dedicated collectors, those dedicated collectors
preferably interact with the shared collectors, and similarly
in cases where a sub-CDN has dedicated reducer(s), those
dedicated reducer(s) may interact with shared reducer(s).

There is no requirement that a sub-CDN has the same
components as any other sub-CDN in the CDN. Thus, for
example, one sub-CDN may have its own dedicated rendez-
vous mechanisms while another sub-CDN does not. In cases
where a sub-CDN has dedicated CDN services of some kind,
that sub-CDN may have only some of the functionality of
those services and may rely on the shared CDN services for
other functionality of those services. For example, a sub-
CDN’s collector(s) may include some functionality for the
sub-CDN without including some of the shared CDN’s
collector functionality.

Thus, e.g., an exemplary sub-CDN may have its own
dedicated caches and share the remaining CDN components.
As another example, a sub-CDN may have its own dedicated
caches, collectors, and control mechanisms, and share some
of'the remaining CDN components. As yet another example,
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a sub-CDN may have its own dedicated rendezvous system,
reducers and collectors, and share some of the remaining
CDN components.

The amount and degree of sharing between sub-CDN
components and shared components may depend on a num-
ber of factors, including the degree of security desired for
each sub-CDN. In some cases it is preferable to prevent
information from a sub-CDN being provided to any other
sub-CDN 101 of the CDN 100. In some cases it would also
be preferable to prevent a sub-CDN from obtaining infor-
mation from any other sub-CDN. It will be appreciated that
a sub-CDN may be operated as an autonomous CDN.

As noted, properties may be mapped to sectors. Each
property is preferably in only one sector. Sectors may be
mapped to groups. Each sector may be mapped to more than
one group. One or more groups may form a CDN segment.
Preferably each group is in only one segment. Each segment
may be considered to be a sub-CDN, although it should be
appreciated that a sub-CDN may consist of multiple seg-
ments (e.g., in the case of a CDN segment comprising
multiple groups). The division of data (properties) into
sectors may be used to provide efficiency to the CDN. The
division of the CDN into sub-CDNs, in addition to the
efficiencies provided by sectors, provides additional degrees
of security and control over content delivery. As noted
above, elements of the rendezvous system may also be
partitioned and allocated to sub-CDNs or autonomous
CDNs.

Rendezvous Services

A rendezvous service may be a service endpoint con-
trolled by the control mechanism, and the rendezvous sys-
tem is a collection of one or more rendezvous services
controlled by the control mechanism. Rendezvous is the
binding of a client with a target service, and the rendezvous
system binds clients, both within and outside the CDN, to
CD services. For example, in some implementations, for
delivery requests that include domain names (e.g., host-
names), the rendezvous system maps domain names (typi-
cally CNAMEs) to other information (typically IP or VIP
addresses or other CNAMESs). It is preferably, but not
necessarily, noted that these CNAMEs may themselves
resolve to machines outside of the CDN (e.g., to an origin
server, or a separate CDN, etc.). A rendezvous service
preferably reports various events to a network of reducers.
The event information may be used for various reasons
including for billing, report, and/or control purposes.

The rendezvous system 104 (FIG. 4A) may be considered
to be a collection of rendezvous services operating on
various machines in the CDN. The rendezvous services may
be organized as one or more networks. As explained in
greater detail below, the rendezvous system 104 is used to
affect the binding of a client with a target service. A client
could be any entity, including a CDN entity, that requests a
resource from another entity (including another CDN
entity). The rendezvous system 104 is may be implemented
using and/or be integrated with the Domain Name System
(DNS) and may comprise one or more DNS name servers
(servers providing DNS services). In some implementations,
for some kind of requests and services (e.g., HT'TP requests
of caching services), the rendezvous mechanisms 104-j
preferably comprise domain name servers implementing
policy-based domain name resolution services. Aspects of
an exemplary rendezvous system 104 is described in U.S.
Pat. No. 7,822,871, titled “Configurable Adaptive Global
Traffic Control And Management,” filed Sep. 30, 2002,
issued Oct. 26, 2010, and U.S. Pat. No. 7,860,964 “Policy-
Based Content Delivery Network Selection,” filed Oct. 26,
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2007, issued Dec. 28, 2010, the entire contents of each of
which are fully incorporated herein for all purposes.

Control

Control Mechanism

The control mechanism 108 (FIG. 4A) keeps/maintains
the authoritative database describing the current CDN con-
figuration. A control mechanism may, in some cases, be
considered, logically, as a loosely coupled collection of sites
(referred to herein as control sites) which collaboratively
maintain and publish a set of control resources to the CDN’s
components (such as to the CDN’s caching network). These
resources include control metaobjects which describe real
world entities involved in the CDN, configuration files
which affect the network structure of the CDN and the
behavior of individual nodes, and various directories and
journals which enable the CDN to properly adapt to changes.

The control mechanism 108 may comprise multiple data-
bases that are used and needed to control and operate various
aspects of the CDN 100. These databases include databases
relating to: (i) system configuration; and (ii) the CDN’s
customer/subscribers. The control mechanism data are
described in greater detail below.

Information in these databases is used by the caches in
order to serve content (properties) on behalf of content
providers. E.g., each cache knows when content is still valid
and where to go to get requested content that it does not
have, and the rendezvous mechanism needs data about the
state of the CDN (e.g., cluster loads, network load, etc.) in
order to know where to direct client requests for resources.

In some implementations, control mechanism data may be
replicated across all machines in the control mechanism
cluster, and the control mechanism cluster may use methods
such as voting to ensure updates and queries are consistent.
E.g., in some implementations (with a cluster of five
machines), the commits only occur if three of the five cluster
machines agree to commit, and queries only return an
answer if three of the five cluster machines agree on the
answer. The use of voting is given as an exemplary imple-
mentation, and those of ordinary skill in the art will realize
and understand, upon reading this description, that different
techniques may be used in conjunction with or instead of
voting on queries. For example, techniques such as using
signed objects to detect corruption/tampering may be
adequate. In some cases, e.g., the system may determine that
it can trust the answer from a single server without the
overhead of voting.

In some embodiments the control mechanism 108 may
use a distributed consensus algorithm—an approach for
achieving consensus in a network of essentially unreliable
processors.

The inventors realized that different degrees of consensus
for different types of CDN data would be acceptable for
most CDN implementations.

The control mechanism 108 controls operation of the
CDN and is described in greater detail below. The control
mechanism 108 is preferably made up of multiple control
services 1010 (FIG. 1]J) running on machines in the CDN.
Physically, the control mechanism 108 may consist of a set
of geographically distributed machines, preferably con-
nected via high-speed communication links. E.g., five
machines located in New York, San Francisco, Chicago,
London, and Frankfurt. Logically, the control mechanism
108 may act as a single, robust data base/web server
combination, containing configuration data and other data
used/needed by the CDN.
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Although only one control mechanism 108 is shown in
FIG. 4A, it should be appreciated that a CDN may have
more than one control mechanism, with different control
mechanisms controlling different aspects or parts of the
CDN. In addition, a control mechanism is preferably con-
figured in a hierarchical manner, as will be described in
greater detail below.

It should be appreciated that, from the point of view of
other CDN components/services (e.g., caches, the rendez-
vous mechanisms, etc.), the control mechanism is the single
source of certain required data. Similarly, the components
that provide data to or for use by the control mechanism
(e.g., the OMA) consider it to be a single entity. The other
CDN components are therefore agnostic as to the actual
implementation of the control mechanism—they need nei-
ther know nor care about the control mechanism’s underly-
ing implementation.

The control mechanism 108 is preferably addressable by
one or more domain names so that it can be found using the
DNS. For the sake of this description, the domain name
control.fp.net will be used for the control mechanism 108. In
a preferred implementation the control mechanism may
consists of distinct and geographically distributed control
mechanisms and may be operated as a multihomed location
with multiple IP addresses. Thus, when a client asks a DNS
server to resolve the control mechanism’s domain name
(e.g., control.fp.net) the DNS will return one or more of the
1P addresses associated with that name. That client may then
access the control mechanism at one of those addresses. It
should be appreciated that the DNS will preferably provide
the client with a rendezvous to a “nearby” control mecha-
nism server or servers (i.e., to “best” or “optimal” control
mechanism server(s) for that client), similar to the manner in
which clients rendezvous with CDN servers. In other words,
internal components of the CDN (cache servers, control
mechanisms, etc.) may use the same rendezvous mecha-
nisms as are used by entities outside the CDN to rendezvous
with CDN components. In some cases the various control
mechanisms may have the same IP address, in which cases
routing tables may direct a client to a “best” or “optimal”
control mechanism. This result may also be achieved using
an anycast IP address.

Control mechanism configurations, exemplary architec-
tures and operation are discussed in greater detail below.

Data Collection

The CDN preferably collects data relating to ongoing and
historical operations of the CDN (i.e., of the CDN compo-
nents or services) and may use that data, some of it in real
time, among other things, to control various other CDN
components. For example, data relating to resources
requested and/or served by the various caches may be used
for or by operational and/or measurement and/or adminis-
trative mechanisms. In addition, such data may be used by
various analytics and monitoring mechanisms to provide
information to other CD services (e.g., to the rendezvous
system and to the control service). In general, any data
collected and/or produced by any machine or service in the
system (e.g., via event streams to the reducer system) may
be used (alone or with other data of the same and/or different
types) to control other aspects of the system (sometimes in
real time or online—i.e., where data are used as they arrive).
The following sections describe embodiments of data col-
lection schemes.
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Log Data and Event Data

Each component group of components of the CDN (i.e.,
each service) may produce log data for use (directly or
indirectly, “as is” or in some modified or reduced form) by
other components or groups of components of the CDN (i.e.,
by other CDN services). For example, each of the caches
may produce one or more streams of log data relating to their
operation.

Log data provided by each component may include any
kind of data in any form, though data are preferably pro-
duced as a stream of data comprising a time-ordered
sequence of events. Those of ordinary skill in the art will
realize and understand, upon reading this description, that it
is not possible for the multiple components of the CDN to
have perfectly synchronized clocks, and, as will be
explained below, such synchronization is neither required
nor presumed. In preferred implementations, however,
clocks are kept within a few thousandths of a second of each
other (using NTP—the Network Time Protocol).

In presently preferred implementations, each CDN com-
ponent provides (e.g., pushes) each stream of log data that
it produces to at least one known address or location
(corresponding to a reducer or collector). It should be
appreciated, as will be explained below, that the address or
location to which each stream is to be directed is configu-
rable and changeable. The use of multiple locations (i.e., of
multiple reducers or collectors) for redundancy is discussed
below.

Service Logs

During operation, each CDN service (e.g., a cache ser-
vice, a rendezvous service, a reducer service, a collector
service, a control service, etc.) produces information that is
used or usable by the service itself and, possibly, by other
components of the CDN. The information produced may
include information about the status of the service, its
current or historical load, CPU or storage utilization, etc. In
the case of a cache service, the information may include
information about what it is serving, what it has served, what
it has stored, and what is in its memory. While it may be
desirable to have some of this information stored locally on
the machine operating the service (e.g., as log files), it is also
desirable to have at least some of this information made
available (directly or in some other form) to other CDN
components.

Accordingly, each CDN service produces one or more log
streams (of event data) which can be obtained by other CDN
components (e.g., via reducers 107 and possibly collectors
106). Preferably log data from each CDN component (e.g.,
service) are streamed by the component in the form of one
or more continuous data streams, as explained below.
CDN Component/Service Logging Architecture

Each CDN component (e.g., service) can preferably gen-
erate multiple loggable items. These loggable items may be
based on measurements and information about the compo-
nent itself (e.g., its load, capacity, etc.) and/or on measure-
ments and/or information about operation of the component
within or on behalf of the CDN (e.g., information about
content stored, requested, served, deleted, etc.). Loggable
items are the individual values or sets of related values that
are measured and emitted over time by the component. Each
item has a name and a definition which explains how to
interpret instances of the value (as well as how it should be
measured). While the set of loggable items that a component
can emit at any time may be fixed by the design of the
component, it should be appreciated that the actual loggable
items generated by each component may be dynamically
configured and may be modified during operation of the
component.
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A log event is a time-stamped set of loggable item values
that are produced by the component. It is essentially the
assertion by the component that each of the contained log
items had the given value at the given time (according to the
local clock of the component). The log event may also
include other independent variables defining the scope of the
measurement. The grouping of loggable items into log event
types is preferably fixed by the design of the component.

Each CDN component includes one or more configurable
log event producers that each generates a stream of time
ordered log events from the loggable items generated by the
component. The log events produced by a log event pro-
ducer may be consumed by one or more configurable log
streams on the component. Each log stream on the compo-
nent listens for certain events sent from one or more event
producers and then orders and formats those events accord-
ing to selected log file styles.

A CDN component may have multiple log event produc-
ers (e.g., one per vcore) and multiple log streams. As used
herein, the term “vcore” means Virtual CPU core or simply
“thread” or “thread of execution.” As shown in the example
in FIG. 7A, which shows parallel logging to multiple log
streams, an exemplary component has N log event producers
(collectively denoted 902), each producing corresponding
log events (Nz1). An exemplary component also has K log
streams (K=z1, collectively denoted 904), each producing
corresponding log records. As can be seen in the drawing in
FIG. 7A, the log events produced by each log event producer
may each be provided to (and so consumed by) each of the
K log streams.

The possible loggable items and events that can be
generated by a CDN component (e.g., a cache server or a
rendezvous mechanism) are preferably statically designed
into the component, and the log event producer(s) for each
component are preferably configured/selected as part of that
component’s initialization (initial configuration). Note that
the log event producer(s) for a component need not be static
for the life of the component (e.g., the component may be
reconfigured using the Autognome service). The set of log
streams associated with a CDN component may be initial-
ized at component initialization time based, e.g., on per node
configuration data, and may change dynamically.

Log event producers can emit events in arbitrarily large
batches, and log streams must order these events.

FIG. 7B shows a single log event producer 902' in greater
detail. Loggable items are generated and/or produced by
various measurement and log item generator mechanisms.
The log event producer 902' in the drawing includes n such
log item generator mechanisms (denoted MO, M1 .. . Mn),
each producing corresponding loggable items. For example,
the log item generator MO produces loggable items of type
0; the log item generator M1 produces loggable items of type
1, and so on. These log item generator mechanisms, as noted
above, are preferably statically designed into the CDN
component, and configured during the CDN component’s
initial configuration in the CDN.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that these various
loggable item generator mechanisms may be implemented in
hardware, firmware, software, or any combination thereof.

A log event is a loggable item associated with a time. A
log event generator 906 in the log event producer 902'
consumes loggable items from the log item generator
mechanism(s) and produces a corresponding sequence of log
events 908 (a time-ordered sequence of loggable items) from
the loggable items and using a time from a clock 910. Thus,
as shown in FIG. 7B, the sequence of log events 908 consists
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of a sequence of loggable items ordered by time (e.g., at
times T[K] T[K+1], T[K+2], . . . ). Although the clock 910
may be common to (and therefore shared by) all log event
producers on a particular cache server, there is no require-
ment that a shared clock be used.

A log event router 912 (in the log event producer 902")
filters and routes log events to one or more currently active
log streams. Thus, as shown in the drawing in FIG. 7B, log
event router 912 filters and routes the log events 908 to one
or more log streams. In the example shown, the log events
908 are filtered and routed asp sets of log events (pzl,
denoted 908-1, 908-2 . . . 908-p). It should be appreciated
that any particular log event from the log events 908 may be
routed to more than one log stream.

FIG. 7C shows a log stream 904. The log stream takes as
input one or more time ordered sequences of log events from
one or more log event producers, sorts and accumulates
these log events, and produces a sequence of log records.

Preferred implementations make and rely on the follow-
ing assumptions:

different vcores may (and likely will) have distinct,

unsynchronized clocks;

each log stream is aware of the existence of all log

producers which could send it events;

the “correct” order in a stream is defined by the time-

stamps, regardless of what vcore determined the time-
stamp and what the correspondence is between that
veore’s clock and real/actual time;

for the events coming from a particular log event pro-

ducer, the relative order in which events are received at
a stream is the same as the relative order with which
they were emitted by the producer;

producers may emit events in batches of arbitrary size,

and in any time order (subject to one additional con-
straint described below).

In some implementations, each stream could be wrapped
in an envelope that authenticated/identified the sender—
rather than relying on knowing of all of them a priori.

No assumptions are made about the relative timestamp
order of events received from different log event producers.

The one additional constraint is that periodically there
must be a time-stamped marker event that is emitted by each
log event producer (i.e. typically by each individual vcore),
and the producer must guarantee that the timestamps of all
subsequently emitted events will be greater than the time-
stamp of the marker. This constraint is considered trivial for
a single vcore to guarantee. The timestamps of events
between markers can be in arbitrary order, provided they are
bounded by the markers on either side.

With these assumptions, the events received at the input
to a log stream must be assumed to be out of order, even
when considering the events from a single producer. To deal
with this the system adopts an approach similar to that used
in distributed discrete event simulations.

With this guarantee, each log stream S, can independently
maintain a maximum processed timestamp Tmax,, for each
event producer p, and use this to compute its own local
version of global time Tgg, by taking the minimum:

Tgs=min({7max,|VpEProducers})

Then the stream may periodically process (order) all
events received with timestamps less than or equal to Tgg,
since it will be guaranteed that it will not receive any further
events with timestamps less than or equal to Tgg;.

With reference to FIG. 7C, sorting and accumulation
mechanism 914 generates log records 916 from log events
input to the log stream 904. The log records 916 produced
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by a log stream 904 may be stored locally on the CDN
component. In addition, the log records 916 produced by a
log stream 904 may be treated or considered to be one or
more streaming files 920. Such files may be provided (e.g.,
pushed) as event streams to one or more reducers (and
possible collectors) in the CDN. If the producers produce
events in time order (as far as they are concerned), then this
may be implemented using merging instead of sorting.

At any given time a CDN component is able to generate
a predetermined set of log file types appropriate for that type
of component. A log file type defines the general structure of
a log file in terms of the log events that are in the scope of
the log file and the rows and columns of data that may be
included in an instance of that file type. There will generally
be a unique code that must be designed into the CDN
component in advance for each supported base type, and the
base type will determine the set of configuration options that
are applicable and the logical structure of the generated log
records (though not their concrete format).

Alog file type is a combination of a log file base type and
associated parameter settings. It completely determines the
logical content and structure of the output log record stream
for a given input event stream.

Each base type may expect certain parameters to be set (or
not) in order to configure the specific behavior of the type.
Some parameters may apply to most/all types, some may be
specific to specific types.

Afilter is a parameter that defines the criteria that must be
satisfied by the log events that are to be dispatched to the log
file.

A selection is a parameter that defines the attributes of the
included events that are to be included in the log file.

A log file instance is an actual log file—a particular set of
data generated over some time interval according to a
chosen log file type and style. A log file may be, e.g.,
streamed or on disk In the case of stored log files, a log file
may be a current log file (still actively being appended to) or
a rotated log file (no longer being appended to).

A log stream is an active entity that produces a related set
of log file instances corresponding to a particular log file
type and style.

A logging configuration of a CDN component is a defi-
nition of a set of log streams for that component. Each
stream conceptually “listens” for certain events, selects the
events and fields it cares about, time-orders the events
received from different producers, and formats the stream
according to the selected style to generate log file instances,
rotating files as indicated by the file type.

Each stream preferably has an identifier (a symbolic
name) that is useful, e.g., for debugging and also as the
means to associate logging configuration changes which
existing streams.

As should be apparent from the description, the measure-
ment and log event generation mechanisms are separated
and upstream from the log streams. They construct log
events and forward them to an event router, with no required
knowledge of what happens downstream (i.e., with no
required knowledge of what log streams exist, what events
matter to what log streams, or how log files will be format-
ted). In some cases, knowledge of what the log streams are
may be made available to the log event generation mecha-
nisms for performance reasons.

Log event routers are similarly oblivious of the upstream
and downstream behaviors, other than basic knowledge of
what log streams exist and which events go to which
streams. Log streams consume events that have been
directed to them, but they have (and need) no knowledge of
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what generated the events and minimal knowledge of the
nature of each event source. Log streams are responsible for
time ordering, item selection, item accumulation, format-
ting, etc.

The logical structure of a type of log files (in terms of the
sequential or hierarchical structure of records they contain,
etc.) is decoupled from the syntactic style with which log
record content is represented on disk, allowing pluggable
log file styles.

It should be appreciated, however, that log files records
should contain sufficient information to identify the origin of
each record. In some cases, records should include an
identification of the CDN component that generated the
record. In some cases, log file records should include an
identification of the sub-CDN in which the record was
produced. A collector in the sub-CDN may add information
to a record as part of its reduce functionality in order to add
sub-CDN identification information. In this manner, log file
records may propagate through a sub-CDN without any such
identification information, and may be added by a collector
as the records leave the sub-CDN and are passed to the
shared CDN components.

Reducers and Collectors

A reducer service (or reducer or data reducer) is a service
that consumes, as input, one or more event streams (along
with control and/or state information) and produces, as
output, one or more event streams (along, possibly, with
control and/or state information). As noted elsewhere, a
reducer need not actually reduce the size of any input event
stream. The network of reducers in a CDN may be referred
to as a network of data reducers or NDR. The reducer
services 1016 (FIG. 1) may be considered to be an NDR.
In preferred implementations each reducer in the NDR is an
event stream processing engine with essentially no long-
term state. A CDN comprises multiple reducers forming one
or more NDRs.

Each reducer (reducer service) 107 may take in one or
more input streams and produce one or more output streams.
As shown in FIG. 8A, each reducer 107 comprises one or
more filters 802 to process the collector’s input stream(s)
and produce the collector’s output stream(s). As shown in
the drawing, the reducer 107 reduces the in input streams
(m=1) to n output streams (nz1). It should be appreciated
that the value of n (the number of output streams) may be
greater than, equal to, or less than the value of in (the number
of input streams). In other words, the number of output
streams may be greater than, equal to, or less than the
number of input streams.

Although the term “reducer” is used herein to describe the
mechanism, it should be appreciated that a particular reducer
may not actually decrease the size of the output stream
streams relative to the input streams. A reducer may be, e.g.,
a consolidator, a combiner, a pass-through mechanism, a
splitter, a filter, or any combination of these with other
mechanisms that act on the one or more input streams to
produce a corresponding one or more output streams. Thus,
a reducer may act, e.g., to reduce an input stream into
multiple output streams. As another example, a reducer may
reduce multiple input streams into a single output stream.
The various mechanisms that comprise the filters 802 in a
reducer may operate in series and parallel or combination
thereof, as appropriate.

Although, as noted, each reducer may receive multiple
input streams. These input streams to a reducer need not be
of'the same type, and a reducer may be configured to process
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multiple different kinds of input streams. It should also be
appreciated that the one or more of output streams may be
the same type as one or more of the input streams.

The input streams to a reducer 107 may come from one or
more other CDN services, including, without limitation,
from other caching services, other rendezvous services,
other collector services, and other reducer services.

It should be appreciated that a reducer 107 (e.g., as shown
in FIG. 8A) is a CDN service and, as such, may (in addition
to event streams) take as input control and state information.
As shown in FIG. 1E (and FIG. 1L), a reducer service may
obtain event streams from other reducers, from collectors,
from control mechanisms, from configuration services and
from other services. In addition, a reducer service (e.g.,
reducer 107 in FIG. 8 A) may obtain control information (C)
from the control mechanism(s) and state information from
the collectors.

FIG. 8B shows an exemplary reducer in which multiple
CDN components (or services) each produce an event
stream (each denoted Sx) that is input into the reducer 107-x.
One or more filters in the reducer 107-x produce the stream
Sx' from the multiple input streams Sx. The stream Sx'
output by the reducer 107-x may be, e.g., a time ordered
combination of the events in the multiple input streams Sx.
In the example in FIG. 8B, the reducer 107-x reduces the in
input streams (of the same type) to one single output stream.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that each of the mul-
tiple CDN components or services may be any component in
the CDN including, e.g., a cache, a collector, a reducer, a
rendezvous mechanism, the control mechanism component,
etc. It should be understood that the multiple CDN compo-
nents providing streams of data to a particular reducer need
not all of the same type.

The reducers operating on a particular stream or type of
stream may operate in series, each producing an output
stream based on one or more input streams. For example, as
shown in FIG. 8C, a particular CDN component or service
produces k event streams (denoted S1, S2 . .. Sk). The CDN
component provides (e.g., pushes) each of k streams to at
least one reducer. As shown in the drawing, stream S1 is
provided to reducer 107-1, stream S2 is provided to reducer
107-2, and so on. Reducer 107-1 reduces the input stream S1
(along with its other inputs) to produce an output stream S1'".
Stream S1' is provided (e.g., pushed) to reducer 107-1,1
which reduces that stream (along with its other inputs) to
produce output stream S", and so on. Eventually reducer
106-7,m produces output stream S"™. Similar processing
takes place for each of the other streams produced by the
CDN component. Those of ordinary skill in the art will
realize and understand, upon reading this description, that
not every type of stream requires the same number of
reducers operating in series to reduce it to the required
output stream. It should be appreciated that each reducer
shown in FIG. 8C may process multiple input streams (not
shown in the drawing).

When operating in series (e.g., as with the reducers in
FIG. 8C), the filter function of the series of reducers is
effectively a combination of filter functions of each of the
reducers, in order. For example, with reference to FIGS.
8C-8D, if the series of reducers 107-2, 102-2,1 . . . 107-2,»
implement filters F1, F2 . . . Fn, respectively, on the input
stream S2, then the series of reducers effectively implements
the filter Fn(Fn-1( . . . F2(F1 (S2)) .. .).

The series of reducers that operate to produce a particular
output stream from one or more input streams may be
located or organized in the same cache hierarchy as the
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caches. Thus, e.g., there may be, for certain streams, reduc-
ers in each tier that reduce and/or consolidate event streams
from their own tier. These consolidated or reduced streams
may then be provided, e.g., pushed, to a reducer in a lower
tier in the hierarchy. As noted above, however, the reducers
may form a network with a topology or structure different
from that of the other services.

Each entity that produces and/or consumes events or
event streams is generally referred to as an agent. Thus, as
used herein, an agent is a process that is producing or
consuming events or event streams. A given machine on the
network could have more than one agent, and a given agent
could be performing multiple responsibilities (producing
and consuming events, storing reduced versions of events,
and providing value added services based on the history of
events it has processed).

A reducer is essentially an agent that computes output
event streams from input event streams. Generally, the
volume of events in the output streams is reduced in com-
parison to the input volume, though this is not strictly
necessary. The reduction process tends to group events
based on their spatio-temporal attributes and accumulate
their other values in some other reduction specific way.

As noted above, each CDN component may produce one
or more event streams which can be obtained by other CDN
components (e.g., via reducers 107 and/or collectors 106).
FIG. 9A shows an exemplary CDN component, a cache,
producing K streams of data and providing each of those
streams as an event stream, via reducers, to an appropriate
collector. The reducers reduce the streams, as appropriate,
and provide their respective output stream(s) to other col-
lectors. For example, as shown in the drawing in FIG. 9A,
the data produced by stream #1 is provided as event data to
the reducer(s) 107-1 which in turn provide some or all of the
data (having been appropriately reduced) to two collectors.
In this example, it is assumed that stream #1 produces event
data relating to content pulls from the cache. These data may
be used, e.g., to produce billing information as well as to
collect information about the popularity of requested
resources. Accordingly, in this example, the data relating to
content pulls is sent (e.g., pushed) via reducer(s) 107-1 to
collectors that will transform it to the appropriate billing
information logs which are provided to appropriate mecha-
nisms in the OMA system 109 (FIG. 4B). Similarly, the data
produced by stream #2 are provided (e.g., pushed) via
reducer(s) 107-2 through a series of collectors. In this
example, is assumed that the data produced by stream #2
relates to load information about the cache. This load
information may be used, e.g., by the rendezvous system in
order to select caches for resource requests.

Similarly, the data produced by stream #k are provided
(e.g., pushed) via reducer(s) 107-k through a series of
collectors. In this example, it is assumed that the data
produced by log stream #k relate to health information about
the cache. This health information may be used, e.g., by the
rendezvous system in order to select caches for resource
requests and by the control mechanism to maintain configu-
ration information about the CDN.

FIG. 9B shows an exemplary rendezvous mechanism/
service (e.g. DNS server) producing M streams of log data
and providing each of those streams via reducer(s) to
appropriate collector(s).

Although shown as separate elements in the drawings, the
reducer(s) denoted 107-1, 107-2 . . . 107-% in FIG. 9A may
overlap or be the same reducer(s), as may the reducer(s)
denoted 107-1, 107-2 . . . 107-m in FIG. 9B. The reducer(s)
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denoted 107-i in FIGS. 9A-9B may be considered to be sets
of reducers in the reducer network, and the sets may overlap.

It should be appreciated that the log streams and collec-
tors described in the previous examples are given only by
way of explanation, and are not intended to limit the scope
of a system in any way. Log data produced by caches and
rendezvous mechanisms and any other CDN component
may include data that can be used, e.g., for billing, load
assessment, health assessment, popularity measurement, sta-
tus checking, etc. These log data may be used to provide
information to other CDN components including the ren-
dezvous mechanisms, the control mechanism, and various
administrative mechanisms (e.g., for billing).

By monitoring log data from CDN components, the
control mechanism is able to maintain a near real-time view
of the health and load of the CDN, down to the resolution of
a single component. In addition, log data from the CDN
components may be used to provide near real-time infor-
mation about demand for particular properties (which can be
used to determine the popularity or relative popularity of
various properties). Popularity information may be used,
e.g., by the rendezvous mechanism, to pre-fill caches, and to
reconfigure components of the CDN.

Log-Less Request Logging

The logging system allows for log-less request logging.
Specifically, using the logging system provided by the
reducer/collector services, there is no need for caches or
other CDN services or components to store log files locally.
Instead of (or as well as) the processing of a request by a
cache resulting in generating an entry in a log file, for each
entry (e.g., request) in a log file the cache may emit an event
with all the same information to a log stream. Each log
stream would be consumed, preferably by at least two
reducer nodes whose output would eventually be merged
together, resulting in reliable delivery of request events to
interested consumers (e.g., analytics engines, request log
generators, even subscriber applications). Those of ordinary
skill in the art will realize and understand, upon reading this
description, that a single reducer node could be used for each
log stream, but the multiple reducer nodes provide addi-
tional reliability in case one of the reducer nodes fails.
Reducer and Collector Redundancy

Since it is assumed that event information may not be
stored locally on a physical machine associated with a
service instance, service instances in the CDN are preferably
assigned at least two reducers to which to send their events.
Reducers can feed other reducers, in hierarchical fashion.
Thus, e.g., as shown in FIG. 10A, the CDN service instances
in clusters CO and C1 each provide their event streams to
both reducer RO and reducer R1. Thus, if either one of the
reducers fails, the event streams from the service instances
will still be captured. FIG. 10B shows an exemplary con-
figuration in which event streams from six clusters or service
instances (denoted CO, C1, C2, C3, C4, C5) are each sent to
two reducers (out of six reducers RO to RS). Thus, event
streams from cluster CO are provided to reducers RS and RO,
event streams from cluster C1 are provided to reducers RO
and R1, and so on.

As noted, a reducer could be a local agent on the same
machine as the service instance, or a remote agent. A local
reducer may be used with a local collector to store infor-
mation locally.

FIG. 10C shows another exemplary configuration in
which the reducers are logically organized in an hierarchical
manner, with reducers in multiple levels. As shown in the
drawing, service instances in each cluster provide their event
streams to two reducers in the first level (Level 0). The
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service instances in cluster C1 provide their event streams to
reducers LORO and LLOR1, the service instances in cluster C2
provide their event streams to reducers LOR1 and LOR2, and
so on. The reducers in Level 0 of the reducer hierarchy each
provide event streams to two reducers at the next level in the
hierarchy (in this example, to reducers .L1R0 and [.1R1), and
O on.

FIG. 10D shows an exemplary hierarchical configuration
of reducers (or an NDR) in which the reducers are organized
hierarchically (in levels) and by geographic region, with
groups of reducers for North America (NAO, NA1), Latin
America (LAO, LA1), Europe (EUO, EU1), and the Asia
Pacific region (APO, AP1). Service instances in the CDN
will provide their event streams to appropriate reducers
based on their regions. The first level reducers then provide
their event streams to reducers at the next level (NALAO,
NALA1, EUAPO, EUAP1), and so on. At a third level, the
event streams are provided to reducers in groups GO and G1.
It should be appreciated that each of the circles in the
diagram in FIG. 10D may represent a single reducer or a
group of reducers. Thus, e.g., the circle labeled LAO may be
a single reducer or it may comprise multiple reducers.
Similarly for each of the other circles in the diagram.

It should be appreciated that the instances or clusters of
service instances shown in the diagrams may be any kind of
service instance.

As noted earlier, with reference to FIG. 1L, the reducer
service instances may form a network (NDR), a reducer
services network comprising one or more sub-networks of
those reducers. Various topologies and configurations of the
reducer service instances network and sub-networks are
shown here, although it should further be appreciated that
the configurations shown in FIGS. 10A-10D are provided by
way of example, and that different and/or other configura-
tions may be used within a CDN. In addition, the configu-
ration and/or topology of the network(s) of reducer service
instances may be dynamic and may change during operation
of the CDN. For example, the NDR or part thereof may
change based on control information provided to various
service nodes. This control information may have been
determined based, at least in part, on feedback from service
nodes in the CDN, provided to the control system via the
NDR and the collectors.

As noted, a service instance may produce multiple dif-
ferent event streams, each relating to different kinds of
events. Those of ordinary skill in the art will realize and
understand, upon reading this description, that a service
endpoint may provide different event streams to different
reducers. Furthermore, those of ordinary skill in the art will
realize and understand, upon reading this description, that
different degrees of redundancy may be used for different
event streams. It should be understood that each reducer
produces at least one output event stream based on its
operation as a CD service.

As described here, a service or component provides event
data to another service or component (e.g., to a reducer or a
collector). Event data may be provided by being pushed to
the recipient component(s). Preferably the recipient of an
event stream from a source is aware of the identity of that
source, and preferably some form of authentication is used
to authenticate the sender of the event stream.

Redundant duplicate collectors may also be provided, in
a similar manner to reducers, to avoid lost data.

FIG. 10E shows an exemplary machine 300 running k
services 308 (denoted SO . . . Sk). Each service Sj on the
machine provides its events to a corresponding set of
reducers 107-Sj in the reducer services network 1016. It
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should be appreciated that the sets of reducers 107-Sj may
be distinct, although some or all of the sets of reducers
107-Sj may overlap. Thus, e.g., the reducers in the set of
reducers 107-Sp may be completely distinct from those in
the set of reducers 107-Sq, for each p, q€[0 . . . k], or some
or all of the sets of reducers 107-Sp may overlap (i.e., be the
same as) those in the set of reducers 107-Sq, for at least
some p, q<[0 . . . k].

Reducer and Collector Implementations

This section provides generic implementation models of
reduction and collection and then provides examples of
reducers and collectors, showing first how they are specified
in terms of the generic implementation models.

The generic implementation models are useful for under-
standing and implementing reducers and collectors. In pres-
ently preferred implementations, generic reducers and
generic collectors are provided, whilst specific reducer and
collector specifications are deployed to the generic engines
via their configurations. It should be appreciated that these
specifications may be just service configurations that may
change dynamically, as with all services.

A pure reducer is a service that consumes input events and
generates a stream of reduced output events, where the
output events generally summarize the input events by
aggregating over space and time. Pure reducers do not store
anything more than they need to buffer in order to compute
their output events, and they provide no queries over events
they may have read or generated—they just generate events
as they compute them.

A pure collector, on the other hand, consumes input events
and aggregates them into one or more tables which can be
queried ad hoc, but pure collectors produce no output events
(other than the event streams that they produce as CD
services, e.g., event streams relating to health, utilization,
activity, etc.).

Although only pure reducers and collectors are described
here, those of ordinary skill in the art will realize and
understand, upon reading this description, that there is
nothing that should prevent an actual service implementa-
tion (and perhaps even the generic reducer/collector engine)
from combining the facilities for reduction and collection.

Generic Reducer

A generic reducer R consumes one infinite event stream e
and generates another infinite event stream E in real time:

R
e: {eg, e1, ... y—E:(Eo, Ey,... )

Bach event e, or E; is assumed to be an arbitrarily long
tuple of three kinds of components: a timestamp, a set of
keys, and a set of values. Those of ordinary skill in the art
will realize and understand, upon reading this description,
that in implementations there may be other tuples for stream
identifiers, agent identifiers, etc.

g
e~(t; kv )=(tikio, - - -, K Vior -+ + s Vi)

EADR V)-(TKo - . K,

pid VjO """ V'q)

The actual content of events and ordering of tuple com-
ponents may be arbitrary, and relies on a function project to
define the input projection and a function compose to define
the output composition:

(t; &, v )=project(e,)

E;=compose(T}, fj?j)
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Input events t, are consumed in timestamp order and
output events are generated with monotonically increasing
timestamps T, and with bounded delay (hence the “real-
time” claim). It is possible to have many events in the input
stream with the same timestamp, and many events in the
output stream with the same timestamp. The resolution of T,
must be less than or equal to the resolution of t,. A generic
reducer is further defined by two Boolean filtering functions:

receive?(1, K, V)

send?(7;, T(';?j)

These two functions determine which input events will be
consumed and which output events will be sent. The fol-
lowing four key/value transformation functions complete
the definition of the reducer:

T=warp(t;)
T(tj:map (751)
(V,)o=init())

(?j)i,rl:reduce((?j)i,vi)

where warp defines how high resolution input timestamps
are aggregated into lower resolution output timestamps, map
defines how input keys map to output keys, and the two
functions init and reduce define an incremental folding of
input values into aggregated output values. This is in effect
a standard map/reduce computation, but applied incremen-
tally in time-sequenced manner as opposed to a batch
computation on previously collected data.

Note that the input and output timestamps could have
equivalently been defined as part of the keys, but they were
explicitly separated because they defined the buffering
behavior of the reducer. Output events for a given output
timestamp are generated in order, at some point after the
point where all relevant input events for that output time-
stamp have been consumed.

Algorithm 1 Generic Reduction

Procedure INPUT (e)
(t,X,¥) < project(e)
If receive?(t, K, V) then
consume(t, K, V)
end if
End procedure INPUT
Procedure CONSUME(t, X, V)
T < warp(t)
M < map(T{)
A < accum{T,M}
If undefined A then
A < accum{T,M} < init(T)
end if
accum{T,M} < reduce(&,¥V)
End procedure CONSUME
Procedure PRODUCE(T,K,V)
If send?(T,K,V) then
E = compose( T,K,V)
OUTPUT(E)
end if
end procedure PRODUCE

The reducer maintains an input clock representing the last
input timestamp for which all input events have been
consumed. The implementation of the event transport pro-
vides a mechanism for an event source to guarantee to an
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event sink that events earlier that a given timestamp will no
longer be generated, and this mechanism is used to advance
the reducer’s clock. Whenever the input clock advances
from t, to t,,, the output clock may also need to advance,
depending on whether warp(t,)=warp(t,, ). If the output
clock advances, the reducer may generate all reduced values
collected for all output timestamps up to but not including
warp(t;, ).

