

US 20150183749A1

(19) **United States**

(12) **Patent Application Publication**

Choy et al.

(10) **Pub. No.: US 2015/0183749 A1**

(43) **Pub. Date: Jul. 2, 2015**

(54) **5-FLUORO-4-IMINO-3-(ALKYL/SUBSTITUTED ALKYL)-1-(ARYLSULFONYL)-3,4-DIHYDROPRIMIDIN-2(1H)-ONE AND PROCESSES FOR THEIR PREPARATION**

(71) Applicant: **DOW AGROSCIENCES LLC**, Indianapolis, IN (US)

(72) Inventors: **Nakyen Choy**, Carmel, IN (US); **Ronald Ross, JR.**, Zionsville, IN (US)

(21) Appl. No.: **14/584,347**

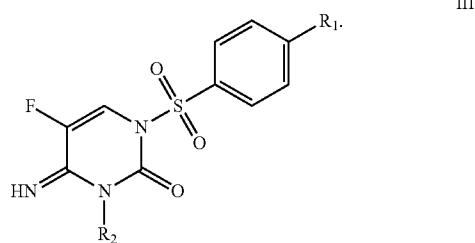
(22) Filed: **Dec. 29, 2014**

Related U.S. Application Data

(60) Provisional application No. 61/922,572, filed on Dec. 31, 2013, provisional application No. 61/922,582, filed on Dec. 31, 2013.

Publication Classification

(51) **Int. Cl.**
C07D 239/47 (2006.01)


(52) **U.S. Cl.**

CPC **C07D 239/47** (2013.01)

(57)

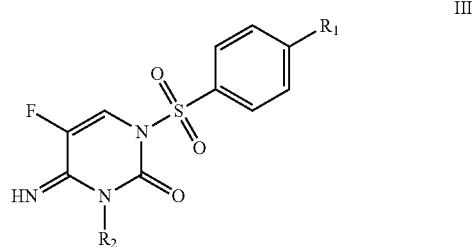
ABSTRACT

Provided herein are 5-fluoro-4-imino-3-(alkyl/substituted alkyl)-1-(arylsulfonyl)-3,4-dihydropyrimidin-2(1H)-one and processes for their preparation which may include the use of an alkali carbonate and an alkylating agent

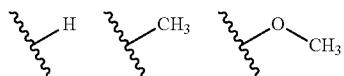
**5-FLUORO-4-IMINO-3-(ALKYL/SUBSTITUTED
ALKYL)-1-(ARYLSULFONYL)-3,4-
DIHYDROPYRIMIDIN-2(1H)-ONE AND
PROCESSES FOR THEIR PREPARATION**

**CROSS REFERENCE TO RELATED
APPLICATIONS**

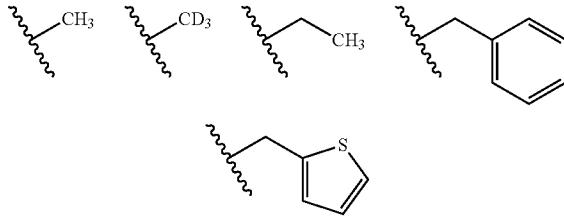
[0001] This application claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/922,582 and 61/922,572, each filed Dec. 31, 2013, the disclosures of each are expressly incorporated by reference herein.

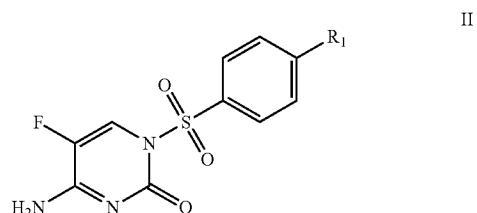

FIELD

[0002] Provided herein are 5-fluoro-4-imino-3-(alkyl/substituted alkyl)-1-(arylsulfonyl)-3,4-dihydropyrimidin-2(1H)-one and processes for their preparation.

