METHOD FOR TRANSMITTING IP DATA BY PERFORMING HANDOVER BETWEEN HETEROGENEOUS NETWORKS, AND APPARATUS THEREFOR

Abstract: Disclosed are a method for transmitting IP data, and an apparatus therefor. A method in which a terminal that has performed handover between heterogeneous networks transmits IP data comprises: a step in which the terminal transmits data to/from a first network node of a first network using IP addresses corresponding to first and second IP versions; a step in which the terminal performs handover from the first network node of the first network to a second network; a step in which the terminal transmits a message, containing information on an IP version capable of being supported by the terminal, to the second network node of the second network; and a step in which the terminal transmits IP data to/from the second network node of the second network using the IP address corresponding to the IP version capable of being supported by the terminal, wherein the IP address corresponding to the IP version capable of being supported by the terminal may be an IP address allocated in a first network prior to handover, and the second network may be heterogeneous with respect to the first network.

Fig. 7

[다음 폭 계속]
IP 데이터 송수신 방법 및 이를 위한 장치가 개시된다. 이중 네트워크 간 핸드오버를 수행한 단말이 IP(Internet Protocol) 데이터를 송수신하는 방법은, 상기 단말이 제 1 및 제 2 IP 버전에 해당하는 IP 주소들을 이용하여 제 1 네트워크의 제 1 네트워크 노드와 데이터를 송수신하는 단계, 상기 단말이 상기 제 1 네트워크의 제 1 네트워크 노드로부터 제 2 네트워크로 핸드오버하는 단계, 상기 단말이 상기 제 1 및 제 2 IP 버전 중 지원가능한 IP 버전에 대한 정보를 포함하는 메시지를 상기 제 2 네트워크의 제 2 네트워크 노드로 전송하는 단계, 및 상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소를 이용하여 상기 제 2 네트워크의 제 2 네트워크 노드와 데이터를 송수신하는 단계를 포함하며, 상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소는 핸드오버 이전에 제 1 네트워크에서 할당받은 IP 주소이며, 상기 제 2 네트워크는 상기 제 1 네트워크와 이중 네트워크에 해당할 수 있다.
명세서
발명의 명칭: 이중 네트워크 간 핸드오버를 수행하여 IP 데이터를 송수신하는 방법 및 이를 위한 장치

기술분야

배경기술


[5] 단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준모델의 하위 3개 계층을 바탕으로 L1(제 1 계층), L2(제 2 계층), L3(제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리계층은 물리체널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 무선자원제어(Radio Resource Control, 이하 RRC라 약칭함) 계층은 단말과 네트워크 간에 무선자원을 제어하는
역할을 수행한다. 이를 위해 RRC 계층은 단말과 망 간에 RRC 메시지를 서로 교환한다. RRC 계층은 기지국과 AG 등 망 노드들에 분산되어 위치할 수도 있고, 기지국 또는 AG에만 위치할 수도 있다.

도 2는 각각 3GPP 무선접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 구조 중에서 제어평면(control plane)의 구조를 나타낸 도면이다.

도 2의 무선 인터페이스 프로토콜은 상위에 물리 계층(Physical Layer), 데이터 링크 계층(Data Link Layer) 및 네트워크 계층(Network Layer)으로 이루어지며, 수직적으로는 데이터 전송을 위한 사용자 계층(User Plane)과 제어 신호(Signaling) 전달을 위한 제어 평면(Control Plane)으로 구분된다. 도 2의 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호결속/Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3 (제3계층)로 구분될 수 있다.

제 1 계층인 물리 계층은 물리 채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리 계층은 상위에 있는 매체 접속 계층(Medium Access Control)계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 이 전송 채널을 통해 매체 접속 계층과 물리 채널 사이의 데이터가 이동한다. 그리고, 서로 다른 물리 계층 사이, 즉 송신측과 수신측의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다.