Generic Collector

A generic collector C consumes an event stream and
generates updates to a table, while asynchronously respond-
ing to ad hoc queries over the table:

e: {eg, ey, .- )LTable: [Coly, Coly, ... ]

The collector’s TABLE is specified in the collector as a set
of columns, and a key function defines how to compute the
key used to lookup a row in the table from a given input
event (usually as a projection of each input event).

Input events are just like the inputs to reducers, and are
consumed in timestamp order. The key corresponding to
each input event determines a row which may or may not
already exist. The specifications of update? and/or update
functions determine when, where, and how updates occur:

If update?(e) is true, the event should cause an update

(otherwise the event is ignored).

If the row for key(e) exists in the table, then update(e,

row) returns the new value to store in that row.

If the row for key(e) does not exist in the table, then

update(e) returns the initial value for a new row.

Periodic updates to the table may also be defined to occur
asynchronously with the event stream (where the period is a
configuration parameter). In this case, conditions are defined
on existing rows without regard to events, and rows are
updated or deleted if those conditions are true:

When update?(row) is true, the row’s new value is set to

update(row).

When delete?(row) is true, the row is deleted.

Pseudo columns may be defined to represent the ordering
of a row with respect to the sort order imposed by a
particular column (and possibly other values that are com-
puted periodically based on the overall table state). The
value of this column may then be used to filter out rows past
a certain position in the sort order in order to implement a
top-N retention policy. Other aggregate values computed
over multiple rows may be referenced in selectors. (Pseudo
columns and aggregate values can also be implemented via
separate event streams, though less conveniently so.)

As should be apparent to those of ordinary skill in the art,
upon reading this description, collectors and reducers con-
sume the same kind of event streams in accordance with an
embodiment. As a consequence, not every collector will
need intervening reducers in order to consume and process
event streams.

Collectors and the Operation/Measurement/ Administration
(OMA) System

A Network Data Reducer (NDR) generally refers to the
system of reducers across the global CDN, including not just
the individual stream reducers but also the entire system for
configuring and deploying the reducers to various places in
the network. Preferably the NDR does not actually store
anything for any length of time, it just makes data streams
available to processes.

Reducers thus provide event streams (possibly via other
reducers in an NDR) to collector services (or collectors).
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Collectors are a heterogeneous collection of services that
transform reduced event streams into useful services, pos-
sibly storing large amounts of historical state to do so.

The Network Data Collector (NDC) refers to the set of
processes that consume events and store them in some way
in order to provide additional non-event-stream services to
other parts of the network. As described, certain of the event
consuming applications may also provide feedback services
(possibly even source additional events).

With reference to FIGS. 1L and 11, the reducer services
1016 comprise an NDR, and the collector services 1012
comprise an NDC.

The reducer/collector services may provide a source of
local or global data (e.g., in real time) for analytics, moni-
toring, and performance optimization. Data are detected,
reduced, and preferably used as close to the source as
necessary. Aggregation over multiple nodes in a neighbor-
hood means nodes can get near real-time access to infor-
mation that is not directly computable from purely node-
local information.

The use of event streams, in conjunction with appropriate
reducer and collector services means that CDN service
endpoints, e.g., caches, DNS name servers, and the like,
need not create or store local log information. Information
that may be needed globally (e.g., for feedback, control,
optimization, billing, tracking, etc.) can be provided in real
time to other services that need (or may need) that infor-
mation. It should be appreciated that the use of event
streams, reducers and collectors does not preclude the local
storage of log information at event generators, although such
storage is generally not required.

Certain event data, however, may be more important than
other event data (e.g., event data that may be used for
accounting or billing purposes), and such data, referred to
here as precious data, may be stored locally at its source as
well as sent as an event stream to the NDR. Those of
ordinary skill in the art will realize and understand, upon
reading this description, that the reducer(s) to which a
service sends an event stream could include a local agent on
their machine, or a remote agent. Similarly, a collector
service may be a local service/agent. Thus, a service may use
a local reducer, alone or with a local collector, on their
machine, to create local log data related to the local event
stream.

Each collector may provide some or all of one or more of
the services associated with the OMA 109 (FIG. 4B). Thus
a collector service may be used as one or more of: a monitor
and gatherer 120, a measurer 122, an analyzer 124, a
reporter 126, a generator 128, and an administrator 130. That
is, a collector service may use the input stream(s) (event
stream(s)) obtained from one or more reducers to provide, in
whole or in part, services associated with the OMA.

For the purposes of this description, a collector providing
a particular OMA service may be referred to by the descrip-
tion of that OMA services. For example, a collector 106
providing service as a load analyzer 142 may be referred to
as a load analyzer 142 or a load analyzer collector, etc.
Those of ordinary skill in the art will realize and understand,
upon reading this description, that a particular collector may
provide multiple OMA services or functionality. Thus, it
should be appreciated that a collector may combine the
functionality of various aspects of the OMA. For instance,
gathering, measuring, analyzing and reporting may all be
combined into a single collector.

Various examples of uses of the reducer/collector system
(the NDR and NDC) are provided here. Some of these
examples show implementation of reducers and/or collec-



US 9,634,905 B2

101

tors using the generic/pure reducer/collectors described
above. In the following description, reducers shown with
arguments T, L, C, and/or A actually represent families of
multiple reducers, where a single reducer in the family is
defined by the selection of the function parameters T, L, C,
and/or A.

The reducers covered here are listed in Table 3.

TABLE 3
Reducers

Reducer Name Input Event Output Event
1 RequestCounter( 7,£,() t, 1, ¢ r,5) (T,L,C, 1,5 N)
2 Usage( 74,0 (tLersN) (LLCN,B)
3 Billing( 7.2,C") tLeTw  (T,1,c RU)
4 Load(ZL) {1, mh) (T, L, M)
5 Analytics( 7,£,¢,.4) t,1,¢rN) (T,L,C, A, N)

Example Reducer 1: Basic Request Counting

This reducer merely counts requests, producing an output
event stream containing the resource size and total request
count per output time interval T for each unique resource
observed, where t is the cache system clock when resource
r of size s was requested from caching location 1 and
processed according to request collection c.

Reducer 1: RequestCounter(T, L, C)

Input:
Output:

t,Lcrs)

(T,L,C, 1,5, N)

warp (t) = T(t)

key (t, L, c, 1,5, e, h)=(, ¢, 1)
map(l, ¢, r) = (L(1), C(e), 1)

value (t, 1, ¢, 5,8) = (s, 1) = (s, N)
init (t) = (0, 0)

reduce ((sy, an), (s,, n)) = (s,, an + n)

Thus the output stream will contain one event

(T, L Cyor s, N= 1]
L.CrteT

for each unique value of (L, C, r) per minute T, where s is
the most recently received size value.

Example Reducer 2: Throughput and Bandwidth Usage

To compute throughput and bandwidth consumption, sum
the product of request counts and resource sizes.

Reducer 2 Usage(T, L, C)

Input: t, Lcrs, N)
Output: (T, L, C, N, B)
warp (T) = T(t)

key (t,1, ¢, 1,8 N) = (L, ¢)

map(l, ¢) = (L(D), C(c))

value (t, I, ¢, 1, 5, N) = (N, N *5) = (N, B)
init (T) = (0, 0)

reduce ((an, ab), (n, b)) = (an + n, ab + b)
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Example Reducer 3: Billing

To compute billing information sum resource utilization
counts.

Reducer 3 Billing(T, L, C)

Input: (1, 1, ¢, Tu)
Output: (TL,C, KU)
warp (T) = T(t)

key t, L, ¢, Tu) = (1, ©)

map (1, ¢) = (L(1), C(c))

value(t, 1, ¢, Tu) = (Fu) = (RU)
init (T) = (0)

reduce ((Zn), (M) = (Zn + W)

Example Reducer 4: Load
To perform load monitoring, compute average load met-

rics. In this case assume m consists of a set of additive
metrics at some measurement location 1, and all locations in
the input stream are equally weighted. For example, a metric
might be CPU utilization and locations could refer to
different machines with the same number of cores each. The
average load per location can then be computed from each

output event by M/N.

Reducer 4 Load(T, L)

Input:
Output:

t, 1, @)

(T, L, M, N)

warp (T) = T(t)

key (t, I, ®) = (1)

map (1) = (L(1)

value(t, 1, @) = (@, 1) = (M, N)

init(T) = (T, 0)

reduce ((Zm, an), (i, n)) = (Zm + m, an + n)

Example Reducer 5: Analytics

To compute analytics sum request counts by resource
groups.

Reducer 5 Analytics (T, L, C, A)

Input: t Lc,1,N)
Output: (T, L, C, A, N)
warp (T) = T(t)

key (t, ,c,, N)=(, ¢, 1)

map (I, ¢, 1) = (L (1), C (c), A (1)
value (t, 1, ¢, r, N) = (N)

init (T) = (0)

reduce ((an), (n)) = (an + n)

s Collectors

60

The example collectors described here are listed in Table
4.

TABLE 4

example collectors

Name Input Event Output Table

1 Cachelndex  (t, node, r, cached) Cachelndex (node, 1,

cached)
TopN (r, N, rank)

2 TopN t, 1, N)
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TABLE 4-continued

example collectors

Collec-

tor Name Input Event Output Table

3 UpTime (t, %, a) UpTime (x, a, first, last,
ust, dst, utot)

4 Popularity (t, 1, ca, sz, rate) Popularity (1, t, ca, sz,

rate, rank)

Collector 1: A Caching Index Collector

A collector may be used to track where each resource is
cached from among a set of caches. From each cache
consume a variant of the request stream including events
from the asynchronous cache management part of each
cache, in effect receiving a sequence of events telling us
when resources are added to or removed from a given
cache’s in-memory or on-disk cache.

To simplify the discussion, assume each cache just has an
in-memory cache. A fill inserts a resource into cache, an
eviction or purge deletes it from cache. In this version,
invalidation does not change anything (though this could
easily be extended to index cached resources by minimum
origin version). Given an input stream of events:

(t, node, r, cached)
this collector (see collector Cachelndex below) retains rows
of the form (node, r, cached), where cached=1 means that
node has a copy of r in cache. The collection is defined such
that (node, r) is a key, so each (node, r) combination has one
value of cached representing the latest state of node’s cache
with respect to resource r.

Collector 1 Cachelndex

Input:
Table:

(t, node, r, cached)

CacheIndex

columns = (node, r, cached)

key = (node, 1)

update ?(e) = true

delete ?(row) = (row.cached == 0)

This updates with a new cached value for each event, then
deletes rows for resources which are not cached.

Collector 2: Top-N Request Collector

Given a request count event stream, a collector may be
defined (see collector 2—TopN) that captures the most
popular resources over some amount of time in the recent
past, and then allows the captured data to be queried.

Collector 2 TopN

Input:  (t, 1, count)

Table:  TopN
columns = (r, count, rank : sort (count))
key = (1)

update ?(e) = true
delete ?(row) = (row.rank > N)

This inserts every event, projecting just the (r,count) fields
and adding a rank column, and then deletes rows with
insufficient rank.

Collector 3: Uptime Collector

An uptime collector captures events indicating the avail-
ability a={0,1} of entity x at time t:

(t, %, a)
where a=0 if the entity (machine, service, VIP, etc.) is
unavailable, a=1 if it is available, and use this information to
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compute the total time the entity has been available. Such a
collector is shown in collector 3 (Uptime), which maintains
for each entity x the last availability value a along with the
first and last time any event was received for a given entity,
the last time the entity went from down to up (ust=up start
time), the last time the entity went from up to down
(dst=down start time), and the total uptime and downtime
(utot and dtot). Total downtime can be computed from
(last-first)-utot.

Collector 3 Uptime

Input: (t, %, a)

Table:  UpTime
columns = (x, a, first, last, ust, dst, utot)
key = (x)

update ?(e) = true
update (e) = (e.x, e.a, et, et, et, e.t, 0)
update (e, r) = case
e.a >ra— (rx, 1, nfirst, e.t, e.t, r.dst, r.utot)
ea <ra— (rx, 0, rnfirst, e.t, rust, e, rutot + (e.t —
r.last))
ea=1— (rx,1, vfirst, e.t, rust, r.dst, rutot + (e.t —
r.last))
e.a =0 — (r.x,0, rfirst, e.t, rust, r.dst, r.utot)
update?(r) = (ra = 1) and age(r.last) > MaxAge;
update (r) = update (r, (now, r.x, 0))
delete?(r) = (r.a = 0) and age(r.last) > MaxAge,

The last part of this collector deals with entries in the
collection for which no new information has been received.
It the current state is declared up and the time since the last
received event is greater than MaxAge, then the entity is
declared down at that time. If an entity has been declared
down and the time since the last received event (or the time
it was assumed down) is greater than MaxAge, then the
entity is deleted from the collection.

Collector 4: Resource Popularity, Cacheability, and Size
Collector

A collector may be used to keep track of the popularity,
cacheability, and size of a resource in order to inform the
peering policy of a set of peer caches from an event stream
of the form:

(t, 1, ca, size, rate)
where r is a resource identifier, ca€[0,1] is the cacheability
of the resource (where 0 means non-cacheable and 1 is
maximally cacheable), size is the number of bytes in the
response, and rate is the instantaneous request rate (as
measured by the reducer producing this event stream, which
would be averaged over some time period).

Collector 4 Popularity

Input: (t, 1, ca, size, rate)

Table:  Popularity
columns = (1, t, ca, size, rate, rank : sort (rate))
key = (1)

update ?(e) = true

update (e,row) = (row.r, e.t, e.ca, e.size, e.rate)

update ?(row) = age (row.t) > MaxAge

update (row) = (row.r, Now, row.cs, row.size, row.rate/K)
delete ?(row) = (row.rank > N)

In this case keep t but not as a key—use it as a timestamp
of the last time a resource was updated, and then use this to
both decay the request rate over time and eventually remove
resources that have not seen any activity for MaxAge units
of time.

The reducer and collector implementations given above
show examples of the use of the pure reducer and collector
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functions to develop arbitrarily complex reducers and col-
lectors. These examples are given for purposes of descrip-
tion and explanation only, and are not intended to limit the
scope of the system or any actual implementation. Those of
ordinary skill in the art will realize and understand, upon
reading this description, that different and/or other imple-
mentations of reducers and collectors are possible, and those
are contemplated herein.

Various examples of the use of reducers/collectors are
provided here. It should be appreciated that each of these
examples may be implemented, in whole or in part, using the
generic reducer/collector described above.

Load

The OMA’s load mechanisms include load measurers
123, load monitors 132, and load analyzers 142 (with
reference to FIG. 4B). Load measurers 123 may actively
monitor aspects of the load on the network and the CDN.
Mechanisms dispersed throughout the CDN 100, including
preferably at some caches, provide load-related information
to the OMA 109 (i.e., to collectors 106 acting as load
monitors and/or load analyzers) via reducers 107 (i.e., via an
NDR).

For example, as shown in FIGS. 12A-12B, caches 102,
produce and provide (e.g., push) events streams (including,
e.g., load information and/or information from which load
information can be derived, and health information and/or
information from which health information can be derived)
to appropriate reducers 107. The reducers 107 reduce and
consolidate the information in the event streams, as appro-
priate, and provide it to the CDN’s appropriate collectors
106 (e.g., collectors providing services as load monitors and
gatherers 132, collectors providing services as health ana-
lyzers 134, and collectors providing services as load ana-
lyzers 142). The load monitors and gatherers 132 in turn
provide gathered/collected load information to load analyz-
ers 142 which, in turn, provide load information to various
generator mechanisms 128. The load information provided
to the generator mechanisms 128 may be used, alone, or in
conjunction with other information (e.g., health information)
to provide information to the control mechanism 108. The
control mechanism 108 may then provide control informa-
tion, as appropriate, to the rendezvous mechanisms 104 and
to other CDN components (e.g., the caches 102). The
collector(s) 106 may also provide state information to the
caches 102.

Note, as shown in the drawing (FIG. 12A), the collector(s)
may also provide state information directly to the caches
102, so that cache operation may be controlled directly and
not only via the control 108. This state information may
correspond to the “S local” state information shown in FIG.
4E.

Load information may be used (alone or in conjunction
with other information such as, e.g., health information),
e.g., to configure or reconfigure aspects of the CDN. For
example, load information may be used (alone or in con-
junction with other information, e.g., network load informa-
tion and information about the health of the network and the
various caches) to allocate caches to CDN regions or seg-
ments and/or to set or reset caches’ roles.

When health information is used by one of the generators
128, that information may be obtained using an appropriate
health monitoring and gathered from/by appropriate collec-
tors.

The load mechanisms may use the load reducer described
above.
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Popularity

Content analytics reductions provide all that is needed for
popularity evaluation of specific resources. This data may be
provided back to the caches and/or the rendezvous system
and may be used to implement popularity-based handling of
requests.

With reference to FIG. 12C, the CDN’s caches 102 and
possibly other services may produce log data (e.g., as an
event stream) relating to resources requested and served on
behalf of the CDN. This log information is preferably
provided (e.g., pushed) by caches, via reducer(s) 107, to
appropriate collectors 106 that can function as popularity
analyzer(s) and/or popularity data generators 152. Popular-
ity data generators 152 may generate data for use by the
caches 102 (e.g., for use in pre-populating caches, and/or for
redirecting resource requests). In addition, popularity data
generators 152 may also generate data for use by the
rendezvous system 104 (e.g., for use in directing resource
requests to appropriate locations).

The rendezvous mechanisms 104 may produce log infor-
mation relating to rendezvous requests and/or rendezvous
made. When the rendezvous system includes a DNS system,
the log information produced by the rendezvous system may
include name resolution information, including, e.g., the
names provided to the rendezvous mechanism by resolvers
and the results of name resolutions. Name resolution infor-
mation may be gathered by the rendezvous monitor and
gatherer 137 and may be analyzed by the rendezvous
analyzer 147. Rendezvous information (e.g., name resolu-
tion information) may be used alone or in combination with
resource request information to determine aspects of
resource popularity. This information may be particularly
useful when a resource may be requested using multiple
URLSs having different hostnames associated therewith. In
such cases, the rendezvous information in the form of name
resolution information can be used to determine which of the
URLs is being used to request the resource.

In preferred implementations there are two ways to
address popularity using some separate source of informa-
tion about the popularity of a resource.

(1) Alter the responsibility computation to include popu-
larity, making more nodes responsible for popular
resources than for unpopular (non-popular) resources.

(2) Handle popularity separately before responsibility.
Redirect for unpopular objects (without regard to
responsibility computation), apply usual responsibility-
based peering only if popular.

These approaches can be combined, allowing more than
just a redirect-or-follow approach. In some cases the CDN
can vary the number of nodes which will store the resource
as a function of popularity, size, etc.

The CDN can also use local feedback for tuning of the
popularity service based, e.g., on performance of the cluster.
Reducer also ensures that cache hits will still affect popu-
larity, though with some time lag.

Rendezvous using resource popularity is described, for
example, in U.S. Pat. No. 7,822,871 titled “Configurable
Adaptive Global Traffic Control And Management,” filed
Sep. 30, 2002, issued Oct. 26, 2010; and U.S. Pat. No.
7,860,964 titled “Policy-Based Content Delivery Network
Selection,” filed Oct. 26, 2007, issued Dec. 28, 2010, both
of' which have been fully incorporated herein in their entirety
for all purposes.

A popularity-based system may use the popularity col-
lector described above.

Billing

As noted, the CDN’s caches 102 may produce log data
(e.g., as an event stream) relating to resources requested and
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served on behalf of the CDN. The log data may be used to
determine not only which resources were requested, but also
information about whether/how the requested resources
were served. This log information is provided (e.g., pushed)
by the caches, via reducer(s) 107, to appropriate collectors
106 that can function as gatherer mechanisms 136 and/or as
billing reporters 140 in the OMA 109 to produce customer
billing information.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that billing information
may be generated based on different and/or other factors. For
example, as shown in FIG. 12D, in some cases rendezvous
data may also be used to generate billing data information.

The OMA billing mechanisms may use the billing reducer
described above.

Reporting

CDN services may produce log data (e.g., as event
streams) relating to various aspects of their operation. E.g.,
caches 102 may produce log data (e.g., as an event stream)
relating to resources requested and served on behalf of the
CDN; rendezvous services 104 may produce log data (e.g.,
as an event stream) relating to name resolution requests on
behalf of the CDN, etc. This log information may be
provided (e.g., pushed) by the various services via reducer(s)
107 to the appropriate collectors 106, which, in turn, func-
tion to gatherer, measure, analyze and report this informa-
tion. For example, as shown in FIG. 12E, log data (as event
streams) may be provided to monitors and gatherers 120,
measurers 122, analyzers 124, reporters 126.

For example, collectors may report information about
which resources have been requested and/or served, infor-
mation about load on the system, information about popu-
larity of resources, etc.

Reports (or reporting) may be provided directly to cus-
tomers and may be used within the CDN to maintain records
and analyze CDN operation. The term “reports™, as used
herein, includes reports in any form (including graphical
and/or textual), including reports provided in real time.

It will be appreciated that customers will only be able to
see reports about their own properties. The system may
provide for report customization and summary information.
The system may also provide report information about the
quality of service associated with a customer’s contents’
delivery.

As noted, a collector may combine the functionality of
various aspects of the OMA. Thus, e.g., the functionality
associated with gathering, measuring, analyzing and report-
ing may be combined into a single collector.

BUA (Bandwidth Use Analysis) Logging

All of the information needed by BUA logging is derived
from or could be contained within the request event stream.
Therefore, a separate set of BUA events can be generated by
a reduction on the request event stream, thereby obviating
the need for in-cache accumulation of usage counters and
avoiding the need to generate and merge additional BUA log
files. For measurements that are not appropriate to generate
with each request, services can generate additional events
when appropriate, and reduce these.

Content Analytics Logging

Reductions on request event streams can be used to
compute various content analytics results, such as the most
popular N resources per property for any given time period,
or the request count for various groups of resources (defined
by URL patterns). These may be computed globally as well
as according to different geographical regions. These may be
implemented using the Analytics reducer described above.
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Load and Availability Monitoring

Each cache could generate events to track availability of
VIPs, load, and local resource consumption as a function of
time. In addition, external monitoring services could test the
externally perceived availability of other services and gen-
erate events. These events could be reduced to produce
aggregate availability, load, and resource consumption met-
rics for clusters, data centers, metropolitan areas, etc., and
derived streams could be defined to generate alarm events
when values at specific times and locations go out of
tolerance. Monitoring applications, as well as the control
mechanism itself, could then subscribe to these alarm
streams to generate alerts and other response actions. These
may be implemented using the Load reducer described
above.

Invalidation Monitoring

The completion of an invalidation command can be
recorded as an event, and the sequence of invalidation events
can be reduced to provide feedback to the invalidation portal
as to whether or not the invalidation command has been
completely processed or not.

Resource Request Prediction and Prefetching (Site Opti-
mization)

The sequence of requests that will likely follow a request
to any given resource could be computed (estimated) using
an unsupervised learning algorithm, such as a priori, gen-
erating for any given resource a short list of likely future
resources to prefetch. Unlike some approaches to site opti-
mization, this computation does not involve introspection of
the resources themselves, is not dependent on assumptions
that resource references will be based on static HTML links,
and can take locality into account (the prefetch list compu-
tation may vary from one locality to another).

Media Resource Storage and Management

A similar analysis to the resource request prediction and
prefetching described above can be used to group resources
optimally on disk. See, e.g., U.S. Pat. No. 8,140,672, filed
Apr. 26, 2010, issued Mar. 20, 2012, titled “Media Resource
Storage And Management,” publication No. US 2010-
0325264 Al, the entire contents of which are fully incor-
porated herein for all purposes. A common file (a so-called
multi-file) may be created for certain content (e.g., a media
resource) based, e.g., a measure of popularity of the content
or on other behavior patterns relative to the content.

Real-Time Application-Specific Analytics

Applications could be allowed to define their own ana-
Iytics reductions, for example, to map specific resources to
resource roles, and sequences of requests could then be
reduced into sequence of these resource roles (like [show-
PageAl, buyProductX]). Metrics regarding the frequency of
these sequences could then be used in the request/response
processing to generate requests for, e.g., the page that is most
likely to result in a purchase in this particular location.

Global Hierarchical and Localizable Cached Resource
Index

Assuming that substantially each cache fill and each cache
eviction generates an event, the streams of these events from
all caches in the network may then be reduced to determine
an estimate of which machines (or arbitrary groups of
machines) contain which resources (or arbitrary groups of
resources) in cache.

The index could then be queried to determine where to
find a resource in cache. Assuming a hierarchy of indexes,
roughly corresponding to the hierarchy of reducers that
produce the inputs to the indexer, a request to find a resource
in a nearby cache could be issued to the indexer responsible
for the smallest area containing the requesting cache, and
then bumped up to higher levels if not found.
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Assume the events have the following form:
(node, time, resource, action)

Each request results in zero or more of the following event
actions to occur for the requested resource (ignoring actions
which do not change to location of a resource in the
machine’s cache hierarchy):

fill from remote source to local disk

copy within machine from local disk to local memory

In addition, other resources may be moved or removed as
a result, causing zero or more of the following events to
occur for some number of other resources:

evict from memory to local disk

evict from local disk

The first order reduction of this event stream would
therefore just maintains a cache hierarchy location for each
resource that is somewhere in cache at a node, and higher
order reductions just maintain a count of the number of
nodes at which a resource is cached at some level on the
group of machines in the scope of the reduction. This
reduction generates updated cache location states for
resource groups and machine groups which can be con-
sumed by an indexer. Processing a count of 0 is a deletion,
processing a count >0 is an insertion or update for a resource
at some location. The reduction would also reduce events
over time intervals, showing the net effect of a sequence of
events for the same resource within a given time interval as
a single event.

Applying some elements of applications discussed earlier,
this reduction and indexing work could be conditionally
applied only to those resources whose popularity exceeded
some threshold, for example, or only for certain types or
resources, or resources that matched patterns, or belonged to
certain properties.

Now, with the index available, the cache can actually
query the local indexer on cache misses to determine where
to go to get the resource. The indexer could present its
information to the caches in the form of resources which are
themselves cacheable, so the cache would maintain a local
cache of the indexers results for the resources about which
it cares (relying on sectoring and sequence numbers). In
essence, for most remote fills, the cache uses its local cache
of'the “directory” for where to get resources (which could be
a hierarchy of resource patterns), updating it only on expi-
ration or explicit invalidation. Invalidations could be gen-
erated automatically by the indexer, and would only travel to
the local caches which are storing copies of the localized
index results. The system could also provide conversion of
wildcard invalidations to a set of front-door invalidations
using this data.

It should be appreciated that there is a delay between a
change in the state of a resource at a cache node, and the
reflection of that state change in the reductions and indexes,
so the index just provides an indication of where the
resource might be based on where it was recently. In a worst
case, the cache will request the resource from the place the
index told it to request it from, but the resource will not
actually be there. In this case there will need to be an
appropriate response (such as the requested cache getting it
from a parent or origin, or it responds to the requestor with
a redirect or error response).

Index of Resource Metadata

The index of the previous section could also be extended
to store additional resource metadata, like the size and
popularity of the object. So even if the index says it is not
cached, the system may want to keep the index entry around
to be able to know what kind of object its dealing with so
that it can handle the fill (or redirect) in the appropriate way.
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For example, something that has been seen before (say in the
last day) but is nowhere in cache might be an unpopular
object that the cache can deal with by redirecting.

Adaptive Capacity Allocation

Assume each cache cluster is bound based on the set of
sectors it is expected to serve (which is determined some-
where upstream and relayed to the machines in the cluster
via the control mechanism 108). This sectoring limits the set
of properties that any given machine is expected to know
how to serve, which further constrains the services which
must be configured on the machine, as well as the set of
invalidations which the machine may need to process.

This binding also constrains the set of machines which are
available to serve a given property globally. Preferably the
system monitors and manages that set of machines, perhaps
with some allowance for steering by operators. Accordingly,
the control mechanism 108 and the NDR/C collaborate in an
automatic, closed-loop, feedback control system.

The NDR/C is just one of several parts of this feedback
system. Via suitable reductions the system could find out
whether the load due to resources in a sector (or a property)
was too much or too little for the machines currently
configured to serve those resources. If this is too much or too
little, an adjustment can be ordered. This adjustment could
be constrained by predefined policies, but would otherwise
proceed automatically. A suitable control algorithm which
takes both the latency of measurements and the latency of
actions and their effects would be required in order to react
to changes without overreacting.

An example of a simple adjustment is moving a cluster
from one sector to another (or adding a new cluster to a
sector from a pool of available clusters, and removing a
cluster from service and putting it back into an unused pool).
Assuming this does not require any software changes (just
possible reconfiguration of the software that is already
there); the control mechanism 108 would update or invali-
date the control resources which tell the cluster which
sectors it should care about, removing one and adding
another. It might also be useful to direct the cache to purge
all resources from the old sector and to prefetch all the most
popular resources from the newly added sector before the
rendezvous system is updated to start directing clients to it
for properties in that sector.

Adaptive Deployment

Control and/or state information can be used by a CDN
component (e.g., machine) to re-configure services already
installed on that machine. In addition, using the Autognome
service (described above), the constellation of services run-
ning on a machine can be partially or completely changed
based on control and/or state information. Thus, using
feedback from any aspects of the CDN, a machine’s role
may be changed to meet capacity needs in the CDN. For
example, a machine that was providing caching services
may be re-allocated to act as a rendezvous mechanism or a
reducer or a collector.

It should be appreciated that in order to reallocate capac-
ity it might be necessary to install or uninstall specific kinds
or versions of services that do not normally run on all flavors
of machines.

Peering and Parent Selection

Reducers/collectors may be used for peering and/or parent
selection. Peering may make use of reductions of, e.g.,
popularity, cacheability, and size to determine which peering
policy is preferably, but not necessarily, used for a given
resource based on a match between the resource’s popular-
ity, cacheability, and size and the corresponding thresholds
defined for each policy. Parent selection may be based on a
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reduction of the cost/performance of retrieving certain
resources or properties from certain parents by certain client
caches, and the parent that delivers the best results for a
given client may be chosen.

Configuration Information

As shown in FIG. 1J; the CDN includes configuration
information 1004 and state information 1006. Preferably the
control mechanism 108 (FIG. 4A) maintains at least some of
the control and state information. In an embodiment, the
CDN maintains the following (with reference to FIG. 13A):

Customer Information: includes information about which
entities are customers of the CDN, information about cus-
tomer properties, etc. The information about a customer’s
properties may include information about customer-specific
or property-specific handling of resource requests for that
customer’s properties. Since a customer’s properties may be
handled by caches in a particular sector, the customer
information may also include information about which sec-
tor or sectors are responsible for which properties, i.e., about
the binding of properties to sectors. The information about
a customer’s properties may also include invalidation infor-
mation regarding those properties. Note that the CDN (and
each sub-CDN) may be considered to be a CDN customer.
Thus, the CDN maintains information about CDN proper-
ties, including property-specific handling requests and
invalidation information for those properties.

Configuration Information: includes information about
the manner in which services (e.g., caches and other ser-
vices) are configured within the CDN and information about
and for the rendezvous system. The configuration informa-
tion may include static (i.e. relatively static) information
which may include information about sub-CDNs, groups,
tiers, sectors, peers, caches’ roles, flavors, etc. It should be
appreciated that the CDN is a dynamic entity and that the
CDN configuration may be changed during its normal
operation. For example, a component’s role(s) may be
changed if needed (e.g., a cache may be allocated to a
different group or sector; a cache’s peers may change, etc.).
The term “relatively static” is used here to refer to infor-
mation that may not change in any particular time interval of
appropriate resolution (e.g., 1 min., 5 min. and the like). The
CDN configuration information may be set by the CDN
operator and/or, in some cases, by CDN customers. In
addition, the CDN configuration (and therefore the CDN
configuration information) may be changed (e.g., using
Autognome) based on feedback provided by the reducer/
collector services.

Status Information: includes information about the status
(e.g., health) of the various components of the CDN, the load
on the components of the CDN, load on the network, etc.
Status information is typically dynamic information in that
it typically changes in any particular time interval of appro-
priate resolution (e.g., 1 second, 5 seconds, and so on).
Status information may be obtained, e.g., via the reducer/
collector services. The status information may be informa-
tion that has been produced by some other mechanism (e.g.,
in the OMA) and may be provided in a state or form that is
useful for the CDN components (e.g., the rendezvous sys-
tem).

Resource Information: this includes information about
properties, including which properties have already been
served or requested, and the validity of resources. Those of
ordinary skill in the art will realize and understand, upon
reading this description, that there is no reasonable way for
the CDN to know in advance of all possible resources that
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it may be requested to serve. A CDN should, however, know
in advance enough about the resources it has been config-
ured to serve in order to accept requests for those and reject
others. (Although a CDN could be aware of all possible
resources that it may be requested to serve in the future, such
a limitation would severely limit the benefits of a CDN.) The
CDN can, however, know about the resources that it has
already been requested to serve and that may therefore be
resident on one or more caches in the CDN. The resource
information thus preferably includes invalidation informa-
tion regarding resources that the CDN has served or has been
requested to serve (this includes CDN resources as well as
a customer or subscriber resources).

The information that the CDN knows is preferably main-
tained, at least in part, in one or more control mechanism
databases. Various CDN components/services may obtain
needed information from the control mechanism 108.
Services’ Configuration Information

In an embodiment, each CDN service includes some
configuration information in order to operate within the
CDN. The kind of configuration information needed
depends, at least in part, on the kind of service. In an
embodiment, each service knows its identity and a location
from which control and configuration information can be
obtained.

The Primary Delivery Services’ Configuration Informa-
tion

With reference now to FIG. 13B, each primary delivery
service (e.g., caching, streaming, compute) knows informa-
tion about the customers and properties for which it is
responsible in accordance with an embodiment. Each pri-
mary delivery service also preferably knows information
about its role in the CDN, which services are its peers, and
where it is supposed to send event information. The infor-
mation about the customers for which a delivery service is
responsible may be provided to the delivery service as a
CDN resource that lists sufficient information for the deliv-
ery service to determine whether or not it should try to
handle any particular resource request. When delivery ser-
vices (e.g., caches) are organized as sectors and/or as
sub-CDNs, each service preferably only knows about (i.e., is
only provided with information about) those customers and
properties associated with its sector and/or sub-CDN.

In some cases a delivery service may be told (e.g., at
configuration time) what its role is to be and which other
delivery services, if any, are its peers. A delivery service may
also attempt to determine peer services based, e.g., on the
delivery service determining its position in a cluster. It
should be appreciated and understood that even though a
service may have peer services, various policies (including,
e.g., customer specific request handling policies) may deter-
mine how each delivery service interacts with its peers and
what information a delivery service may obtain from or will
provide to its peers.

The Rendezvous Services” Configuration Information

As noted above, rendezvous is the binding of a client with
a target service. For example, in the case of a DNS-based
rendezvous system, the Rendezvous system maps domain
names (typically CNAMEs) to IP (or VIP) addresses or to
other CNAMESs. In an embodiment, each rendezvous
mechanism (or service) knows the properties for which it is
responsible and have sufficient information to provide the
rendezvous service for the properties for which it is respon-
sible.

The information needed by a rendezvous service to per-
form this mapping is part of rendezvous information in
FIGS. 13A and 13D.
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The rendezvous information (FIGS. 13A and 13D) is a
CDN property that may be resident on or available to the
rendezvous service and controlled via control resources with
the usual update/invalidation approach described herein.

Beyond the names associated with the set of properties,
and the set of VIPs assigned (bound) to each, in some cases
a rendezvous service knows the relative load (and capacity)
of the service end points and connectivity data showing
network distance from each such end point to the requestor.

The Collectors’ Configuration Information

In preferred implementations, the information used by a
collector service (with reference to FIG. 13E) includes
where the event streams are coming from, what the history
for each needs to be (i.e., how to perform the ‘collection’
process); what data to make available; and where to provide
that data.

The Reducers’ Configuration Information

In preferred implementations, the information used by a
reducer service (with reference to FIG. 13F) includes infor-
mation about where the event streams are coming from,
where they should go to, and the reduction process for each
stream type.

Control Mechanism Architecture

As shown in FIG. 1A, services types in a CDN include
configuration and control services. FIG. 1F shows a network
of configuration services providing configuration informa-
tion to a network of control services, and, as described with
reference to FIG. 1], an exemplary CDN 1000 may include
configuration services 1008, control services 1010. FIG. 4A
shows a control mechanism 108 made of control services
1010.

The following sections describe various organizational
structures and implementation options for the control
mechanism. It should be appreciated that these descriptions
are given only by way of example, and are not intended to
limit the scope of the system in any way. Those of skill in
the art will realize and understand, upon reading this
description, that a particular implementation may use a
different approach or may use some of the features described
here.

Exemplary Control Mechanism—Alternate Embodiment

An exemplary control mechanism 108 for an alternate
embodiment is described here. As shown, e.g., in FIG. 14A,
the control mechanism 108 can be considered to consist of
two loosely coupled sub-clouds, the director cloud 702 and
the control cloud 704. The director cloud 702 includes one
or more director sites (director server sites) 706 (in the
director cloud 702 shown in FIG. 14A there are ND director
sites DS,, DS,, . . ., DSyp, respectively denoted 706-1,
706-2 . . . 706-ND). The control cloud 704 includes one or
more control servers 708 (in the control cloud 704 shown in
FIG. 14A there are NCS control servers, CS;, CS,, . . .,
CS, s respectively denoted 708-1, 708-2 . . . 708-NCS).

By way of example, FIG. 14B shows an exemplary
control mechanism 108 with three director sites (D1, D2,
D3) and five control sites C1 . . . C5. As shown in FIG. 14B,
data are provided by (e.g., pushed from) the director cloud
to the control cloud (i.e., from director sites to control sites).
Data from the control cloud (control sites) are provided to
(e.g., pulled by) the caching network.

The director cloud 702 processes transactions from inter-
active users and batch systems and transfers updated control
data to the control cloud 704, which in turn provides the
same data (or some version or transformation or subset
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thereof) to the caching network 710 (corresponding to
caches 102 in FIG. 4A) and/or to other CDN components
712.

The clouds may communicate with each other and with
additional systems via, e.g., so-called RE presentational
State Transfer (REST) web services.