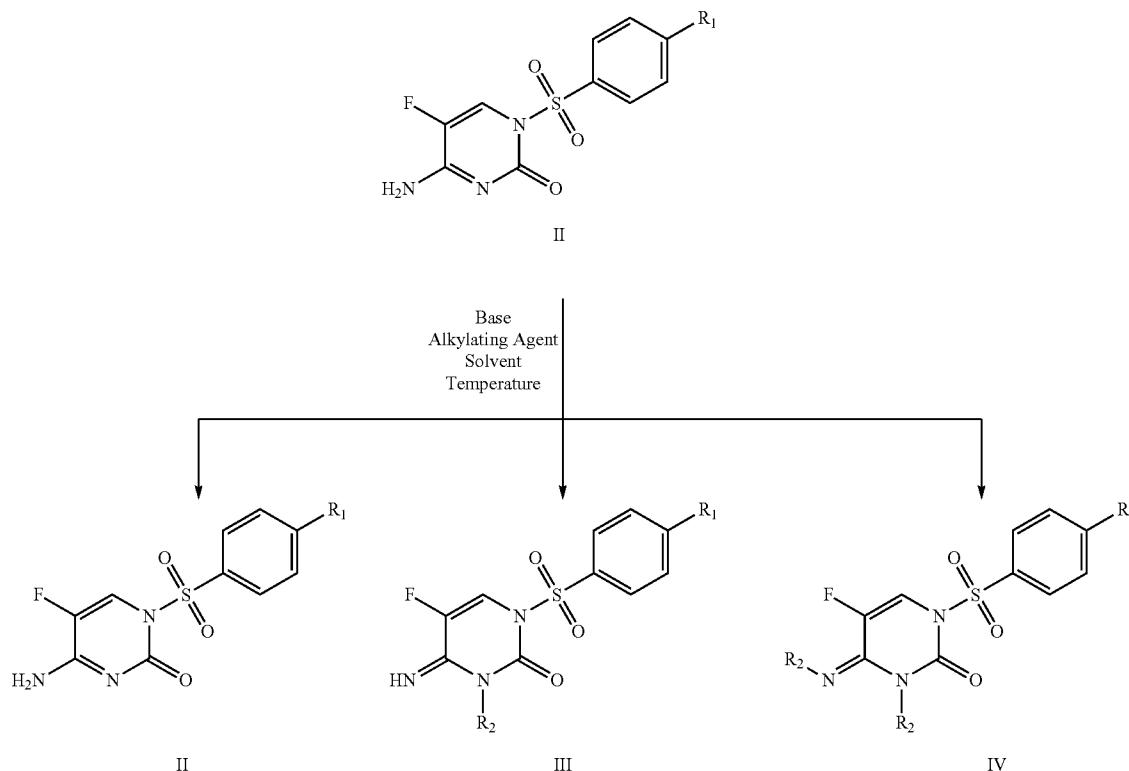

BACKGROUND AND SUMMARY

[0003] U.S. patent application Ser. No. 13/090,616, U.S. Pub. No. 2011/0263627, describes inter alia certain N3-substituted-N1-sulfonyl-5-fluoropyrimidinone compounds and their use as fungicides. The disclosure of the application is expressly incorporated by reference herein. This patent application describes various routes to generate N3-substituted-N1-sulfonyl-5-fluoropyrimidinone compounds. It may be advantageous to provide more direct and efficient methods for the preparation, isolation, and purification of N3-substituted-N1-sulfonyl-5-fluoropyrimidinone fungicides and related compounds, e.g., by the use of reagents and/or chemical intermediates and isolation and purification techniques which provide improved time and cost efficiency.


[0004] Provided herein are 5-fluoro-4-imino-3-(alkyl/substituted alkyl)-1-(arylsulfonyl)-3,4-dihydropyrimidin-2(1H)-one and processes for their preparation. In one embodiment, provided herein is a process for the preparation of compounds of Formula III:

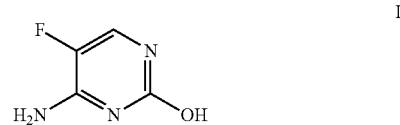

wherein R₁ is selected from:

and R₂ is selected from:



which comprises contacting compounds of Formula II (shown below) with a base, such as an alkali carbonate, e.g., sodium-, potassium-, cesium-, and lithium carbonate (Na₂CO₃, K₂CO₃, Cs₂CO₃, and Li₂CO₃, respectively) or an alkali alkoxide, for example, potassium tert-butoxide (KO'Bu) and an alkylating agent, such as an alkyl halide of Formula R₂—X, wherein R₂ is as previously defined and X is a halogen, e.g., iodine, bromine, and chlorine, in a polar solvent, such as N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMA), N-methylpyrrolidone (NMP), acetonitrile (CH₃CN), and the like, at concentrations from about 0.1 molar (M) to about 3 M. In some embodiments, a molar ratio of compounds of Formula II to the base is from about 3:1 to about 1:1 and a molar ratio of compounds of Formula II to alkylating agent is from about 1:1 to about 3:1. In other embodiments, molar ratios of compounds of Formula II to the base and compounds of Formula II to the alkylating agent of about 2:1 and 1:3, respectively, are used. In some embodiments, the reactions are conducted at temperatures between -78° C. and 90° C., and in other embodiments, the reactions are conducted between 22° C. and 60° C.