제 2 계층의 매체 접속 계층(Medium Access Control; 이하 MAC로 약칭)는 논리 채널(Logical Channel)을 통해 상위 계층인 무선 링크 계층(Radio Link Control)계층에게 서비스를 제공한다. 제2계층의 무선 링크 계층(Radio Link Control; 이하 RLC로 약칭)계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 분할로 구현될 수도 있다. 이러한 경우에는 RLC 계층은 존재하지 않을 수도 있다. 제 2 계층의 PDCP(Packet Data Convergence Protocol) 계층은 IPv4(Internet Protocol version 4)나 IPv6(Internet Protocol version 6)와 같은 IP 패킷 전송 시에 데이터의 작은 부분 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈 줄이기 헤더 압축(Header Compression) 기능을 수행한다. 또한, RRC 신호와 같은 제어 신호 또는/및 그리고 사용자 데이터에 대하여 무결성 보호(integrity protection) 및 암호화(ciphering)를 수행할 수 있다.

제 3 계층의 가장 상부에 위치한 무선 자원 계층(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어 평면에서만 정의되며, 무선 베어러(Radio Bearer)들의 설정(Configuration), 설정 변경(Re-configuration) 및 해제(Release)와 관련된 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, 무선 베어러는 단말과 UTRAN간의 데이터 전달을 위해 제 2 계층에 의해 제공되는 서비스를 의미한다. 단말의 RRC와 무선 네트워크의 RRC 계층 사이에 RRC 연결(RRC
connection)이 있을 경우, 단말은 RRC 연결 모드(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 유무 모드(Idle Mode)에 있게 된다.

RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다. NAS 계층에 속하는 eSM(evolved Session Management)은 디폴트 베어러(Default Bearer) 관리, 전용 베어러(Dedicated Bearer) 관리와 같은 기능을 수행하며, 단말이 네트워크로부터 패킷 서비스(PS)를 이용하기 위한 제어를 담당한다. 디폴트 베어러 자원은 특정 패킷 데이터 네트워크(Packet Data Network, 이하 PDN)에서 약간한 측정한에 최초 접속할 시에 네트워크에 접속될 때 네트워크로부터 할당받는다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 디폴트 베어러의 QoS를 할당해준다.

LTE 시스템에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주지는 GBR(Guaranteed bit rate) QoS 특성을 가지는 베어러와 대역폭의 보장없이 Best effort QoS 특성을 가지는 Non-GBR 베어러의 두 종류를 지원한다. 디폴트 베어러의 경우 Non-GBR 베어러를 할당받는다. 반면, 전용 베어러(Dedicated bearer)의 경우에는 GBR 또는 Non-GBR의 QoS특성을 가지는 베어러를 할당받을 수 있다.

발명의 상세한 설명

기술적 과제

본 발명이 이루고자 하는 기술적 과제는 이중 네트워크 간 핸드오버를 수행한 단말이 IP(Internet Protocol) 데이터를 송수신하는 방법을 제공하는 데 있다.

본 발명이 이루어진 다른 기술적 과제는 이중 네트워크 간 핸드오버를 수행하여 IP(Internet Protocol) 데이터를 송수신하기 위한 단말 장치를 제공하는 데 있다.

본 발명이 이루어져야 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 사람에게 명확하게 이해될 수 있을 것이다.