Each cloud is preferably, but not necessarily, a globally
distributed system with high-availability, but loose coupling
between the clouds allows each to be designed and scaled
independently to take advantage of their unique require-
ments. Director sites 706 are preferably optimized to pro-
vide read/write access involving moderately complex que-
ries for a relatively small collection of users (perhaps
hundreds), whereas control sites are preferably designed to
provide read-only access involving very basic queries to a
large network of tens of thousands of high-performance
caching nodes. Since the director cloud 702 pushes data into
the control cloud 704, and control sites cache data for each
other, increased load on the control sites 708 does not spill
over as load on the director sites 706. As the granularity of
resources served by the CDN changes (e.g., from a small
number of large properties, to a large number of small
properties) the effects on the two systems will be different
and can be handled separately. The reliability, availability,
and performance characteristics of the two sub-clouds are
largely isolated.

As noted earlier, the control mechanism 108 may com-
prise multiple databases that are used and needed to control
and operate various aspects of the CDN 100. These data-
bases 714 may include director database(s) 716 and control
mechanism database(s) 718. Although shown as a single
collection of database(s) 714, it should be appreciated that
multiple versions of each database may be (and typically
will be) present in the control mechanism 108 (for this
reason the databases 714, 716, and 718 are shown with
dashed lines in the drawing in FIG. 14A). From the outside,
the control mechanism 108 should present a view of what
appears to be a single and current version of each database,
while internally there may be differing versions of the
databases. Each director server 706 preferably maintains a
local version of at least some of the databases 714. Thus, as
shown in FIG. 14C, director server DS, (706-1) has a local
version 714-DS1 of the databases 714; director server DS,
(706-2) has a local version 714-DS2 of the databases 714;
and so on. Similarly, each control server 708 has a local
version of at least some of the databases 714. Thus, as shown
in FIG. 14C, control server CS, (708-1) has a local version
714-CS1 of the databases 714; control server CS, (708-2)
has a local version 714-DS2 of the databases 714; and so on.
As shown in the drawings, the control servers may only
require or use local versions of the control mechanism
database(s) 718.

Control sites 708 are the control mechanism 108 servers
contacted (typically directly) by CDN components/comput-
ers, e.g., the caching network 710 for delivery of metadata,
configuration files, invalidations, etc. (collectively referred
to here as control resources), and director sites 706 manage
a director database of control resources and direct the flow
of updates into the control mechanism. Updates typically
begin with the invocation of director site services on behalf
of users of interactive portal applications. The director site
service then commits the changes to the director database
716 and then reliably transfers the updates to selected
control sites 708. Finally, control site updates diffuse across
the rest of the control mechanism 108 and into the caching
network 710.
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FIG. 14D shows aspects of the feedback loop (see, e.g.,
FIGS. 1E, 1F and 1L) in which data from the CDN services
(e.g., from event streams) are collected (by collectors 106
via reducers 107) and then used to generate control data. The
director cloud 702 obtains data from the collector(s) 106 and
provides appropriate data to the control cloud 704. Compo-
nents of the CDN 100 (e.g., caching network 102 and the
rendezvous system 104) obtain (e.g., pull) data from the
control cloud 704.

As noted above, origin resources served by the CDN are
preferably treated as properties, with each property corre-
sponding roughly to the resources of a single origin server.
In order to take advantage of the expected spatial locality of
reference, the set of properties is preferably partitioned into
sectors. Each property is preferably contained entirely
within one sector, but a sector may contain any number of
properties.

Each sector (or the information associated with each
sector) is preferably replicated by multiple control sites at
any given time, and each control site 708 may replicate any
number of sectors at one time (see FIGS. 14A-14B). All
updates to information within a sector are reliably transmit-
ted from a director site 706 to all the replicas for that sector
(i.e., to all sites having replicas of that sector). The set of
control sites replicating the data of a given sector is referred
to herein as the cohort for that sector.

Site and Group Identifiers

For any given configuration of the control mechanism 108
there is a maximum number (ND) of director sites, maxi-
mum number (NCS) of control sites, and a maximum
number (NS) of sectors. These maxima determine the range
of acceptable site and sector identifiers, as follows:

DirectorSiteIDs={0, . . ., (ND-1)}
ControlSiteIDs={0, . . . , NCS-1)}
SectorIDs={0, . . ., (NS-1)}

For implementation purposes, these various IDs range
from zero (0) to some maximum value (e.g., 0 to ND-1).
However, for the sake of this description the ranges may be
specified as having a first value of one (1), e.g., 1 to ND).
The identifier for a given director site, control site, or sector
is fixed. Each director and control site also has a statically
defined peer group which may be based on a fixed function
of the site ID. The function may be arbitrary, as long as it is
fixed in advance and all sites use the same function. For
example, the function f(s)={plp mod N=s mod N} for fixed
N divides the sites up into groups of N. It should be
appreciated that peer groups are used for primary initializa-
tion and recovery and are not the same thing as neighbor-
hoods, which may change dynamically.

Sequence Numbers

Sequence numbers may be used to provide relative order
information about update and invalidation events. A
sequence number may be considered to be a virtual and
scale-free timestamp, a monotonically increasing integer
where the higher the number the more recent the event (at
least within a single sequence number domain, as compari-
sons of sequence numbers are only meaningful within the
same sequence number domain). Each sequence number is
relative to a local virtual clock for some scope at some
location. Furthermore, although sequence numbers are
monotonically increasing, they do not increase on a uniform
periodic basis, only when something changes.

It should be appreciated that a particular implementation
may not have sequence numbers at the level of the master
directory/journal.

Control sites may have two levels of sequence number
domains, the sector level and the property level. A sector
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increases its sequence number whenever the sequence num-
ber of a property governed by the sector is incremented.
Properties increase their sequence numbers whenever any
resource contained in the property is updated or invalidated.
Sector level sequence numbers also change when properties
migrate across sectors.

Although individual resource invalidations could result in
new sequence numbers for each individual resource invali-
dation, the system allows for the possibility that the effect of
multiple invalidations on the sequence number could be
batched together, so an increment from sequence number N
to N+1 could potentially involve any number of involved
changes at any level. This could be caused by batch invali-
dations, or by other aspects of the way the control site user
interface interacts with the underlying database.

Timestamps

Sequence numbers do not use timestamps, and there is
generally no need for any global clock synchronization.
However, in some cases it may be useful to have approxi-
mate and low-resolution timestamps which provide coarse
ordering information that can be used to improve efficiency.
Generally, with bounded clock skew and low enough reso-
Iution the system can arrange such that anything that is
marked as having an approximate timestamp T2>T1 can be
assumed to be newer than something with a timestamp T1,
but this cannot be relied upon for correctness.

Directories and Journals

Invalidation journals are lists of resources marked with
sequence numbers. Such invalidation journals indicate
which resources have been invalidated and when they were
invalidated. Caches or other CDN entities may use invali-
dation journals to decide which of their locally cached
resources to invalidate. Although journals may be generated
or updated as a result of human operator-driven events, one
invalidation command issued by a human may result in a
flurry of invalidation requests, and the cumulative effect of
ongoing operations can sometimes result in loads of many
thousands of invalidation requests per second. The content
of these resources may be represented, e.g., in JSON
(JavaScript Object Notation).

Master Journal

A master journal is a list of control mechanism metadata
along with sector and control site descriptors. The sector
descriptors define the current sector sequence number and
sector cohort for each sector, and the control site descriptors
define the replicated sectors and control site neighborhood
for each control site. Listing the replicated sectors is redun-
dant with the sector cohorts, but is provided for conve-
nience. In JSON, a complete master journal might look like
the following (see also, e.g., FIG. 14E):

{
seq: N,
numDirectorSites: NDS,
numControlSites: NCS,
numSectors: NS,
sectors: [
{ id: 0, seq: SO, cohort: [1,3,4] },
{ id: 1, seq: S1, cohort: [2,3,4] },
1,
controlSites: [
{ id: 0, seq: CSO, nbhd: [9,11,12,19] },
{ id: 1, seq: CS1, nbhd: [8,11,13,17] },
]
}
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In the example above, the sector with Sector ID 0 has
cohorts 1, 3, and 4. That is, control sites 1, 3, and 4 are
replicating sector 0. The sequence number for Sector 0 is SO.
The sector with Sector ID 1 has cohorts 2, 3, 4. That is,
control sites 2, 3, and 4 replicate sector 1. Sector 1 has
sequence number 51. As also shown in the above, control
site 0 has neighborhood sites 9, 11, 12, and 19; and control
site. CS1 has neighborhood sites 8, 11, 13, and 17. The
sequence number for control site 0 is CS0, and the sequence
number for control site 1 is CS1.

Sequence numbers represent the current sequence number
of the given scope as viewed by the provider of the journal
at the time the journal was provided. An incremental master
journal would be a list of partial specifications of a master
journal, as in:

{
seq: N1,
sectors: [
{ id: J, seq: SJ, cohort: [...] },
]
b
{
seq: N2
controlSites: [
{ id: K, seq: CSK, nbhd: [...] },
]
¥

It should be appreciated that the “master journal” is not
really a journal in the database sense of the term. It may also
be referred to herein as a manifest.

Sector Journal

A complete sector journal lists the current sector sequence
number and information about all the properties in the sector
(see also, e.g., FIG. 14F):

{
seq: N,
props: [
{ id: PIDO, seq: PSO },
{ id: PID1, seq: PS1 },
]
¥

In the example above, property PIDO has sequence num-
ber PSO and the property PID1 has sequence number PS1.

An incremental sector journal is an array of partial sector
specifications, showing only the changes of each specifica-
tion in the sequence relative to the complete specification of
the previous sequence number.

Sector Directory

Sector directories are control resources that specity what
properties live in what sectors. Sector directories are pro-
vided to enable caches and control sites to correct their
notion of what properties live in what sectors. Whenever a
property is moved to another sector or deleted from a sector,
the involved sectors are invalidated. Such an invalidation
increases the sequence number of the sector but does not
necessarily generate any invalidations of other resources in
the sector, other than for the sector directory’s deletion
journal, /sector/SID/directory/deletions. When a sector
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directory invalidation occurs at sequence number N, the new
sequence number becomes M=N+1, and a request to:

GET /sector/SID/directory/deletions?seq=K
for some value K=M will return a list of the deleted
properties and the moved properties (along with their new
sector homes). Additions will not be shown. The invalida-
tion journal for the sector will also show that the
resource /sector/SID/directory/deletions was/were invali-
dated at sequence number M.

From a caching perspective there is really no need to keep
track of additions to a sector (because such additions could
not have been previously cached), but the system may do so
anyway for the benefit of other tools, via/sector/SID/direc-
tory. So while the value of the /sector/SID/directory resource
can be used to list all properties, this resource is never
explicitly invalidated, it just expires, because, in preferred
implementations, the system never wants to force a cache to
request a sector journal just because of a new property
addition. Additions of properties to the sector will silently
cause new properties to show up in the directory on the next
request, but the deletion journal will not be changed and a
sector directory invalidation will not occur.

Property Journal

A property journal lists the sequence number of the
property and the list of resource descriptors for the resources
that were invalidated with that property sequence:

{
seq: N,
invalidated: [
{ uri: “foo.com/folder/thing” },
]
¥

Configuration Files and Other Control Resources

Configuration files define configuration settings which
may affect the dynamic behavior of both the control mecha-
nism and the nodes in the caching network. Operators of the
control mechanism may use customized tools to generate
and publish such configuration files to the control mecha-
nism. Other than the association of configuration files to
certain sectors and properties, the control mechanism need
have only minimal knowledge about the structure, file
naming conventions, automatic generation process, and con-
tent of these files—as far as the control mechanism is
concerned, they are opaque resources.

Control metaobjects are used to describe the existence and
basic properties of real-world entities, such as CDNs, cus-
tomers, properties, control sites, director sites, etc. These
metaobjects are expected to be relatively static, changing at
the frequency of human-controlled administrative events.
The content of these resources may be represented in JSON
or some other such language.

Upon receipt of a directory update, each replica site
merges the update with the state it already has for that sector.
Sequence numbers can be used to ensure that no updates are
applied out of order and no updates are missed. Each control
site 708 also periodically pulls and merges sector data from
selected neighboring control sites. The effect of this cache
diffusion combined with director updates is that each control
site is eventually consistent with every sector in the director
database.

The distinction between caching a sector and replicating
a sector is important. All control sites may cache information
for any sector, but each control site is considered a replica
site for some limited set of sectors (i.e., the cohorts for those
sectors). When a control site is replicating a sector, that
means it will receive reliable updates pushed from directors
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to the entire cohort of a sector, and the director will monitor
the success of these messages and retry until enough sites
succeed. Caching, on the other hand, involves the periodic
pulling of possibly older copies of sector information indi-
rectly from other control sites. In both cases, new data are
merged with old data based on sequence numbers to ensure
that no updates are ever missed. A master directory defines
sector cohorts (for replication) and control site neighbor-
hoods (for cache diffusion).

Director sites 706 receive update commands from other
systems, and these updates translate into a sequence of
changes to the director database 716 for given sectors, which
should preferably then be distributed to control sites 708.
When distributing updates, directors should preferably col-
laborate to ensure that all updates to a given sector will be
presented to the control site replicas as if they were coming
from a single responsible director agent, one at a time, after
each update has been committed to the director’s database.
Each update defines a new sequence number, and the direc-
tor keeps track of which sector updates have been success-
fully transferred to which control site replicas, being sure to
transfer them in the right order. But the protocol between the
director and the control sites for a transfer is a simple push
and response with retry until enough succeed—there is no
multi-phase commit or other distributed consensus protocol
required. The director has already decided unilaterally that
the changes are to be made and has committed them to the
director database, and it is just notifying the control sites of
its decision. It just needs to make sure that each decision is
acknowledged by enough of the replicas before moving onto
the next one.

Control sites which fail and restart should preferably first
perform local recovery to get back to a certain sequence
number for each sector (based on information written pre-
viously to stable storage), then recover the latest master
directory from the peers in their group (which depends only
on control site ID). After that, the control site’s neighbor-
hood and the set of sectors it is responsible to replicate are
defined, so it then recovers sector updates from each sector
cohort, and then begins refreshing its cache of other sectors
from its neighborhood. Control sites preferably do not
contact directors for recovery. When a control site receives
an update for one of its sectors, the update either succeeds
or fails. It fails if the control site is down (the director’s
request will time out) or if the control site has not yet caught
up to the sequence number being proposed. It will respond
with failure but inform the director where it is in the
sequence. Success means the control site has either just
applied the change successfully and could restore it if the
site subsequently fails, or it had already previously applied
the change. The minimum size of any sector cohort will be
set to ensure that even when the worst case number of sites
fails (as specified by the requirements), at least some mini-
mum number of sites will successfully receive an update
from a director. It should be appreciated that although the
director’s behavior may be adjusted to have it detect failures
of all control sites, in that case the director would have to be
involved in the recovery of at least one member of the
cohort.

If an entire director site goes down, there is no effect on
the ability of the control sites to continue to serve control
resources to the caching network. The only affect is that
updates to the resources contained in its sectors will not be
possible until the director site recovers, but the control sites
will continue to serve their most recent and consistent view
of the resources in those sectors. Director sites can be made
arbitrarily robust through the usual means as long as per-
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sector updates appear as if they are being generated by a
single agent from the perspective of the control sites.
Sector Cohort Management

Each sector is replicated across a cohort of control sites,
configured such that at least one control site is guaranteed to
be functional at any given time, even in the face of up to k
concurrent failures (for some k specified by the require-
ments). Sites can be added to or removed from a cohort at
any time, provided the minimum cohort size is not violated.
Reasons for adjusting the cohorts for a sector might be
persistent changes in geographical load distribution, persis-
tent failures, or some combination thereof.

All changes to cohort membership are initiated by direc-
tors. It may be in response to a request from a human
operator, or in response to automatic health monitoring and
load balancing. As far as the control sites are concerned,
cohort membership changes can occur at any time.

This means that some control sites may receive directed
replication requests for sectors they did not realize they were
supposed to replicate, and some sites will stop receiving
such requests for sectors they thought they were replicating.
Neither of these situations is problematic.

In the former case (an unexpected replication command),
the control site will adjust its view of sectors it replicates and
will begin replicating the new sector automatically. Each
replication request indicates the current cohort membership
for the sector being replicated, along with the sequence
number of the update. As described above, the recipient will
respond with failure if its cache is not caught up to the
sequence number (and it will initiate a catch-up recovery
with the other members of the cohort). In the latter case
(absence of expected replication commands), the control site
will eventually learn from a newer version of the master
directory that it is no longer a member of the cohort from
which it was expecting replications.

For reasons of efficiency, directors may notify control
sites when they are supposed to stop replicating, but that is
not strictly necessary. Ultimately, as far as the control sites
are concerned, they replicate what they are told to replicate,
and knowledge of cohorts is only used to forward requests
that cannot be answered with the local cache.

Health Monitoring

Directors monitor the health of control sites in several
ways. The primary method is the firsthand knowledge each
director site has of the ability of each of'its replicas to keep
up with directed replication commands. Sites that repeatedly
fail may be called out as suspect, even though the cohort as
a whole has enough functional sites to function correctly.

The second method is to periodically poll each site for its
master journal (and possibly other subordinate journals), just
like a cache node would, but in this case for the purpose of
evaluating the skew of the control site’s view of the master
journal, sector by sector.

Finally, a director can consult the control site more
directly for information about its load (e.g., via some
resource /cs/CSID/load), presumably with more information
about the control site’s interactions with its neighbors, to
find out how well the distribution of replicas and the
neighborhood settings are affecting that control site’s local-
ity of reference.

These latter resources could be delivered through the
cache but probably should not be. In the case of the load
resource, it would suffice to deliver it directly from the
control site, update it only when large enough changes
occur, no more frequently than some minimum period (say
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once every 5 minutes), and no less frequently than some
maximum period (say once per hour), and use ETag headers
for efficiency.
Load Balancing
Using the techniques described above, director sites can
monitor the health and load of each control site (and may
also want to use information collectible from the NDC), and
from that decide whether or not any changes should be made
to the set of properties contained in any sector, or the set of
control sites replicating any sector.
Control Sites
Under normal, steady-state operation, a control site
should execute three basic behaviors:
Receive director updates (to update local replicas);
Request resources from neighbors (to refresh local
caches); and
Receive resource requests (for journals and other control
resources) from neighboring control sites and the cach-
ing network.
Directed Replication
A director update request specifies a new incremental
change for some sector (or sectors) which the control site is
currently replicating. If the specified sequence number range
does not start with the next sequence number expected by
the control site, the control site will return a response
indicating that the update has not been successfully applied,
along with its current sequence number.
Cache Diffusion
Each control site periodically consults its neighboring
control sites (as specified in the master journal), retrieves
each neighbor’s view of the master journal, and merges them
to produce its own view. Whenever a neighbor control site
or cache node requests a master journal, the local merged
version of the master journal is provided in the response.

Cache Diffusion Algorithm

procedure CACHEDIFFUSION
A(k, s) < 0 for each (k, s)
loop
WAIT(T)
MERGENEIGHBORS
for each updated sector s do
for each neighbor k do
if k updated s then
Alkss) < M (1 - MAks)
else
Alkss) < (1 - MA(k,s)
end if
end for
end for
end loop
end procedure

The merge process generates a list of sectors that were
updated, along with the set of neighbors for each sector that
provided an update relative. This list is used to maintain an
affinity score A(k, s) for each neighbor k and sector s that is
used to make cache miss routing decisions. The affinity is an
exponential moving average based on some constant factor
O=<h=1. When a cache miss occurs, rather than forward the
request directly to one of the replicas, the system forwards
the request to one of the neighbors based on their past
history of providing updates for that sector.

Cache Request Processing

Each control site is expected to be able to retrieve a
version of any control resource at any time in response to a
request from a cache node or another control site. If the
resource exists locally with the right sequence number it is
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provided in a response, otherwise a cache miss occurs. On
a cache miss, the site should preferably request the resource
from a neighboring control site, update its cache, and return
the response to the requestor.

For example, when a client requests a sector journal the
site executes GetSectorJournal(s, N, L) for sector s,
sequence number N and level L.

Get Sector Journal

function GetSectorJournal(s,N,L)
if cache contains sector journal s at sequence n = N then
return sector journal s for [N, n]
else
if level L =« MAXLEVEL then
k < BestNeighbor(s)
else
k < ChooseCohort(s)
end if
return FillSectorJournal(k, s, N, L + 1)
end if
end function

Requests from the caching network always set L=0, but
control sites will increase the level at each forwarding step
within the control mechanism. If the level is below a
threshold MAXILEVEL, a best neighbor control site will be
chosen using the affinity score for that sector. Otherwise, a
member of the cohort for that sector will be chosen. This
approach allows intermediate control sites to act as caches
for other control sites without any predetermined topology,
and it avoids endless forwarding loops, without requiring
members of the cohort to serve all cache misses across the
control mechanism.

Individual Control Site Architecture

At any given time an individual control site may have sole
responsibility for some set of sectors, so the control site is
preferably free of single points of failure. Standard tech-
niques for this are adequate—e.g., a load-balanced tier of
web application servers (e.g., based on nginx or Apache),
backed by an optional memcached tier, backed by a repli-
cated database (e.g., MySQL master/slave, MySQL cluster,
or a NoSQL variant such as MongoDB or CouchDB) should
be more than enough. Sectors and properties provide con-
venient keys which enable control resources to be sharded
(partitioned) over separate database instances.

Each control site is expected to run exactly the same core
application software as all other control sites (at least as far
as control-control and control-cache interfaces are con-
cerned), but the actual deployed configuration can vary from
one site to another. The REST-ful web service interface
exposed by each control site is the same interface it assumes
of other control sites, and the details of the internal imple-
mentation of a particular control site are hidden.

Caching Network Interaction with Control

This section describes the caching network’s interaction
with the control mechanism. Those of ordinary skill in the
art will realize and understand, upon reading this descrip-
tion, that the same implementation may be used by other
CDN services to interact with the control mechanism.

Initialization and Network Formation

Cache’s (and other CDN services) discover the IP
addresses of available control sites automatically on startup,
preferably using the CDN’s rendezvous services (e.g., using
a preconfigured domain name for the control mechanism,
e.g. control.fp.net).
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Pulling the Master Journal

Periodically, according to some configurable control syn-
chronization period (preferably around once per minute), the
cache (or other service) retrieves the master journal using its
current approximate timestamp T:

GET /journal/master?tval=T
This request returns an absolute journal, a complete list of all
sectors and their sequence numbers, as viewed by the journal
provider at approximate timestamp T (which is expected to
have a resolution derived from the expected synchronization
period that cache nodes will use, e.g., minutes, relative to a
distinguished time zone). Caches are expected to request this
resource no more often than the resolution of the timestamp
provides, though they may request it less often. This
resource is delivered from the control mechanism to the
cache node like any other cached resource—through the
network of cache nodes.

As is apparent, an absolute journal with an approximate
timestamp is used instead of an incremental journal with a
sequence number. A low-resolution timestamp is used to
facilitate caching without incurring the global synchroniza-
tion and latency costs that a sequence number would impose
on the system. This in turn means that a complete journal
must be used instead of an incremental one in order to ensure
that if there is ever any news about a particular sector, the
cache will eventually hear about it and not miss it indefi-
nitely.

Pulling Sector and Property Journals

Each cache needs to keep track of the sectors and prop-
erties for which it currently has cached content, along with
the latest sector-level and property-level sequence number
for each. Upon receipt of a new master journal, the cache
checks the sequence numbers of sectors in the journal
against its own sequence number for cached sectors. If the
master journal indicates a more advanced sequence number
for any cached sector, the cache node should preferably then
issue a request for that sector’s journal, specifying its current
sequence number Ns for that sector:

GET /journal/sector/S?seq=Ns
This request returns a list of all known properties in the
journal that have been updated since sequence number Ns,
annotated with the actual sector sequence number Ns™>Ns as
well as the current property level sequence number Np (as
of sector sequence Ns'). If the sector level journal indicates
a more advanced sequence number for any cached property,
the cache node should preferably then issue a request for that
property’s journal, again specifying its current sequence
number Np for that property:

GET /journal/property/P?seq=Np
This request returns a log of all known resource invalida-
tions in that sector since sequence number Np, annotated
with the actual sequence number Np™>Np. This process is
repeated for each sector and property the cache cares about.

Sequence Number Rules for Invalidation

Since origin servers do not provide sequence numbers or
other mechanisms that can be used to synchronize their
content updates with the invalidation requests that arrive via
other channels, there is the potential for a race between the
two effects on the state of the caching network. Therefore,
for each resource in the cache, the cache tracks and uses the
property-level sequence number according to the following
rules:

(1) When a cache receives new content for a previously
uncached resource, it sets the sequence number equal to zero
(0). This conservatively ensures that any invalidations of this
content that arrive after this event will have the effect of
invalidating the resource (assuming all sequence numbers
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are greater than zero), even though the cache has no infor-
mation on the relative ordering between the next invalida-
tion and the refreshed content.
(2) When a cache retrieves a new property journal, and
sees a sequence number N>0 in the journal for a resource
that the cache already has in its cache marked with sequence
number M, then:
if N>M, then the cache must invalidate the resource and
set the sequence number to N;

otherwise N<M and the cache ignores the invalidation,
leaves the sequence number at M, and leaves the
invalidation state of the resource in the cache
unchanged (it may be valid or invalid).

(3) When refreshing possibly stale (but otherwise valid)
content, the cache optimistically maintains the same
sequence number, N. Maintaining the sequence number
prevents invalidations that are known to have occurred after
event(N) from re-invalidating the resource, since the system
requires event(N) to have occurred before event(M) for all
M>N, but the system has no information about the relative
ordering between event(M) and the refreshed content.

Certain control resources may need to be automatically
refreshed upon invalidation, because the content of the
resource may affect the ongoing behavior of the cache. For
example, per-request processing in the cache may be gov-
erned by handlers which are initialized according to cus-
tomer configuration scripts that are loaded on first use only,
and not re-consulted. Just invalidating such resources does
not have the desired effect, because there is no GET request
to force a cache fill, and even a cache fill would not be
enough—in the case of Lua scripts, for example, the content
would need to be re-executed to cause any changes in the
configuration to take effect.

Master Journal Caching

Each master journal is time stamped approximately, so a
receiver of the journal only knows that it is some control
site’s view of the sequence number of sectors in the system
at some approximate time. Although different observers of
master journals do not have synchronized clocks, and since
master journals are re-requested periodically and define
complete views of all sector sequence numbers, the system
allows any view of a journal with time value T2>T (assum-
ing common resolution) to be used to satisfy any request to:

GET /journal/master?tval=T
This means a cache with one clock may cache a master
journal response under some timestamp T2 (even though it
was provided by some other node with a different clock),
and the system may provide this cached response to other
nodes that make the request for any timestamp T<T2, even
though the requestors have different clocks, too.

For this to be maximally useful the system can prearrange
to have cache nodes far from the control mechanism to have
greater skew (at least as far as the way they compute T
values from their local clock value), with nodes close to the
control mechanism having smaller skew, so that for any
given T, a request for /journal/master?tval=T is likely to be
requested by parents before their children. The net effect is
a more or less orderly diffusion of newer journals from the
control mechanism to the edge.

Sector Journal Caching

Each sector journal request has a sequence number N
which indicates the last sequence number the client had
received. A correct response to the request:

GET /journal/sector/SID?seq=N
is any contiguous incremental journal which contains the
one-step incremental journal for sequence N+1. It may
contain sequence numbers less than N, because the client
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will know to ignore them. It cannot start at a value M>N+1
because this would lose possible updates that occurred at
sequence numbers {N+1, N+2 ... M-1}. It may stop at any
P>N+1, where P might not be the most recent sequence
number based on the current state, because the requestor is
expected to eventually re-request the resource starting at
sequence P.

This means that caches may cache a sliding window
subset of the actual sector journal, and use this window to
satisfy multiple distinct URL requests. If the sliding window
is sequence number interval [A, B] then any request for
sequence number KE[A, B] can be served with the slice
[K+1, B] from the cache. (Note: this means that, if K=B, the
response would be empty.)

Sector Prefetch in Parent Cache Nodes

Each time a cache node refreshes its master journal, it
notes all of the sectors mentioned in the master journal that
have newer sequence numbers than those of the sectors that
it has cached, and it immediately requests newer sector
journals, and similarly for property journals, until it reaches
the level of individual resource invalidations. In an embodi-
ment, this behavior is common to all cache nodes, regardless
of' what level in the caching hierarchy they reside, and the set
of journals that will be retrieved is a function of the set of
resources actually cached at a particular node.

Parent cache nodes may go beyond this basic behavior
and learn the broader set of sectors and properties needed by
their children, and prefetch them when indicated by a change
in some higher level journal. For this to work, parent caches
could be generalized to include not just the leaf resources in
the parent’s local cache but also indicators of the sectors and
properties for which child nodes may have resources cached.
This “extension” of the local cache can be treated as if it
were a separate, LRU cache, with each child request of a
resource for a given property and sector resulting in a use of
that sector or cache with respect to the extension cache.
Then, when the parent pulls a new master journal, the sector
journals it requests in response should include not only those
indicated by its local cache but also those indicated by the
extension cache.

It should be appreciated that to get the most out of this,
parents should also realize when requests for new sector
journals from a child overlap with pending requests for
sector journals from the next level parent, and not re-issue
redundant requests but fill the request from the pending
request (but this is a general behavior expected of the cache
for all resources, not just a characteristic of prefetching).
Analysis

A system using a control mechanism as described herein
should satisfy one or more of the following:

Data are distributed through the system, from control site
to control site, and from control mechanism to the edge,
primarily in pull fashion. The main exception occurs in the
distributed consensus protocol used in the director core.

In an embodiment, every piece of information exposed by
the control mechanism, and everything the cache needs to
implement its configuration and invalidation schemes, is
exposed as a web resource. The control mechanism’s URI
scheme represents a REST-ful web service abstraction of the
control mechanism’s underlying database and services.

In an embodiment, every piece of information exposed by
the control mechanism is preferably cacheable by the cach-
ing network. Control site nodes also cache information from
other control site nodes.

Sectors provide a way to partition the space of control
information and distribute it as close as possible to the
neighborhood of the resources which will likely need it,
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enabling locality of reference. Invalidations are not broad-
cast to the entire caching network, they are just distributed
to those who care about the sector they live in.

The core is designed as a set of peer control sites which
dynamically and fault-tolerantly self-organize into an inner
(director) and outer (control) core, with no single point of
failure. Individual control sites also have no single points of
failure, using standard techniques for the construction of
high-availability web sites.

Although each control site is expected to be able to
communicate with every other functional control site, the
expected communication pattern does not require this. The
number of sites in the control mechanism can be increased
to scale with increased number of sectors and properties
handled by the caching network, and the size of the inner
core can be separately scaled to accommodate the size and
update frequency of the inner control state (which grows
much more slowly).

Most data are managed in eventually consistent fashion,
and a minimal collection of variables are managed in a
strongly consistent way in the inner core. Furthermore,
given the read-dominated and low-update frequency of the
information in the inner control mechanism, the consistency
needed can be provided with a distributed consensus method
that is simpler and less complex than a Paxos-based imple-
mentation.

Exemplary Control Mechanism Using Strong Consistency
Requirements

An implementation of the control mechanism has been
described that relaxes some consistency requirements, based
on an understanding of the nature of the CDN. In some
implementations however, the core mechanism may make
use of the stricter Paxos algorithm of Lamport and Gray as
its distributed consensus algorithm. Implementations of this
distributed consensus algorithm are described, e.g., in one or
more of: U.S. Pat. No. 7,856,502, titled “Cheap Paxos,” U.S.
Pat. No. 7,797,457, titled “Leaderless Byzantine Consen-
sus,” U.S. Pat. No. 7,711,825, titled “Simplified Paxos,”
U.S. Pat. No. 7,698,465, titled “Generalized Paxos,” U.S.
Pat. No. 7,620,680, titled “Fast Byzantine Paxos,” U.S. Pat.
No. 7,565,433, titled “Byzantine Paxos,” U.S. Pat. No.
7,558,883, titled “Fast Transaction Commit,” U.S. Pat. No.
7,555,516, titled “Fast Paxos Recovery,” U.S. Pat. No.
7,249,280, titled “Cheap Paxos,” U.S. Pat. No. 6,463,532,
titled “System And Method For Effectuating Distributed
Consensus Among Members Of A Processor Set In A
Multiprocessor Computing System Through The Use Of
Shared Storage Resources,” the entire contents of each of
which are hereby incorporated herein for the purpose of
describing the Paxos algorithm. It should also be appreciated
that a particular embodiment may use a partial Paxos
implementation.

Various commercial implementations of the Paxos algo-
rithm exist and are available. For example, Google uses the
Paxos algorithm in their Chubby distributed lock service
(see, e.g., The Chubby lock service for loosely-coupled
distributed systems, Burrows, M., OSDI’06: Seventh Sym-
posium on Operating System Design and Implementation,
Seattle, Wash., November, 2006) in order to keep replicas
consistent in case of failure. Chubby is used by Google’s
Bigtable (Bigtable: A Distributed Storage System for Struc-
tured Data, Chang, F. et al, in OSDI’06: Seventh Symposium
on Operating System Design and Implementation, Seattle,
Wash., November, 2006) and other products. Microsoft
Corporation uses Paxos in the Autopilot cluster management
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service from its Bing product. Keyspace, an open-source,
consistently replicated key-value store uses Paxos as its
basic replication primitive.

Those skilled in the art will realize and understand, upon
reading this description, that other approaches and algo-
rithms may be used instead of or in conjunction with the
Paxos algorithm.

Control Mechanism Requirements
An exemplary control mechanism for a CDN has been
described. Modifications of the control mechanism are

within the scope of this disclosure, and this section outlines
the requirements of an exemplary control mechanism as a
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guide to such modifications. It should be appreciated that a
particular control mechanism may not satisfy all of these
requirements.

The control mechanism acts as a distributed origin service
for all control information needed by the CDN. Preferred
configurations of the control mechanism should satisfy the
following requirements for given parameters NI, Linv, TCR,
TCP, kR, kU, LU, and LR. (These parameters are described
below. It should be appreciated that although various param-
eters are named and used here, these named parameters are
only provided to support this description and are not
intended to imply any actual parameters in any actual
implementation or embodiment of a control mechanism or a
CDN))

Update

Read Latency

Update Notification

Latency

Update Read

Latency

Consistency

Read

Availability

Update

Availability

Network
Partition

Provide read/write access at human interaction speeds for up to
NI concurrent administrative users and other interactive origin
systems at any number of distinct physical locations around the
world for review and update of metadata, configuration files,
and invalidations. Batch operations are possible and may
ultimately generate Linv (many thousands of) individual
resource invalidations per second. Other control resources may
also be required but are expected to change much less
frequently.

Provide world-wide, low-latency (t < TCR) read access to
control information for all nodes in the caching network. The
latency is preferably well below the expected polling period of
the caching network (TCR« TCP). The manner in which control
information is published for initial consumption by the control
interface of the caching network should facilitate caching of
whole and partial control resources inside the caching network.
When control data are updated, the notification of that update
should preferably be available in all parts of the control
mechanism with expected latency of about the same order of
magnitude as the polling period of the caching network.

When control data are updated, a consistent version of the
updated data should preferably be available to the caching
network with a slightly larger expected latency (compared to the
latency of the notification). It is further expected that in
preferred implementations spatial locality of reference will
ensure that only a small subset of the caching network will
request the updated resources, and these requests can be
satisfied by control sites as soon as they have received the
update (they do not need to wait for the rest of the control
mechanism to absorb the update).

At any given time, the view presented by a control site to the
caching network should preferably correspond to a collection of
consistent views of any independent portion of control state, as
measured separately for each portion of state at some point in
the past. In other words, every site in the control mechanism is
eventually consistent with every other site.

The control mechanism should provide a view of control state
that effectively never goes down. Correct operation of the
system should be preserved even in the face of up to kR
concurrent site failures, for some fixed kR.

The update service of the control mechanism may have separate
and lower availability requirements than the view service of the
control mechanism (e.g., tolerate up to kU concurrent site
failures, for some fixed kU > kR.

The system should have redundant network links to mitigate the
risk of a network partition. In the event of a network partition,
however, the disconnected components should preferably
continue to provide consistent read access to cache nodes that
can still reach them, but it is allowable to discontinue update
access to isolated nodes until the partition can be corrected. It
should be appreciated, however, that there is risk with such a
situation; the responses from the isolated (subset) components
should indicate to the requestor that it is isolated and suggest an
alternate location from which to retrieve data. If the edge can
connect to that alternate control location (and if such is not also
in a minority), then the data from that alternate site is preferably
used. Here the ‘alternate’ location is part of the same control
mechanism, but a target believed outside the isolation that
includes this control site.
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-continued

Automatic
Recovery

Throughput
Capacity

Automatic Load
Balancing

The system should preferably automatically recover whenever
no more than the maximum sites fail at the same time. This is
really just a corollary to the above availability requirements, but
worth stating explicitly. Recovery of individual failed sites may
require manual intervention in some cases, but is separate from
the automated recovery of the remaining functional nodes in the
system.

The system should preferably be able to process up to LU
read/write requests per second from administrative/operational
clients, and up to LR read requests per second from the caching
network, for some fixed load maximum loads LU and LR.

The control mechanism should preferably be able to
automatically balance the load of control resource requests from
the caching network. Overloaded control sites will be detected
and a portion of their workload will be transferred to other less
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busy control sites without manual intervention.

In addition, the architecture of the control mechanism
should preferably satisfy the following requirements which
address how the properties of any given instance or con-
figuration of the control mechanism may be changed via
incremental reconfiguration:

20

Linear Throughput should preferably be able to scale linearly with 25
Through-  the scale of the CDN by adding new directors and control
put sites and reconfiguring, without affecting the resulting
Scal- control mechanism’s ability to satisfy its latency require-
ability ments. For example, doubling the worldwide number of
properties or doubling the worldwide invalidation rate is
preferably, feasible to handle by approximately doubling the 30
number of directors and/or control sites in the control mech-
anism, without reducing performance of any of control
mechanism’s operations as perceived by read/write users or
the caching network.
High The control mechanism should provide a view of control state
Avail- that effectively never goes down. Specifically, it should be 35
ability possible to configure the system in advance so that an
arbitrarily large number of control mechanism nodes can fail
at once without affecting the correct operation of the system
as expressed by the requirements above, with the exception of
throughput capacity (which may be temporarily reduced by
site failures). 40
Operation
Request-Response Processing 45

In operation, the various CDN caches (and other services)
receive requests for resources, processes those requests, and
provide responses (which may include, e.g., the requested
resources, error messages, or directions to find the resources
elsewhere).