[0005] It will be understood by those skilled in the art that manipulation of the reaction parameters described above may result in the formation of product mixtures comprised of compounds of Formulas II, III, and IV, as shown in Scheme 1, wherein the ratios of compounds of Formulas II, III, and IV formed is from about 0:2:1 to about 1:2:0. In some embodiments, compositions comprising mixtures of compounds of Formulas II and III are preferred, as isolation and purification can be achieved through precipitation and recrystallization, and the intermediate compounds of Formula II can be recovered and recycled. In contrast, compositions comprising mixtures of compounds of Formulas III and IV require chromatographic separation to give III along with the undesired dialkylated by-product of Formula IV.


Scheme 1.

[0006] In another embodiment, the desired crude composition, i.e., mixtures of compounds of Formula II and compounds of Formula III, wherein R₁ is methoxy (OCH₃) and R₂ is methyl (CH₃), is obtained through contacting a compound of Formula II with Li₂CO₃ and methyl iodide (CH₃I) in DMF (1.0 M) in a molar ratio of about 1:0.6:3 at 45° C. Upon completion, dilution of the crude composition with a polar, aprotic solvent, such as CH₃CN, wherein the ratio of CH₃CN:DMF is from about 2:1 to about 1:2, followed by an aqueous solution of sodium thiosulfate (Na₂S₂O₃) with a pH from about 8 to about 10.5, wherein the ratio of 2.5 wt. % aqueous Na₂S₂O₃:DMF is from about 1:2 to about 3:1, affords a precipitate which is isolable by filtration. In one embodiment, the ratio of CH₃CN:DMF is about 1:2 and the ratio of 2.5% aqueous Na₂S₂O₃:DMF is about 1:1, and the resultant solid is further purified by crystallization/precipitation from a warmed solution, about 30° C.-40° C., of the solid in a solution of a polar, aprotic solvent, such as CH₃CN, by the addition of water (H₂O), wherein the ratio of H₂O:CH₃CN is from about 1:2 to about 3:1, to give the purified compound of Formula III, and in another embodiment the ratio of H₂O:CH₃CN to affect precipitation of pure III is about 2:1.

[0007] In another embodiment, compounds of Formula II may be prepared by contacting compounds of Formula I (shown below) with bis-N,O-trimethylsilylacetamide (BSA) at an elevated temperature, such as 70° C., for a period of about 1 hour (h), followed by cooling and contacting the solution containing the protected pyrimidinol with a substituted benzene sulfonyl chloride, generalized by R₁-PhSO₂Cl, wherein R₁ is as previously defined, at about

20° C.-25° C. In some embodiments, the molar ratio of the compound of Formula I to BSA and the sulfonyl chloride is about 1:3:1.1, respectively, and in another embodiment reducing the molar ratio of the reactants to about 1:1.1:1.1 affords improved yields.

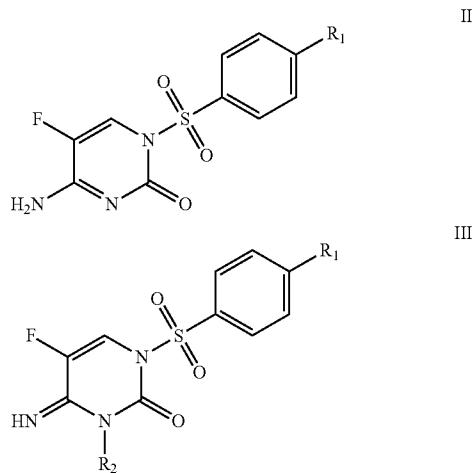
[0008] The term “alkyl” refers to a branched, unbranched, or saturated cyclic carbon chain, including, but not limited to, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, tertiary butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.