과제 해결 수단

상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 이중 네트워크 간 핸드오버를 수행한 단말이 IP(Internet Protocol) 데이터를 송수신하는 방법은 상기 단말이 제 1 및 제 2 IP 버전에 해당하는 IP 주소들을 이용하여 제 1 네트워크의 제 1 네트워크 노드와 데이터를 송수신하는 단계; 상기 단말이 상기 제 1 네트워크의 제 1 네트워크 노드로부터 제 2 네트워크로 핸드오버하는 단계; 상기 단말이 상기 제 1 및 제 2 IP 버전 중 지원가능한 IP 버전에 대한 정보를 포함하는 메시지를 제 2 네트워크의 제 2 네트워크 노드로 전송하는 단계; 및 상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소를 이용하여 상기 제 2
네트워크의 제 2 네트워크 노드와 데이터를 송수신하는 단계를 포함할 수 있으며, 여기서 상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소는 헬드오버 이전에 제 1 네트워크에서 할당받은 IP 주소이며, 상기 제 2 네트워크는 상기 제 1 네트워크와 이중 네트워크에 해당할 수 있다. 상기 단말이 지원가능한 IP 버전에 대한 정보는 PDN(Packet Data Network) 식별자 값 형태로 전송될 수 있다. 상기 메시지는 접속 타입(Attach type) 정보 및 PDN(Packet Data Network) 타입 정보 중 적어도 하나를 더 포함할 수 있다. 상기 단말 자신이 지원가능한 IP 버전은 하나이며, 상기 PDN 타입은 상기 제 1 IP 버전 및 제 2 IP 버전을 포함할 수 있으며, 상기 제 1 네트워크는 eHRPD(evolved High Rate Packet Data) 네트워크일 수 있다. 상기 제 2 네트워크의 제 2 네트워크 노드는 HSGW(eHRPD Serving Gateway)일 수 있다. 상기 메시지는 VSNCP(Vendor Specific Network Control Protocol) 제어 시그널링(control signalling) 타입일 수 있다. 상기 PDN 식별자 값은 상기 단말이 지원가능한 IP 버전 정보 외에 상기 단말이 연결을 요청하는 APN(Access Point Name) 정보를 더 고려하여 결정된 값일 수 있다.

상기의 다른 기술적 과제를 달성하기 위한, 본 발명에 따른 IP(Internet Protocol) 데이터를 송수신하는 단말 장치는 제 1 및 제 2 IP 버전에 해당하는 IP 주소들을 이용하여 제 1 네트워크의 제 1 네트워크 노드와 데이터를 송수신하고, 상기 제 1 네트워크의 제 1 네트워크 노드로부터 제 2 네트워크로 헬드오버를 수행하도록 제어하는 제 1 모뎀 접; 상기 단말이 지원가능한 IP 버전에 대한 정보를 포함하는 메시지를 제 2 네트워크의 제 2 네트워크 노드로 전송하도록 구성된 IP 스택 모듈; 및 상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소를 이용하여 상기 제 2 네트워크의 제 2 네트워크 노드와 데이터를 송수신하도록 구성된 제 2 모뎀 접을 포함한다. 상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소는 헬드오버 이전에 제 1 네트워크에서 할당받은 IP 주소이며, 상기 제 2 네트워크는 상기 제 1 네트워크와 이중 네트워크에 해당할 수 있다. 상기 단말이 지원가능한 IP 버전에 대한 정보는 PDN(Packet Data Network) 식별자 값 타입으로 전송될 수 있다. 상기 제 1 모뎀 접은 LTE(Long Term Evolution) 네트워크 접이며 상기 제 2 모뎀 접은 eHRPD(evolved High Rate Packet Data) 모뎀 접할 수 있다.

발명의 효과

본 발명에 따른 설계에서, 단말이 지원가능한 IP 버전은 IPv4라고 IP 버전 성능(calling)을 eHRPD 네트워크로 알려주기 때문에, eHRPD 네트워크가 불필요한 IPv6 SLAAC 수행 과정 등을 수행하지 않아 무선 자원 자원의 낭비를 방지할 수 있다. 또한, 이로 인한 효과로 사용자 입장에서는 더 많은 영역을 할당받아 사용이 가능해짐에 따라 네트워크로부터 서비스를 받는 만족도를 높일 수 있다. 단말 입장에서는 단말이 네트워크와 다중 연결 접속이 이루어진 경우, 다중 망 연결 중에서 특정 연결의 PDN을 구분하는 정보를 사용할 수 있다.
데이터의 IP 헤더에 지시함으로써, 특정 PDN을 구분하는 동작의 부하를 줄여줄 수 있으며, 전체적인 단말의 처리 속도를 현저히 향상시킬 수 있다.

본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 동상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.

토론의 간단한 설명

본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.

도 1은 이동통신 시스템의 일부인 E-UMTS(Evolved Universal Mobile Telecommunications System) 네트워크 구조를 나타낸 도면이다.

도 2는 각각 3GPP 무선접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 구조 중에서 제어레이언(control plane)의 구조를 나타낸 도면이다.