FIGS. 3E and 15 show the request-response operation of
an exemplary CDN component 1102. Although component
1102 is denoted “Server” in the drawing, it should be
appreciated that component 1102 may be a cache server or
any other component or service of the CDN that performs
request-response processing. As shown in the drawing,
client 1103 makes a request for a resource of server 1102,
and receives a response to that request. In processing that
request, as explained below, the server 1102 may obtain
information from one or more other data sources 1110. Some
of these data sources 1110 may be other CDN components
(e.g., caches 1112 or control mechanism(s) 1116). The data
sources 1110 may also include origin server(s) 1114 that may
or may not be part of the CDN. It should be appreciated that 65
the client 1103 may be another CDN component (e.g., a
cache) or it may be a client entity that is external to the CDN.
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Thus, with reference again to FIG. 13C, the requested
resource may be a customer resource 124 or a CDN resource
126.

The server 1102 preferably supports HTTP/1.0, and
HTTP/1.1, and HTTPS requests, although it is not limited to
those protocols or to any particular version of any protocol.
HTTP/1.1 is defined in Network Working Group, Request
for Comments: 2616, June 1999, “Hypertext Transfer Pro-
tocol—HTTP/1.1,” the entire contents of which are fully
incorporated herein by reference for all purposes. HTTPS is
described in Network Working Group, Request for Com-
ments: 2818, May 2000, “HTTP Over TLS,” the entire
contents of each of which are fully incorporated herein by
reference for all purposes. Unless specifically stated other-
wise, “HTTP” is used in this description to refer to any
version or form of HTTP request, including HTTP and
HTTPS requests. Those of ordinary skill in the art will
realize and understand, upon reading this description, that
HTTPS may be preferred in situations where additional
security may be required. It should also be appreciated that
when an HTTP request is referred to herein, some other
protocols, including possibly proprietary protocols, may be
used while still leveraging the CDN and using URLs to
name the objects.

The server 1102 includes a request/response mechanism
1104 (preferably implemented by software in combination
with hardware on the server 1102). The request/response
mechanism 1104 listens for connection requests on multiple
configured addresses/ports, including port 1106.

It should be appreciated that there are two types of
requests described here. First, the server 1102 listens for
connection requests from other devices (e.g., from client
1103). These requests are used to establish a connection
(e.g., a TCP/IP connection) between the client 1103 and the
server 1102. The second type of requests is those made by
the client over the established connection (e.g., HTTP
requests or the like).

Once a connection from a client is established, the
request/response mechanism 1104 waits for a resource
request (e.g., an HTTP request) on that connection. When a
resource request is made, the request/response mechanism
1104 tries to identify a customer associated with that request.
As used here, a “customer” is an entity that is authorized to
have its content served by the server 1102. The customer
may be an external entity such as, e.g., a subscriber to the
CDN, or the customer may be another CDN component. In
effect, the request/response mechanism 1104 needs to deter-
mine if the requested resource belongs to a property for
which the system is configured to provide service.
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In order to determine whether or not the request is
associated with a customer of the CDN (or the CDN itself),
the server 1102 needs at least some information about the
CDN’s customers. This information may be stored as global
data 1108 in a database 1106 on the server 1102 (global data
1108 corresponds to global data 128 in the cache database
120 in FIG. 13C). The global data 1108 should include
sufficient data to allow the server 1102 to either reject the
request (in the case of a request for a resource that is not
associated with a customer), or to serve the requested
resource to the client 1103, or to direct the client to another
source from which the requested resource may be obtained
or served. If the server 1102 does not have the required
global data 1108 at the time of the client request, it may
obtain the needed global data 1108 from a data source 1110,
preferably from a control mechanism 1116 or from another
cache 1112. In effect, for certain internal CDN data, the
control mechanism is considered an origin server or cos-
erver.

As explained below, the request/response mechanism
1104 may perform customer-specific processing as part of
the request/response processing. In order to perform cus-
tomer-specific processing, the request/response mechanism
needs certain customer-specific data 1111 (which corre-
sponds to customer specific data resources 130 in the cache
database 120 in FIG. 13C). If current customer-specific data
1111 are not available in the request/response mechanism’s
database 1106, the server 1102 may obtain the needed
customer-specific data 1111 from a data source 1110, pref-
erably from a control mechanism 1116 (although customer-
specific data may also be obtained from another cache 1112
in the CDN).

Request collections (described above) may be used to
implement aspects of request-response processing.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the database 1106
may be in any form, including one or more tables stored in
one or more files, preferably in the server’s memory.

Objects, Sequencers and Handlers

In some implementations, the processing performed by
request/response mechanism 1104 may use various kinds of
objects, including a Notes Object, a Session Object (sxn),
and a Transaction Object (txn). With reference to FIG. 15A,
a Notes Object 1204 is a generalized string key/value table.
(A Notes Object may also be referred to as a Properties
Object.) FIGS. 15B-15C show a Session Object (sxn 1206)
and a Transaction Object (txn 1208), respectively. A session
object 1206 contains information about a particular client
session, e.g., a client connection or an internally launched
(or spawned) session. A Session Object 1206 may contain
allocation context information for a session. A Transaction
Object (txn 1208) is usually associated with a session and
contains information about an individual request. During a
session, multiple transactions may be performed, and infor-
mation about each transaction is carried in a separate trans-
action object. E.g., a transaction object carries the request to
be satisfied, room for the response, information about where
the response body is coming from (e.g., response channel id,
defined below), etc.

A sequencer is essentially a task. A sequencer uses a
sequence control object made up of an ordered list of one or
more handlers and handler argument(s). FIG. 15D shows an
exemplary sequence control object 1301 comprising
handler(s) 1302 and handler argument(s) 1304. The
handler(s) 1302 comprise the ordered lists of handlers
1302-1, 1302-2 . . . 1302-z, and the argument(s) 1304 are per
handler (denoted 1304-1, 1304-2 . . . 1304-7). It should be
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appreciated that not all handlers require arguments (the
arguments are shown in dashed lines in the drawing in FIG.
15D). It should also be appreciated that some handlers may
obtain some or all of their arguments from other locations.
It should also be appreciated that a sequence control object
may have only a single handler (i.e., a sequence control
object may consist of a single step).

When running, a sequencer invokes its handlers (essen-
tially, processing modules) in order. By default, sequencers
are bidirectional, so that the sequencer’s handlers are called
(invoked) in order on the way “in” and in reverse order on
the way “out”. Handlers can modify the sequence, thereby
providing flexibility. FIG. 15E shows the execution of the
sequence of handlers 1302 from sequence control object
1301 (of FIG. 15D). As shown in FIG. 15E, the sequencer
invokes the handlers in the order “Handler #1,” “Handler
#2,” . . . “Handler #n” into the sequence and then in the
reverse order out of the sequence. So “Handler #1” makes a
request of “Handler #2”, and so on, until “Handler #n”, and
then results are passed back, eventually from “Handler #2”
to “Handler #1”. Each handler is invoked with its corre-
sponding arguments (if any).

Handlers may be synchronous or blocking. Handlers may
inspect and modify the sequence to which they belong, and
handlers may launch their own sequencers (or sequences).
There are two forms of this process: one is where a handler
launches a “subsequence”. That subsequence runs in the
same sequencer as the handler and the sequence the handler
is in is suspended until the subsequence is complete. Another
example occurs when a handler launches a complete
sequencer. In that case, the sequencer is a separate, inde-
pendent task. A powerful aspect of that model is that a
handler could launch such a sequence on the way in to the
sequence, allow processing to continue, and then pick up the
result (waiting if necessary) on the way out of the sequence.
FIG. 15F shows an example of a first sequence (“Sequence
1”) in which a handler (Handler #2, 1302-2) launches (or
spawns) another sequence (“Sequence 27, consisting of
Handler #2,1 1302-2.1 . . . Handler #2,k 1302-2.k). If
Sequence 2 runs in the same sequencer as the handler #2,
then handler #3 (of sequence 1) will not begin until sequence
2 is complete (i.e., until handler #2.k is done and the
response returned to handler #2). If, on the other hand,
sequence 2 is launched as an independent and separate task,
sequence 1 can continue with handler #3, etc. without
waiting for sequence 2 to complete.

FIG. 15G shows an example of a first sequence (“Se-
quence 1) in which a handler (#2) launches two other
sequences (Sequence #2,1, and Sequence #2,2). The
Sequence #2,2 launches a subsequence #2,2.1. Sequence #2
may have to wait for the launched sequences (#2,1 and/or
#2,2) to complete or it may continue and pick up the results
of those sequences on the way back out of the sequence.

A handler’s behavior may be classified into three broad
groups (or types):

One-shot: The handler is removed from sequence when
done.

Intelligent: The handler may manipulate the sequence.

Persistent: The handler is called on the way “in” and
“out”.

These labels are used as descriptive shorthand for basic
types of handler behavior, and it should be appreciated that
this type is not used by the sequencer, and nothing needs to
enforce a handler’s “type,” and a handler may act differently
depending on circumstances.
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Handlers may be named, and it is useful to name them to
correspond to the functions that they are to perform (e.g.:
“ssl”, “http-conn”, “http-session”, “strip-query”, “proxy-
auth”, etc.).

A sequence control object may be stored in compiled form
for re-use, so there is no need to constantly look up handler
names.

The following is an example of a sequence specification
for an HTTP listener:

listener = {
address = “*.80”,
sequence = “http-conn, http-session”

In this example, the handlers are “http-conn” and “http-
session”, and the parameter for the listener task is
“address="*.80"". A sequence control object 1301' corre-
sponding to this listener sequence is shown in FIG. 15H.
This listener task provides a bare TCP or cleartext connec-
tion. The first handler (“http-conn™) is a one-shot handler
which creates an HTTP connection from a cleartext connec-
tion. The second handler (“http-session™) is an intelligent
handler that takes the HT'TP connection (as already created
by the “http-conn” handler), creates a session object and
handles the entire session. It should be appreciated that the
listener is just providing the communication channel to the
client, and the same basic listener code could be used with
different handlers to implement protocols other than HTTP
(e.g., FTP).

As another example, the following sequence specifies a
general SSL listener:

listener = {
address = “*.443”,
sequence = “ssl, http-conn, http-session”

}

In this example, the handlers are “ssl”, “http-conn” and
“http-session”, and the parameter for the listener task is
“address="*.443"". A sequence control object 1301" corre-
sponding to this SSL listener sequence is shown in FIG. 15i.
The listener task accepts a connection and then launches
whatever sequence was specified for the listener. This
sequence is similar to the HT'TP listener (above), except that
the SSL handler first creates an SSL channel on the bare
(encrypted) connection, suitable for the http-conn handler.
Although the SSL handler is a “one-shot” handler, it needs
to block since it must perform the SSL negotiation. That is,
the “ssl” handler must complete before the next handler can
begin. The SSL handler is responsible for instantiating an
SSL channel. It should be appreciated that although the SSL.
channel is persistent, the handler which sets it up does not
need to be persistent. The “ssI” handler instantiates an SSL
channel on top of the cleartext channel. Once that is done,
the SSL channel (which does the decryption and encryption)
persists until the connection is finished, even though the
“ssl” handler itself is gone from the sequence. So the “ssl”
handler is not performing the SSL operations itself, it is just
enabling them by instantiating the necessary channel.

FIGS. 16A-16D show examples of sequencers and han-
dlers.

As shown above, a sequence may be used to interpret a
request and get to the point that a response is available to be
pumped. The same basic sequencing mechanism can be used
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to implement a programmable pump/filter, although of
course the handlers themselves are now performing a dif-
ferent task. FIG. 16 A shows a bidirectional sequence that is
part of a pump/filter. The pump task uses “direct delivery”
requests, e.g., sendfile( ), because it does not need to see the
data itself. It should be appreciated that sendfile( ) is not the
request, it is just one way a direct delivery request may be
implemented by the channel involved. The delivery
sequence consists of two handlers:

delivery-monitor (account bytes delivered, monitors per-

formance); and

chan-submit (submits request to a channel, waits for

response). The channel may be, e.g., an object channel,
downstream channel, etc.

If the process requires, e.g., computation of a message
digest (such as MD5) of the pumped data, the sequencer can
be set up with an MDS5 handler in the path (e.g., as shown
in FIG. 16B). The MD5 handler can be used to snoop or
verify the data as it passes.

An example of a self-modifying sequence is shown in
FIG. 16C. The pump task is using direct delivery requests,
so the data are not available in user space. The MDS5 handler
sees the request on the way “in” to the sequence and inserts
a new handler (“direct-to-buffered”) handler to the “left” of
the MDS5 handler so that it runs before the MDS5 handler. The
“direct-to-buffered” handler translates direct delivery to
buffered read/write.

A sequence can be modified to change direction of the
order of operations. For example, in a case where direct
delivery requests can be too large for a single buffered
read/write, the “direct-to-buffered” handler can change the
sequence direction to perform multiple operations on one
side of the sequence (e.g., as shown in FIG. 16D). Handlers
to the left of the “direct-to-buffered” handler still see what
they expect to see, while handlers to the right of the
“direct-to-buffered” handler perform multiple operations.

Scripts and Customer-Specific Control

As noted, the request/response mechanism 1104 (FIG. 15)
may perform customer-specific and/or property-specific pro-
cessing as part of its request/response processing. The
request/response mechanism needs certain customer-spe-
cific data 1111 in order to perform the customer-specific
processing.

Preferably the system has a default mode in which it will
perform request/response processing without any customer-
specific handlers. That is, there is preferably a standard or
default request/response sequence that a content provider
may use. The request/response mechanism 1104 may allow
customer-specific handlers (or sequences) to be included at
various locations (or hooks) during the request/response
processing sequence. Customer-specific sequences and/or
handlers and/or rules may be stored in the database 1106 on
the server 1102 as part of the customer specific data 1111.
These customer-specific handlers may perform operations
on the request and/or response paths. The customer-specific
scripts that are to be used to process a customer’s requests
are referred to herein as Customer Configuration Scripts
(CCSs), and are associated with the customers, e.g., via
customer ids. With reference again to FIG. 13C, a CCS may
be considered to be a customer specific data resource 130.
Preferably the system has a default mode in which it will
perform request/response processing without any customer-
specific handlers. That is, preferably customer-specific han-
dlers are optional.

It should be appreciated that scripts are not the same as
sequences. A script is used to specify the sequences to be
used to handle requests for a particular customer. The script
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may perform whatever operations it needs (including mak-
ing its own HTTP requests, etc.) to determine what the
sequences should be. For example, a script may also use a
different sequence depending on the local environment.
However, once the script has done that job, the resulting
sequences are used (preferably without rerunning the script)
until something happens (e.g., the script is invalidated and
reloaded) which indicates different sequences are now
needed. Note, however, that a given handler may be imple-
mented as a request/response script in the same language as
the configuration script, but performing a different job.

Customers may provide handlers, parameters for existing
handlers, or routines to be invoked by handlers at certain
stages of the processing.

It should be appreciated that since, as noted, the client
1103 may itself be another component of the CDN (e.g., a
cache or a control mechanism, etc.), the CDN itself may
have CCSs associated therewith. That is, from the point of
view of request/response processing, the CDN may be
considered to be a customer of itself.

With reference again to FIG. 15, in order to process the
request, the server 1102 will need the CCS for the customer
associated with the request from the client 1103. The CCS is
stored in the database 1106, corresponding to at least some
of the customer-specific data 1111. If the server does not
have that customer’s CCS stored locally at the time it is
processing the client’s request, the server 1102 will attempt
to obtain the CCS from another data source 1110, typically
from a control mechanism 1116 or a peer (e.g., one or more
of'the caches 1112). If a CCS is found, any customer-specific
handlers (or sequences) specified in the CCS will be
included in the appropriate locations (hooks) during request/
response processing.

In summary, the CCS generally is run once (unless
invalidated or purged). The CCS defines the customer-
specific sequences, which are then cached in the server 1102
in their compiled form. If those sequences are present and
valid, they are used without re-running the CCS (see the
“Valid sequences?” decision in the flow chart in FIG. 20A,
discussed below).

A CDN component’s handling of a resource request is
described with reference to the flowchart in FIG. 17. It
should be appreciated that the CDN component may be any
entity in the CDN, including a cache (e.g., an edge cache, a
parent cache, an origin cache, a control mechanism, etc.),
and the requested resource may be any resource, including
resources requested by clients external to the CDN on behalf
of customers or subscribers to the CDN and resources that
are requested by other CDN components and comprise CDN
data (e.g., log files and the like).

First, the cache obtains a resource request (at 1510). The
request may be using an HTTP request, and include infor-
mation in an associated HTTP header. The cache needs
information in order to determine whether the requested
resource can be served. This information is available from
the GCO. The GCO includes information that will allow the
cache to determine whether the requested resource corre-
sponds to a resource of a customer of the CDN (or to a CDN
resource). Essentially the cache may use the GCO to deter-
mine whether the requested resource belongs to a property
configured to use the CDN. The cache therefore obtains a
current version of the GCO, if needed, (at 1512) and
determines (at 1514) whether or not the resource can be
served. If the cache needs the GCO or other information
from the control mechanism, the cache can request that
information using appropriate HTTP (or FTP) request(s),
and the cache may obtain the GCO and/or other needed
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information from the control mechanism and/or other caches
or other locations in the CDN. For example, FIG. 18 shows
various caches (102-1, 102-2 . . . 102-5) pulling data from
the control mechanism 108 using an HTTPS pull. In order
to initiate such a pull, a cache would make an HTTPS
request for the data (using a URL of that data) and identi-
fying the control mechanism 108 as the source of the data.
In the example shown in FIG. 18, caches 102-4 and 102-5
pull a CDN property from the control mechanism 108,
whereas caches 102-1, 102-2, and 102-3 pull the CDN
property from other caches (102-4 and 102-5).

The cache server should serve a particular customer’s
resource to a client in accordance with the processing
requirements (e.g., scripts, etc.) set by that particular cus-
tomer, the cache therefore needs the CCS (if any) associated
with that customer. The CCS may specify processing
requirements etc. on a per property basis. Accordingly, at
1516, the cache server obtains the CCS (if any) associated
with the requested resource (i.e., with the customer on behalf
of whom the requested resource is being served). It should
be appreciated that the CCS is preferably, but not necessar-
ily, pulled prior to obtaining the resource (since the CCS
must be processed before in order to retrieve the resource).

If the cache determines (at 1514) that the requested
resource can be served (i.e., that the cache is authorized to
serve the resource), the cache may need to obtain a copy of
the resource (at 1518). The CCS (and possibly information
associated with the request, e.g., HI'TP header information)
should provide the cache with sufficient information for it to
locate a copy of the resource, if needed. The cache server
may obtain the requested resource from another cache (e.g.,
a peer) or from an origin server. In some embodiments the
cache server may redirect the client to another location from
which to obtain the content.

Having obtained the appropriate CCS (if one exists), the
cache server then serves the resource (at 1520) using infor-
mation in the CCS. As explained, the CCS preferably runs
before the cache even obtains the resource to serve, since the
CCS may program handlers at hook points which affect the
request itself, and therefore which affect which resource is
going to be served.

It should be appreciated and understood that the CCS for
a particular customer is not run on every request associated
with that customer. Unless or until invalidated, a particular
CCS is only run once in a cache to set up the required
sequences for processing that customer’s properties. A CCS
configures the cache to process an associated customer’s
properties, and those processes need not be reconfigured
unless the CCS changes or expires or is invalidated.

Component Roles

Certain components of the CDN system may act as clients
of the CDN and/or as content providers to the CDN. For
example, as noted above, the core control cluster maintains
information used/needed by the caches in order for them to
deliver content to clients. When caches obtain control-
related content (resources) from the control mechanism
cluster, the control mechanism cluster is acting as a content
provider and the caches are acting as clients. Similarly, when
a collector mechanism obtains log and other information
from a cache cluster, the collector mechanism is acting as a
client and the cache cluster is acting as a content provider.
In addition, when the control mechanism cluster obtains
information from a collector mechanism, the control mecha-
nism cluster is acting as a client and the collector mechanism
is acting as a content provider. When content is being
delivered by the CDN to clients on behalf of a content
provider, the caches obtain that content from origin server
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sites associated with the content provider. In some cases, as
noted above, a cache server site may try to obtain requested
content from another cache server site (e.g., from a peer
cache server site or from a parent cache server site). In those
cases the peer (or parent) cache server sites are acting as
content providers.

Hierarchy

The CDN preferably uses tree-like hierarchical commu-
nication structures to pull data from the control mechanism
and origin servers to the edge, and to pull data from the edge
to specialized gatherers and monitors (reducers and collec-
tors). These tree-like structures are preferably dynamic, i.e.,
they can change with time, requirements and circumstances.
These structures are preferably also customized, i.e., differ-
ent communication operations can use different hierarchies,
and different instances of a communication operation may
use a different hierarchy (e.g., different parents for different
origin servers).

For pulling data to the edge, each node preferably knows
its parent or parents. For pulling data to the root, each node
also preferably knows it’s children. Lists of parents or
children can themselves be resources. Using domain names
instead of IP addresses for parents and children allows the
rendezvous system to be leveraged.

Executable Resources, Customization Hooks and Scripts

Caches 102 in the CDN 100 are able to process and
deliver (serve) executable resources, and CDN users (e.g.,
content providers, the CDN itself) are able to provide
extensions to resources via these executable resources.
Executable resources provide a general and useful extension
that may replace and/or enhance several ad hoc mechanisms
and HTTP extensions in a CDN. Executable resources allow
suitably authenticated HTTP servers to respond to an HTTP
request with a new type of reply (possibly identified by an
extension status code such as “600 Exec” or a new Content-
Type, e.g., say “application/x-fp-exec”). The contents of
such a reply are a script to be executed by an interpreter in
the response path of the cache, in order to generate the actual
reply. Examples of things the interpreter may do are:

Fill the request from an alternate location.

Fill the request from multiple locations and merge the

results.

Perform authentication.

Pre-fill one or more other resources.

Perform manipulations on the body of a resource (e.g.,

compression, transcoding, segmentation, etc.)

If the reply is cacheable, it may be retained by the cache,
and executed each time the resource is requested.

The NDC may use this feature to gather logs.

The system provides a way to distinguish between
requesting the script itself, and requesting the result of
executing the script. Scripts are subject to pinning, expira-
tion, invalidation and revalidation just like any other
resources.

Customer-specific code can be added at numerous hook
points in the processing. Such customer-specific code may
be used, e.g., for:

request manipulation after parsing;

calculation of cache key for index lookup;

coarse and fine details of authentication;

content negotiation choices, variants, and encodings;

policies for range handling;

deciding which peers to contact or migrate to;

which host(s) to contact for fills;

contents of fill request;

manipulation of fill response;

handling of origin server errors;
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caching policy;

manipulation of response to client;

logging effects.

A wide variety of hook points enable CDN users (cus-
tomers) to modify existing algorithms; pre- or post-process
algorithms; and/or completely replace algorithms. In a pres-
ently preferred embodiment, these are the customer-specific
sequences which are set at various hook points by the CCS.
It should be appreciated that the hook points need not be
hard-coded into the system. They may be considered in
some cases, to exist conceptually when reasoning about
where to place handlers in the compiled sequence, but they
are an artifact of a particular way of coming up with the
processing sequence, and not necessarily the only way.

In a present implementation, scripts can be used for:

Configuration

Customer-specific event handling and HTTP rewriting

Network Data Collection operations

Rapid prototyping of new features

Scripts are preferably cached objects (like other objects in
the CDN). They are preferably compiled into byte code and
executed in a sandbox by a virtual machine. Scripts are
preferably measured for CPU usage and are effectively
preemptible.

In a presently preferred implementation scripts are imple-
mented using the Lua scripting language. Lua compiles into
bytecodes for a small register-based (as opposed to stack-
based) virtual machine. Lua’s primary data type is a table
(which is implemented as a hybrid between a hash table and
an array), but it also has other types (string, number,
Boolean, etc.). Lua’s interface to the rest of the system is via
various function bindings which are a means for a Lua
function call to cause a system function (instead of another
Lua function) to be called. The details of a particular
binding, including the data it operates on and the results it
returns to the Lua script, are specific to the binding in
question and may involve tables (e.g., hash table objects) or
other types of objects.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that a different scripting
language could be used. However, it should be appreciated
that any scripting language should run (e.g., be interpreted)
quickly with a small interpreter, have a relatively small
implementation, be lightweight (have a small memory foot-
print and be easily sandboxed for secure execution) and
provide sufficient control to allow customer-derived scripts
to be used. It should be noted that “script” does not neces-
sarily imply interpreted at run time, but rather it is used in
a broader sense to mean loadable code.

It should be appreciated that basic cache functionality
requires no scripts, and the CDN will operate without them
to serve content. Hooks allow script execution at various
points in the cache’s processing path and may be used (if
permitted) to enhance and modify content delivery.

Hooks may be either:

Customer-visible. Monitored, accounted, billable.

Ops-visible. Monitored.

Development-visible. Minimally restricted.

At hook points, one can specify either:

A canned (predefined) algorithm name; or

An expression (e.g., an in-line script or an expression in

the script language); or

A handler or series of handlers; or

The name of a script
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In some implementations, scripts used in request process-
ing may:

Inspect the request

Modify the request

Generate a response (including replacing an already gen-

erated response)

Provide a short static body

Provide a function to incrementally generate longer

response body

Provide a function to filter a response body

Inspect an already generated response

Modify an already generated response

Launch any number of helper requests

Synchronously—wait for and inspect response
Asynchronously—“fire and forget”
Cacheable or non-cacheable

Configuration variables similarly support script execu-
tion, e.g., a variable can have an immediate value, be a
parameter reference, or determined by an inline expression.
For example, the variable fill_host is shown here with
different types of values:

fill_host="origin.customer.com”—immediate value

fill_host=$host]—parameter reference

fill_host="“origin”.domain($request_host)—inline
expression

fill_host=http://origin.customer.cony/scripts/pick_origin-
Jua—reference to a script

It should be appreciated that these values are given only
by way of example of the type of values. These expressions
will preferably be in the script language (e.g., Lua).

Cache Organization

FIG. 19 is a block diagram showing the major functional
modules (collectively 1900) in an exemplary cache service.
These modules include Executive 1904, manifest channel
1906, global strategizer 1908, outgoing connection manager
1910, fill manager 1912, HTTP parsers 1914, 1915, HTTP
formatters 1916, 1917, incoming connection manager 1918,
rewriter 1920, index 1922, store manager 1924, peer man-
ager 1926, 10 1928, inter-cache transport protocol 1930, and
rulebase 1932. These modules and their operational connec-
tivity are shown by way of example, and It should be
appreciated that a cache may include different and/or addi-
tional modules, and that the modules in a cache may have
different operational connectivity.

The Executive 1904 is the basic executive controlling all
activities within the cache. The Executive’s responsibility is
to maintain a prioritized list of runnable tasks, and execute
them in a priority order. A high-priority “system” task
repeatedly checks for ready file descriptors, and moves their
waiting “user” tasks onto the run list. The Executive may
also support abstracting a task or group of tasks as an
asynchronous service called a channel, and may provide a
clean way for tasks and channels to communicate. Cache
subsystems discussed below are implemented as tasks and
channels.

When a new client connection is detected on one of the
listener file descriptors, the Incoming Connection Manager
1918 assigns a client task to handle it, and coordinates the
process of accepting the connection, completing any TLS
(Transport Layer Security) handshake, and assigning a pri-
ority and connection-level policy. The Incoming Connection
Manager 1918 continues to monitor and manage the con-
nection throughout its lifetime.

Although the Incoming Connection Manager 1918 is
described here as a single component, it should be appreci-
ated that this is merely one logical depiction of functionality
in the cache. E.g., in a present implementation there is a
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listener task which, after receiving a new connection, runs a
sequence of handlers which are configured for that particular
listener. Those handlers may apply policies, perform a TLS
upgrade if appropriate, etc.

The client task invokes the HT'TP Parser 1915 to read data
from the connection, locate the message boundaries, and
parse the HTTP into a request object with a convenient
internal format. Messages may remain in this internal format
as long as they are within the cache system (the CDN), even
if they are migrated to another cache. It should be appreci-
ated that cache-to-cache messages may be in other formats,
e.g., in some cases, messages may be sent from cache-to-
cache in their standard text format.

The request object may next be processed by the rulebase
1932, to assign customer-specific handling policies and
normalize the URL associated with the request. The policy
might indicate, e.g., that the request requires manipulation
by a customer-defined script. In that case, the request
rewriter 1920 executes the script. In a present implementa-
tion a table (the GCO) is used, in conjunction with the
apparent target of the request, to decide whether or not it is
worth it to continue further processing at all (i.e., whether
the request is associated with a valid customer). At this
point, the system checks whether there is a programmed
sequence of handlers appropriate for that customer. If not,
the system retrieves and runs the Customer Configuration
Script (CCS), whose function it is to program the sequence
ot handlers. Then the handlers are run to process the request.

The next step is to determine if the cache has any
information about the requested object. The request is pre-
sented to a manifest channel which then inspects the request
and uses the information it has internally (a manifest) to
determine how best to handle the request, including by
providing a reference to a cached object, requesting a fill or
a refresh, etc. The manifest channel maintains the manifest
data and also provides the intelligence to use the manifest
data. The URL is looked up in the cache index 1922, which
is essentially a database listing the objects already in the
cache. The result of the index lookup is either null, or a
manifest listing all the data, metadata and ongoing activities
that might be relevant in responding to the request.

At this point, the request processing engine has a set of
request-specific information, comprising the parsed request,
a set of policies for handling the request, and a manifest of
pertinent cache information. As noted, a manifest channel
1906 is responsible for determining how to respond to the
request. In general, the decision will depend on the request-
specific information, the object-specific information, the
current state of the machine, the global state of the CDN, and
the set of capabilities implemented in the cache. There may
be one strategizer instance running for each actively refer-
enced manifest in the cache, and that strategizer handles all
clients and activities referencing that manifest. In a current
implementation the strategizer is the manifest channel.

The manifest channel 1906 has at its disposal a variety of
modules, implementing services, the services including the
storage service, fill service and peering service. Other mod-
ules may be available for error message generation, authen-
tication, logging, throttling, etc. The role of the strategizer is
to orchestrate these services to construct a reply to the
request, and preferably to fully process the request (since
logging is part of the processing but not necessarily part of
the reply).

The manifest channel 1906 contains much of the intelli-
gence in the cache. New capabilities may be added and
special handling provided in the manifest channel 1906 for
new classes of resources. For this reason, the architecture is
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designed to provide clean separation of mechanism and
policy. Machinery/mechanisms implementing individual
services are encapsulated into separate modules, and the
manifest channel 1906 essentially acts as a conductor,
supervising the construction of a response.

The most common scenario is expected to be a simple
cache hit, where the cache has an easily accessible copy of
the requested object. In this case, the manifest channel 1906
invokes the storage service (store manager 1924) to retrieve
the object, which may be in memory (generally denoted
1934), or on solid-state or hard disk (generally denoted
1935). In the process, the manifest channel 1906 may also
provide guidance to the storage service (store manager
1924) on what type of future access is expected, so that the
object can be optimally placed in the appropriate type of
store.

Another common scenario involves a dynamically-gen-
erated response, such as a response to a control command,
a statistics report, or an error message.

When a request is received, an initial sequence of handlers
is assembled to handle the request (based on the target of the
request and the listener it came in on). The handlers either
generate a response because the request is directed at them,
add some value by performing a request or response
manipulation, or take themselves out of that instance of the
sequence because they are not relevant to the request at
hand. A handler may be a script handler, and that script can
perform any number of functions (as outlined previously) to
generate a response or to manipulate a request or response.
The “manifest channel” is one component used by a series
of handlers, but it is concerned with dealing with cacheable
resources. It is generally not involved in determining
whether, e.g., pre-authentication needs to be performed
(which could be handled by a handler in the cli-req hook or
similar).

As noted earlier, an important aspect of the architecture is
that essentially all data items, including machine configu-
ration, customer policies, logs, billing data and statistics, are
simply web objects, which appear in the index and are
retrieved through the strategizer just like customer web
resources. As critical resources, they do have policies engag-
ing specific authentication, persistence and prefilling ser-
vices, but the machinery of these services is also available
to ordinary resources when necessary.

A feature of Unix file I/O is that read and write operations
on standard files are synchronous, and will block the calling
thread if the data needs to be physically retrieved from or
written to disk. Since the cache likely has plenty of other
work to do while disks are being accessed, the 1O library
1928 provides a way for the cache to hand off disk /O to a
separate thread that can block without holding up the cache
activities. In addition, the IO library 1928 provides a richer,
more efficient API to the physical disks than the normal
open/read/write/close interface.

If the request is not a cache hit, the manifest channel 1906
will typically invoke the peering service (peer manager
1926) to see if a nearby cache has the requested object. Since
other services may also need to communicate with neigh-
boring caches, and it is inefficient to open or operate multiple
TCP connections to multiple neighbors, an inter-cache trans-
port protocol module 1930 multiplexes various types of
inter-cache communication over a single general-purpose
link. For instance, the peering service might offer to migrate
the client connection to a neighbor that has the resource; the
strategizer could choose to use this option, in which case it
would invoke the migration service, which would use the
inter-cache transport protocol to transfer the client connec-
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tion state. As before, it should be appreciated that one or
more handlers perform this function.

If the request is not a hit, or internally serviced or
migrated, the resource needs to be fetched via the network,
and the fill service (fill manager 1912) is invoked. The fill
manager’s role is to balance and prioritize the outgoing
network activity between all strategizers, and operate pro-
tocol handlers for the supported set of protocols. In particu-
lar, for HTTP fills, the strategizer will create an HTTP fill
request in internal format, and the fill service will format that
request using the HTTP formatter 1916, send it to the
appropriate target host, and manage the data transfer. For
efficiency, connections are created and managed by an
outgoing connection manager 1910, which maintains a pool
of connections to frequently accessed hosts, tracks respon-
siveness, implements traffic shaping, etc. In a current imple-
mentation, the manifest channel creates the fill request.

Some fill operations will be peer fills from other caches,
and these likely constitute the main class of inter-cache
communication not using the Inter-cache Transport Proto-
col. Such fills may use the internal message format and
bypass unnecessary HTTP formatting and parsing steps.

Fill responses arriving from the network are handed back
to the manifest channel 1906, which decides whether to
cache the object, and how to process it before replying to
waiting clients.

It should be appreciated that the manifest channel 1906
would not invoke a “reply rewriter.” Rather, such a rewriter
(if any) would exist at one of the hook points on the response
path, e.g., client-resp, and would be used regardless of
whether a manifest channel was involved in generating the
response. Such a rewriter may inspect the response to
determine if it came from cache, however it is not up to the
manifest channel to invoke this rewriter. The manifest
channel would not generally be involved in a request which
was a priori known to be non-cacheable. On the other hand,
a “reply rewriter” may well be involved in such a request.

As on the input path, the manifest channel 1906 invokes
appropriate services to do the actual work, and supports
optional processing by a reply rewriter 1920 just prior to
final formatting and output to the client. Those of ordinary
skill in the art will realize and understand, upon reading this
description, that this type of processing (final formatting,
etc.) is performed by one or more handlers on the way “out”
of the processing sequence.

The manifest channel 1906 is responsible for handling a
single URL, and optimizing the experience of the clients
currently requesting the resource associated with that URL.
The global strategizer 1908 is responsible for optimizing the
overall cache behavior, and the behavior of the CDN as a
whole. The global strategizer 1908 comprises a set of
permanently running background tasks and services that
monitor and manage the cache, performing operations such
as discarding old objects, prefetching latency-sensitive
objects, and enforcing quotas. Like the manifest channel,
global strategizer is preferably architected to cleanly sepa-
rate policy and mechanisms, thereby allowing for future
enhancement and adjustment.

The global strategizer 1908 influences the manifest chan-
nel 1906 by adjusting a variety of modes and levels which
the manifest channels consult when making their decisions.
In turn, the global strategizer monitors the effects of the
mode and level changes, and adjusts them as necessary to
achieve the desired global conditions. Thus, the global
strategizer is the module in charge of the various feedback
loops in the cache. For instance, by adjusting the maximum
allowed object age, it can control the amount of data in the
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cache, and by adjusting the maximum size of objects
allowed in the memory store, it can influence the amount of
memory in use. In some implementations there may be no
global strategizer and the storage system will manage its

own resources, etc. 5

Implementations and embodiments of various compo-
nents are described in greater detail below. Those skilled in
the art will realize and understand, upon reading this
description, that the details provided below are exemplary
and are not intended to limit the scope of the invention.

The Manifest Channel 1906

The manifest channel 1906 handles issues related to a
single resource. Its job is to deliver an optimal response to
each client based on various factors such as, e.g., request
details, policy settings, cache contents, state of devices, peer
caches, origin server, network, etc. The manifest channel
1906 consists of an extensible collection of efficient mecha-
nisms, e.g., for retrieval from disk; connection migration;

filling from origin; checking peers, etc. A control module ,,

orchestrates the mechanisms, using canned algorithms for
common situations and providing hooks for introducing
variations to these canned algorithms. The manifest channel
1906 may be completely scriptable, if necessary. The mani-

fest channel 1906 may provide clean separation of mecha-

nism and policy and may be more general than a pipeline. In
a present implementation, the manifest channel 1906 is
sequence (a pipeline of sorts), although each of the steps of
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the sequence may be arbitrarily intelligent (including being
a script). In a present implementation, the manifest channel
is part of the storage library and is used by a “cache handler”
which is present in the process sequence. In this particular
implementation the manifest channel itself is not imple-
mented as a sequence.

At any moment, there is one instance of the manifest
channel 1906 running for each manifest being actively
accessed. The role of the manifest channel is to coordinate
all activities associated with the manifest, ensure that each
client requesting the object is sent an individualized
response meeting the policy constraints, and that this is done
as efficiently as possible and without violating other con-
straints imposed by the global strategizer. Essentially the
role of the manifest channel is to deal with the caching of
resources, construction of fill requests, coordination of client
requests with available responses, etc. The manifest channel
preferably implements RFC2616-compliant caching logic.
(RFC2616 refers to Network Working Group, Request for
Comments 2616, Hypertext Transfer Protocol—HTTP/1.1,
the entire contents of which are fully incorporated herein by
reference for all purposes).

Other Handlers

Various handlers (e.g., in a customer-specific sequence)
may include mechanisms with associated logic to perform
some or all of the following (this is essentially a potential list
of “handlers.”). These handlers may or may not include a
“cache handler” which uses the manifest channel.

Mechanism

Functionality

Authentication

Referrer
Checking

Browser
Identification
Hot Store

Cold Store

Peering

Migration

Connection
Splicing

Longtail

Fill Target
Selection

Range

Partial Object
Handling

Performs authentication handshakes with the client and
queries internal databases or external servers as necessary for
permission to serve the resource to the client. These are
typically synchronous operations. Internal databases are
cached web objects, and may also need to be refreshed
periodically.