[0009] The term “alkenyl” refers to a branched, unbranched or cyclic carbon chain containing one or more double bonds including, but not limited to, ethenyl, propenyl, butenyl, isopropenyl, isobutenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, and the like.

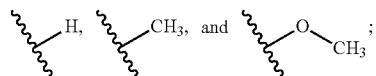
[0010] The term “aryl” refers to any aromatic, mono- or bi-cyclic, containing heteroatoms.

[0011] The term “heterocycle” refers to any aromatic or non-aromatic ring, mono- or bi-cyclic, containing one or more heteroatoms.

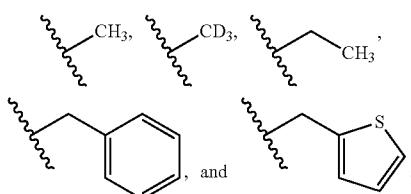
[0012] The term “alkoxy” refers to an —OR substituent.


[0013] The term "halogen" or "halo" refers to one or more halogen atoms, defined as F, Cl, Br, and I.

[0014] The term "haloalkyl" refers to an alkyl, which is substituted with Cl, F, I, or Br or any combination thereof.


[0015] Throughout the disclosure, references to the compounds of Formulas I, II, III, and IV are read as also including optical isomers and salts. Exemplary salts may include: hydrochloride, hydrobromide, hydroiodide, and the like. Additionally, the compounds of Formulas I, II, III, and IV may include tautomeric forms.

[0016] Certain compounds disclosed in this document can exist as one or more isomers. It will be appreciated by those skilled in the art that one isomer may be more active than the others. The structures disclosed in the present disclosure are drawn in only one geometric form for clarity, but are intended to represent all geometric and tautomeric forms of the molecule.


[0017] In one exemplary embodiment, a method of making a compound of Formula III is provided. The method includes contacting a compound of Formula II with an alkali carbonate and an alkylating agent; and forming a compound of Formula III,

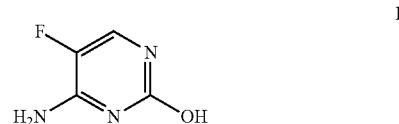
wherein R₁ is selected from the group consisting of:

and R₂ is selected from the group consisting of:

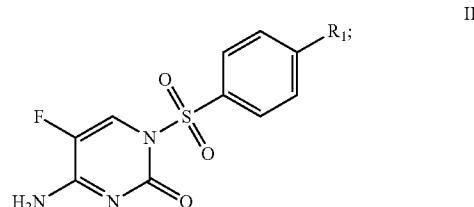
[0018] In a more particular embodiment, the contacting step is carried out between 22° C. and 60° C.

[0019] In another more particular embodiment of any of the above embodiments, the contacting step further includes a solvent selected from the group consisting of DMF, DMSO, DMA, NMP, and CH₃CN.

[0020] In another more particular embodiment of any of the above embodiments, the alkali carbonate is selected from the group consisting of: Na₂CO₃, K₂CO₃, Cs₂CO₃, and Li₂CO₃.


[0021] In another more particular embodiment of any of the above embodiments, the alkylating agent is selected from the group consisting of: alkyl halides and benzyl halides. In an even more particular embodiment, the alkyl halide and benzyl halide are selected from methyl iodide (CH₃I), ethyl iodide (C₂H₅I), and benzyl bromide (BnBr).

[0022] In another more particular embodiment of any of the above embodiments, the alkali carbonate base is Cs₂CO₃, and the solvent is DMF.


[0023] In another more particular embodiment of any of the above embodiments, a molar ratio of Compound II to alkali carbonate base is from about 3:1 to about 1:1 and a molar ratio of Compound II to alkylating agent is from about 1:1 to about 3:1. In an even more particular embodiment, a molar ratio of Compound II to alkali carbonate base is about 2:1 a molar ratio of Compound II to alkylating agent is 1:3.

[0024] In another more particular embodiment of any of the above embodiments, the method further includes the step of diluting a completed reaction mixture with CH₃CN and 2.5% aqueous Na₂S₂O₃. In an even more particular embodiment, a ratio of DMF to CH₃CN is from about 1:1 to about 3:1 and a ratio of DMF to 2.5% aqueous Na₂S₂O₃ is from about 1:2 to about 2:1. In a still more particular embodiment, a ratio of DMF to CH₃CN is about 2:1 and a ratio of DMF to 2.5% aqueous Na₂S₂O₃ is about 1:1.

