
O. BENSON.

SASH FASTENER.

No. 310,930.

Patented Jan. 20, 1885.

UNITED STATES PATENT OFFICE.

OLIVER BENSON, OF HINSDALE, NEW YORK.

SASH-FASTENER.

SPECIFICATION forming part of Letters Patent No. 310,930, dated January 20, 1885.

Application filed July 18, 1884. (No model.)

To all whom it may concern:

Be it known that I, OLIVER BENSON, a citizen of Sweden, and a resident of Hinsdale, Queens county, State of New York, have invented a new and useful Improvement in Window-Sash Fasteners, of which the following is a specification.

My invention has for its object to provide a simple inexpensive fastener for use more es-10 pecially for windows where the upper sash is stationary and the lower sash only is fitted to slide, without, however, being counterbalanced by a weight, sashes so arranged being common in many places in all sections of the

The invention will be hereinafter fully described, and specifically pointed out in the claims, reference being had to the accompany-

ing drawings, in which-

Figure 1 represents a vertical section of a portion of a window-frame and of the whole lower sash and part of the upper, the sliding sash being in the lowest or closed position, and locked in the said position by my present 25 device. Fig. 2 is a section exactly similar to Fig. 1, but showing a different mode of applying the fastener. Fig. 3 is a front or face view of the fastener itself. Fig. 4 is an edge view of the same, partly in section on the line 30 x x of Fig. 3. Fig. 5 is the face view of the washer used to keep the pivoting screw of the fastener from turning. Fig. 6 shows the reverse side of the fastener, or as seen from the sectional line y y of Fig. 4 in the direction of 35 the arrow 1, and showing the manner in which the fastener is held in a position out of contact with the sash to prevent the raising or lowering of the latter.

A is the side of a window frame.

B is the upper stationary sash, and C the

lower or movable sash.

D is the fastener, being formed of a stem, a, having at one end oppositely-arranged lateral projections b, which serve as the stops or 45 catches proper, as will presently appear, the whole forming the general appearance of the letter T. The other end of the stem a has a hole, c, bored through it to receive the shank of the screw d, by which the fastener D is piv-50 oted to the side frame, A, of the window in such a position relative to the sash that the one or the other of the lateral projections b^{\perp}

may be made to engage the upper edge of the sash to prevent it from being raised from the outside, or to engage with the lower edge of 55 the sash to temporarily retain it in the raised position when desired for ventilation or other purposes; or the fastener may be swung out to bring both projections b out of contact with the sash, so as not to interfere with the rais- 6c ing or lowering of the latter, as shown in the dotted position marked D' in Fig. 2.

C' and D' indicate, in dotted lines in Figs. 1 and 2, the position of the sash C and fastener D when the former is held in its raised 65

position by the latter.

The fastener may be arranged, as in Fig. 2, to engage the sash-frame by the angle between the stem a and lateral arm b; but as the weight of the sash or the pressure due to an attempt 70 at raising it in that case tends to turn the fastener upon its pivots, and thus cause extra strain upon the locking device, presently to be described, I prefer the mode of applying it which is shown in Fig. 1, where the press- 75 ure or weight of the sash acts more directly against the pivot, and cannot turn the fastener out of contact.

To prevent the screw d from turning after being screwed into the frame A to the proper 80 depth, the shank of the said screw is filed down to form at opposite sides flat surfaces e, and a little plate or washer, E, provided at one edge with a slot or notch, e', suitable to embrace the thus reduced portion of the screw-85 shank, is applied, as shown in Fig. 4, to engage the said reduced portion, and is then secured to the window-frame by a screw, e^2 .

A small spring, F, secured in a recess on the inner side of the fastener D, engages, when 90 the fastener is turned in its upper, lower, or intermediate position, a correspondingly arranged, reduced, or flattened surface, f, upon the shank in a manner which can be understood at a glance with reference to Fig. 6.

To lock the shank a and bolt D together against extra resistance in the two positions in which the fastener acts to support or locks the sash, I provide in the opposite upper and lower circumferential edge of the head of the screw d a flattened recess, g, (shown in Figs. 3 and 4,) and arrange in a hole through the shank a, parallel with the shank of the screw d, a sliding bolt or knob, H, having a flattened

surface, h, which engages the one or the other of the aforesaid recesses g, as shown in Figs 3 and 4.

The sliding bolt or knob H is pressed out5 ward by a spiral spring, G. To unlock the
fastener from the upper locked position in
which it is shown in Fig. 4 and bring it into
the lower locked position, it is only necessary
to press the knob H inward until out of conto tact with the surface g; then turn (by a special
handle. L or otherwise) the factorier helf of

handle, I, or otherwise) the fastener half a turn around until, by the action of the spring G, the lift h engages the lower recess, g, in the screw-head.

5 It is evident that by arranging in different places upon the sash-frame a cleat, stop, or angular bracket, suitable to engage the projection b of the fastener B, the sash may be held at different points of elevation when desired.

Having thus described my invention, what I claim as new, and desire to secure by Letters Patent, is—

A sash-fastener consisting of a shank, a, adapted to be pivoted to a window-frame, and provided with opposite lateral projections b, arranged to engage as stops to a sliding window-sash by turning the fastener upon its pivot into one or the other of two positions, as hereinbefore set forth.

2. In a sash-fastening device, the combination of the pivoted T-shaped fastener D, provided with the spring F, with the pivoting-screw d, having reduced or flattened portions

f, to engage the said spring for the purpose of temporarily retaining the fastener in position 35 in or out of contact with the sash-frame, sub-

stantially as specified.

3. In a pivoted sash-fastener, D, the combition of the stationary pivoting screw or stud d.

tion of the stationary pivoting screw or stud d, having upon its head flattened portions g, with 40 a shank, a, having in a bored or socketed portion adjacent to the pivoting-screw a spring-pressed sliding knob, H, provided with a lip or flat surface, h, arranged to engage and interlock with the said flattened surfaces g upon 45 the screw-head, to prevent the fastener from turning on its pivot, as hereinbefore set forth.

4. The combination of the pivoted sash-fast-

4. The combination of the pivoted sash-fastener D, provided with a sliding knob, H, arranged to engage and interlock with the piv- 50 oting-stud, the pivoting-screw d, having upon its shanks opposite reductions e, and the plate or washer E, provided with a notch, e', to engage the reduced portion of the said shank, the said screw d and plate E being both se- 55 curable to the same frame, A, as and for the purposes hereinbefore set forth.

In testimony that I claim the foregoing as my invention I have signed my name, in presence of two witnesses, this 7th day of June, 60

1884.

OLIVER BENSON.

Witnesses:

A. W. Almqvist, Robt. W. Matthews.