Handles cases where the reply depends on the HTTP referrer
header. General functions in the rulebase and rewriter will
classify the referrer, and this module implements the
consequences of that classification (this is essentially an
example of authentication)

Handles cases where the reply depends on the HTTP User-
Agent header and potentially on other headers.

Allow objects to be identified as high-popularity and worth
keeping in fast storage such as application memory, the OS
page cache or solid-state disks, and for communicating that
fact to the storage manager.

Allow objects to be identified as low-popularity and suitable
for archiving to more extensive but higher latency un-indexed
mass storage.

Checking for information about which peers are likely to have
an object, and for directly querying peers via the peering
service.

Deciding when to migrate a connection to a neighboring
cache, and for marshaling the state to be transferred.
Handling non-cacheable traffic such as PUT requests, by
delegating further interaction with the client to the operating
system, so that it can efficiently relay raw data between the
client and the remote server. Also monitor the progress of such
relays for logging and diagnostic purposes.

Dealing with resources making up working sets that exceed
the size of the cache. The module includes counters for
determining the popularity of such resources, and support for
special types of filling and redirection that allow the CDN to
handle them efficiently.

Support for filling resources in a flexible way, e.g., from load
balanced clusters, from various locations, or with a variety of
protocols.

Dealing with range requests, for deciding whether it is worth
fetching the entire object, and for formatting HTTP Partial
Content (206) replies.

Assembling separately-fetched parts of the same object into a
complete object, either logically or physically.
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-continued

Mechanism

Functionality

Error Message
Construction
Redirection
Command
Handling

Vary

Content
Encoding
Transforms

Logging

Tracing
Billing
Throttling
Keepalive
Transfer

Encoding
Shaping

Formatting of informative and appropriate HTTP error
messages for the client when the request fails in some way.
Efficiently redirecting clients to other locations.

Acting upon requests to the command, monitoring and logging
subsystems, and for constructing a variety of internally
generated responses.

Content negotiation is defined in Network Working Group,
Request for Comments 2616, Hypertext Transfer Protocol -
HTTP/1.1 (hereinafter “RFC2616”), the entire contents of
which are fully incorporated herein by reference for all
purposes.

The Vary field value indicates the set of request-header fields
that fully determines, while the response is fresh, whether a
cache is permitted to use the response to reply to a subsequent
request without revalidation. For uncacheable or stale
responses, the Vary field value advises the user agent about
the criteria that were used to select the representation. A Vary
fleld value of “*” implies that a cache cannot determine from
the request headers of a subsequent request whether this
response is the appropriate representation. RFC2616 section
13.6 describes the use of the Vary header field by caches.
According to RFC2616, an HTTP/1.1 server should include a
Vary header fleld with any cacheable response that is subject
to server-driven negotiation. Doing so allows a cache to
properly interpret future requests on that resource and informs
the user agent about the presence of negotiation on that
resource. According to RFC2616, a server may include a Vary
header field with a non-cacheable response that is subject to
server-driven negotiation, since this might provide the user
agent with useful information about the dimensions over
which the response varies at the time of the response.
According to RFC2616, a Vary field value consisting of a list
of fleld-names signals that the representation selected for the
response may be based, at least in part, on a selection algorithm
which considers only the listed request-header field values in selecting
the most appropriate representation. According to RFC2616, a cache
may assume that the same selection will be made for future
requests with the same values for the listed field names, for
the duration of time for which the response is fresh. The field-
names given are not limited to the set of standard request-
header fields defined by the RFC2616 specification. Field
names are case-insensitive and, according to RFC2616, a Vary
fleld value of “*” signals that unspecified parameters not
limited to the request-headers (e.g., the network address of the
client), play a role in the selection of the response
representation. According to RFC2616, the “*” value must not
be generated by a proxy server; it may only be generated by an
origin server.

In some cases it may be desirable to have a communication
channel between the CDN and the origin server, in order to
ingest policy information about variant selection performed at
the origin so that the same can be directly replicated within the
CDN rather than being inferred from a series of responses
from the origin.

Content negotiation as defined in RFC2616.

Transforming (distinct from content negotiation), includes,
e.g., video transmux, rewrapping, image conversion/compression etc.
Controlling the amount and type of logging information
generated by the request processing, and for saving that
information in internally generated objects for later retrieval
by special HTTP requests and/or performing remote logging.
Enabling diagnostic tracing of the processing, either globally
or for a specifiable subset of requests or resources.

Collecting a variety of billing-related information while the
request is being processed.

Allow certain types of actions to be delayed based on advice
from the global strategizer.

Checking various factors that influence the decision to allow
connections to persist, and methods for conveying or
delegating the final decision to the connection manager.
Deciding what transfer encoding to apply, and for applying it.

Deciding on what bandwidth to allocate to a network activity,
and for conveying this information to the connection
managers.

146
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-continued

Mechanism Functionality

Prefetch Allows a request for one resource to trigger prefetching of
other resources, from disk, peers or the origin.

Refresh Implementation of the HTTP “GET If-Modified-Since” etc.,
and “304 Not Modified” mechanism, as well as the
background refresh feature.

Retry and Allow failed fills to be retried from the same or a different fill

Failover target.

Cacheability Decides if, where and for how long an object should be cached

by the Storage Service.
Script execution
Replacement

useful and can be destroyed.

Execute requests and replies that are CDN internal scripts.
Decide which objects in the manifest are no longer sufficiently

Global Strategizer 1908

The global strategizer 1908 is the subsystem responsible
for overseeing the operation of the cache as a whole, and the
cache’s relationship to other parts of the CDN. The global
strategizer is preferably running at all times, and keeps track
of extrinsic parameters such as the amount of storage used,
the number of clients, etc. In turn, it controls operation of the
cache by adjusting intrinsic parameters like the LRU (Least
Recently Used) Aggression and the listener poll and accept
rates.

Invalidation.

The global strategizer is responsible for fetching, prefer-
ably roughly once per second, updates to the primary
invalidation journal from the CDN control mechanism,
fetching updates to any secondary journals that the primary
indicates have changed, and invalidating the resources that
the secondary journals indicate have been invalidated. It
should be appreciated that the control mechanism for cus-
tomer invalidations may not be the same control mechanism
as used for configuration data (and invalidations associated
with it). Different groups of customers may be put onto
different such control mechanisms for invalidation. Invali-
dation is discussed in greater detail separately.

Automatic Refresh.

This mechanism allows selected resources to be refreshed
even when they are not being requested externally, so that
they are always up to date. The invalidation journal mecha-
nism is essentially a special case of this.

Load Metrics.

The global strategizer is in charge of measuring the total
load on the machine, and responding to requests for load
status.

Platform Configuration and Control.

Mechanism to act upon configuration information from
the control mechanism.

Listener and IO Event Rate Control.

Controls the rate at which new connections are accepted,
and the rate at which file descriptors are polled for readiness.

As with the other components/mechanisms described
herein, the functions described here are not necessarily
performed by a single entity or mechanism but by multiple
tasks or sequences. However, those of ordinary skill in the
art will realize and understand, upon reading this descrip-
tion, that the set of tasks which perform these functions
could be considered as making up the “global strategizer.”

Control Mechanism Data

As noted above, the control mechanism 108 maintains the
authoritative database of the current CDN configuration and
of information needed to operate the CDN. The database
includes various interconnected tables that are used to
describe and/or manage the CDN. With reference to FIGS.
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20-21, the database includes system configuration objects
2002, customer configuration objects 2004, a customer
invalidation journal 2006, and a master journal 2008. Those
of ordinary skill in the art will realize and understand, upon
reading this description, that different and/or other objects
may be maintained in the database.

In a presently preferred implementation, the control
mechanism 108 maintains and stores some or all of the
following information (as part of the system configuration
objects 2002 or customer configuration objects 2004), some
of which may be used for rendezvous, and some of which is
used by cache machines.

Global Configuration Object (GCO) (2112)

The GCO is described in connection with request
response processing.

Customer Configuration Scripts (CCSs)

Customer Configuration Scripts are described in connec-
tion with request response processing.

HostTable (2102)

The HostTable 2102 is a list of all machines in the
network. This list is maintained in a table (HostTable) that
includes, for each machine, its network address (IP address),
and preferably its bandwidth capacity.

The HostTable preferably stores a Bandwidth Capacity
value (BWcap). A BWCap value is also stored in the
ClusterTable, described below. An actual value for Band-
width Capacity value is derived from these two values
according to the following table in which clusterBW repre-
sents the bandwidth capacity value set on the cluster,
hostBW represents the bandwidth capacity value set on the
cache and nhosts represents the number of machines in the
cluster:

clusterBW HostBW BandwidthCapacity
0 0 0
>0 0 clusterBW/nhosts
0 >0 hostBW
>0 >0 min(clusterBW/nhosts, hostBW)

While it should be sufficient to use just one of these tables
to set BandwidthCapacity, as described here, this is not
always the correct approach. Specifically, the calculated
BandwidthCapacity variable is preferably not used by the
server selector (SS) mechanism (of the rendezvous mecha-
nism), rather the server selector directly uses the value from
the ClusterTable for shedding based on cluster-total band-
width, and the value from the HostTable for shedding based
on per-host bandwidth. The BandwidthCapacity is set in
both tables, since the HostTable entry tracks the uplink from
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host to switch whilst the BandwidthCapacity at the cluster is
the uplink from switch into the network fabric.

The reason that the server selector does not use the
calculated per-host BandwidthCapacity is that it is generally
wrong for purposes of controlling shedding to avoid satu-
rating a per-host uplink. That is, if BandwidthCapacity is set
only in the ClusterTable, then the system calculates a
per-host value as clusterBW/nhosts (see above table). But
e.g., if there are twenty machines sharing a 10 G uplink, that
value is 0.5 G, which is too small: each machine is prefer-
ably, but not necessarily, able to individually burst to 1 G (or
higher, depending on the connection from each server to the
switch) before causing shedding (assuming the overall clus-
ter uplink is not saturated, i.e., not all machines using 1 G at
the same time). Alternatively, e.g., if there are five machines
sharing a 10 G uplink, the system would calculate 2 G,
which would be too large if the individual machines only
have a 1 G link.

Therefore the BWcap values should generally be set both
in the HostTable and ClusterTable.

As there is preferably an entry in the HostTable for every
machine in the network, non content-serving machines
should have their BWCap value set to zero.

In an embodiment, each type of machine at a location is
preferably grouped into one or more clusters, with a corre-
sponding entry in the ClusterTable (2104).

SMED Table (2108)

The SMED Table 2108 is a list of “measurement equiva-
lent” caches in a table (SMEDTable). In practice, this list
equates to a rack of hardware; i.e., the set of machines
plugged into a single router. Each entry includes one or more
clusters.

Cluster Table (2104)

The Cluster Table 2104 describes each cluster. Recall that
a cluster is not the same as a site (all of the machines that are
plugged into a given switch), but the subset of those
machines that share the same set of VIPs. As such, there may
be multiple ClusterTable entries for a given site. The Cluster
Table stores information about the region(s) that each cluster
is in.

Each cluster contains a number of HostTable entries, one
for each physical machine, and one or more VIPs (each of
which is represented by an entry in the VIPTable).

In an embodiment, all machines on the network are
preferably represented in this ClusterTable (and directly in
the HostTable). To be able to identify which are content
serving machines, there is a flavor column in the ClusterT-
able.

As with the HostTable, non content serving clusters
should have BWCap set to zero. Having these machines
represented in these tables allow for infrastructure compo-
nents such as the measurement components to make use of
processes on non-content serving machines.

VIP Table 2106
A VIP is the locally load-balanced address, handed out as

the target of rendezvous. If this VIP is used for secure traffic,
it contains a reference to a node in the SSLTable.

As such, there is one entry for each VIP address in the
network. Non content-serving clusters do not need to have
VIPs defined.

SSL Table 2110

An entry in the SSLTable describes one “secure” property;
it identifies the mapping between super-name and certificate.
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Flavors Table

The Flavors Table 1912 describes characteristics that are
shared by all machines of a certain flavor (e.g., content
serving). The term “flavor” is used here to distinguish
between machines that perform different functions within
the CDN (e.g., content serving, etc.).

CoServers Table 2116

As used herein, a coserver, with respect to a particular
resource, is an origin server—the authoritative source of the
particular resource. The CoServers Table contains descrip-
tions of all CoServers (origin servers) and Alias Nodes
defined in the system. This table holds information about all
customer origin servers registered with the CDN. This table
is used to associate incoming requests to these entries, and
describes how, and from where, the resource needed to
satisfy that request is to be retrieved. Note that as CDN
objects are also handled by the CDN, some CDN servers
may function, at times, as coservers.

In some implementations, alias Nodes may be associated
with a Base CoServer, and provide a way to separately report
and log traffic associated with a particular alias attached to
a CoServer without needing to cache the same resource
multiple times.

The CoServers table preferably includes the following
fields:

Field Description

IsActive  Flag indicating whether or not the entry is considered to be
active.

A numerical subscriber ID number; a key into the Subscriber
Table (1918).

The unique ID number associated with this entry (this value
is also a key into this table).

The port number over which the origin server associated
with this entry is preferably, but not necessarily, contacted
for cache fill purposes.

The Alternate Web Root, the location within the content tree
of the origin server where the ‘root” associated with this
property is configured to be. That is, when performing a
cache fill the value of this is prepended to the incoming URI
path on the request (see Extended Aliases). Defaults to </
(although any trailing */* on this value is removed during the
conversion process, making the default effectively **).

The name of the origin server associated with this entry. Can
be specified as either a FQDN or as an IP address.

Which protocol to use when contacting the origin server
associated with this entry. In presently preferred
implementation, options are ‘HTTP’, ‘HTTPS’ and ‘FTP’.

A list of aliases associated with this entry. An incoming
request is compared to the list of these aliases when
determining which entry is associated with that request. As
such, each alias needs to be unique, and so these form an
additional key.

SubID

CosID

Port

Alt
WebRoot

Hostname

Protocol

AliasList

Subscriber Table 2118

The Subscriber Table 2118 includes information about
subscribers to the CDN (e.g., the CDN’s customers).

As noted above, a control mechanism may maintain and
store only some of the tables and other information listed
above. In some implementations some of the tables or
information may be combined or omitted. A presently pre-
ferred implementation includes a host configuration file for
each host (which defines listeners, etc.), a GCO, and a CCS
for each property.

Aliases

An Alias is a name by which a CoServer is known to the
network, and is used to identify that CoServer during request
processing. The term alias can refer to both the format of this
identifier, as well as certain attributes of the identifier. A list
of ways that the term is used follows:
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Term Meaning

Simple
Alias
Extended
Alias

a FQDN (Fully Qualified Domain Name); the value of the Host:
provided to the CDN by the client, e.g., fp.example.com
an alias may include one or more top-level directories, in which case

element match the alias, e.g., fp.example.com/dir. This allows behavi
to be specified for different top-level directories of URLs presented
to the CDN; for instance, a particular directory could be filled from
a different origin server.

the initial element of the hostname portion of an alias can be a “*’ in
which case it will match any subdomains. e.g., *.example.com will
match fp.example.com and fp.subdir.example.com, as well as the
unadormed example.com.

Note: that a Wildcard Alias may also be an Extended Alias; e.g.,

* example.com/dir.

The wildcard character has to be a complete hostname element; i.e.,
it is not possible to have *fp.example.com.

Concrete aliases may exist alongside wildcard ones preferably

take precedence over them.

See description above.

The complete set of active aliases (i.e., those associated with active

Wildeard
Alias

Request
Processing

a match requires that both the presented Host: header and initial path

or

CoServers), be they Simple or Extended, are used to populate a lookup table
(e.g., a hash table) within the agents of the network. This table provides
a mapping from each alias to the CoServer ID associated with that alias.

When a request is received, the first path element of the request is
joined to the value of the Host: header, and a lookup into this hash

table performed. If no match is found, a second lookup(s) is(are) performed
of just the Host: If a match is then found, processing completes since

the appropriate CoServer has then been found. The initial lookup is
preferably done with the Host: header only, and if an extended alias

exists, a flag is set that indicates so and then a second lookup performed.

If no match is found, then a second hash table is inspected, which
contains down cased versions of the directory element of each
extended alias (the Host: value always being processed down case).
If a match is then found, and this CoServer is flagged as using case

insensitive paths, then a match is declared, and processing completes.

Preferred implementations should start withy just the hostname; look
for exact match and if none found then deal with wildcard match.
Once a match is found, the start on paths to find the best match

If however no match is yet found, a search for a possible Wildcard
Alias match then begins. The most significant two hostname
elements (e.g., example.com) are looked for in another hash table; if
an entry there exists, then the next hostname element is added and
another check performed. This continues until an entry marked with
an hasWildcard flag is set, indicating that a matching Wildcard Alias
exists.

If the matching entry is marked as having a directory extension, then
a check of the top-level path element from the URL is then made,
similar to the processing for a normal Extended Alias. If no such
match is found, then a match on the Wildcard Alias is only declared
if a Simple Wildcard Alias is defined.
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Request-Response Processing

FIG. 19 showed the logical structure of a cache and its
various components. The processing performed by some or
all of these components may be performed by sequencers. A
sequencer uses a sequence control object which is made up
of an ordered list of handlers. In a presently preferred
implementation, a sequencer is an Executive task (prefer-
ably a channel), and the handlers associated with a
sequencer (task) are implemented by events. It is necessary
for the task to be an Executive channel so that it can use the
submit (potentially asynchronous) model.

Request-Response Processing Flow

Request-response processing flow is described now with
reference to FIGS. 22A-22C. For the purposes of this
description, assume that the processing is being handled by
a cache server such as server 1102 (FIG. 15) in a CDN.

The cache server obtains data (an incoming connection) at
a port and parses sufficient incoming data (at 2202) to
determine that the data correspond to an appropriate type of
request (e.g., HT'TP). The incoming data will include suffi-
cient information to allow the cache to determine whether or
not it can serve the requested resource. E.g., in the case of

55

an HTTP request, the incoming data will include HTTP
header information, including (a version of) the URL that
was used to make the request.

In order to determine whether or not it can serve the
request, the cache server needs to compare information
associated with the request with information in the global
configuration object (GCO). The cache server therefore
needs to determine whether it has a valid GCO (at 2204). If
necessary, the GCO is retrieved by the cache from the
control mechanism (at 2206). If the current GCO is valid
then it can be used, otherwise the GCO must be validated or
anew one obtained. It should be appreciated that if the cache
is unable to obtain a valid GCO after some predetermined
number of tries then it should not serve the requested content
and should fail (and take itself out of rotation for selection
until it is able to retrieve a valid GCO). It should also be
noted that the GCO is likely considered a candidate for
pre-fetch.

In a current implementation the GCO acts as a “white list”
carrying valid protocols, hostnames and path prefixes. In
some cases, for certain reseller properties, customer identi-
fication can also be performed based on the VIP on which
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the request came in. Such a technique may also be used to
provide a simple transparent proxy implementation. The
GCO maps the protocol, hostname and path prefix to a
customer identifier (Customer ID). The following table
shows an example GCO (the numbers in the left column are
provided for purposes of description, and are not intended to
be limiting in any way.)

String Customer ID
1 http://customerl.com/ 1.1
2 http://customer2.com/ 2.1
3 http://*.customer3.com/ 3.1
4 http://* special.images.customer3.com/ 32
5 http://*.images.customer3.com 33
6 http://images.customer3.com 34
7 http://customerd.com/ 4.1
8 http://customerd.com/topd1/ 4.2
9 http://customerd.com/topd 1/subd/ 43
10 http://customerd.com/topd2/ 43
11 http://customer5.com/ 5.1
12 https://customerS5.com/ 5.2
13 *://customer6.com/ 6.1
14 http://customer7.com/ 7.1
15 http://customer7.com:8080/ 7.2

The string in a GCO is some or all of a URL. Wildcards
may be used, but are limited. Recall that (for the purposes of
this description) a URL has the form:

<<protocol>>://<<domain>>/<<path>>
where <<protocol>> may be, e.g., “http”, “https”, “ftp”, and
so on; <<domain>> is a fully qualified domain name
(FQDN) and path specifies a location. A formal URL
description is given in RFC 1738, Uniform Resource Loca-
tors (URL), by T. Berners-Lee et al., URIs are described in
Network Working Group RFC 2396, “Uniform Resource
Identifiers (URI): Generic Syntax,” by T. Berners-Lee et al.,
August, 1998, the entire contents of each of which are fully
incorporated herein for all purposes.

The “protocol” may be replaced with a label for the
listener on which the request came in. The reason is that a
given customer may have a dedicated SSL listener which
presents their server certificate, so the cache will only want
to satisfy requests for that particular customer on that
listener. In that case, the GCO may have, e.g., “https-CUST”
(e.g., if CUST is a customer with a customer SSL VIP) as the
“protocol.”

In the GCO, the protocol may be replaced by an “*” (a
wildcard character), indicating all supported protocols map
to the same Customer ID (see, e.g. no. 13 in the table above).
A wildcard character (e.g., “*””) may also be used as part of
the first component of the hostname (e.g., nos. 3, 4, 5). Thus,
“http://al.customer3.com” and “http://a2.customer3.com”
will both match entry number 3 in the table above. In order
to simplify the rules for resolving ambiguities, in some
implementations wildcards may not be used anywhere else
and may be the entire first component of the hostname.

Having completed the raw parse (at 2202), the cache
knows the URL that was used to make the request.

Once the cache has a valid GCO it tries to find a match for
the input URL in the GCO (at 2208). Preferably a “Best
match wins” strategy is used. The hostname is checked first,
and an exact match wins, otherwise, a wildcard match is
used with greatest number of literal matches wins. For
example, for customer3.com: the string
“special.images.customer3.com” maps to 3.2 (more literal
matches than 3.3); images.customer3.com maps to 3.4 (ex-
act match). Next the port and protocol are looked up, then,
longest path prefix wins.
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The flow chart in FIGS. 22A-22C shows a potential loop
from the GCO-Exception hook if no response is generated.
To prevent a loop from occurring the system may only try
the GCO lookup a limited number of times, e.g., up to two
times. The point of the GCO-Exception hook is to allow
inspection/correction of the request such that it can be found
in the GCO. However, the system preferably only gets one
shot at correction.

Each customer may have corresponding scripts (se-
quences) that are to be used to process that customer’s
requests. These Customer Configuration Scripts (CCSs) are
associated with the customer ids, and, if the request (the
URL) relates to a valid customer (at 2210) (based on the
lookup in the GCO), then processing continues to determine
(at 2212) whether there are CCS (Customer Configuration
Scripts) corresponding to that customer. The CCS, if present,
is checked for validity (at 2214) and a new CCS is fetched
(from the control mechanism) if needed (at 2216). As noted
previously, the CCS is used to assemble sequences, which
are then cached and used until they become invalid (due,
e.g., to anew CCS being retrieved). It should be appreciated
that scripts and sequences are not the same thing, although
as mentioned previously, a particular handler may invoke a
script to perform its function.

In presently preferred implementation the CCS is a Lua
script retrieved from the Control mechanism. The name of
the script may be based on the customer’s 1D, e.g., for
Customer 1D 4.2 the script may be obtained at: https://
core.fp.net/ccs/ccs-4.2 Juac

The script sets up customer-specific subsequences at
various hook points in the main processing sequence.
Results of this setup are preferably cached, and the CCS is
not run on every request. It is re-run if the script is reloaded
or if conditions change. For example, if results of the script
are cached persistently, then agent revision could change.
The compiled script is an object consumed by the caches,
but the script itself is generated from customer configuration
description in a database.

Once the CCS is configured (loaded and validated) (at
2218), processing continues (FIG. 22B) with a hook (de-
noted “cli-req”—client request) to handle any corresponding
custom processing. That is, “cli-req” is a hook point where
a subsequence of customer-specific handlers (which may
include a script) is inserted. As an example, suppose that a
certain customer requires:

Set www.customerl.com as canonical hostname

Strip sessionid parameter from all query strings

These actions may be taken in cli-req (client request)
hook, for which exemplary CCS source would be:

hook[“cli-req”].add(“set-host(‘www.customer1.com’)”)

hook[“cli-req”].add(“strip-query(‘sessionid’)”")
where both set-host and strip-query are simple one-shot
handlers, inserted into a larger sequence.

As another example, suppose the customer has the same
client-side requirements as above, but also wants to set the
fill target to be
origin.customerl.com

The corresponding CCS source would be:

hook[“cli-req”].add(“set-host(‘www.customer1.com’)”)

hook[“cli-req”].add(“strip-query(‘sessionid’)”")
hook[“fill-req”].add(*“set-target(‘origin.customerl.
com’)”)
where set-host, strip-query, and set-target are simple one-
shot handlers, inserted into a larger sequence.
This CCS adds an action to the fill-req (fill request) hook.
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As another example of a configuration script, suppose that
a customer requires proxy authentication using

auth.customerl.com for remote authentication. The custom-
er’s CCS would include:
hook[“cli-req”].add(*“proxy-auth(‘auth.customer]1.
com’)”)

The proxy-auth handler launches a sequence of its own to
perform the actual authentication request and waits for the
response. This is an example of a blocking handler which
launches a helper request. Based on the response to the
authentication request, the proxy-auth handler may generate
an HTTP 401 response immediately or allow processing to
continue.

Another way to handle this with CCS (if a native proxy-
auth handler is not always available) may be:

if handlers[“proxy-auth”] == nil then
hook[“cli-req™].add(
“lua-txn(‘proxy-auth.luac’, ‘auth.customerl.com’)”)
else
hook[“cli-req™].add(
“proxy-auth(‘auth.customerl.com’)”)
End

Preferably, however, a missing handler is preferably, but
not necessarily, handled in a manner that does not require
such an interaction with the CCS builder. E.g., there is
always a proxy-auth handler—if there is no native one, the
processing of the CCS will cause a library to be inspected/
pulled which will provide a scripted version of it. One
benefit of this sort of approach is that the CCS is then
independent of the version of software running on the edge,
and hence can be shared amongst peers of different genera-
tions. It should be understood and appreciated that the fact
that the CCS is specified as a script and can make decisions
about the sequence to generate based on inspection of its
local environment is sufficient to allow CCSs to be shared
across the network.

This logic is part of CCS builder, not the configuration
writer. A single network-wide CCS can make these decisions
based on local environment. CCS can use arbitrarily com-
plex logic to assemble the building blocks for the customer,
including making additional requests, etc. “Native” handlers
could also be built-in scripts behind the scenes, but prefer-
ably native handlers are expected to be efficient C code. It
should be appreciated that the CCS is a per-customer object.
It should also be appreciated that a human configuration
writer does not need to deal with this detail; they just need
to know that they want authentication. In addition, it should
be appreciated that the CCS should not be run on every
request (unless it is invalidated).

Rather, the CCS is used to configure the agent to handle
a given customer’s requests by setting up the appropriate
handlers at the various hook points. Those handlers them-
selves may invoke a script or scripts, but they do not have
to and it is expected that a typical customer’s requests will
be handled without using scripts (e.g., Lua) at all in the main
request processing path. The fact that the CCS is a script
rather than a simple list of handlers to install at hook points
means it can be flexible in inspecting its surroundings to
determine the proper handlers for the environment (software
revision, region, etc.) in which it is running.

As can be seen from the flow diagram in FIGS. 22A-22C,
hooks are available at numerous points in the processing
sequence. There may be hooks available for, amongst other
things, some or all of:
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client requests

cache fills

GCO exceptions

cache misses

fill responses

fill pump

client responses

client pump

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that different and/or
additional hooks may be available and used in a particular
implementation.

As noted earlier, default processing is available, and the
cache will service requests without any customer-specific
sequences, provided the customer is valid (e.g., found in the
GCO) and requires no customer-specific processing.

As the various elements of the CDN are themselves
potential clients (and sources of resources), the CDN may
provide a CCS for CDN resources. From an implementation
perspective, the CDN may be treated as a customer, with
entries in the GCO and with its own CCS(s).

Load Balancing and Peering

The goal of local load balancing in a cluster (i.e., cluster-
level load balancing) is to evenly distribute load across the
nodes of the cluster, and to ensure that each connection gets
handled by as few nodes as possible, preferably by only one
node, even in the presence of failures. In some systems,
cluster local load balancing may be accomplished using the
techniques described U.S. Pat. No. 8,015,298 titled “Load-
Balancing Cluster,” filed Feb. 23, 2009, issued Sep. 6, 2011;
and U.S. Published Patent Application No. 2010-0332664
titled “Load-Balancing Cluster,” filed Sep. 13, 2010, the
entire contents of each of which have been fully incorpo-
rated herein by reference for all purposes.

An example of such a system is shown in FIG. 23A, in
which a request associated with a VIP is multicast via a
switch (preferably a dumb switch) to all live nodes in the
cluster. The nodes use local firewalls to block/accept traffic.
These systems may not, strictly speaking, be load balancers,
since some load is transmitted to each node in the cluster for
each packet received at the switch. These systems move
some of the load spreading functionality into the firewall of
each individual node. Such techniques allow the use of a
dumb switch instead of an expensive load balancing appli-
ance.

Higher Level Load Balancing

Some systems, e.g., as described in U.S. Pat. No. 8,015,
298, provide for request-based migration of TCP connec-
tions. In a system described in U.S. Pat. No. 8,015,298,
referred to herein as Approach A, migration is performed on
each request, and the connection may be moved back and
forth between multiple machines in a cluster during its
lifetime. When a server accepts a connection it uses the
HTTP request on that connection to decide which machine
(i.e., which cache in the cluster) should handle the request.
The server then migrates the connection, plugging and
poking firewall holes as needed to ensure the target of the
migration accepts further traffic and the source drops it. The
attributes of the request used to make the migration decision
are configurable (e.g., URL, Host header, other headers,
etc.), as are the number of machines to be involved in the
target selection process (via various parameters). In some
implementations, these are per-coserver configuration set-
tings.
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Peering

In some cases, e.g., in some of the systems just described,
when a cache miss occurs (e.g., at 2220 in FIG. 22B), all
peers in the cluster and neighboring clusters may be queried
to determine if any peer has the resource cached. If one is
found, the local cache may be filled from that peer. If none
is found, the local cache may be filled from a pre-configured
parent.

The load balancing solutions described above work for
1Pv4 traffic, but IPv6 traffic may require a different approach
due to the lack of ARP in IPv6. One solution to the lack of
ARP in IPv6 is to apply the same strategy as described above
to the protocols that IPv6 provides. For example, the IPv6
Neighbor Discovery Protocol (NDP) may be used by each
node in the cluster to detect the liveness of all other nodes
in the cluster, and this information may be used to update the
firewall. A stateful firewall and a simple switch handle the
rest, as in the IPv4 system.

High-Level Load Balancing and Peering

In addition to or instead of the above approaches, the
CDN 100 may provide application-level load balancing
which also addresses local and remote peering. TCP/IP
connection transfer is an optional component of this
approach that may be used within a cluster, but is not
required (and may be unnecessary).

Resource Striping and Capacity Allocation

Within the context of a single cluster, some information
about the property of each request (e.g., the request URL) is
mapped, e.g., via hashing, to a unique slot s in a circular
array of NS slots. At any given time, each node in the cluster
is assigned responsibility for some (preferably contiguous)
interval of slots. The slot ranges of the cluster nodes may be
assigned arbitrarily as long as the number of nodes respon-
sible for a slot is always within some prescribed [min, max|
range of nodes per slot (a node is said to be responsible for
a slot s if its interval covers s, i.e., if s is in the range).

For example, suppose there are five (5) nodes in a cluster
and 1,000 slots (numbered 0 to 999). One possible slot
configuration that is consistent with [min, max|=[1,2] is the
following:

[0, 99], [50,149], [100, 500], [200, 800], [700, 999]

For any given slot configuration, all requests will be
served by nodes responsible for the corresponding slot.
Additional constraints on slot intervals, and on changes to
slot intervals, may also be imposed in order to avoid
unnecessarily large shifts in responsibility, to enable distrib-
uted computation of slot intervals, to increase fault toler-
ance, and to simplify the slot allocation algorithm.

Capacity allocation may be implemented by allocating a
different [min, max] range to different intervals of the slot
circle, and by hashing URLs for different properties to
different intervals of the slot circle. The total capacity
corresponding to a slot interval is the area of the slot interval
divided by the total area of the entire slot range. A property’s
capacity allocation is its relative capacity per slot (based on
the number of other properties mapped to the same slot)
times the actual capacity of each slot to which it is allocated.
Slot-Based Load Balancing

Slot intervals determine which resources get handled by
which nodes in the cluster, and a hashing function deter-
mines which resources map to which slots. It should be
appreciated that although the hashing function(s) that con-
trol the distribution of resource names across slots can be
arbitrarily complex, the function(s) cannot guarantee that the
actual load of requests over time has any particular distri-
bution. For example, a given sequence of requests over some
time interval might result in a relatively high load across
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small slot intervals on the circle, depending on how the
resources for those requests are named.

To account for this, the system preferably dynamically
adjusts the position and width of slot intervals such that
areas of higher load have a higher density of nodes per slot.
The capacity allocation provides constraints on the solution
to this adjustment, and the total number of slots limits the
resolution with which such changes can be made. Periodi-
cally (e.g., every minute), the slot interval for each node may
be reassigned based, e.g., on the following information:

node liveness;

load on each node;

the previous (or default) sector range values.

Nodes may have their slot interval expanded, contracted,
or shifted by a high-level local load balancing algorithm, the
result of which is to change the density of nodes per slot to
meet the capacity allocation constraints and compensate as
much as possible for actual load distribution within those
constraints.

When a node fails, the density of nodes per slot in the
node’s area of previous responsibility will drop (potentially
to zero, depending on the previous slot configuration). Two
strategies may be adopted to deal with this:

When computing a new slot configuration, always allo-

cate a minimum density of two nodes per slot.

Run the load re-balancer whenever a node failure is
detected.

With this approach, assuming no more than one failure per
load rebalancing interval, no slot should ever be left uncov-
ered.

Client Request Handling

The basic approach, elaborated incrementally here, leads
to three roles for nodes in a cluster which distinguish their
varying degrees of responsibility with respect to caching and
remote filling of particular resources (see FIG. 23B). These
roles need not be fixed per node, but may depend on the
request context.

For example, in some cases three degrees of node respon-
sibility for any given resource may be used, based, e.g., on
hashing. These different degrees of responsibility may be
used to provide separate control over how many nodes will
cache a resource and how many will reach out to a remote
node (e.g., a parent node) to fill a request. For example:

Non-responsible (will not cache but will proxy only to a
Super-Responsible peer)

Responsible (will cache, and will fill only from a Super-
Responsible peer)

Super-Responsible (will cache and will fill from a parent
(“remote peer”)) (Preferably there are no nodes which
are only fill responsible, as such a setup would perform
rather poorly because Wm requests would end up being
proxied from the origin server [n is number of fill-
responsible-only nodes, m is cluster size] without being
cached.)

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that a different number
of roles for nodes in a cluster may be used for different
degrees of responsibility, with different cache and remote-
fill approaches for each.

It should also be appreciated that a node’s degree of
responsibility for particular resources may be determined on
a continuous scale and need not necessarily be discrete.

The slot allocation scheme determines which resources a
given node is considered to be “responsible” for, and this
responsibility implies a more aggressive approach to cach-
ing the resource than other “non-responsible” nodes.
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In the first approach (see algorithm 1 below and FIG.
23C), upon receiving an (external) client request (for
resource R), the node determines if it is responsible for the
resource. If the node determines that it is responsible for the
resource, it consults its cache and responds from there or it
fills from a super-responsible peer. If it is not responsible, it
proxies from a super-responsible peer but does not update its
local cache. The idea behind avoiding a local fill and just
proxying in the case where the node is not responsible is that
the node will never be asked by another local peer to provide
that resource. Using this approach would let the responsible
local peers handle the fill and storage, and avoid the storage
and disk I/O costs associated with filling resources for which
local peers will never ask.

Algorithm 1 Handle Request-1 (If Non-Responsible Then Proxy)

function HandleRequest( R )
Ruslot < slot <= SLOT(R)
nodes <= ResponsibleNodes(slot)
if self € nodes then
if R & localCache then
FillFromPeer(R, nodes - {self})
end if
return localCache(R)
else
return ProxyFromLocalPeer(R, nodes)
end if
end function

This approach (Algorithm 1) may provide lower latency
for the current request than filling locally, but the problem is
that subsequent external requests to this node for the same
resource will always proxy through other nodes. Alterna-
tively (see algorithm 2 and FIG. 23D), the system may adopt
a more opportunistic approach and allow nodes to cache
resources they are not responsible for, provided they favor
the resources they are responsible for in terms of their cache
eviction policy.

Algorithm 2 Handle Request-2 (If Non-Responsible Then Fill)

function HandleRequest ( R )
if R € localCache then
return localCache(R)
end if
Ruslot < slot <= SLOT(R)
nodes < ResponsibleNodes (slot)
FillFromPeer (R, nodes - {self})
return localCache(R)
end function

Local Peer Proxy and Fill

To proxy from a local peer (see algorithm 3 and FIG. 23E)
the system may determine the set of responsible nodes and
ask them if anyone has the resource cached. If one or more
local peers have it, the system arbitrarily chooses one and
requests from there. Otherwise the system chooses any
responsible peer and requests from there. The idea is that the
system requests through a responsible peer even if it knows
it does not have it (rather than filling from a remote peer)
because the local responsible peer is likely to need it more
than the current node. This reduces the possibility of remote
fills for the same resource coming from different nodes on
the same cluster, which makes better use of bandwidth to
remote peers.
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Algorithm 3 Proxy From Local Peer (Query All Responsible)

function ProxyFromLocalPeer( R, nodes)
holders = QueryLocalPeers(R, nodes)
if holders = Q then
choose h € holders
else
choose h € nodes
end if
return RequestFrom (R, h)
end function

Note that ProxyFromILocalPeer is invoked in Algorithm 1
using a set of responsible nodes.

Filling (see algorithm 4 and FIG. 23F) is similar to
proxying in the query-all-responsible approach, with the
addition of updating the local cache.

Algorithm 4 Fill From Local Peer (Query All Responsible)

procedure Fill From Local Peer( R, nodes)
holders = Query Local Peers(R, nodes)
if holders = Q then
choose h € holders
localCache(R) < request from(R,h)
else
Fill From Remote Peer(R)
end if
end procedure

Note that the same principle that non-responsible peers
use to delegate to responsible peers can be used within the
set of responsible peers for a resource in order to decide who
should do a remote fill. The system may put a bound on the
number of peers who will attempt a remote peer fill for a
given resource, as it could be more efficient for the system
as a whole for a small number of local peers to fill a given
resource from a remote peer, and then have the local peers
get it from each other. This would require two kinds of
“responsible” peers, plain responsible peers, and “remote-
fill-responsible” (super-responsible) peers (where the latter
do remote fills, the former do not).