[0025] In another embodiment, a method of preparing a compound of Formula II is provided. The method includes contacting a compound of Formula I with bis-N,O-trimethylsilylacetamide (BSA):

and forming a compound of Formula II:

wherein a molar ratio of compound I to bis-N,O-trimethylsilylacetamide (BSA) is 1:1.1 and the contacting step is carried out at about 22° C. to about 70° C.

[0026] In a more particular embodiment, the contacting step further includes contacting compound I with CH₃CN.

[0027] In another more particular embodiment of any of the above embodiments, the method comprises contacting a BSA treated reaction mixture with an arylsulfonyl chloride.

[0028] In another more particular embodiment of any of the above embodiments, a molar ratio of Compound I to arylsulfonyl chloride is from about 1:2 to about 2:1. In an even more particular embodiment, a molar ratio of Compound I to arylsulfonyl chloride is 1:1.1.

[0029] The embodiments described above are intended merely to be exemplary, and those skilled in the art will recognize, or will be able to ascertain using no more than routine experimentation, numerous equivalents of specific compounds, materials, and procedures. All such equivalents are considered to be within the scope of the invention and are encompassed by the appended claims.


DETAILED DESCRIPTION

[0030] 5-Fluoro-4-imino-3-(alkyl/substituted alkyl)-1-(arylsulfonyl)-3,4-dihydro-pyrimidin-2(1H)-one as shown in Examples 1-2.

EXAMPLE 1

Preparation of 4-amino-5-fluoro-1-(phenylsulfonyl)pyrimidin-2(1H)-one (1)

[0031]

[0032] To a dry 500 milliliter (mL) round bottom flask equipped with a mechanical stirrer, nitrogen inlet, addition funnel, thermometer, and reflux condenser were added 5-fluorocytosine (20.0 grams (g), 155 millimole (mmol)) and CH_3CN (100 mL). To the resulting mixture was added BSA (34.7 g, 170 mmol) in one portion and the reaction was warmed to 70° C. and stirred for 30 minutes (min). The resulting homogeneous solution was cooled to 5° C. with an ice bath and treated dropwise with benzenesulfonyl chloride. The reaction was stirred at 0° C.-5° C. for 1 h and then overnight at room temperature. The resulting pale yellow suspension was poured into cold H_2O (1.5 liters (L)) and stirred vigorously for 1 h. The resulting solid was collected by vacuum filtration, washed with H_2O , and dried under vacuum overnight at 40° C. to give 4-amino-5-fluoro-1-(phenylsulfonyl)pyrimidin-2(1H)-one (29.9 g, 72%) as a powdery white solid: ^1H NMR (400 MHz, DMSO-d_6) δ 8.56 (s, 1H), 8.35-8.26 (m, 2H), 8.07-7.98 (m, 2H), 7.84-7.74 (m, 1H), 7.72-7.61 (m, 2H); ^{19}F NMR (376 MHz, DMSO-d_6) δ -163.46; ESIMS m/z 270 ($[\text{M}+\text{H}]^+$).

[0033] The following compounds 1-3 in Table 1a were made in accordance with the reaction depicted in Scheme 1 and the procedures described in Example 1. Characterization data for compounds 1-3 are shown in Table 1b.

Scheme 1.