도 3은 LTE 시스템에서 IPv6 SLLAC(Stateless Address Auto-configuration) 과정을 통해 글로벌하게 유니크한 IPv6 주소를 할당받는 방법의 일 예를 나타낸 도면이다.

도 4는 LTE 시스템과 eHRPD 시스템을 상호 운용하기 위한 시스템 구조의 일 예를 나타낸 도면이다.

도 5는 단말이 이중 네트워크 간의(예를 들어, LTE 네트워크에서 eHRPD 네트워크) 헬드오버 과정의 일 예를 설명한 도면이다.

도 6은 본 발명에 따른 이중 네트워크 간의 헬드오버를 지원하는 단말의 구성을 나타낸 블록도이다.

도 7은 단말이 이중 네트워크 간의(예를 들어, LTE 네트워크에서 eHRPD 네트워크) 헬드오버 과정의 다른 예를 설명한 도면이다.

발명의 실시를 위한 최선의 형태

이하, 본 발명에 따른 마법적인 설치 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 게시된 상세한 설명은 본 발명의 예시적인 설치형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 설치형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 알라. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.

몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지는 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로
도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.

아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(ACCESS Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 3GPP LTE, LTE-A 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 이하, 본 발명에 따른 바람직한 실시 형태를 참조한 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시된 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 알다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 IEEE(Institute of Electrical and Electronics Engineers) 802.16 시스템, 3GPP(3rd Generation Partnership Project)인 경우를 가정하여 구체적으로 설명하나, IEEE 802.16 시스템, 3GPP의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.

몇몇 경우, 본 발명의 개념이 도호지하는 것을 피하기 위하여 공지의 구조 및 장치는 설계되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.

아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, BS(Base Station), AP(ACCESS Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.

이동 통신 시스템에서 단말은 기지국으로부터 하향성 링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향성 링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보는 데이터 또는 다양한 세부 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.

본 발명은 UMTS(Universal Mobile Telecommunications System)로부터 진화된 E-UMTS(Evolved Universal Mobile Telecommunications System)에서, 무선 자원의 이용률을 높이면서 IP 주소의 연속성을 보장하는 방법을 제안한다. 구체적으로, 단말이 두 개의 모델 점(예를 들어, LTE 모델 점과 CDMA 모델 점)을 사용하여, 두 모델을 지원하는 헤더로 된 경우에, 하나의 모델 점에서는(예를 들어, LTE 모델 점)은 하나의 PDN에 대하여 IPv4와 IPv6에 대한 데이터 전송 경로(data
본 발명의 다양한 설계예들을 설명하기에 앞서 PDN 태이어에 대해 간략히 설명한다. PDN 태이어는 IPv4, IPv6, IPv6v6의 세 가지 종류 있는데, 각 PDN 태이어에 따른 주소 할당 방법을 간략히 설명한다.

IP 기반의 패킷서비스(또는 IP 데이터 서비스)를 제공하는 LTE 시스템(혹은 LTE 네트워크)에서는 단말이 접속 과정 중에 PDN 연결 절차(PDN connectivity procedure)를 통하여 디폴트 베어러 활성화(Disconnect Bearer Activation)가 발생하게 하고 이 과정을 통하여 네트워크로부터 IP 주소를 할당받을 수 있다.

기본적으로 네트워크와 단말은 IPv4 PDN 태이어를 의무적으로(mandatory) 지원해야 하는데, IPv4 PDN 태이어는 단말이 다음 두 가지 방법 중 하나의 방법으로 할당받기를 지원할 수 있다. 첫 번째 방법으로, 네트워크는 NAS 신호(예를 들어, ACTIVATE DEFAULT BEARER CONTEXT ACTIVATION)를 통하여 단말에게 IP 주소를 할당한다. 두 번째 방법으로, 단말의 접속 과정(Attach Procedure) 이후에 DHCP(Dynamic Host Configuration Protocol) 절차를 통하여 할당할 수 있다. 이 경우, NAS 신호의 IP 주소는 ‘0.0.0.0’과 같이 임의의 값을 지정하여 단말에게 할당하게 되며, 접속 과정(Attach procedure)이 종료된 후, DHCP 절차(RFC 1541)에 따라 주소를 할당받게 된다.