To achieve this, the system further partitions the set of
responsible nodes as follows. First sort the set of N respon-
sible nodes by their unique node IDs to produce an array,
then split this array into K parts, and index each part with the
hash of the resource key to determine up to K nodes that will
be responsible to fill. Since all nodes are assumed to have the
same knowledge of what nodes are responsible for what
resources, this computation can also be done in distributed
fashion (each node computes it independently and they all
arrive at the same result).

With this the system can dispense with the querying part,
and with the assumption that K will usually be very small
(say 1 or 2), the system just randomly chooses one of the
fillers and expects it to either have the resource or fill it
remotely. This achieves load balancing of the remote fill
workload within the set of responsible peers for any given
resource and bounds the number of remote requests from a
given cluster for the same resource. Assuming Filler-Peers
determines the K nodes responsible for remote fills as just
described, this leads to the no-query version of the fill from
local peer algorithm (see algorithm 5).
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Algorithm 5 Fill From Local Peer (No Query)

procedure FillFromLocalPeer( R, nodes)
fillers = FillerPeers(R, nodes)
choose f e fillers
localCache(R) < RequestFrom(R, )
end procedure

A similar no-query version of the fill from local peer
algorithm may be used for the proxying case, and the system
could also apply the query approach within the now even
smaller set of filler peers. But at this point the system has
reduced the set of nodes to consider so far already (from the
whole cluster, to the responsible nodes within the cluster, to
the responsible fillers within the responsible nodes), that it
is probably not worth it, especially if doing so requires
implementation of a completely different request/response
protocol than just simple peer-to-peer HTTP requests.
Remote Peer Fill

Once a node has decided to fill from a remote peer it
simply determines the name of a remote peer and fills from
it (see algorithm 6). The term “remote peer” is used here
instead of parent in order to emphasize the remoteness and
to de-emphasize any presumed parent-child relationships. In
this approach there is no single hierarchy in the CDN, and
even a single node in a cluster may refer to multiple remote
peers, depending on the context of the request and the state
of the network. The only guarantee expected is that a remote
peer must always be one step closer to the origin than the
local requestor or the remote “peer” may even be an origin
server. This results in a dynamic overlay lattice instead of a
static tree structure.

Algorithm 6 Fill From Remote Peer

procedure FillFromRemotePeer( R, nodes)
server <= RemotePeerName(R, R.peerLevel + 1)
localCache(R) < RequestFrom (R, server)

end procedure

Remote peer name selection may be based, at least in part,
on some local configuration data that is retrieved as
resources from the control mechanism which can be invali-
dated and refreshed, and partly on the rendezvous system.
For each property served by a cluster node, a method of
choosing a remote peer name for a resource is specified, and
this method is used to compute the name of the server to
contact. The RemotePeerName procedure (see algorithm 7)
uses the configured method to return the server name to the
request-handling algorithm when needed.

This provides a simple means of load balancing of
requests across multiple remote peers for given collections
of requests. Different name selection methods enable differ-
ent strategies for doing so, and also allow different divisions
of responsibility between control mechanism configuration,
cache nodes, and the rendezvous system, without making
any significant changes to the cache implementation beyond
configurable name selection.

It is assumed that the cache’s consumption of control
resources could result in the definition of named configu-
ration variables. These named variables might define
numeric constants, single names, ordered lists of names, or
lists of lists, and they exist to provide input data to various
remote peer name selection methods. The choice of remote
peer name selection method is assumed to be an indication
of one of several predefined methods that the cache pro-
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vides, and RemotePeerName is just a wrapper that invokes
the appropriate virtual function. One other aspect is the
remote peer level, which is assumed to be zero (0) for
requests received from clients, and is incremented at each
hop to a remote peer via a suitable request header. If the level
exceeds a threshold (which could be property specific), the
name of an origin server is returned instead of a remote CDN
peer.

Algorithm 7 Remote Peer Name Selection

function RemotePeerName ( R, level )
if level >maxpeerlevel (R.propertyID) then
return OriginName (R)
else
M < rpnsmethod(R.propertyID)
return M(R, level)
end if
end function

Example methods that could be used for computing
remote peer names include:

(1) Return a constant remote peer name for all requests,
provided in the configuration under variable rpname:

RPN<-rpname

(2) Get a list of remote peer names (rpnlistbyagent), and
index it by the hash of the local node’s agent ID (or perhaps
the cluster ID):

rpaliste—rpnlistbyagent

RPN<—rpnlist [hash (agentiD) mod rpnlist.size]

(3) Generate a name based on properties of the request
(e.g., certain bits of the sector, property 1D, resource hash,
etc.) and let the rendezvous system do the load balancing
work.

(4) Get a list of peer names by sector from the configu-
ration (via variable rpnlistbysector), and index it by the hash
of the property 1D:

rpaliste—rpnlistbysector(R.sector mod rpnlistbysector-

.size)
RPN<—rpnlist [hash (R.property]D) mod rpnlist.size]|
While different algorithms/approaches have been

described here for load balancing and peering, and for what
to do when a cache miss occurs, it should be appreciated that
these approaches may be used alone or in various combi-
nations within a CDN. Furthermore, the approach(es)
adopted may be configured within the CDN based on
various factors. For example, the approach(es) to load
balancing and peering may be property specific (e.g., they
may be specified as part of a CCS). It should also be
appreciated that the approach(es) may be modified (e.g., by
modifying a CCS for a property) during operation of the
CDN.
Probabilistic Customizations
At several points in the above algorithms decisions are
made on where or how to get something:
Does a non-responsible node proxy or fill when it
retrieves from a peer?
When it fills, does a non-responsible node fill from a
remote peer or a local peer?
When it fills from a local peer, is it any local responsible
peer, or a local fill-responsible peer?
When a responsible node fills, does it fill from a remote
peer or from a local fill-responsible peer?
Rather than hardwire specific choices for these into the
algorithms, these decisions may be made according to
specified probabilities that may be used to weight decisions
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(see FIG. 23G and the flowchart in FIGS. 23H-231 showing
caching and peer filling choices). Exemplary such probabili-
ties may include:

1. PINRCACHE)—the probability that a non-responsible
node will cache instead of just proxy.

2. PONRFILLREMOTE)—the probability that a non-re-
sponsible node will fill from a remote peer, given that
it fills from somewhere.

3. PCANYRESP)—the probability that a non-responsible
node will fill from any responsible local peer (as
opposed to a fill-responsible peer), given that it is going
to fill locally.

4. P(RFILLREMOTE)—the probability that a responsible
node (but not a fill-responsible node) will fill from a
remote peer, given that it fills.

These probabilities may have preferred defaults of zero

that may be changed on a per property basis.
Extending Local Peering Across Clusters

The notion of peers is not limited by network organization
or location. Thus, e.g., nodes closer to the origin have been
referred to herein as remote peers even though they are not
necessarily on the same cluster. We may also refer to local
peers that are not on the same cluster. An arbitrarily large
cluster of clusters may be treated as a single logical cluster
as long as the nodes can address each other as independent
nodes and can run a failure detection and slot allocation
algorithm across the entire node collection. The fact that
different subgroups are behind different switches does not
make any difference.

As the collection gets arbitrarily large, however, it may
become impractical to do the failure detection and slot
allocation algorithms in a flat way across the entire node set,
so there is probably a maximum practical size to a logical
cluster (say 2 to 3 physical clusters) unless a more scalable
technique is applied. The essential difference between local
and remote peering is that when one local peer delegates to
another, it does so with the knowledge of exactly what node
it is delegating to, and what responsibility that node has with
respect to the caching and remote-filling of the resource. In
other words, the two nodes share knowledge about slot
responsibility. The key then, would be to convert the flat slot
allocation into a more hierarchically structured one. One
approach would be as follows:

Each physical cluster is assigned a unique subinterval of
slots.

Each physical cluster locally determines its set of live
nodes, and a leader communicates this set (and the load and
slot assignments of each live node) to leaders in the other
clusters.

Given such a partitioning, most of the work to determine
failure detection and slot assignments occurs locally within
a cluster, and the only price paid is an extra level of
coordination at the logical cluster level, and some loss in
flexibility in allocating capacity across the slot circle, since
each cluster is responsible for a fixed subinterval of the
circle.

The latter problem can be fixed as follows: instead of
pre-allocating non-overlapping subintervals to each cluster
and then trivially merging the result of running N instances
of the algorithm, run the algorithm recursively and produce
the physical cluster interval assignments as an output of the
algorithm instead of just as an input. To do this, run the
algorithm as if each cluster were a single node, but with a
capacity weight equal to the number of live nodes in the
cluster, which could be greater than one in the general case.
The algorithm takes the cluster’s current interval as an input
and potentially adjusts the cluster’s coverage as an output,
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and cluster intervals are allowed to overlap in this case.
Then, after the initial version of slot coverage at the cluster
level is done, take the actual interval assignment for the
cluster and use it as the starting point for running the
algorithm again locally on each cluster to determine actual
node-level intervals, this time treating each node within the
cluster as an individual with a weight equal to one. Although
a weight of one is used in this example, it should be
understood that a system may have different weights per
node, depending on capability. In preferred implementa-
tions, all nodes in a cluster have equivalent capability.

It will be appreciated that this approach applies not just to
one level of physical-to-logical clustering, but to an arbitrary
number of levels of clustering. Those of ordinary skill in the
art will realize and understand however, upon reading this
description, that at some point the benefit of logical clus-
tering reaches a maximum with respect to remote peering,
and remote peering is preferably used instead.

Invalidation

This section further discusses the mechanisms of invali-
dation internal to a CDN service (e.g., a cache node). From
the point of view of the CDN service, it is assumed that the
control mechanism publishes (i.e., makes available) infor-
mation about what resources should be invalidated, and the
CDN service obtains (e.g., pulls) this information at an
appropriate time. These mechanisms are described else-
where herein. What is described here is what can be speci-
fied in an invalidation command and how this command
may be executed by the CDN service (whether via the
backdoor pull of invalidation commands from the control
mechanism, or via a front-door management command
directly to the CDN service). It should be appreciated that
the front-door mechanism (as the term is being used here) is
strictly for local control, and it would not be used in normal
operation. It might be used, e.g., by an operator trying to get
a resource out of a particular cache (e.g., for troubleshoot-
ing).

A simplified model of what invalidation attempts to
achieve is used here for the purposes of this description. The
goal of invalidating a resource is to prevent that resource
from being used without revalidation. Practically, invalidat-
ing a resource marks it such that the resource in CDN service
at the time of invalidation (if any) will not be used without
revalidation. Other variations on this theme made in actual
practice are important but do not fundamentally affect the
degree of difficulty of finding and marking the right
resources, and they are ignored.

Invalidating individual resources for which the URL is
specified in the invalidation command is simple. For
example, hash the URL, look it up in an index, find the
object, and mark it (essentially the same as the lookup
process when serving the resource). The URL does not have
to be stored in the index (typically a hash table or tree of
some sort) for this to work.

Invalidating groups named by a pattern is much harder.
The pattern in this case could be as simple as a URL prefix
that all implied URLs are expected to have, a case-indepen-
dent version of the matching URLs, or as complex as an
arbitrary regular expression. In all of these cases there is no
single URL known in advance that the cache can use to look
anything up (and the number of possible matches could be
unbounded), instead the cache needs to iterate over the
entries in the index and find the ones that match the pattern.
Achieving this requires that the URL be known for each
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entry visited in the iteration. This feature may be referred to
as “expression-based invalidation.”
A naive extension of the hash table approach might be to
store URLs in the table entries, but this is expensive in terms
of space and very inefficient in time, since the system would
have to traverse the entire index and test the invalidation
patterns on each URL to find which ones to invalidate. Using
a sorted map data structure (like a binary tree) does not help
either for URL patterns in general. Furthermore, even if the
matching objects could be found efficiently, it could take a
really long time to mark all the metadata corresponding to
each one if they are on disk and not in memory.
If invalidations are launched from one of a handful of
portals and then broadcast to the entire CDN, this can result
in a large volume of invalidations flooding the network at
any given time, which in turn could lead to the performance
of'unnecessary work at each cache node. The control mecha-
nism solves part of this problem by arranging for invalida-
tions to travel only to the CDN service nodes that care about
them (e.g., with sector resolution). Therefore, it can be
assumed that the invalidations received at a CDN service
(e.g., cache) are more likely to apply to the resources
currently cached at that node. Beyond that, the system needs
three things to deal with the efficiency challenges local to the
CDN service (cache):
(1) an efficient way to find all nodes corresponding to a
URL pattern,

(2) an efficient way to mark all nodes corresponding to a
URL pattern, and

(3) some general limits (on the number of nodes that can
be invalidated at once) to ensure bad things never
happen, since URL patterns can refer to an unbounded
number of resources.

A modification of a trie data structure concept is used to
provide an efficient way to look up URLs.

As is well known, a trie, or prefix tree, is an ordered tree
data structure used to store an associative array where the
keys are usually strings. In a trie, no node in the tree stores
the key associated with that node; instead, a node’s position
in the tree defines the key with which it is associated. All
descendants of a node have a common prefix of the string
associated with that node, and the root is associated with the
empty string. Values are normally not associated with every
node, only with leaves and some inner nodes that correspond
to keys of interest. A trie provides a way to lookup a key in
time proportional to the length of the key. In other words,
using a trie allows finding the value corresponding to a key
in about the same time it would take just to compute a hash.
A ftrie is just a tree where each key string in the trie
corresponds to a path in the trie, and the branching at each
level in the tree may be based, at least in part, on the alphabet
over which the keys are defined. Whole keys are not actually
stored directly in the tree, but they are implied for each node
by the path to the node. This compresses the storage space
required for keys when URLs have common prefixes, as is
typical.

The challenge with the traditional approach to tries is still
space efficiency for the structure of the tree besides the
implied key information. Typically each node carries the
information for one character and represents a string corre-
sponding to the characters on the path from the root to the
node. Each node has no more than one direct descendant for
each unique character in the alphabet of the keyspace. This
“child-map” could use an array covering the entire alphabet,
and the system could index this array to find the link to the
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descendant for each character, but this would have a huge
cost in space (which would be exponential in the depth of the
tree).

A number of techniques may be applied to optimize the
space used by the trie while retaining the same time com-
plexity:

(1) Use the fact that URLs consist of about 85 legal

characters, and never use a child-map longer than this
(this requires mapping the actual URL characters stati-
cally to the range 0 to 84).

(2) Position the URLs in the static index map, so that
characters most frequently used have smaller indices,
and allow the size of the child map to be based on the
actual range of indexes used by a node’s immediate
children. This further reduces the expected average size
of the child maps in a trie.

(3) Allow the child map to be a simple list of a small
maximum size (to be searched instead of indexed), and
convert to an indexed array only if the number of
children exceeds the size threshold.

(4) Allow nodes to jump multiple characters. If all the
children of a node have a common prefix relative the
node’s current path in the tree, then the single character
of the node can be expand to a string of arbitrarily
length. This reduces the number of nodes it takes to
advance a certain distance in a URL.

In a prototype implementation in which all of these
techniques were used except for the frequency based
approach, a population of about 57,000 unique URLs taken
from actual CDN logs from three binding groups were
inserted into a trie. The actual number of characters con-
sumed by the URLs was about 7.3M, or about 127 characters
per URL. After insertion into the trie the space of the trie
nodes and associated strings was about 7.4 MB, whereas the
size it would have taken to just store all the keys as MD5
hashes in a hash table would have been about 2.3 MB. If the
MDS5 hashes were replaced with the actual URLs for keys
instead, it would have taken 8.8 MB.

Though the trie’s space utilization can probably still be
improved somewhat, and though the actual space utilization
is also highly dependent on the actual URLs, it may be
reasonable to expect that the space utilization of the trie
described here is better than the naive hash-table approach,
though still about three times more expensive in space than
the MDS5 hash approach, although at least as fast. The space
gap would be narrowed if using SHA-256 (which would
have consumed 3.2 MB) or SHA-512 (5.1 MB) instead of
MDS5. What has been achieved is something that provides
structural information that can be used to more efficiently
search the space of URLs for patterns.

This approach generalizes to patterns.

Realizing that each pattern corresponds to a finite state
machine which recognizes matching strings, the task of
finding all strings that match a given pattern is reduced to a
trie-traversal, where all subnodes of a given node where
there is a transition in the state machine from the current
state to some other state based on the character correspond-
ing to the subnode. In the general case (which will be
restricted later), there needs to be a check of all paths from
each node where there is a transition. This relies on the fact
that the state in the finite state machine is uniquely deter-
mined at each node in the trie, and it allows an incremental
evaluation of the state transitions instead of having to run the
state machine from the start state =N times to find N
matches. This is an optimal search, since for a given pattern
and corresponding state machine, the approach executes the
least possible number of state transitions needed to evaluate
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all URLs in the tree or rule them out. Entire subsections of
the tree are ruled out as non-matches at the first failing
transition.

This approach extends to the parallel matching of multiple
patterns. Given a set of K patterns in their initial state, a
traversal of the tree as described above can be performed,
maintaining one state for each of the K patterns. The
traversal to a subnode continues if any of the state machines
accepts the transition (and for those machines that do not,
they are ignored from that point on in that sub-tree). The
search along a particular path stops when there is no
machine that can make a transition, and the sub-tree of that
path is ruled out. Some implementations may choose to
perform some or all of the searches in parallel.

A solution to the second challenge builds on the solution
to the first. It would be desirable to just mark the trie in a
small number of places to indicate that all nodes below the
marked points are invalidated. For arbitrary regular expres-
sions, there is in general no single node below which all
nodes are matches and all matching nodes are contained
beneath that node. Therefore, in the general case there is a
need to find a collection of nodes that cover all matching
nodes and only matching nodes. The size of this collection
may be close to the size of the matching set, so in the general
case there may not be much gain by finding it.

Patterns that end with a wildcard, however, will tend to
produce a smaller cover, and if the pattern is a constant
string terminated by a wildcard, then the pattern corresponds
to a unique node in the trie, below which all nodes are
matches. This is ideal.

In general, whenever it is known that all nodes below a
given node are matches for the invalidation pattern, the
traversal can stop and mark the node in a way that says
“everything in the sub-tree rooted here is invalidated at time
T.” Then, whenever a resource is looked up in the index, it
is possible to keep track of the invalidation markers as the
tree is traversed, computing the most recent invalidation
time along the path to the node. This invalidation time is
compared to the actual timestamp on the resource, and if it
is older, it is considered invalid. If it is newer, that means it
was refreshed or revalidated sometime after the most recent
invalidation marker applying to it was set in the tree.

Note that as resources are filled and revalidated, their
timestamps are recorded but the system does not need to
attempt to clean up the tree’s invalidation markers. The
actual invalidation state of the resource is computed when it
is accessed. This assumes that all access paths to the
resource will go through the trie, and there will be no
attempts to use the resource without also consulting the trie.

Assuming that not all properties will need the capability
to do pattern oriented invalidation, and since hashes are
useful for many things, the approach above may be best
applied as an option for certain properties, implemented via
an auxiliary URL index in addition to the MD5-based hash
table. For properties with the feature enabled, all requests for
resources in that property will go through the auxiliary
index, and all invalidations will walk the tree, as described.
For other properties, all invalidations will be matched per
URL, by computing the hash and looking it up in the MD5
hash table.

The types of expression patterns should preferably be
further constrained to be those that result in some maximum
number of trie nodes as the cover for the matching set. The
actual number of URLs in the matching set does not matter.
This requires a fixed prefix in the invalidation; in order to
support suffix invalidations (e.g., “*.jpg”) additional such
indexes would be needed.
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Machine and CDN Configuration

Recall that a service (e.g., a caching service, a reducer
service, a collector service, a rendezvous service, a control
service, etc.) may be considered to be a mechanism (e.g.,
software and/or hardware, alone or in combination) that runs
on a machine, where a “machine” refers to any general
purpose or special purpose computer device including one or
more processors, memory, etc. Recall too that a particular
machine may run multiple CDN services, i.e., services on
behalf of a CDN. As discussed above, the various CDN
services that a particular machine is running on behalf of the
CDN, or the various roles that a machine may take on for the
CDN, may be referred to as the flavor of that machine. A
machine may have multiple flavors and a machine may
change flavors.

This section describes how machines and services are
provisioned and configured.

In all of the flows described here it is assumed that events
are being generated and reported (as event streams) from the
machine.

Starting a Service (S)

It is first useful to describe the process of starting a service
(an arbitrary service) on a machine. In order to start running
a service (S) on a machine, with reference to the flow chart
in FIG. 24A, first obtain the application (code) correspond-
ing to service S, i.e., to provision the service S (at 2402).
Recall that the code (software) corresponding to a service
may be referred to as the application for that service and that
the application for a service may be treated as a CDN
property or resource. Thus this check for application code
may correspond to determining whether or not there are
resources on the machine corresponding to the required code
for the service S. Since the application code for service S
comprises one or more resources (CDN properties), the
application code may be invalidated in the same manner as
other resources. With reference to FIG. 24B, to obtain the
application (code) corresponding to service S (at 2402), first
check to determine if the code is already on the machine (at
2404). If there is no code (determined at 2404), or if the
current version of the code is not valid (determined at 2406),
then the machine obtains the latest version of the application
for the service S (at 2408).

With reference to FIG. 24C, the machine may obtain the
latest version of the application (at 2408) by obtaining it
from the control mechanism and/or from a peer (at 2410).
Since an application may comprise more than one resource,
it may not be necessary to obtain all of the resources
comprising the application. That is, it is only necessary to
obtain the invalid or missing resources.

With the latest version of the application (either already
present or obtained at 2402), the machine then obtains
configuration information for the service (at 2412). That is,
with the application for the service provisioned, the machine
then configures the service. With reference to the flow chart
in FIG. 24D, in order to obtain configuration information for
the service (at 2412), the machine determines whether it
already has configuration information for service S (at
2414), and, if so, whether or not that configuration infor-
mation is valid (at 2416). If the computer does not have
current/valid configuration information (as determined at
2414, 2416), then it obtains the latest version of the con-
figuration information for the service S (at 2418). The
machine may obtain the configuration (at 2418) by obtaining
it from the control mechanism (at 2420, FIG. 24E).

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that the flow charts in



US 9,634,905 B2

169

FIGS. 24B and 24D have the same structure. As with the
application (code) for a service, the configuration informa-
tion for a service is preferably made up of one or more
resources (CDN properties) on the machine. Therefore the
same approach may be used by the machine to obtain the
configuration information. It should be appreciated that
although two flow charts are used here to describe the
process, the same underlying mechanisms may be used to
obtain current versions of these resources (whether they be
application code or configuration information).

With reference again to the flowchart in FIG. 24 A, having
obtained the application for service (S) (at 2402) and the
required configuration information for service S (at 2412),
the system then needs to determine whether a version of this
service is already running on the machine (at 2422). As
noted earlier, a machine may run multiple services, and
some of these services may be of the same type. For
example, a machine may run multiple reducer services,
alone or along with other kinds of services. Preferably there
is only one Autognome (S0O) service per machine.

If it is determined (at 2422) that a version of this
service (S) is already running on the machine then the
system determines (at 2424) whether the new version of the
service is to replace the old version or whether they are to
both run on the machine. If the new version is to replace the
old version (as determined at 2424), then the system halts
the old version (at 2426) and then starts the service (S) (at
2428).

If it is determined (at 2422) that this service (S) is not
already running on the machine, or if there is an old version
and it is not to be replaced (as determined at 2424) then the
system starts the service (at 2428).

Halting a Service

With reference to the flowchart in FIG. 24F, when a
running service is to be halted (e.g., “Halt Running Service”
at 2426 in FIG. 24A), then the system should determine (at
2430) whether the service should stop immediately (a hard
stop) or whether it can wind down. If the service should
make a hard (immediate) stop (as determined at 2430), then
the service is terminated (at 2432). On the other hand, if the
service should first wind down (as determined at 2430), then
the service winds down its activities (at 2434) before ter-
minating (at 2432).

Winding down a service (at 2434) is service dependent
and may include one or more of the following:

1. Stop accepting requests (at 2436)

2. Flush the system (at 2438)

3. Finish current processing (at 2440)

It should be appreciated that the various wind-down
activities may be performed in any appropriate order, includ-
ing in series or in parallel. No order is implied for these three
activities in the diagram in FIG. 24F. Flushing the system
may also (or instead) take place after the service is termi-
nated (at 2432).

As an example, a cache service may wind down by taking
no more requests; and completing servicing of its current
requests. As another example, a reducer service may wind
down by no longer accepting incoming event streams and
finalizing its processing on the event streams that it already
had. A rendezvous mechanism may wind down by no longer
accepting incoming rendezvous request (e.g., name resolu-
tion requests) and by finalizing and processing its outstand-
ing requests. A collector mechanism may wind down by no
longer accepting inputs and by completing processing on the
data it already has. Normal winding down activity may be
curtailed to allow for halt processing in cases that prefer to
avoid an immediate halt but require an expedited halt.
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Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that different and/or
other wind-down processing may occur.

Startup Service (S) [2428]

Some services may depend on one or more other services
and may require the one or more other services to be running
before they can begin. Each service may start its dependent
services (at 2441 in FIG. 24G) as part of its startup process.

In order to start its dependent services (at 2441), with
reference to FIG. 24H, the system first determines the list of
dependent services (at 2450) and then starts each of them (at
2452) using the same “start service” process described with
reference to FIGS. 24A-241. It should be appreciated that
dependent services may, themselves, have dependent ser-
vices.

Prior to starting, a service may need to be configured and
conditioned (at 2443). Some configuration may need to take
place before the service is started. For example, typically
each service is configured to produce certain log informa-
tion.

The configuration and conditioning of a service (at 2443)
may also include certain administrative tasks. Preferably
each service registers with control mechanism (at 2454, FIG.
24]). A service may also register (at 2456) with various other
services (e.g., with reducers and/or collectors to which it has
been configured to send event streams). The service prefer-
ably also starts event logging and streaming (at 2458).

A service may start immediately or it may warm up before
starting. Accordingly, with reference to FIG. 24G, when a
system starts a service (e.g., at 2428 in FIG. 24A), the
system first determines (at 2442) whether the service is to
start immediately or whether it should first warm up. If the
service should start immediately (as determined at 2442),
then system starts running the service (at 2444). On the other
hand, if the system should first warm up (as determined at
2442), then the system performs a warm startup (at 2446).

For a warm startup the system performs one or more
warm up strategies (2448-1 . . . 2448-%). As with winding
down, warming up is service dependent, and there are
various warm-up strategies that can be adopted for each kind
of service. As shown in FIG. 24G, the various warm up
strategies (2448-1 . . . 2448-%k) may be performed in any
order(s), including fully or partially in parallel. No order is
implied by or should be read into the order in which the
activities are presented in the drawing.

Autognome

For any machine on (or to be added to) the CDN, the setup
of Layer 0, should minimally ensure that Autognome (S0) is
installed and will be run as a service, along with a minimal
configuration file that defines the agent ID, a list of initial
control mechanism names to contact for further instructions,
and possibly some keys and certificates. Preferably no other
setup is required.

Autognome may be started as with any other service.
Thus, with reference to FIG. 24], Autognome may be started
(at 2450) using the start service processing described with
reference to FIGS. 24A-241. Preferably Autognome (SO) is
started with an immediate start.

When such a minimal system is (re)started, Autognome
will read the minimal configuration file and also detect
where it last left off on this machine, e.g., by looking for
some persistent state (which will be reapplied if necessary).
Using knowledge of its identity, Autognome (SO) will then
contact the control mechanism (using information in the
initial minimal configuration file) for its network configu-
ration and its agent configuration (at 2460, FIG. 24K). The
network configuration may define, e.g., the actual control
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node(s), NDR node(s), and application code repositories it
should communicate with. The agent configuration defines
the desired state of services to be run on the local machine
After retrieving the agent configuration, Autognome (S0)
establishes the desired service state, loading RPMs as
needed from its assigned repositories and logging its state
changes via events to the NDR nodes (and to its local
persistent store) (at 2462).

From that point on Autognome (S0) listens for additional
commands (e.g., over HTTP) and polls the control mecha-
nism for updates to its agent and network configuration
every so often (say every 10 minutes) (at 2464), and
retrieves/reapplies such configurations when necessary (at
2466, 2468). It should be appreciated that process of starting
changed/new services (2468 FIG. 24K) may use the start
service process (2400 of FIG. 24A), and may include
shutting down unneeded services.

In preferred implementations Autognome (S0) will be idle
most of the time.

Preferably steps in configuration state changes at a local
agent that are applied by Autognome (SO) are logged as
events to the appropriate NDR agent(s). These event streams
may be reduced in the usual fashion to get global, real-time
feedback on the changes taking place in the network. Indi-
vidual Autognome services can also be queried directly for
status information via HTTP requests.

When Autognome starts multiple services (e.g., at 2462
and possibly at 2468 in FIG. 24K), those services may be
started in any order (unless the system imposes some
ordering). Thus, multiple services may be started in series,
in parallel, or in some combination thereof.

Autognome can be used for monitored and controlled
deployment of new versions of CDN software. This deploy-
ment, under control of the control mechanism, need not be
applied to all machines. For example, suppose a CDN
operator wants to deploy a new version of CDN software
(e.g., caching software) to some subset of clusters that meet
certain criteria, and that this new version is backward
compatible (i.e., the service can be restarted and the cache
will still be valid). The CDN operator also wants to do this
gradually and with minimal disruption, view the status of the
change as it happens, and be able to back it out if something
goes wrong.

The control mechanism knows the version(s) of CDN
software that each machine should run. This version infor-
mation may be defined, e.g., in the agent configuration.
Changes in a machine’s agent configuration file may cause
changes in the software running on that machine.

The control mechanism can apply arbitrary rules to pick
some of the machines to be updated. For example, the
control mechanism may deploy a new version of CDN
caching software on all clusters with cluster IDs divisible by
4 in a particular data center. A rule in the data center level
agent configuration template may be modified to use the new
version of the CDN software when cluster]D mod 4=0. A
new version of the agent configuration file would then be
detected at the next control pulse, and the change would be
initiated.

When a machine (via Autognome’s consumption of the
new agent configuration) learns that it needs to run a
different version of CDN software it issues a stop command
to the services that need to be stopped (at least the service
being updated, possibly others), it installs the proper version
of the RPMs needed, and then restarts the required services.
The machine (perhaps via Autognome) then runs a local
health check to determine whether or not the change was
successful. If unsuccessful, the change is undone. If the undo
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fails, the machine will attempt a recovery (as defined by the
agent’s configuration, and may involve a restart of the
machine) Such reconfiguration would generally be per-
formed by machines coordinating the activity amongst
themselves. For instance, when a cluster is notified that it is
preferably, but not necessarily, upgraded to a new version of
software, this will typically be performed as a rolling
upgrade across the machines in the cluster; a first machine
is selected and the upgrade applied to and the second only
begins to perform its upgrade once the first has been verified
as successfully upgraded. This reduces impact to the net-
work as a whole by minimizing the number of machines that
are winding down at any given time.

At each step of the way, events are generated to enable
remote monitoring of the actual status of the machine during
the deployment. Such events can also be used to influence
the rendezvous system. For instance, when performing an
upgrade of cache service software on a cluster of machines,
new client requests may be directed to alternate locations
until that process has completed (either bringing up the new
version of the cache service software on the cluster being
upgraded, or after having been successfully rolled back if a
problem is encountered). Alarms can be set up based on
collection of these events in NDR to detect systems that are
stuck in failed attempts at reconfiguration (e.g., it tried a
restart but never came back). Such systems may require
manual intervention.

Using Autognome for Automatic Binding Reconfigura-
tion

Bindings establish the mapping between groups of prop-
erties and a set of machines provisioned to serve those
properties in a particular way. Changing bindings involves
(1) recognizing that the current bindings are over or under
provisioned, (2) deciding what a better binding would be,
and (3) making the necessary changes. This all needs to be
done in a globally stable manner (in the control systems
theoretic sense of stability). Collaboration between the NDR
and the control mechanism provide the means to implement
(1) and (2), and Autognome provides the mechanism for (3).

For (3) to be possible even with Autognome, there is
preferably either a pool of available machines that can be
rebound on demand, or binding changes need to be zero sum
(capacity removed from one binding group must be allo-
cated to another one). If the pool of available capacity is
modeled as a binding group of its own (or perhaps several),
then all changes can be considered as being zero sum. These
binding pools may be defined by geography and/or by the
kind of hardware their machines have in common. Other
active binding groups may then be defined to be linked with
one or more of these virtual binding pools. The pools are
then the source when additional capacity is needed in a
binding group, and they are the destination of capacity when
a binding group has overcapacity.

To bring new systems into a binding group and to take
systems out, it may be preferable for additional service
specific commands to ramp a service up (e.g., warn/prefetch
an edge cache) or ramp a service down (e.g., drain an edge
cache). These operations must be accounted for in the
command set that Autognome can issue to specific services.
Adding a Component or Service to the CDN

Adding a Machine to the CDN

When a new CDN machine is added to a CDN, the CDN
(the control mechanism) determines what role(s) that
machine should take within the CDN (i.e., the control
mechanism determines what flavor the machine should
have). This role/flavor determination may be based, at least
in part, on information provided by the machine to the
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control mechanism. The new machine will then provision
and configure the appropriate services for its role(s). Dif-
ferent services will have different configuration require-
ments and options.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that a new machine
may be one that has never been connected to the CDN before
or one that has been disconnected from the CDN for some
reason.

Addition of a new machine to a CDN is described here in
greater detail. For the sake of this description, and with
reference again to FIG. 2A, a “new” CDN machine is a
machine 300 configured with at least sufficient core
program(s) 302 and at least one provisioning service SO
(“Autognome”) to enable initial provisioning of the machine
within the CDN. As part of its configuration, the machine
300 is preferably configured with a hostname of the CDN’s
control mechanism (e.g. control.fp.net), and upon being
connected to a network (e.g., the Internet), the machine
contacts the control mechanism and performs some initial
registration. This process may allow the control mechanism
to determine whether the machine is authorized to partici-
pate in and be a part of the CDN. The registration process is
preferably automated and performed by programs or ser-
vices (e.g., Service SO) running on the machine and on the
control mechanism.

In presently preferred implementation, a new machine
may be added to a CDN by starting the Autognome service
(S0) on the machine as described above (FIG. 24J).

The machine may include information (e.g., certificates)
to enable the control mechanism to perform authentication
as part of the initial registration.

Prior to provisioning and configuration of other services,
the initial service (Service SO) preferably confirms that it is
up to date. If not, SO updates itself and the machine starts
running the updated version of SO (terminating the prior
version). [t may be necessary for the machine to reboot itself
one or more times in order to be running the most current
version of SO. In general, service SO (“Autognome”) always
checks that it is running the latest version of itself before
proceeding with any provisioning or configuration.

Once a current version of Autognome (SO) is running it
contacts the control mechanism to obtain configuration
information. The machine (via Autognome (S0)) preferably
also provides the control mechanism with information about
the machine itself (e.g., its capabilities, hardware, etc.). This
information may have been provided as part of the regis-
tration process.

Although the machine was preconfigured with a hostname
of the CDN’s control mechanism (e.g. control.fp.net), the
control mechanism may provide the machine with a different
address to use once registration has taken place.

The control mechanism determines what role(s) the
machine should take within the CDN. This determination
may be based, at least in part, on one or more of the
following factors:

(1) information provided by the machine (e.g., capabili-

ties, hardware, etc.),

(2) a network location of the machine (as determined by

the control mechanism),

(3) current needs of the CDN,

(4) load on components of the CDN;

(5) health of components of the CDN.

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that different and/or
other factors may be used to determine the flavor of a
machine. In addition, it should be understood that operator
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intervention may be used to override control mechanism
decisions about a machines role(s).

Some of the information used to determine a machine’s
role(s) (e.g., load and health information) may have been
determined by the control mechanism using the reducer/
collector networks.

Once Autognome (S0) knows the role(s) that the machine
is to play, it may provision and initiate the services corre-
sponding to each of those roles. For example, if the machine
is to be a cache server (i.e., run caching services), then
Autognome (S0) provisions and initiates the appropriate
caching services. Similarly, if the machine is to be a reducer
(i.e., run reducer services), then Autognome (SO) provisions
and initiates the appropriate reducer services, and so on for
collector services, rendezvous services, etc. These services
correspond to services 308 (S1 . . . Sk) running on the
machine 300. Recall that a machine may run multiple
services of different kinds, so that, e.g., a machine may run
cache server services and reducer services and collector
services.

The machine may be shipped with software code for each
of the services that a CDN machine is likely to run, or
Autognome (S0) may download the code, as needed (e.g.,
using Repoman, described above). If the code for a service
is already available on the machine, then its validity will
need to be checked. The machine may treat software code
for the various services as CDN resources, and then use the
CDN’s invalidation process to determine whether or not to
update the code for any particular service.

Thus, for each role that the machine will take (as
instructed by the control mechanism), Autognome (SO0):
obtains/updates the code for the service(s) associated with
that role; and then configures and initiates the service(s)
associated with that role.

As discussed above, each service may also produce cer-
tain log information. As part of its initial configuration, each
service’s log events are configured. Since log events are
preferably sent to one or more reducers, the addresses of
those reducers need to be provided to the services. Each
service should preferably register with the reducers to which
it is to send event streams, so that the reducers know to
expect the streams and the services can ensure that at least
one reducer is getting their streams.

Once a service is initialized it may begin its operation
within the CDN. In some cases, as discussed below, delayed
or modified startup may be used in order to “warm up” the
service.

Adding a New Cache Service to the CDN

When a new cache service is to be added to the CDN (i.e.,
a new cache service is to be started on a machine in the
CDN), the control mechanism needs to get information
about that new cache (e.g., what group/region it is in, its IP
address, its VIP, some capacity information, etc.). Similarly,
in order to operate within the CDN, the new cache machine
needs to get the current customer configuration data and
other configuration data from the control mechanism.

Preferably a new cache service is started using the process
for starting a service described with reference to FIGS.
24A-241.

A cache service may be pre-configured so that when it
connects to the network (e.g., to the Internet) it sends a
request to the control mechanism for the resources that it
needs. These requests can be made of the control mechanism
using standard HTTP requests. The new cache service may,
e.g., request a single configuration object from the control
mechanism, and that configuration object may, itself,
include the URLs of other configuration objects needed by
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the cache service. The control mechanism may be config-
ured to similarly request configuration data from the new
cache service, also in the form of one or more HTTP
requests, although preferably the new cache provides needed
information to the control mechanism as part of one of its
requests. It should be understood that appropriate security
and encryption may be used to prevent unauthorized con-
nection to a CDN. Once the new cache has sufficient
customer data (global data 1108 in FIG. 15), it can begin to
function as a CDN cache service.