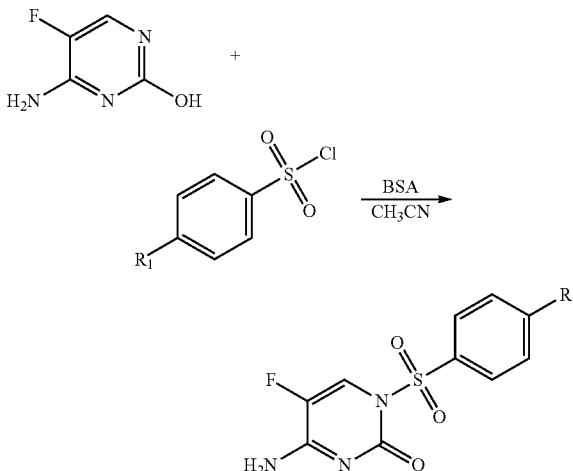


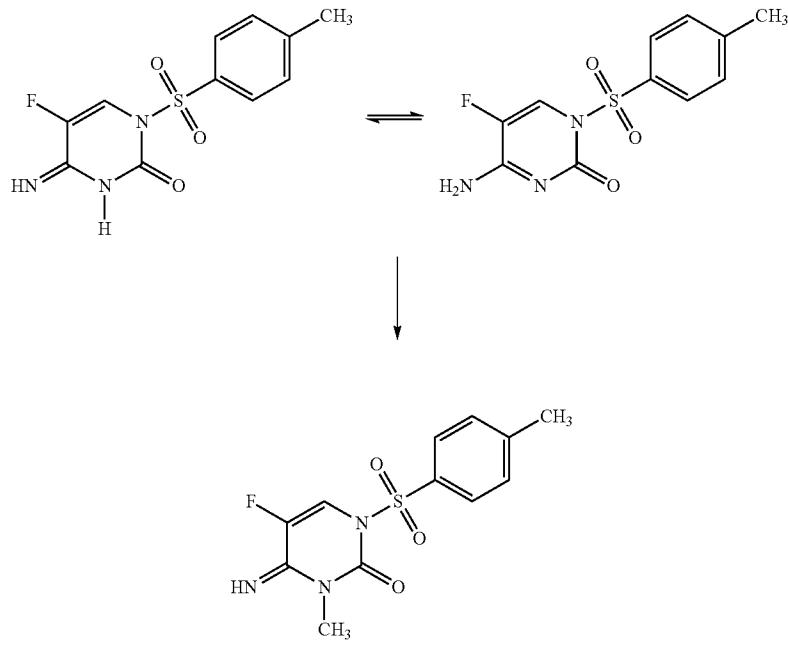
TABLE 1a

Compound Number	R_1	Appearance	Yield (%)
1	H	Powdery White Solid	72
2	CH_3	Powdery White Solid	61
3	OCH_3	Powdery White Solid	57

TABLE 1b

Compound Number	Mass Spec.	^1H NMR (δ) ^a	^{13}C NMR or ^{19}F NMR (δ) ^{b,c}
1	ESIMS m/z 270 ($[\text{M}+\text{H}]^+$)	^1H NMR (DMSO-d_6) δ 8.56 (s, 1H), 8.35-8.26 (m, 2H), 8.07-7.98 (m, 2H), 7.84-7.74 (m, 1H), 7.72-7.61 (m, 2H)	^{19}F NMR (DMSO-d_6) δ -163.46
2	ESIMS m/z 284 ($[\text{M}+\text{H}]^+$)	^1H NMR (DMSO-d_6) δ 8.54 (s, 1H), 8.40-8.16 (m, 2H), 8.05-7.76 (m, 2H), 7.66-7.36 (m, 2H), 2.41 (s, 3H)	^{19}F NMR (DMSO-d_6) δ -163.62
3	ESIMS m/z 300 ($[\text{M}+\text{H}]^+$)	^1H NMR (CDCl_3) δ 8.10-7.91 (m, 2H), 7.73 (d, $J = 5.4$ Hz, 2H), 7.11-6.94 (m, 2H), 3.90 (s, 3H), 3.32 (d, $J = 0.6$ Hz, 3H)	^{19}F NMR (CDCl_3) δ -158.58

^aAll ^1H NMR data measured at 400 MHz unless otherwise noted.

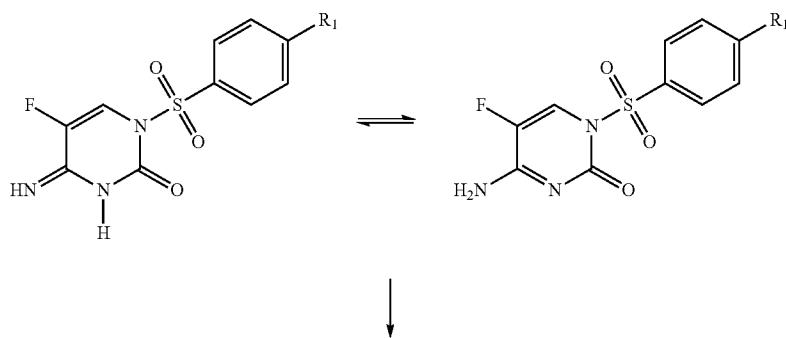

^bAll ^{13}C NMR data measured at 101 MHz unless otherwise noted.