IPv6 PDN 태이어에 대해 설명하면, 네트워크는 글로벌 IPv6 주소 할당을 위하여 IPv6 SLAAC(Stateless Address Auto-configuration) 과정을 수행하는데, 구체적으로 단말은 접속 과정(Attach Procedure) 또는 PDN 연결 과정에서의 디폴트 베어러 활성화 과정에서 NAS 신호를 통하여 64 비트 인터페이스 식별자(Interface Identifier, IID)를 할당받고, 이후, IPv6 SLAAC 과정을 통하여 64 비트 프리픽스(prefix)를 할당받음으로써, 전체 128 비트의 글로벌 IPv6 주소를 할당받게 된다.

마지막으로, IPv4v6 PDN 태이어의 경우는 앞서 설명한 IPv4 PDN 태이어와 IPv6 PDN 태이어에 주소 할당 방법이 동시에 적용된다.

참고로, IPv4주소는 16 비트 크기를 가지며, 표시 방법은 2341.128.2.1 과 같이 '.' (dot)로 구분되는 네 자리 값을 가지며, 하나의 자리 값이 0~255의 범위값을 가진다. IPv6 주소는 128 비트 크기를 가지며, 표시 방법은 2001:a121:e43:ff2e:4:2e0:91ff:fe10:4f5b 과 같이 ':' (콜론)으로 구분되는 8자리 값을 가지며, 하나의 자리 값이 16 비트 크기의 16진수 형태를 가진다. 이때, 2001:0:0::2e0:91ff:fe10:4f5b 과 같이 연속되는 0 값에 대하여 ':' (더블 콜론)의 표기를 한다. 즉, 2001::2e0:91ff:fe10:4f5b 값은 2001::0:0:2e0:91ff:fe10:4f5b와 동일한 주소임을 의미한다.
이하에서는 구체적으로 LTE 시스템에서 네트워크가 단말에게 IPv6주소를 할당하는 방법을 설명할 것이다. 기본적으로 LTE 시스템에서는 RFC(예를 들어, RFC4862)를 정의하는 IPv6 SLAAC(Stateless Address Auto-Configuration)을 사용하며, 여기에 제약 사항을 두어 단말에게 IPv6 주소를 할당하는 방법을 제공하고 있다. 이 예로서, 3GPP TS23.401, TS24.301에서 정의하는 다플트 메이터 활성화를 포함하는 접속 과정(Attach procedure) 과정을 통하여 IPv6 주소 할당 방법을 설명한다.

도 3은 LTE 시스템에서 IPv6 SLLAC(Stateless Address Auto-configuration) 과정을 통해 글로벌하게 유니크한 IPv6 주소를 할당받는 방법의 일 예를 나타낸 도면이다.

도 3을 참조하면, 단말(UE)이 LTE 네트워크로부터 IP 데이터 서비스를 받기 위하여 자신의 식별정보(예를 들어, IMSI)를 네트워크 노드(예를 들어, MME)로 전송한다. 단말은 네트워크로부터 서비스를 받기 위해 접속 과정(Attach Procedure)을 통하여 자신의 식별자 정보(예를 들어, IMSI(International Mobile Station Identity))를 네트워크에 등록함으로써 네트워크로부터 서비스를 받을 수 있다. 이를 위해, 단말은 접속 요청(Attach request) 수행 시에 자신의 식별자 정보와 자신의 성능(capability) 정보를 포함하여 기지국을 거쳐 MME로 전달할 수 있다(S305). 이때, 단말은 PDN 연결 과정(PDN connectivity procedure)을 통한 PDN 연결 요청(PDN connectivity request) 시에 PDN 패킷 정보(즉 단말이 요청 및 사용하고자 하는 IP 버전 정보(예를 들어, IPv6), APN(Access Point Name) 정보(예를 들어, APN='X')을 포함하여 네트워크 노드(예를 들어, MME)로 전달할 수 있다(S305). 여기서, APN은 단말이 휴대전화 네트워크에 연결하여 데이터 통신을 할 때 필요한 대상을 지정하는 문자열로서, 이 예로서, IP 기반 데이터 서비스를 받기 위한 IP 도메인 정보를 나타낼 수 있다.