In some cases the new cache service may go through a
warming phase (corresponding to “Warm Startup” 2446 in
FIG. 24G) in which it may query its neighbors or peers and
preemptively pull the GCO (Global Configuration Object)
and some CCS data (e.g., of popular customers at the
neighbor) before accepting any incoming client connections
(corresponding to a warm-up strategy 2448 in FIG. 24G).
The cache service may, in some cases, pre-fetch popular
content (corresponding to another warm-up strategy 2448 in
FIG. 24G). In some cases the new cache service may also
influence local load balancing, so that for a period of time it
may get less traffic than other members of the cluster (e.g.,
until its cache miss rate is substantially the same as the rest
of the cluster of which it is a member) (corresponding to
another warm-up strategy 2448 in FIG. 24G).

The addition of a cache service to a CDN is summarized
here: a cache service newly added to the CDN preferably
first registers with the control mechanism.

Once registered, the cache service obtains configuration
data from the control mechanism. The cache may request the
configuration data using one or more HTTP requests. In
some cases, e.g., as noted above, the new cache service may
request a single configuration object from the control
mechanism, and that configuration object may, itself,
include the URLs of other configuration objects needed by
the cache.

In some cases, when a cache service is added to a CDN,
the cache service may provide information to the CDN (i.e.,
to the control mechanism) about the cache’s capabilities
and/or capacities.

The CDN (via the control mechanism) may allocate the
cache a specific role (or roles) within the CDN. Such role
allocation may be based, e.g., at least in part on information
provided to the CDN from the cache server. For example, the
CDN may assign a newly added cache server the role of
serving certain classes of resources/properties (e.g., by size,
by type, by owner). The CDN may assign a newly added
cache service a set of peers. This peer assignment may be
based, e.g., on location information (e.g., an IP address)
associated with the new cache server. The CDN may allocate
a cache service to a group or sector. Existing members of the
cache service group or sector may need to be notified of the
addition, in order to accept peering requests from the new
server.

A cache server may also determine its peers by determin-
ing its location (e.g., behind a switch in a cache cluster).

It should be appreciated that the registration may be
combined with the process of obtaining the configuration
data.

Some of the configuration data obtained during this
process may correspond to some or all of the global data
1108, and preferably include the GCO. Since the CDN
components essentially serve content to each other (e.g., the
control mechanism serves CDN configuration content to the
new cache (and vice versa)), from the point of view of the
CDN components, as noted, the CDN may sometimes be
considered a customer. As such, the CDN may itself have
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one or more CCSs associated therewith. Preferably the
configuration data obtained from the control mechanism by
the cache service includes one or more CCSs associated with
the CDN. These CDN CCSs will allow the cache to perform
the appropriate processing when serving CDN content to
other CDN components.

The control mechanism may obtain data from the new
cache. While the cache may provide some information to the
control mechanism during the initial registration process, the
control mechanism may also obtain additional information
from the new cache after registration. This information may
include information, e.g., relating to the capacity and type of
the new cache.

The new cache will also preferably verify that it is up to
date as far as system/application software. This may require
a bootstrap process to pull new software packages, e.g., in
the form of RPMs from caches/control mechanism, verify-
ing them, installing them and restarting (up to and including
rebooting the server to pick up new operating system
components for instance).

At this time the new cache is ready to begin serving
content on behalf of the CDN. However, it may be desirable
in some cases for the new cache to “warm up” by obtaining
information from other caches. In particular, the new cache
may obtain customer data (e.g., CCSs) from nearby or peer
caches in anticipation of serving content on behalf of those
customers. Preferably the new cache will query members of
the cluster it is in to obtain the popular CCSs and popular
content that those cluster members know of. A cache may
consider other caches to be nearby based on various factors,
e.g., some measure of network distance, whether the other
caches are part of the same cache cluster or cache site, etc.

It should be appreciated that since the cache is using a
hostname to connect to the control mechanism, the CDN
rendezvous mechanism can rendezvous the cache to a con-
trol mechanism machine or component that is “best” or
“optimal” for that cache. In some cases, once the cache has
discovered (or been told) which other caches are members of
its cluster and its peers, it may issue requests destined for the
control mechanism to them as well, or instead. This may
reduce direct load on the control mechanism and accelerate
retrieval of such data.

New Cache Warm Up

(Corresponding to “Warm Startup” 2446 in FIG. 24G)

When a new cache service is added to a CDN, it may
begin processing CDN requests as soon as it has been
recognized by the CDN (i.e., as soon as it has registered with
the CDN), and obtained sufficient information about the
CDN. The minimal amount of sufficient information that a
new cache needs before it can begin handling requests
includes some global information. This minimal information
will allow the cache to at least know where to go to get
additional information needed to handle requests.

In preferred cases, a new cache service should obtain at
least a copy of the GCO before starting to accept and handle
resource requests. Once a cache has the GCO, it can at least
determine whether requests are for properties (i.e., for
resources associated with CDN customers). To actually
serve a request on behalf of a particular CDN customer, the
cache also needs a certain amount of customer-specific data,
including, specifically, the CCS(s) for that customer.

There are various degrees to which a newly added cache
can warm up before handling resource requests. At one
extreme, the newly added cache can go online (i.e., begin
handling requests) as soon as it has the minimum informa-
tion needed (e.g., the GCO). In those cases, the cache will
pull required CCSs as needed, effectively on demand. In
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such cases, the initial request response time for that cache
will be relatively slow (since it has to essentially configure
itself for each customer).

The newly added cache service may also look to its peers
or to other caches in the same cluster or cache site to
determine additional configuration information that it might
beneficially have. For example, as noted above, the cache
may obtain and process CCSs from peers or other nearby
caches on the assumption that it will be serving content on
behalf of the same customers as those other peers and
caches. In these cases, since the new cache has already
pre-processed CCSs from various customers, once it goes
online it will not have any delays relating to those custom-
ers.

At another level, as discussed above, the cache may also
look at the actual content (properties) that its peers and/or
other nearby caches are serving, and may choose to pre-
populate its cache storage with that content. In some cases,
the new cache may pre-populate its cache storage with
known popular content that is being served by its peers
and/or other caches.

In addition to (or instead of the above), a new cache may
also warm up (i.e., preload certain information and/or con-
tent) based on information or instructions received from the
control mechanism during registration. For example, the
control mechanism may advise a new cache that it might be
serving a certain type of content on behalf of certain content
providers. In these cases, the new cache can preload the
CCSs and possibly some of the content for those content
providers.

Since the new cache may serve content to other CDN
components (e.g., to peers), the CDN may preload the
CDN’s CCS(s) as part of a warm-up process.

Adding a New Reducer Service to the CDN

In addition to registering with the CDN, a reducer service
preferably knows where to send its event streams (its own
log streams), where to send the output of its processing (i.e.,
which collectors), and which services are sending it event
streams. In an embodiment, a reducer also knows what filter
function(s) to apply to its inputs.

Adding a New Collector Service to the CDN

In addition to registering with the CDN, a collector
service preferably knows where to send its event streams (its
own log streams), where to send the output of its processing
(e.g., to the control), and which reducer services are sending
it event streams. In an embodiment, a collector also knows
what function(s) to apply to its inputs.

Adding a New Rendezvous Service to the CDN

In addition to registering with the CDN, a collector
service preferably knows where to send its event streams (its
own log streams). A rendezvous service also needs to obtain
the latest version of the rendezvous information (e.g., the
mapping of supernames (CNAMES) to BNAMES,
BNAMES to VIPs) as well as where to retrieve load and
connectivity data from (e.g., rendezvous collectors).

Example

Exemplary initialization of a new machine joining an
existing CDN may be accomplished through the following
steps (with reference to the flowchart in FIG. 24L):

1. (Platform Installation 2470) An authorized user gets
access to the machine and installs the minimal configuration
(e.g., a Linux distribution, kernel, and Autognome setup),
establishes the globally unique physical identity of the
machine, and configures the IP addresses of the machine’s
management NICs.
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2. (Machine Registration 2472) The authorized user runs
an Autognome command on the machine to register it with
some control network (specified by the user). The user is
authenticated, and then the machine’s physical identity is
registered, an agent 1D is assigned, and a client certificate for
the agent is distributed to the machine from the control
network. The control network to contact for further instruc-
tions may also be changed at this step.

3. (Agent Configuration 2474) Once registered, the
machine is initially in a “drone” state, a lone member of the
CDN just running the OS and Autognome. Autognome
begins making regular contact with the control network,
authenticating itself each time with its assigned client cer-
tificate, pulling the configuration of the agent and changing
its state accordingly. This configuration specifies, e.g.:

the control nodes to contact for future instructions;

the event reducers to which to send agent configuration
state change events;

a manifest of control resources with version information.
This manifest lists separately retrievable control
resources that specify:
the service versions to run and what state they should

be in;
the cluster to join and the VIPs and ports to configure;
the client certificate to use for future control contacts.

4. (Service Installation 2476) Queries a remote RPM
repository for the RPMs needed to run the assigned service
versions, and installs them.

5. (Heartbeat/VIP Initialization 2478) The Heartbeat (HB)
service is started, which reads the cluster and VIP configu-
ration information from a set of local files generated by
Autognome, configures NICs and host firewalls (e.g.,
iptables) for the assigned VIPs and port numbers, and begins
monitoring the status of VIP/ports on all machines in the
cluster, continuously updating NICs and/or the firewall as
VIP availability changes or configuration changes are
received via changes detected in the local files.

6. (Service Initialization 2480) Starts all other assigned
services, providing configured service identifiers and
launching each service into a particular target state.

7. (Service Configuration 2482) Each service may initiate
further contact with the control network for service specific
bindings and other configuration information (such as ser-
vice specific reducers to use). Services which accept
requests will begin listening on VIPs, which the HB ring will
detect and respond to with corresponding firewall changes.

8. (Steady State) Eventually all machines in the cluster
will converge to a consistent view of VIPs that are up, with
all configured services in the desired state and listening to
the right VIPs.

Machine Reconfiguration

Once configured the first time, a machine’s Autognome
may periodically poll one of its assigned control nodes for
configuration changes. Changes could include one or more
of:

Assignment to different control nodes or reducers;

Allocation of a different client certificate;

Assignment to a different cluster;

Allocation of different VIPs;

Allocation of different services, different service versions,
or state changes for existing services.

Autognome will detect changes in control resources and
retrieve new ones only when changed, and when new control
resources are consumed it will detect those aspects of the
new configuration which are different from its current state,
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and apply only the changes. First, items that are not part of
the new configuration are brought down (which may involve
a wind-down phase):

If the cluster changed, then there may be agents from the
old cluster that are no longer members of the new
cluster and these will be deleted from the set of agents
that the local HB will monitor.

Current VIPs/ports not in the new configuration will be
shut down (they will be deleted from the configuration
files read by HB and other services will be notified that
certain VIPs/ports are no longer active and they will
stop listening to them).

Currently running service versions which are not in the
new configuration will be stopped.

At this point the machine is in a state reflecting the
intersection of the old and new state. What remains is to add
new items that were not in the old state.

New agents are added to the list of agents monitored by
HB by writing to the file that HB uses to detect cluster
changes.

New VIPs/ports are configured by HB by writing to the
file that HB uses to define the VIPs in the cluster.

New services are launched into their target state and
existing services may be moved into new states by
running service specific commands (or Autognome
may leave it to the services to detect their new target
states).

It should be appreciated that the process of moving from
the old configuration to the new may follow a different order,
for instance starting new services prior to taking down old
ones, due to the specific requirements of the service and the
state of the network.

Services

Service States

Each service has a service-level state, a VIP/port level
state for each unique VIP/port, and a state per request
collection. The value of each of these state variables is taken
from a discrete set of states that depends on the type of state
variable and type of service.

The service can be commanded to a different state (at the
service level, VIP/port, or request collection level) either via
an argument in the command that launches the service, via
a configuration retrieved from the control network, or via a
management command. The actual mechanisms available,
and the meaning of different states are dependent on the
service type.

New Service Initialization

Each service instance will be launched with arguments
specifying a service identifier, a control node to contact, and
a target initial state. Once launched, the service will contact
the control node for its configuration, which will contain:

the control nodes to contact for future instructions;

a new target state;

the event reducers to which to send service state change
events;

a manifest of other control resources with version infor-
mation, listing separately retrievable control resources
that specify:

VIPs/ports to listen to for connections;

layered request configurations (an LCO per layer),
which may lead to a large number of other configu-
ration objects being retrieved based on the requests
this service is supposed to handle;

the client certificate to use for future control contacts;

Potentially many other things, depending on the nature
of the service the cluster is to join and the VIPs and
ports to configure.
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Service Reconfiguration

Once initially configured, a service instance will periodi-
cally poll its assigned control node for configuration
changes. Additionally, some services may provide manage-
ment interfaces through which configuration changes can be
pushed to the service. The net effect of either of these is that
the service will detect differences between its current (old)
configuration and its new one, and it will apply only the
changes.

Modifying the Flavor of a Machine

As discussed above, a machine may have multiple flavors
and a machine may change flavors. In general, as part of a
flavor change for a machine, any and all of the services
running on that machine (except for the Autognome service
(S0)) may be terminated, and any possible CDN services
may be initiated. For example, a machine that is running a
caching service may be modified to also run a reducer
service. As another example, a machine that is running
multiple reducer services may be modified to run an addition
reducer service. As yet another example, a machine that is
running caching services may be modified to run rendezvous
services (and no caching services).

The flavor change of a machine may be initiated by the
control mechanism interacting with the Autognome service
(SO) running on that machine, whereby the control mecha-
nism tells the machine what services it should be running. As
described above, Autognome is a service that runs on all
CDN machines and determines (at 2464-2462, FIG. 24K)
whether configuration changes (i.e., service changes) on a
machine are required. For example, having received instruc-
tions from the control mechanism (at 2464), Autognome will
terminate services, as needed, and will initiate needed new
services (at 2462). New services may be initiated in the same
manner as for new machines (discussed above with refer-
ence to FIGS. 24A-24H). In some cases the new services
may be started while the machine is still running. In other
cases, the machine may have to be restarted before the new
services can begin their operation.

Instructions to the Autognome service (S0) to modify a
machine’s flavor may be obtained from the control mecha-
nism. The control mechanism may determine that a machine
should change its flavor (run different and/or other services)
based on information determined from event streams pro-
cessed by the CDN. For example, as shown in FIG. 2D, the
Autognome service (S0-A) receives control information (C)
from the control services. That control information may
have been determined from event streams from any/all other
CDN services. For example, the control may determine,
based at least in part on event information, that a particular
rendezvous service is not active. In that case the control
mechanism may determine that one of the other machines in
the CDN should provide rendezvous services. The control
mechanism selects a machine (e.g., a machine currently
providing caching services) and instructs the Autognome
service (S0) on the selected machine to change that machine
to run rendezvous services. The machine may be selected,
e.g., based on its load. For instance, a lightly loaded caching
service may be terminated without much loss of effective
network capacity. The Autognome service (S0) on the
selected machine terminates the caching service that was
running on that machine and starts up a rendezvous service
on that machine. As noted, service termination may follow
certain protocols based on the type of service and on the
urgency of the change. In some cases the rendezvous service
may be started before the caching service is terminated.
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Termination of Services

As discussed above, with reference to FIG. 24F, when a
machine is instructed to terminate certain services, that
machine may need to perform a clean shut-down process
(i.e., a wind down 2434). For example, the machine may
need to continue some or all of those services in order to
satisfy current and ongoing requests. Timeout(s) or thresh-
olds may be used to constrain the wind down period, based
in part on the type of service and the desired state of the
machine after service termination.

The Executive

It is anticipated that in a CDN a cache machine with a 10
Gb/sec link, serving about 1 Mb/second per client, should be
able to serve on the order of 10,000 concurrent clients, with
about ten (10) activities per client. This requires on the order
of 100,000 concurrent activities. The inventors realized that
in order for a cache machine (and thus a CDN) to operate
efficiently and to take advantage of new multi-core computer
architectures, the cache machine would have to implement
some efficient form of concurrency.

More specifically, and based on their experience with
CDNs, the inventors realized and understood that network
applications (e.g., serving and distributing content in a
CDN) typically involved long wait periods. They therefore
realized that it would be useful to perform many small jobs
in order to be efficient (i.e., in the case of a CDN cache, it
would be beneficial to do tens or even hundreds of thousands
of things concurrently). They also realized that it would be
useful and beneficial to keep all processors (CPUs) active
simultaneously. The inventors realized that the handling of
an individual request in this type of application generally
consists of small amounts of computation separated by
relatively long wait times (long here being relative to the
speed of modern CPUs). Therefore, while requests are in the
waiting stage, other requests can be in the compute stage,
thereby keeping the CPUs busy. However, not all requests
require long wait times, and that a concurrency scheme that
assumed that there would always be long wait times would
disadvantage those requests where there were no long wait
times.

A concurrency scheme used in caches could take advan-
tage of the type of work that caches were expected to
perform in order to improve performance. For example,
most network applications have similar structure and most
network operations take on the order of milliseconds. A
cache could perform useful operations while waiting for
relatively slower network operations or disk operations to
complete. (Disk operations sometimes take longer than
milliseconds.) In addition, networking (and the timing in
large networks such as the Internet) is inherently and largely
unpredictable and unreliable. To deal with these aspects, a
preferred concurrency scheme should support asynchrony
(to deal with unpredictable timing) and organized exception
handling (to deal with lots of potential failure modes and
unreliability of networks).

The inventors considered approaches such as one thread
per client to be too limiting for challenges of real-world
caches in operational CDNs. In a thread-per-client model
each client consumes an inordinate amount of system
resources while spending most of its time waiting (e.g., for
network or disk 1/O).

Those of ordinary skill in the art will realize and under-
stand, upon reading this description, that these other
approaches to concurrency may work for smaller caches or
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CDNes, but they do not scale well. Thus, while the disclosed
executive approach is preferred, other approaches are con-
templated and may be used.

The presently preferred version of the Executive assumes
a 64-bit CPU with 64-byte cache lines. Basic data structures
are all cache-line sized and aligned. While this approach
improves efficiency with respect to retrieving data, moving
it around, and storing it, it may force some overloading of
data fields within data structures. Those of ordinary skill in
the art will realize and understand, upon reading this
description, that other implementations may be used.

Tasks, Events, and Vcores

The basic objects in the Executive are tasks, events, and
veores (Virtual CPU cores). FIGS. 25A-25B show relation-
ships between the Executive’s tasks, events and vcores.

A virtual CPU core (or veore) may be considered, in some
aspects, to be like a pthread with some data. There may be
any number of vcores, although the Executive is expected to
be most efficient when there is one vcore per physical core,
with each vcore bound to or associated with a fixed physical
core.

In order to support synchronization, each vcore is
assigned a vcore identifier (vid), and each task has a vid field
that specifies the vcore to which that task belongs.

Each task has a corresponding input event list. For
example, as shown in FIG. 25A, the task block T has a list
of three events (denoted E1, E2, E3 in the drawing).

Each vcore has a prioritized list of tasks called its run
queue. E.g., FIG. 25B shows vcore no. 2 with a run queue
comprising a number of tasks (denoted T1, T2, T3), each
with a corresponding event list (E11 for task T1, E21 and
E22 for task T2, and E31 for task T3). One task (T4) is
currently running, and a number of tasks (T5 . . . T6) are
waiting. The task block Tin FIG. 25A is shown with VID=2
(i.e., that task is associated with vcore no. 2).

An Executive task is described by a function pointer (f),
a data pointer (d), and some other (e.g., task accounting)
information. A task may be run by invoking the function on
the data (e.g., f(d)). Each task has a task identifier or handle
(tid). With reference to the exemplary task structure in FIG.
25C, preferably a task is packed into a 128-byte structure,
and is identified by a 4-byte integer task handle (“tid” or task
id).

Channels are a special type of Executive task. A channel
task contains pointer to “Channel Information Block” (chib).
Each chib is channel-type-specific, and contains methods
for:

dropoff (asynchronous), submission (maybe synchro-

nous) and return (deliver) of events (where the events
being returned are being returned to a channel from
another channel)

timeout

close, destroy

migrating

create entry point

and various others.

Channels have flags set and have the wake/chib field
points to a chib. User tasks have no flags, whilst the
wake/chib field points to the wakeup predicate (this is an
example of the field overloading referred to earlier). Prio
determines where a task gets placed on the run queue.

The channel types may include some or all of the follow-
ing:

Network

serv (passive listener)
conn (active connection)
udp (datagram)



US 9,634,905 B2

183
resolv (DNS resolver)
SSL Channel
General buffer channel
Connection channel
Async [/O
aios (aio slave)
aio (aio master)
HTTP
fpnsh_conn (HTTP parser and formatter)
Application Specific, e.g., for cache:
the sequencer channel (manages running of handlers)
various Lua-related channels (handle dealing with Lua
engines and running them)

In some embodiments, the Async IO channels may be
performed by the 1O library. An aios and aio channel may
not be used, and a separate non-Executive library (libfpio)
will handle asynchronous I/O.

As used herein “cid” refers to a “channel id” and “tid”
means a “task id”. In practice, the “cid” field may be used
as the “to” address and the “tid” field is used as the “from”
address of an event. There are cases of both task-to-task and
channel-to-channel communication where a “cid” may actu-
ally be a task id, and vice versa.

The task structure is preferably cache line aligned. In the
drawing (FIG. 25C), the function pointer is denoted func. A
task structure may have additional space for use as scratch
space. In an implementation, a task structure is 128 bytes, of
which 48 bytes free for task use, although a given task is
always free to allocate more memory for itself and keep
track of it by placing a pointer in the task structure.

Every task contains a reference counter (refs), and a task
dies if it is dispatched with its reference counter set to zero
(refs==0). A reference (also known as “cid” or channel id,
also known as “tid”) is a copy of the integer id of a task and
is created when the task is created, or when a task itself calls
ns_tid_alloc( ). A reference is destroyed when returned to the
task during close or discard or the task itself calls
ns_tid_free( ). Those of ordinary skill in the art will realize
and understand, upon reading this description, that the
function names are provided here by way of example only,
and are not intended to limit the scope of the system in any
way.

Reference are capabilities that should not be duplicated or
destroyed and should be carefully tracked. They are used in
the tid and cid fields of events.

The Executive uses counting references to prevent stale
references (they are an Executive analog of locks).

An event is a message block (preferably 128 bytes,
including 64 bytes for scratch space) and contains two task
references (two tids), one for the initiator task (tid) and the
other for the target task (cid). The 64-byte scratch space may
be divided into internal and external scratch space. Events
may be linked.

In operation, each vcore thread runs an endless loop and:

retrieves (e.g., pops) the highest priority task t from its run

queue;

calls t—=F(t);

calls ns_dispatch(t) to requeue, destroy or abandon the

task t.

The following two rules should ensure memory consis-
tency:

Access rule: If another task has the same vid as you, you

can safely access its data.

Migration rule: Only vcore n can change a vid value to or

from n.
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The Executive is started on a host by creating an appro-
priate number of vcores for that host and then starting the
first task. E.g., to start the Executive with n vcores, call:

ns_begin(first_task_func, n);

The first task creates and launches more tasks and chan-
nels, e.g., as follows:

w

first_task_ func( )

10
t =ns_ task( );
ns__launch(t);
cidl = ns_ chan(foospec, 0);

Tasks and channels create events and communicate with
each other:

20 e =ns_event( )
e->cid = cidl

ns__dropofi{e)

Tasks, channels and events are created and die as neces-
sary.

ns_task( ); ns_Chan( ); ns_event ( ); return_ns_die ( );

In a preferred implementation, the Executive will exit
when the last task exits.

There are two styles of communication within the Execu-
tive, namely guaranteed asynchronous communication and
potentially asynchronous communication.

Guaranteed asynchronous communication puts an event
on the input queue of a destination task, and wakes the
destination task, i.e., puts it on the run queuve. The destina-
tion task runs (later) and an event arrives back on the input
queue of the source task. It should be appreciated that the
source task may choose to send the event “anonymously”
(that is, without a tid), in which case no response will return.
Another option is for the source task to provide the tid of
some third task to which the event will be delivered once the
destination task is done with it. This type of communication
is lightweight and non-blocking. E.g., ns_event_dropofi(e)
uses e—cid as destination; ns_event_deliver(e) uses e—>tid
as destination. Basically, ns_event_dropoff is used by tasks
to drop an event off to a channel, and ns_event_deliver is
used by tasks to return events to whoever sent them.

Potentially asynchronous communication is invoked, e.g.,
by

e=ns_submit(e).

This approach works as follows:
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Passes event to destination task

Suspends current task

Executes destination task instead

Event pointer returned as function return value
Resumes current task.
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Potentially asynchronous communication can go asyn-
chronous by returning null pointer in step S4, and delivering
the event later.

Communication reverts to asynchronous if, e.g., the des-
tination task is not on the same vcore, or there is too much
work to do in one run, or the task needs to wait for internal
asynchronous operations. It should be appreciated, however,
that synchronous operation may, in some cases, be achieved
even if the destination is a different vcore.
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The destination does not know/care if it was called via
dropoff( ) (i.e., as Guaranteed asynchronous) or submit( )
(i.e., as Potentially asynchronous). Events always arrive on
the input queue, which is accessed via ns_next_event( ).
Events are returned by channels using ns_event_deliver( ).
If the destination is a channel, it can know whether an event
was dropped off or submitted, since these are separate chib
entry points which can be overridden.

Events can be transferred, e.g., using the following code:

ns_event_t *e = ns__event( );

e->tid = ns_ tid( );

e->cid = some__cid;

some__cid = 0;

e->opcode = Executive_ OP__READ_ BUFFER;
e->timeout = 5.0;

e->ns__buf_arg = malloc(1024);
e->ns__buf__count = 1024;

e = ns__submit(e);

This example demonstrates care about reference counting.
Since some_cid represents a reference and that reference has
been transferred to e—cid, the value of some_cid gets
zeroed.

This event transfer may be wrapped in a function, e.g., as:

ns_event_t *e = ns_ event( );
e->tid = ns__tid( );

e->cid = some__cid;

e = ns_submit_ 1k read(e, 1024);

Event Driven Programs

The following code shows a basic “loop-switch” skeleton
for an Executive task function presented in a ‘C’ like
language:

task__func(t)
while((e = ns__next_event( ))) {

switch(event__type(e)) {
case TYPEO:
break;
case TYPEn:
break;

ns__return(e);

return ns_ wait( );

}

The following example code shows a basic “loop-switch”
skeleton for an Executive task function with submit( ):

task__func(t)

e=0;
while(e Il (e = ns_next_event( ))) {
switch(event__type(e)) {
case TYPEO:
e = submit(e);
continue;

case TYPEn:

break;
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-continued

ns__return(e);

return ns_ wait( );

FIGS. 25D-25E compare the Executive stack of the
Executive submit operation to that for C procedure calls.
The Executive Submit operation (e=submit(e)) is analogous
to a C procedure call, with the important difference that there
is the option to go asynchronous when an event is submitted.
The Executive’s task blocks are analogous to C stack
frames. The Executive’s event blocks are analogous to C’s
arg and return address areas; and the Executive’s tid & tag
are analogous to C’s return address.

However, in the Executive multiple calls can be active
simultaneously and frames can live on after the call. This
allows writing a potentially asynchronous hook, e.g.,

e=submit_op_foo(e, args);

Channels may be created using a parameter block called
a spec, e.g.:

ns__foo_t *spec = ns__foo( ); /* create spec for foo channel */
spec->paraml = vall; /* set parameter */

spec->param? = val2; /* set parameter */

cid = ns__chan(spec, 5); /* create foo chan, return 5 refs*/
ns__foo_ (spec); /* destroy spec */

A channel may be closed by returning the refs, e.g.:

ns_ close__cid(cid, 4);/* Explicit close, 1 + 4 refs */
ns_ discard_ cid(cid, 1);/* Return 1 + 1 refs */
ns_ discard_ cid(cid, 2);/* Return 1 +2 refs, implicit close */

A channel will not be destroyed until all refs have been
returned.

A global exchange (e.g., as shown in FIG. 25F) may be
used to transfer pointer ownership between vcores. Typed
pointers are packed into cache lines which are used to
transfer the pointers efficiently, via mutex-protected queues.
While various techniques are used to make the global
exchange efficient, e.g., amortization of lock cost by trans-
ferring multiple messages with a single lock transaction,
lock-free inspection of a queue to see if there may be data
(only need the lock if data is seen), etc., it should be
appreciated that a “direct exchange” is preferable, and that
the queues involved may be created using lock-free tech-
niques.

The following example shows synchronization in task
migration. In this example, task t wants to migrate from
vid=2 to vid=3.

Initially t—=vid=2.

t func sets t—=vid=1003 and returns Executive_ RUN.

ns-dispatch( ) notices t—=vid=2 and puts (t, RUN, 3) on

global exchange.

Global exchange transfers the triple to vcore 3.

Veore 3 sets t—vid=3 and adds task to its run queue.

Note that t—vid is initially set to 1003 and then set to 3.
Recall that if a task observes that another task has the same
vid as it does, then it is then safe for that task to look at the
other task’s data. However, in the migration case, the
migrating task cannot just set its vid to the target vid because
then there will be a time when it has not yet migrated but its
vid equals the vid of a vcore on which it is not yet running.
Accordingly, in this example, temporarily setting the vid to
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“1003” acts as a signal to the dispatcher to migrate to vcore
3 without actually setting the vid for that task to 3 (“1003”
does not match any valid vid value, and indicates a migra-
tion request to dispatcher). Once the migration is complete
(and the task is running on vcore 3), the “1000” is removed
and the vid becomes 3.

The Executive provides a multi-core solution in which
each processor (CPU) has a queue of tasks which can run on
that processor (in a vcore—virtual core on that processor).
Processes can check if other processes are running on the
same core and then determine/share information with those
processes.

In some embodiments, a vcore migration technique (also
referred to as a “vcore walk™) may be used to coordinate
read/write access to shared data to avoid the overhead of
traditional locking techniques. In these embodiments, a set
of pointers to the data structure is maintained, one pointer
per vcore, and whenever a task wishes to access the data
structure, it uses the per-vcore pointer for the core on which
it is running. Tasks are not allowed to separately hold
per-vcore pointers (e.g., cannot put a copy of those pointers
into their own states). Then, when a task wishes to change
the shared data structure, it creates a new data structure (e.g.,
by copying the existing data structure and moditying it),
arranges to be migrated to all the vcores, and then changes
each of the per-vcore pointers to point to the new data
structure. Once the migration (and “vcore walk™) is com-
plete, it is safe for this task to free the old data structure
(since no task is allowed to hold on to the pointer to the old
data structure).

This technique does result in a short period where tasks
running on different vcores will not see the same data
structure; however, that should rarely be an issue, and is
application-specific.

A variation of this technique involves a case where the
per-vcore pointer points to a reference-counted data struc-
ture. In that case, a task can grab a reference and safely hold
on to the pointer until it drops the reference.

In prior concurrency/parallel processing systems, tasks or
processes get spawned off and return when they are com-
plete. An important aspect of cache processing, especially in
the context of a CDN, is that some tasks may be able to
complete right away. In those cases there is no reason to
delay the return. In other words, if the system knows that a
task might complete its processing right away (i.e., rela-
tively quickly), the system can have that task provides its
result without delay.

One example of the use of this technique is when a Lua
script is executed: in many cases, the script may perform
such a small operation that it can complete essentially right
away, which saves the overhead of needing to schedule it as
a task unless that becomes necessary. Another example of
this technique is in the sequencer channel: If a series of
handlers runs quickly, then calling the sequencer is essen-
tially a function call. Only if a handler needs to wait for data
or if too much computation needs to get done will the
sequencer become a scheduled task.

This may be achieved by the following:

if(event = submit(event)) == null)
return ns_ wait( );
// if non-null then done, otherwise wait.

This approach (do it right away if you can, otherwise give
me the answer later) provides a potentially asynchronous
solution to cache specific problems.
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Additionally, programming in a “potentially asynchro-
nous” style means that if it is later determined that some
feature or aspect (which was synchronous previously) needs
to go asynchronous, this can be done without having to
rewrite other code. Those of ordinary skill in the art will
realize and understand, upon reading this description, that
there are costs/risks to this approach, e.g., if only the
synchronous path is taken in a given situation, the asyn-
chronous path may be untested or the performance of the
application may degrade if a previously synchronous opera-
tion becomes asynchronous. However, these risks can be
mitigated, e.g., by forcing everything to be asynchronous for
testing purposes.

In some preferred embodiments, the Executive is imple-
mented using a system sometimes referred to as Shell or
NetShell. It should be appreciated that the Executive and
NetShell described herein are unrelated to any products or
tools of any other entity. In particular, as used herein
NetShell does not refer to Microsoft Corporation’s script-
able command-line tool, nor does executive or NetShell
refer to a Unix shell-like user interface.

Computing

The services, mechanisms, operations and acts shown and
described above are implemented, at least in part, by soft-
ware running on one or more computers of CDN 100.

Programs that implement such methods (as well as other
types of data) may be stored and transmitted using a variety
of media (e.g., computer readable media) in a number of
manners. Hard-wired circuitry or custom hardware may be
used in place of, or in combination with, some or all of the
software instructions that can implement the processes of
various embodiments. Thus, various combinations of hard-
ware and software may be used instead of software only.

One of ordinary skill in the art will readily appreciate and
understand, upon reading this description, that the various
processes described herein may be implemented by, e.g.,
appropriately programmed general purpose computers, spe-
cial purpose computers and computing devices. One or more
such computers or computing devices may be referred to as
a computer system.

FIG. 26A is a schematic diagram of a computer system
2600 upon which embodiments of the present disclosure
may be implemented and carried out.

According to the present example, the computer system
2600 includes a bus 2601 (i.e., interconnect), one or more
processors 2602, one or more communications ports 2603, a
main memory 2604, removable storage media 2605, read-
only memory 2606, and a mass storage 2607. Communica-
tion port 2603 may be connected to one or more networks
2617 by way of which the computer system 2600 may
receive and/or transmit data.

As used herein, a “processor” means one or more micro-
processors, central processing units (CPUs), computing
devices, microcontrollers, digital signal processors, or like
devices or any combination thereof, regardless of their
architecture. An apparatus that performs a process can
include, e.g., a processor and those devices such as input
devices and output devices that are appropriate to perform
the process.

Processor(s) 2602 can be any known processor, such as,
but not limited to, an Intel® Itanium® or Itanium 2®
processor(s), AMD® Opteron® or Athlon MP®
processor(s), or Motorola® lines of processors, and the like.
Communications port(s) 2603 can be any of an RS-232 port
for use with a modem based dial-up connection, a 10/100
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Ethernet port, a Gigabit port using copper or fiber, or a USB
port, and the like. Communications port(s) 2603 may be
chosen depending on a network such as a Local Area
Network (LAN), a Wide Area Network (WAN), a CDN, or
any network to which the computer system 2600 connects.
The computer system 2600 may be in communication with
peripheral devices (e.g., display screen 2630, input device(s)
2616) via Input/Output (I/0) port 2609.

Main memory 2604 can be Random Access Memory
(RAM), or any other dynamic storage device(s) commonly
known in the art. Read-only memory 2606 can be any static
storage device(s) such as Programmable Read-Only
Memory (PROM) chips for storing static information such
as instructions for processor 2602. Mass storage 2607 can be
used to store information and instructions. For example,
hard disks such as the Adaptec® family of Small Computer
Serial Interface (SCSI) drives, an optical disc, an array of
disks such as Redundant Array of Independent Disks
(RAID), such as the Adaptec® family of RAID drives, or
any other mass storage devices may be used.

Bus 2601 communicatively couples processor(s) 2602
with the other memory, storage and communications blocks.
Bus 2601 can be a PCI/PCI-X, SCSI, a Universal Serial Bus
(USB) based system bus (or other) depending on the storage
devices used, and the like. Removable storage media 2605
can be any kind of external hard-drives, floppy drives,
IOMEGA® Zip Drives, Compact Disc-Read Only Memory
(CD-ROM), Compact Disc-Re-Writable (CD-RW), Digital
Versatile Disk-Read Only Memory (DVD-ROM), etc.

Embodiments herein may be provided as one or more
computer program products, which may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer (or other electronic
devices) to perform a process. As used herein, the term
“machine-readable medium” refers to any medium, a plu-
rality of the same, or a combination of different media,
which participate in providing data (e.g., instructions, data
structures) which may be read by a computer, a processor or
a like device. Such a medium may take many forms,
including but not limited to, non-volatile media, volatile
media, and transmission media. Non-volatile media include,
for example, optical or magnetic disks and other persistent
memory. Volatile media include dynamic random access
memory, which typically constitutes the main memory of the
computer. Transmission media include coaxial cables, cop-
per wire and fiber optics, including the wires that comprise
a system bus coupled to the processor. Transmission media
may include or convey acoustic waves, light waves and
electromagnetic emissions, such as those generated during
radio frequency (RF) and infrared (IR) data communica-
tions.

The machine-readable medium may include, but is not
limited to, floppy diskettes, optical discs, CD-ROMs, mag-
neto-optical disks, ROMs, RAMs, erasable programmable
read-only memories (EPROMs), electrically erasable pro-
grammable read-only memories (EEPROMSs), magnetic or
optical cards, flash memory, or other type of media/machine-
readable medium suitable for storing electronic instructions.
Moreover, embodiments herein may also be downloaded as
a computer program product, wherein the program may be
transferred from a remote computer to a requesting com-
puter by way of data signals embodied in a carrier wave or
other propagation medium via a communication link (e.g.,
modem or network connection).

Various forms of computer readable media may be
involved in carrying data (e.g. sequences of instructions) to
a processor. For example, data may be (i) delivered from
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RAM to a processor; (ii) carried over a wireless transmission
medium; (iii) formatted and/or transmitted according to
numerous formats, standards or protocols; and/or (iv)
encrypted in any of a variety of ways well known in the art.

A computer-readable medium can store (in any appropri-
ate format) those program elements which are appropriate to
perform the methods.

As shown, main memory 2604 is encoded with applica-
tion(s) 2650-1 that supports the functionality as discussed
herein (the application 2650-1 may be an application that
provides some or all of the functionality of the services
described herein, e.g., a control service, collector service,
reducer service, rendezvous service and/or caching service).
Application(s) 2650-1 (and/or other resources as described
herein) can be embodied as software code such as data
and/or logic instructions (e.g., code stored in the memory or
on another computer readable medium such as a disk) that
supports processing functionality according to different
embodiments described herein.

For example, as shown in FIG. 26B, application(s) 2650-1
may include Autognome application(s) 2681-1, control ser-
vice(s) applications 2680-1, collector service(s) applications
2682-1, reducer service(s) applications 2684-1, rendezvous
service(s) applications 2686-1 and/or caching service(s)
applications 2688-1.