^cAll ^{19}F NMR data measured at 376 MHz unless otherwise noted.

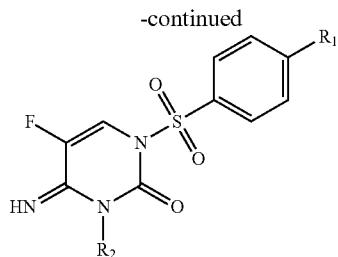
EXAMPLE 2

Preparation of 5-fluoro-4-imino-3-methyl-1-tosyl-3,4-dihydropyrimidin-2(1H)-one (5):

[0034]


5

[0035] To a mixture of 4-amino-5-fluoro-1-tosylpyrimidin-2(1H)-one (5.66 g, 20 mmol) and Li_2CO_3 (0.880 g, 12.0 mmol) in DMF (20 mL) was added CH_3I (8.52 g, 60.0 mmol), and the resulting mixture was warmed to 40° C. and stirred for 5 h. The reaction mixture was cooled to room temperature, diluted with CH_3CN (10 mL), and treated with 2.5% aqueous $\text{Na}_2\text{S}_2\text{O}_3$ (20 mL). The resulting mixture was stirred at room temperature for 10 min and the solids were collected by filtration. The filter cake was washed with aqueous CH_3CN (10% CH_3CN in H_2O) and air dried for 2 h. The cake was dissolved in CH_3CN (15 mL) at 40° C. and the solution was treated with H_2O (30 mL). The resulting suspension was


cooled to room temperature, stirred for 2.5 h, and filtered. The filter cake was again washed with 10% aqueous CH_3CN and then dried under vacuum at 50° C. to give the title compound (2.70 g, 45%) as a white solid: mp 156-158° C.; ^1H NMR (400 MHz, DMSO-d_6) δ 8.54 (d, $J=2.3$ Hz, 1H), 7.99 (dd, $J=6.0$, 0.6 Hz, 1H), 7.95-7.89 (m, 2H), 7.53-7.45 (m, 2H), 3.12 (d, $J=0.7$ Hz, 3H), 2.42 (s, 3H); ^{19}F NMR (376 MHz, DMSO-d_6) δ -157.86 (s); ESIMS m/z 298 ($[\text{M}+\text{H}]^+$).

[0036] The following compounds 4-6 in Table 2a were made in accordance with the reaction depicted in Scheme 2 and the procedures described in Example 2. Characterization data for compounds 4-6 are shown in Table 2b.

Scheme 2.

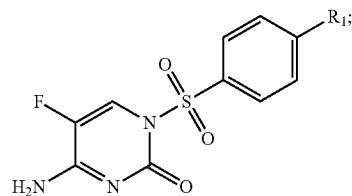
-continued

5

TABLE 2a

Compound Number	R ₁	R ₂	Appearance	Yield (%)
4	H	CH ₃	White Solid	64
5	CH ₃	CH ₃	White Solid	45
6	OCH ₃	CH ₃	White Solid	62

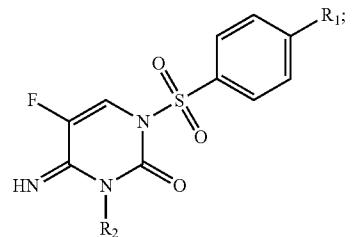
TABLE 2b

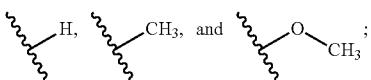

Compound Number	Mass Spec.	¹ H NMR (δ) ^a	¹³ C NMR or ¹⁹ F NMR (δ) ^{b,c}
4	ESIMS m/z 284 ([M + H] ⁺)	¹ H NMR (CDCl ₃) δ 8.14-8.02 (m, 2H), 7.88-7.67 (m, 3H), 7.67-7.50 (m, 2H), 3.31 (d, J = 0.7 Hz, 3H)	¹⁹ F NMR (CDCl ₃) δ-158.05
5	ESIMS m/z 298 ([M + H] ⁺)	¹ H NMR (DMSO-d ₆) δ 8.54 (d, J = 2.3 Hz, 1H), 7.99 (dd, J = 6.0, 0.6 Hz, 1H), 7.95-7.89 (m, 2H), 7.53-7.45 (m, 2H), 3.12 (d, J = 0.7 Hz, 3H), 2.42 (s, 3H)	¹⁹ F NMR (DMSO-d ₆) δ 157.86 (s)
6	ESIMS m/z 314 ([M + H] ⁺)	¹ H NMR (CDCl ₃) δ 8.10-7.91 (m, 2H), 7.73 (d, J = 5.4 Hz, 2H), 7.11-6.94 (m, 2H), 3.90 (s, 3H), 3.32 (d, J = 0.6 Hz, 3H)	¹⁹ F NMR (CDCl ₃) δ-158.58

^aAll ¹H NMR data measured at 400 MHz unless otherwise noted.^bAll ¹³C NMR data measured at 101 MHz unless otherwise noted.^cAll ¹⁹F NMR data measured at 376 MHz unless otherwise noted.

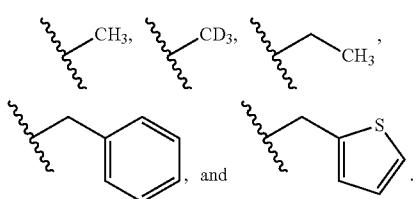
What is claimed is:

1. A method of making compounds of Formula III, including the steps of:


contacting a compound of Formula II with an alkali carbonate and an alkylating agent,


II

and


forming a compound of Formula III:

III

wherein R₁ is selected from the group consisting of:

and

R₂ is selected from the group consisting of:

2. The method of claim **1**, wherein the contacting step is carried out between 22° C. and 60° C.

3. The method of claim **1**, wherein the contacting step further includes a solvent selected from the group consisting of DMF, DMSO, DMA, NMP, and CH₃CN.

4. The method of claim **1**, wherein the alkali carbonate is selected from the group consisting of: Na₂CO₃, K₂CO₃, Cs₂CO₃, and Li₂CO₃.

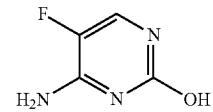
5. The method of claim **1**, wherein the alkylating agent is selected from the group consisting of: alkyl halides and benzyl halides.

6. The method of claim **5**, wherein the alkyl halides and benzyl halides are selected from the group consisting of: methyl iodide, ethyl iodide, and benzyl bromide.

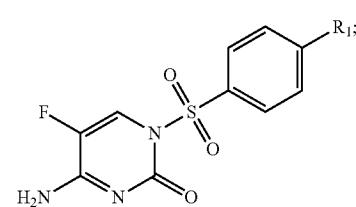
7. The method of claim **3**, wherein the alkali carbonate is Cs₂CO₃, and the solvent is DMF.

8. The method of claim **2**, wherein a molar ratio of the compound of Formula II to alkali carbonate is from about 3:1 to about 1:1 and a molar ratio of the compound of Formula II to alkylating agent is from about 1:1 to about 3:1.

9. The method of claim **8**, wherein a molar ratio of the compound of Formula II to alkali carbonate is about 2:1 and a molar ratio of the compound of Formula II to alkylating agent is about 1:3.


10. The method of claim **9**, further including the step of diluting a completed reaction mixture with CH₃CN and 2.5% aqueous Na₂S₂O₃.

11. The method of claim **10**, wherein a ratio of DMF to CH₃CN is from about 1:1 to about 3:1 and a ratio of DMF to 2.5% aqueous Na₂S₂O₃ is from about 1:2 to about 2:1.


12. The method of claim **11**, wherein a ratio of DMF to CH₃CN is about 2:1 and a ratio of DMF to 2.5% aqueous Na₂S₂O₃ is about 1:1.

13. A method of preparing a compound of Formula II, including the steps of:

contacting a compound of Formula I:

with bis-N,O-trimethylsilylacetamide; and forming a compound of Formula II:

wherein a molar ratio of the compound of Formula I to bis-N,O-trimethylsilylacetamide is about 1:1.1 and the contacting step is carried out at about 22° C. to about 70° C.

14. The method of claim **13**, wherein the contacting step further includes contacting the compound of Formula I with CH₃CN.

15. The method of claim **14**, further comprising the step of contacting a bis-N,O-trimethylsilylacetamide treated reaction mixture with an arylsulfonyl chloride.

16. The method of claim **15**, wherein a molar ratio of the compound of Formula I to arylsulfonyl chloride is from about 1:2 to about 2:1.

17. The method of claim **16**, wherein a molar ratio of the compound of Formula I to arylsulfonyl chloride is about 1:1.1.

* * * * *