During operation of one embodiment, processor(s) 2602
accesses main memory 2604 via the use of bus 2601 in order
to launch, run, execute, interpret or otherwise perform the
logic instructions of the application(s) 2650-1. Execution of
application(s) 2650-1 produces processing functionality of
the service related to the application(s). In other words, the
process(es) 2650-2 represent one or more portions of the
application(s) 2650-1 performing within or upon the pro-
cessor(s) 2602 in the computer system 2600.

For example, as shown in FIG. 26C, process(es) 2650-2
may include Autognome process(es) 2681-2, control
service(s) process(es) 2680-2, collector service(s)
process(es) 2682-2, reducer service(s) process(es) 2684-2,
rendezvous service(s) process(es) 2686-2 and/or caching
service(s) process(es) 2688-2.

In other words, when the application(s) 2650-1 include
control service(s) applications 2680-1, the process(es)
2650-2 may include control service(s) process(es) 2680-2,
when the application(s) 2650-1 include collector service(s)
applications 2682-1, the process(es) 2650-2 may include
collector service(s) process(es) 2682-2, and so on.

Since a machine (computer) may run multiple CDN
services at the same time (depending on its flavor), the
applications 2650-1 and the corresponding processes 2650-2
may include applications and processes corresponding to
more than one kind of CDN service.

With reference again to FIG. 2A, the application(s)
2650-1 preferably includes the applications for services SO
(Autognome), S1 . . . Sk, and the applications 2650-2
include the corresponding services running on the computer.

It should be noted that, in addition to the process(es)
2650-2 that carries(carry) out operations as discussed herein,
other embodiments herein include the application 2650-1
itself (i.e., the un-executed or non-performing logic instruc-
tions and/or data). The application 2650-1 may be stored on
a computer readable medium (e.g., a repository) such as a
disk or in an optical medium. According to other embodi-
ments, the application 2650-1 can also be stored in a
memory type system such as in firmware, read only memory
(ROM), or, as in this example, as executable code within the
main memory 2604 (e.g., within Random Access Memory or
RAM). For example, application 2650-1 may also be stored
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in removable storage media 2605, read-only memory 2606,
and/or mass storage device 2607.

Those skilled in the art will understand that the computer
system 2600 can include other processes and/or software
and hardware components, such as an operating system that
controls allocation and use of hardware resources. For
example, with reference again to FIG. 2A, the core programs
including the kernel 304 and other core programs 306 may
be processes on the computer system.

As discussed herein, embodiments of the present inven-
tion include various steps or operations. A variety of these
steps may be performed by hardware components or may be
embodied in machine-executable instructions, which may be
used to cause a general-purpose or special-purpose proces-
sor programmed with the instructions to perform the opera-
tions. Alternatively, the steps may be performed by a com-
bination of hardware, software, and/or firmware. The term
“module” refers to a self-contained functional component,
which can include hardware, software, firmware or any
combination thereof.

One of ordinary skill in the art will readily appreciate and
understand, upon reading this description, that embodiments
of an apparatus may include a computer/computing device
operable to perform some (but not necessarily all) of the
described process.

Embodiments of a computer-readable medium storing a
program or data structure include a computer-readable
medium storing a program that, when executed, can cause a
processor to perform some (but not necessarily all) of the
described process.

Where a process is described herein, those of ordinary
skill in the art will appreciate that the process may operate
without any user intervention. In another embodiment, the
process includes some human intervention (e.g., a step is
performed by or with the assistance of a human).

CDN Virtualization, Interconnection, Delegation,
and Federation

The ongoing proliferation of CDNs demands the means to
interconnect them. As shown above, in some cases a CDN
may be treated as sub-CDNs. Those of ordinary skill in the
art will realize and understand, upon reading this descrip-
tion, that a CDN as described here can be configured to
handle various modes of CDN interconnection.

Basic Mechanisms

Hierarchical Partitioning of Virtual CDNs

A single autonomous CDN can be partitioned into mul-
tiple virtual CDNs organized into a hierarchy with varying
degrees of overlap. The configuration interfaces are used to
create the CDN hierarchy, allocate separate physical clus-
ters, configure services, and bind properties to the services
in each CDN. A parent CDN may grant privileges to each of
its child CDNs. In other words, a user with the authority to
configure the parent CDN configures it such that it grants
specific privileges to its children, or not. Grantable privi-
leges include the authority to:

run specific service types;

manage specific hardware resources (machines, clusters);

bind specific properties to specific service types;

use services inherited from the parent (for requests related

to certain properties);

grant specific privileges to other descendant CDNSs.

These privileges are subject to expiration, revocation, and
renewal. The net effect of allocating resources and granting
privileges to a CDN is to provide it with a set of service
types it can run, a set of machines it can run them on, a set
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of properties that can be bound to each service type, and a
set of rules constraining interactions with its parent.

Defining a virtual CDN puts a physical boundary on the
resources used to deliver content for a set of properties,
constraining the set of binding assignments that can be made
(properties allocated to the CDN must be bound to resources
allocated to the CDN). Allocating services to machines and
binding properties to services is then the responsibility of the
individual CDNs (or whatever CDN was allocated the
responsibility of running the configuration service for the
CDN’s pool of resources).

When a child service or an external client attributable to
the child issues a request to a parent service, the parent may
be configured to handle the request, proxy the request to
some other service, or redirect the request to some other
service (where the other service could be in the child or in
another accessible CDN). The exact nature of the proxying
or redirection depends on the service type.

When a parent and child both have instances of the same
service type, the option exists for those instances to collabo-
rate across CDN boundaries. For example, considering the
rendezvous service type:

A DNS rendezvous request to the parent could respond
with a VIP in the parent or child CDNs, or it could
redirect (via a CNAME and NS records) to the rendez-
vous service of the child, which then decides on the
VIP. The same could happen in the other direction
(child DNS request is redirected to the parent), or one
side could proxy the request to the other.

This same interaction pattern exists for requests of most
other service types, too, including configuration updates,
control resource retrieval, event stream delivery, collector
service requests, and, of course, cache requests. If the
service type only exists at one side or the other of the CDN
boundary, then there are fewer options. Again taking ren-
dezvous as an example:

If the parent has rendezvous but the child does not, clients
of the child must be configured to use the parent’s
rendezvous, which must be able to route requests to
either the parent or child CDN. If the child has ren-
dezvous but the parent does not, the same thing applies.

In both of these latter cases it is as if the parent and child
are one CDN, at least as far as the service type in question
is concerned.

Peer-to-Peer Interconnection of CDNs

A simple adaptation of the principles described in the
previous section can be applied to implement peer to peer
interconnection. In this case, one peer grants authority to use
certain services for certain properties to another peer, and
vice versa. In this case there is no allocation of physical
resources, just mutual service collaboration. The desire to
interact can be initiated by either side, handled either via a
grant/accept or a request/grant protocol.

Peer-to-Peer Interconnection with Foreign CDNs

Peer-to-peer interconnection of heterogeneous CDNs, at
least as defined by the IETF CDN Interconnection model
(CDNi), is less general than the allocation and sharing
mechanisms described in the previous section and more
focused on content peering. In the CDNi model there is no
attempt to share services, heterogeneous CDNs just
exchange information between peer services of the same
type.

Given that we are only interested here in how a CDN
might interact with a foreign CDN, all that is needed is to
bridge the capabilities described above and elsewhere to
integrate with similar capabilities in a foreign CDN. No
fundamentally new capabilities are required.
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The CDNi view of collaboration between two autono-
mous CDNss is as follows. Given two CDNs A and B and one
original content provider P, and assuming A is the authori-
tative (upstream) CDN for provider P, the idea is that an end
user E’s request to A could be redirected to B if A thinks that
B is in a better position to serve P’s content to E and a CDN
interconnection agreement is in place between A and B. This
redirection could theoretically happen at the DNS and/or
HTTP level. If a redirection occurs, B may in turn request
the content back from A anyway if it doesn’t have it cached,
and A then requests the content from P. In this case, the
authoritative CDN A acts both as the initial rendezvous layer
and as a parent cache layer for requests to provider P from
clients of CDN B. CDN A needs access to B’s logs because
it wants to be able to bill P for content that was delivered
from B’s cache without A’s knowledge. Fach of these
interactions is analogous to the service sharing scenarios
described earlier.

For this to work, some control and metadata exchange
interfaces between the two CDNs need to be established.
The same goes for log data exchange.

For the rendezvous and content delivery parts of the
integration, a straightforward approach might be to model
the foreign CDN as a virtual CDN with either an unknown
set of resources or knowledge of the specific resources but
no control over their bindings, and grant the necessary
privileges back and forth to enable exchange of binding
information, DNS redirection, and cache filling to occur
across CDNs

Product Deployment Options

Internet Localization and Deep Edge Caching

Deep Edge Caching is currently the deployment of cach-
ing equipment in ISP networks to provide Content Local-
ization services (i.e., to minimize the need for content to
move into the ISP customer’s network and thereby reduce
transport costs). Rendezvous is customized based on infor-
mation provided about the ISP’s DNS resolvers and asso-
ciated client IP addresses, and the machines are initially
manually configured over a remote connection. The
machines are normally configured to only deliver content to
the ISPs customers.

A Deep Edge Cache is a child CDN which relies on its
parent for configuration, control, log collection, and rendez-
vous.

Delegation

Delegated CDN is the integration of ISP-owned and
operated caching equipment in ISP networks. The caching
equipment in this case could be a licensed version of a cache,
or a 3rd party cache that has been integrated with a CDN. A
delegated CDN would be configured similarly to a deep
edge cache, but the work would be performed by the ISP.

This is the same as Deep Edge Caching if the equipment
is not foreign equipment. If the equipment is foreign, use the
virtual child CDN with unknown resources, and let the
foreign (child) CDN use its parent’s services.

Federation and Exchange

CDN Federation is just multilateral CDN interconnection,
and in that sense it is just a collection of pairwise CDN
interconnections. A CDN Exchange is a special case of CDN
Federation (with a distinguished CDN acting as the
exchange between multiple other CDNs).

Trust and Security

The various machines/services that form a CDN or part
thereof need to trust each other. For example, each service
that provides data (e.g., event, state, control, configuration,
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etc.) to another service preferably needs to trust that the
service to which it is providing the data is a trusted service.
Similarly, each service that receives data from another
service preferably needs to trust the service that is providing
it data.

Various techniques may be used to provide sufficient
degrees of trust within a CDN and with entities external to
the CDN. For example, CD entities may exchange informa-
tion in order to authenticate themselves within the system.
The control mechanism, in conjunction with a PKI system,
may be used by machines/services to authenticate them-
selves within the CDN. Recall that each machine may
include information (e.g., certificates) to enable the control
mechanism to perform authentication as part of the
machine’s initial registration with the CDN. The control
mechanism preferably maintains information about each
machine in the CDN and about each service running on each
machine.

Those of skill in the art will realize and understand, upon
reading this description, that different and/or other methods
may be used to achieve trust/security within a CDN, and the
system is not limited by a PKI-based system. It should also
be appreciated that different degrees of trust/security may be
used for different aspects/components of a CDN. For
example, control information may require a higher degree of
security (possibly with encryption) than other types of
information.

External Communication

In cases where a CDN component (e.g., a service) pro-
vides information to or receives information from an exter-
nal component, additional or different trust/security mecha-
nisms may be required. For example, when information is
received from a component/service outside the control of the
control system (e.g., in a delegated system), additional
mechanisms may be used to determine that the outside
component can be trusted.

In addition to trust models that are used to authenticate
CDN components (internal or external), various mecha-
nisms may be applied to verify data received from external
components. For example, a third party CDN entity may be
providing only caching/delivery services (e.g., via sub-
CDN), and may be using the CDN for control and billing
purposes. It is important to verify that the third party CDN
entity was is correctly reporting delivery of traffic sent to
them. This is important because the CDN may not want to
send traffic to delivery components beyond its direct control
unless it is confident that (a) they are up and working, and
(b) their event streams come back to the CDN for settlement/
billing functions. Rather than rely on month-end reporting to
find out that something is amiss (either failed components,
or third-party cheating), the reducer-collector network can
track and reconcile information sent to the external compo-
nent(s) with information received from the external compo-
nent(s). In this manner discrepancies can be caught and dealt
with when they occur.

For example, if a third party external CDN delivery
service is failing, there will be a discrepancy between
requests sent to that service by the CDN’s rendezvous
system and content served from that service.

It should be appreciated that mechanisms used to maintain
system integrity may also be used within the CDN.
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Configuration and Control

Bidirectional, Declarative, Modular, and Localizable Con-
figuration Maintenance

Introduction to Bidirectional, Declarative, Modular, and
Localizable Configuration Maintenance

The CDN’s control system (formed from the various
control services) may be referred to as the control core or
control mechanism. The control mechanism consists of two
sides, a side dedicated to accepting and managing the
configurations provided by users, and a side dedicated to
controlling endpoint services (such as caches) based on
established configurations. This section outlines how con-
figuration information may be structured and transformed
from one side of the control mechanism to the other.

The control mechanism’s information model involves
configuration objects with per-schema values that are evalu-
ated, translated into control resource templates, and local-
ized into final control resources (see FIG. 27A, Configura-
tion and Control Model). Abstract configuration objects are
the entities manipulated directly by humans using configu-
ration tools, and localized control resources are the entities
consumed directly by endpoint services. Configuration
objects have user-defined, often declarative values that may
be structured in general and flexible ways involving value
inheritance, inclusion, and transformation. Value expres-
sions (the literal values of configuration objects) are evalu-
ated to expand references and perform initial variable sub-
stitutions to produce control resource templates. A final
parameter substitution step is performed to render and
localize templates into resources that service endpoints can
use. External resources (defined outside of the control and
configuration realm) may be referenced to provide addi-
tional values at each step in the process from configuration
to control, including values that define transformation
scripts.

Allowing multiple schemas with translation between
them allows a given configurable object to have different
values reflecting the way a user’s intent is expressed differ-
ently from one schema to another. Possible examples of
configuration object schemas include a declarative schema.
Separating configuration objects from control resources and
translating between them allows the former to remain
declarative and user-intent oriented, with the latter focused
on expression in the language of endpoint services. Finally,
use of templates modularizes the control resource generation
process and compacts the resources distributed from the
configuration to the control side of the control mechanism,
and allows localized changes to be applied to control
resources based on dynamically changing local contexts.

Configuration Objects

The database of configurations consists of a set of con-
figuration objects, with types and values defined relative to
a set of metaschemas and schemas.

A metaschema defines the set of object types that exist,
and defines the namespaces of object identifiers. Every
configuration object has a type defined in the metaschema
and an identifier that distinguishes it from all other objects
of the same type. Examples of types in the metaschema
include subscribers and properties (or coservers).

A schema is a set of rules for defining configuration values
for typed objects, and there may be any number of schemas
for a given metaschema. The schema defines what value
expressions are legal for what types of objects. Each unique
configuration object has multiple values, one per schema.

The value of an object in a schema may be defined
explicitly via a value expression, or implicitly via defaulting
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or derivation from the object’s value in some other schema.
A value of an object may be a scalar value, an array of
values, or a structure containing name/value pairs (recur-
sively). Value expressions may also include references to
multiple base values at any point in the value expression
hierarchy, providing a powerful form of modular value
sharing across objects. The schema determines the general
rules for deriving values from other schemas on a type by
type basis. For example, the value of an object in schema B
may be defined to be a transformation of the object’s value
in schema A, unless the object explicitly defines a local
value in schema B.

The literal value expression of an object in a schema is
distinct from its evaluation in that schema. Evaluation is the
process of generating a ground (that is, reference-free) value
expression for an object in some schema by expanding value
references, performing default substitutions, and invoking
schema transformations.

Control Resource Generation

The evaluated values of configuration objects may be
interpreted as abstract values with declarative or procedural
semantics, depending on the schema. An abstract value is
transformed into an endpoint-consumable control resource
via two additional steps:

1. Template generation is the process of generating a
template and localizable parameter set representing a
family of control resources.

2. Template rendering is the process of rendering a
template with a set of actual parameter values to
produce a ground (i.e., reference-free) control resource
directly consumable by a target service.

Template generation occurs in the configuration service,
and localizable templates are distributed to control services
for the final localization step (which may occur repeatedly in
the same local context, if the parameters of the localization
change dynamically). “Local” here means local in the most
general spatio-temporal sense, where parameters may vary
not just by property, client location, and service location, but
also in time.

Control Distribution

FIG. 27B shows an example of control resource genera-
tion and distribution, and FIG. 27C shows an example of
CCS template derivation.

Rendezvous Localization Via Automatic Client 1P
Estimation

This section provides an example of the use of the CDN
architectures data reduction (reduce/collect) facilities. It
should be appreciated, however, that the approach may be
implemented without the data reductions facilities described
herein.

Introduction to Rendezvous Localization Via Automatic
Client IP Estimation

When the CDN rendezvous system (RVS) uses DNS (as
in preferred implementations), the RVS responds to DNS
requests for recognized domain names (CNAMEs) with a
list of VIPs that are known to provide service for the
property associated with the domain name. The decision
preferably takes into account the actual availability, load,
and network locality of the set of possible VIPs in order to
determine a smaller list of VIPs best suited based on the
source IP address of the DNS request. However, the DNS
request typically comes from an intermediate resolver, and
the actual client who will use the domain name to VIP
binding for subsequent HTTP requests may well be located
somewhere else in the network, making the resolver IP-
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based network locality aspect of rendezvous suboptimal.
This section describes a method for on-line learning of
approximate client IP locations based on the data reduction
facilities of the CDN architecture.

The basic idea is to route a portion of DNS requests to
probe VIPs based on the source resolver IP (i.e., resolver IP
address), rotate the assignments of resolver IPs (resolver IP
addresses) to probe VIPs, and incrementally compute an
increasingly accurate view of the set of client IPs (client IP
addresses) that appear to be using each resolver IP that have
been seen. This view is then used to compute a centroid or
center of mass of the client IP set to produce a pseudo client
IP (pseudo client IP address) that can be used as a better
estimate of the actual client IP (client IP address) than the
resolver IP itself when responding to DNS queries.

This approach is useful only if the client IP to resolver IP
association is relatively static, that is, if it changes more
slowly than the algorithm converges. The approach is also
improved by (though it does not depend on) tighter con-
straints on the use of domain names by subscriber properties,
where each property is expected to use a domain name that
is unique to the property, and no two properties are allowed
to use the same domain name (something which the CDN
binding architecture can arrange to ensure). Reliance on this
constraint enables property-specific localization, which can
increase the network localization accuracy.

The following sections describe details of the basic algo-
rithm and then describe some variations which are more
computationally expensive but provide additional benefits.
Notational Conventions

The following notational conventions are used in this
description:

A fuzzy set X is a pair (X, m) consisting of an underlying

set of possible members X and a membership function
in: X—[0, 1] which maps each possible member x&X
to its degree of membership in X, a real number in the
range [0, 1].

Variables beginning with ¢ or C refer to client IP
addresses and fuzzy sets of client IP addresses, respec-
tively. .

Variables beginning with r or R refer to resolver IP
addresses and fuzzy sets of resolver IP addresses,
respectively.

Variables beginning with p refer to probe IP addresses.

Variables beginning with t refer to time interval identifi-
ers.

Basic Algorithm

The basic algorithm proceeds in discrete intervals, com-
puting for each time interval a new estimate of the pseudo
client IP address to associate with each resolver IP. Each
time period RVS assigns to each unique (RIP, Name) a list
of probe IP addresses (PIP). Some small portion of requests
to the RVS will be responded to with this list of PIPs, though
most will be responded to normally with a list of non-probe
VIPs based on the usual load, availability, and network
locality analysis. RVS logs its PIP assignments to a log
stream, with events of the following form:

(t, r, Name, List(p;))
where each such event indicates that during time interval t,
all probed requests for Name from r were assigned to the
PIPs in List(p,). It should be appreciated that this assignment
only applies to the sample of requests that were assigned to
a probe.

During each time period, each PIP also knows the time
period identifier it must use to log requests (or, alternatively,
it logs events in its log stream that indicate changes to time
period identifiers, so readers of the stream can associate
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requests with time intervals). It learns this either by retriev-
ing it via a control resource or being told via a direct
management interface command. The time period identifier
is recorded in the request log stream in one of the two
methods described, thereby associating a CIP ¢ with (Name,
p) for each resource request. Thus, a stream of the following
events can be reduced from the log stream of each service
behind a PIP:
(t, c, Name, p, N)

where each event indicates that during time interval t, the
client at ¢ made N requests for resources in property Name
from p. The services listening on p could be configured to
either service the request normally or redirect to some other
VIP that will service the request (depending on whether or
not redirects are allowable).

The two streams above (call them streams a and b) can
then be joined where t,=t,, Name ,=Name,, and P,EList(p,),
resulting in events of the form:

(t, ¢, Name, p, N)

Moreover, since RVS knows which RIPs are assigned to

each PIP p in each time interval, this stream may be
transformed further into:

(t, c, Name, p, N, List(r,))

But since the same client may request resources from any
number of different properties over time, there is also a need
to include streams from other PIPs, ultimately resulting in
the same kind of events (with each event identifying a single
CIP and PIP but multiple RIPs). It may be desirable to
reduce this further to collapse down to a single event per CIP
with a sum of all the N values and a list of PIPs, like this:

(t, c, Name, List(p,), ZN, List(r;))

What happens next depends on whether the desired result
is one global assignment of pseudo client IP per resolver, or
one that varies from property to property, and on what
factors should be considered when deciding how to combine
the information from multiple time intervals. In all cases the
goal is to compute on-line a fuzzy set of client IPs (or
multiple fuzzy sets of client IPs) for each known resolver IP,
and use the center of these sets as the client IP estimate for
future DNS queries to RVS.

Algorithm Variations

There are two dimensions of variation to the basic algo-

rithm:

Whether to compute one client IP center per resolver (the
global approach) or one client IP per resolver per
property (the property-specific approach), and

Whether to treat all time intervals the same (the
unweighted interval approach) or whether to weight the
time intervals based, e.g., on the volume of requests
seen during the interval (the weighted interval
approach).

These dimensions are largely orthogonal, resulting in (at
least) four possible algorithms. The section below first
describes the global/unweighted case and then describes
how to modify the first variation to support weighted and
property-specific cases.

Global Client Localization with No Time Interval Weight-
ing

The simplest approach to client localization is to deter-
mine the best RIP to assign to each CIP, and then compute
one center of all CIPs assigned to each RIP. This center
would then be used as the substitute CIP for all requests to
RVS, regardless of what property they are for.
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In this case the event stream discussed above would be
reduced to the form:

(t, ¢, List(ry))
where each event means that during time interval t, client ¢
issued one or more probed requests for properties that were
resolved by some r&List(r,). It is not known which requests
should be charged to which resolvers, but it is known that
they all came from resolvers in this list (the description
below will discuss why this is true, even in the presence of
DNS caching).

Begin by assigning a weight to each r based solely on the
size of the list it occurs in:

1
weu(r) =4 Ity 7S W

0, otherwise

Using this weight it is possible to arrange to incrementally
compute a fuzzy set R_, based on the set of all known
ResolverIPs and a membership function:

IQP,:(ResolverIPs,mcyt:ResolverIPs—> [0,17)

At each time interval t the membership function m_ (r) for
each r is updated as follows. First, compute a moving
average version of the member function m_,*(r), based on
some constant ac<(0, 1).

me M= we (r(l-a)m,_((r)

and then define the actual membership function to be a
thresholded version of the moving average using some
threshold A,£(0, 1):

me (r) if mg (r) > A
mc,r(r) :{ ’ )

0, otherwise

where At might be computed, e.g., based on the minimum
membership value of the top M membership values in the
set. The net effect of this is to compute something similar to
the fuzzy intersection of all the resolver IP lists seen in the
stream up to time interval i (and it would be exactly that if
certain elements had not been discarded using the thresh-
o0ld). The thresholding allows for a fairly low bound on the
size of the resolver IP set that needs to be maintained from
step to step.

Atthis point there is preferably a small number of resolver
IPs r with m_,(r)>0, and hopefully there is a unique r with
a maximum membership value, but neither of these situa-
tions is guaranteed. There could be a large number of
resolver IPs with a maximal membership value, though
whether this is likely is not clear at the moment.

The next step is to compute the inverse relationship using
the membership functions across all client IPs, identifying
for each resolver IP r a fuzzy set of client IPs, Cr, based on
the relationship:

cEC > rER,
which means, with a little abuse of notation, that c¢’s mem-

bership in C, should be the same as r’s membership in R,
in other words:

€ =(ClientIPS,m,)

with m,(c)=m_(r) for all r and ¢. This membership function,
and by extension the fuzzy set it implies, can be computed
incrementally, essentially for free based on the computation
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of' mc. All that is needed is to maintain a table associating (r,
¢) pairs with a membership value that can be used either as
m,(c) or m(r).

Finally, the pseudo client IP ¢, for each resolver IP r can
be computed as the center of mass of Cm. where each client
IP is considered a position in some metric space and its
membership value is its mass. In practice, the pseudo client
IP ¢, (depending on how the network distance metric space
works) may have to be related back to a nearest actual client
1P, which then could act as a representative of C,,l. from
which actual network distances to candidate VIPs could be
computed.

Weighting Time Intervals

Time intervals used by the RVS may differ in their length
in real time and in the number of requests handled during the
interval. The previous section weighted each interval
equally when computing membership functions, but it may
be useful to weight intervals differently. While the length in
real-time of each interval probably does not really matter,
the number of requests handled during the interval probably
does.

The key is to be cognizant of each resolver IP r’s weight
used to compute its membership function based on the
number of requests assigned to each event. So in this case
the considered event stream is reduced to the form:

(t, ¢, List(r,), N)

A weight function is needed that increases and decreases
with N but is always in the range [0, 1]. For this it is possible
to define a moving average N of N values:

N=aN+(1-a)N,_,

and then use this to normalize the latest value of N,
producing weight di:

Now change the weight function used in the previous
section to include a multiplier d;,:

[ frel

— ifrel;
wei(r) = 1L '

0, otherwise

Property-Specific Localization

The global approach may be extended to compute a
property specific client estimate for each resolver.

A property-specific localization requires separate mainte-
nance of state per property, but the computation for each
property only needs to take a subset of the event stream into
consideration. It should be appreciated that in some cases it
may be worthwhile to do a property specific computation,
and then compute a global result based on the property
specific results.

The benefit of the property specific approach is that the
center of mass of client requests may vary from property to
property, and therefore a property specific computation will
produce a more accurate result.

Other Considerations

Time Intervals and DNS Caching

For the above approach to work there needs to be some
assurance that client requests to probe IPs are using infor-
mation they received from RVS through particular resolver
IPs. With DNS caching, ensuring this requires that there is
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control of the pace of change to resolver IP mappings to
probe IPs and sequence their changes in a way that takes
some reasonable upper bound on DNS time-to-live values.

The state of RVS and a given probe IP with respect to the
assigned resolver IPs and whether or not requests to the
probe will be associated with the resolver IPs must be
sequenced through the following cycle (representing one
time interval for the PIP):

In active probe mode, during which all requests to the
probe IP will be associated with assigned resolver IPs,
and RVS will actively respond to queries with the probe
1P,

In passive probe mode, during which RVS will no longer
respond to queries with the probe IP, but the probe will
still respond to requests and they will still be associated
with the assigned resolver IPs,

In normal mode, where RVS will not send probe requests
there and there will be no association between requests
and resolver IPs,

Back to active probe mode, but assigned to a possibly
different set of resolver IPs, etc.

RVS must manage available probe IPs and ensure that the
real-time length of a probe IP’s time in passive probe mode
must be greater than or equal to some multiple of the DNS
TTL threshold. Straggler requests based on stale resolver IP
assignments may still be received and would be counted
incorrectly, but the volume of these requests can be driven
arbitrarily low with a sufficiently large TTL threshold, and
the fuzzy set computation is robust to such perturbations.

Computing Resolver IP Assignments

The previous section described constraints on how
resolver IP assignments must be scheduled, but did not say
anything about what resolver IP assignments to use at each
interval. For rapid convergence it is possible to use a
heuristic approach based on separating resolver IPs that need
to be distinguished. Whenever there is a value of R, that has
multiple maximal resolver IPs in it, these should ideally be
split apart in future assignments. Requests from client ¢ will
eventually fall into one or the other of the new assignments,
allowing an inference to be drawn that ¢ is associated with
the resolver associated with the assignment that it followed.

This cannot be done client by client, but instead there
needs to be determined a global (or property-specific) affin-
ity measure between resolver IPs, and this affinity is pref-
erably used to determine which resolvers to split apart in
future assignments. The higher the affinity between two
resolver IPs, the lower the likelihood of being able to
distinguish their clients, and the higher the need to assign
them differently in future intervals.

One measure for affinity could be the statistical correla-
tion between resolver IP membership functions, say the
sample Pearson correlation coefficient. In other words,
imagine a table with client IP as a key (x value) and a column
for each resolver IP, with the value of each resolver IP
column equal to its membership in the client’s fuzzy
resolver set (y,=mc (r)). Compute the correlation coefficient
between the membership values for pairs of resolvers across
all client IPs, possibly throwing out data points where both
are 0.

Time Interval Synchronization

Allocation of Probes

The number of probes that can be used will depend on
how different a probe behaves than a regular service, and
how expensive it is to collect probe information. The more
probes are like regular services, and the simpler the collec-
tion, the more probes can be used and hence the faster the
convergence to an accurate view of client localization. It
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may or may not be necessary to have only a small number
of probes, it could be that all services are capable of being
probes, and probe data collection could be a simple addition
to log stream processing.

Accuracy Estimation and Feedback

The choice of which resolver IPs to reassign in subse-
quent intervals could also be driven by an estimate of the
accuracy of the resolver’s client pool. Computing the fuzzy
intersection of the client pools might be one way, but it is not
clear if this would add any more information than the
resolver IP correlation discussed above.

Another way would be to directly test resolver hypotheses
by providing a separate pool of probe-like IPs, called test IPs
(TIPs), but with the constraint that each is assigned to
exactly one resolver IP at a time. Doing this for every
resolver would be too expensive, but it could be used
selectively.

While various embodiments have been described herein,
other manners are contemplated. For example, a service may
be used to re-write URLs included in electronic resources
and/or to redirect end user requests. Such a service may be
located at subscribers’ origin servers or elsewhere and/or
can be operated off-line or on-line with respect to end user
requests. An example of a reflector embodying aspects of
such services can be found in U.S. Pat. No. 6,185,598 and
U.S. Application Publication No. 2011-0219120, each of
which are hereby fully incorporated by reference for all
purposes.

As used herein, the term “reject” refers to the denial of a
request based on some level of consideration and/or analysis
and/or evaluation. In one embodiment, a rejection includes
a reply or response indicating, directly or indirectly, or
otherwise suggesting that a request is denied. As examples,
such a rejection may include a reply containing an error
indication or may be signaled response, e.g., at the transport
layer, e.g., by closing a connection. Some rejections, how-
ever, may be silent or otherwise provide no feedback to the
requestor. For example, a request for invalid content may be
rejected by a non-response.

As used herein, including in the claims, the phrase “at
least some” means “one or more,” and includes the case of
only one. Thus, e.g., the phrase “at least some services”
means “one or more services”, and includes the case of one
service.

As used herein, including in the claims, the phrase “based
on” means “based in part on” or “based, at least in part, on,”
and is not exclusive. Thus, e.g., the phrase “based on factor
X” means “based in part on factor X” or “based, at least in
part, on factor X.” Unless specifically stated by use of the
word “only”, the phrase “based on X” does not mean “based
only on X.”

As used herein, including in the claims, the phrase
“using” means “using at least,” and is not exclusive. Thus,
e.g., the phrase “using X” means “using at least X.” Unless
specifically stated by use of the word “only”, the phrase
“using X” does not mean “using only X.”

In general, as used herein, including in the claims, unless
the word “only” is specifically used in a phrase, it should not
be read into that phrase.

As used herein, including in the claims, the phrase “dis-
tinct” means “at least partially distinct.” Unless specifically
stated, distinct does not mean fully distinct. Thus, e.g., the
phrase, “X is distinct from Y” means that “X is at least
partially distinct from Y,” and does not mean that “X is fully
distinct from Y.” Thus, as used herein, including in the
claims, the phrase “X is distinct from Y” means that X
differs from Y in at least some way.
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As used herein, including in the claims, a list may include
only one item, and, unless otherwise stated, a list of multiple
items need not be ordered in any particular manner. A list
may include duplicate items. For example, as used herein,
the phrase “a list of CDN services” may include one or more
CDN services.

It should be appreciated that the words “first” and “sec-
ond” in the description and claims are used to distinguish or
identify, and not to show a serial or numerical limitation.
Similarly, the use of letter or numerical labels (such as “(a)”,
“(b)”, and the like) are used to help distinguish and/or
identify, and not to show any serial or numerical limitation
or ordering.

No ordering is implied by any of the labeled boxes in any
of the flow diagrams unless specifically shown and stated.
When disconnected boxes are shown in a diagram, e.g.,
boxes labeled 2454, 2456, 2458 in FIG. 241, the activities
associated with those boxes may be performed in any order,
including fully or partially in parallel.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

We claim:

1. A computer-implemented method operable on a device
comprising hardware including memory and at least one
processor, the method comprising:

(A) receiving, at a service running on said hardware,
invalidation information, the invalidation information
comprising one or more invalidation commands,
wherein at least one of said one or more invalidation
commands comprises at least one group invalidation
command that specifies a group of resources, wherein
said at least one group invalidation command may
relate, at least in part, to resources not currently stored
on said service;

(B) determining whether said invalidation information
relates to information not currently stored on said
service, and, based on said determining,

(B)(1) when said invalidation information relates to
information not currently stored on said service,
maintaining on said service at least some of said
invalidation information that relates to said informa-
tion not currently stored on said service; and

(C) said service using said maintained invalidation infor-
mation to prevent subsequent use of a version of
information not currently stored on said service.

2. The method of claim 1 further comprising:

based on said determining in (B),

(B)(2) when said invalidation information relates to infor-
mation already stored on said service, marking said
information already stored on said service as not
usable.

3. The method of claim 1 wherein the invalidation infor-
mation is received at said service as part of an invalidation
manifest comprising said one or more invalidation com-
mands.

4. The method of claim 1 wherein a second at least one of
said one or more invalidation commands is an invalidation
command that specifies a single resource.

5. The method of claim 1 wherein, when an invalidation
command specifies a group of resources, the group is
specified by a pattern.
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6. The method of claim 5 wherein the pattern is specified
by one or more of: regular expressions and glob patterns.

7. The method of claim 1 wherein said version of said
information is obtained in response to a request made of said
service.

8. The method of claim 7 wherein the request is a request
for a resource.

9. The method of claim 8 wherein the information com-
prises the resource.

10. The method of claim 9 wherein the information is used
to derive a response to the request.

11. The method of claim 1 wherein said invalidation
information relates to a resource.

12. The method of claim 11 wherein the resource is
associated with an origin, the method further comprising:

associating a minimum origin version and a resource
origin version with each resource, wherein said invali-
dation information for a resource specifies the mini-
mum origin version for said resource, and wherein said
service uses said minimum origin version for said
resource and said resource origin version for an
already-stored version of the resource to determine
whether said already-stored version of the resource is
considered not usable.

13. The method of claim 11 further comprising:

(D) associating a minimum origin version and a latest
origin version with each resource.

14. The method of claim 13 further comprising:

(D) said service obtaining a copy of information not
currently stored on said service, wherein said service
uses at least one of said minimum origin version and
said latest origin version to obtain said copy.

15. The method of claim 14 wherein said service obtains
said copy of said information from said origin, and wherein
said copy is obtained based on a function of said latest origin
version.

16. The method of claim 14 wherein said service obtains
said copy of said information from a peer, and wherein said
copy is obtained based on a function of said minimum origin
version and said latest origin version.

17. The method of claim 1 wherein said service is a
delivery service in a content delivery network.

18. A computer-implemented method operable on a
device comprising hardware including memory and at least
one processor, the method comprising:

(A) receiving, at a service running on said hardware,
invalidation information relating to one or more
resources, the invalidation information comprising one
or more invalidation commands, wherein at least one of
said one or more invalidation commands comprises at
least one group invalidation command that specifies a
group of resources, wherein said at least one group
invalidation command may relate, at least in part, to
resources not currently cached on said service;

(B) determining whether said invalidation information
relates to any resources not currently stored on said
service, and, based on said determining,

(B)(1) when said invalidation information relates to at
least one resource not currently cached on said
service, maintaining on said service at least some of
said invalidation information that relates to said at
least one resource not currently cached on said
service; and

(C) said service using said maintained invalidation infor-
mation on said service to prevent subsequent use of at
least one resource not currently stored on said service.
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19. The method of claim 18 wherein, when an invalidation
command specifies a group of resources, the group is
specified by a pattern.

20. A device, comprising:

(a) hardware including memory and at least one proces-

sor, and

(b) a service running on said hardware, wherein said
service is configured to:

(A) receive invalidation information comprising one or
more invalidation commands, wherein at least one of
said one or more invalidation commands comprises at
least one group invalidation command that specifies a
group of resources, wherein said at least one group
invalidation command may relate, at least in part, to
resources not currently stored on said service;

(B) determine whether said invalidation information
relates to information not currently stored on said
service, and, based on said determining,

(B)(1) when said invalidation information relates to
information not currently stored on said service,
maintain on said service at least some of said invali-
dation information that relates to said information
not currently stored on said service; and

(C) use said maintained invalidation information to pre-
vent subsequent use of a version of information not
currently stored on said service.

21. A system comprising a device according to claim 20.

22. The device of claim 20 wherein, when an invalidation
command specifies a group of resources, the group is
specified by a pattern.
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23. A computer program product having computer read-
able instructions stored on non-transitory computer readable
media, the computer readable instructions including instruc-
tions for implementing a computer-implemented method,
said method operable on a device comprising hardware
including memory and at least one processor and running a
service on said hardware, said method comprising:

(A) receiving, at said service running on said hardware,
invalidation information comprising one or more
invalidation commands, wherein at least one of said
one or more invalidation commands comprises at least
one group invalidation command that specifies a group
of resources, wherein said at least one group invalida-
tion command may relate, at least in part, to resources
not currently stored on said service;

(B) determining whether said invalidation information
relates to information not currently stored on said
service, and, based on said determining,

(B)(1) when said invalidation information relates to
information not currently stored on said service,
maintaining on said service at least some of said
invalidation information that relates to said informa-
tion not currently stored on said service; and

(C) said service using said maintained invalidation infor-
mation to prevent subsequent use of a version of
information not currently stored on said service.

24. The computer program product of claim 23 wherein,

when an invalidation command specifies a group of
resources, the group is specified by a pattern.

#* #* #* #* #*