단말로부터 네트워크 접속 요청을 받은 네트워크 노드(일 예로서 MME)는 단말의 현재 위치를 등록하기 위하여 단말의 식별자 정보(예를 들어, IMSI)를 포함하는 위치 캐시 요청 메시지를 다른 네트워크 노드(일 예로서 Home Subscriber Server, HSS)를 전달할 수 있다(S310). HSS는 단말의 식별자 정보를 등록하고, 단말의 식별자 정보를 바탕으로 단말의 가입정보를 위치 캐시 업데이트 메시지 등을 통해 MME로 전달할 수 있다(S315). 이때 단말의 가입정보에는 일 예로서 단말이 사용 가능한 IP 주소, PDN 탑승 등의 정보가 있을 수 있다. 이러한 S310 및 S315 단계의 과정은 단말이 LTE 네트워크에 접속하는 시점에 MME가 바뀌지 않았다면 생략될 수도 있다.

MME는 HSS로부터 받은 가입자 정보(예를 들어, PDN 탑승)와 단말이 요청한 접속 정보(예를 들어, PDN 탑승)에 기초하여 서버 게이트웨이(S-GW) 단말과 PDN GW 사이에 존재하지만 도 3에서는 이 도로 PDN GW로 하여금 다플트 베어러를 생성하도록 하며, 이 과정에서 MME는 단말의 IP 주소와 같은 정보를 획득하게 된다(S320). 도 3에서는 IPv6가 요청 및 할당하게 되는 PDN 탑승에

이제, PDN-GW(P-GW)는 단말에게 제공할 128 비트 IPv6 주소(즉, 64 비트 프리фик스와 64 비트 IID)를 할당하는데, 이 중에서, 64 비트의 IID(예를 들어, IID=1:2:3:4)와 APN 정보(예를 들어, APN=X')를 단말에게 NAS 신호(예를 들어, ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지)를 통하여 전송할 수 있다(S325). 단말은 접속 과정(또는 디플트 페이어 활성화 과정)이 끝나면 64 비트 IID 주소(예를 들어, IID=1:2:3:4)를 할당받는다.

이후 ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지에 대한 응답으로 단말은 MME로부터 ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT 메시지를 보내며 접속 과정이 종료되었다는을 알릴 수 있다(S330). 단말은 할당받은 64 비트 IID(예를 들어, IID=1:2:3:4) 정보와 함께 64 비트 프리픽스(예를 들어, fe80::)를 이용하여 링크 로컬 주소(Link-Local Address, LLA)를 생성한다(S335). 단말은 LLA를 이용하여 같은 서브넷(또는 같은 네트워크 링크)에 속하는 다른 단말(또는 라우터(router))과 통신하게 된다. 예를 들어, PDN GW로부터 할당받은 IID 값이 1:2:3:4라고 하면, 단말이 생성하는 LLA 값은 fe80::1:2:3:4가 될 것이다.

이후, 단말은 ICMPv6 메시지인 라우터 광고(Router Advertisement, RA) 메시지를 네트워크 노드(일 예로서, PDN GW)로부터 수신할 수 있다(S345). 라우터 광고(RA) 메시지의 수신 방법으로, 기지국이 주기적으로 보내는 라우터 광고(RA) 메시지를 수신하여 단말이 획득하는 방법이 있고, 또한 단말이 라우터 광고(RA)를 요청하는 Router Solicitation(RS)를 PDN GW로 보낸 것으로써(S340), 이에 대한 응답으로 RA 메시지를 수신하여 획득하는 방법이 있다. 이때, PDN GW가 단말과의 접속 과정(Attach procedure)에서 IID를 할당한 시점에서 함께 할당한 64 비트 프리픽스 값을 라우터 광고(RA)의 옵션 필드를 사용하여 단말에게 전송해 줄 수 있다(S345). 단말과 PDN GW는 1-호프(hop) 거리의 같은 서브-네트워크(또는 동일한 링크)에 속할 수 있으며, Router Solicitation(RS), RA와 같은 메시지는 소스 주소(source address)와 목적지 주소(destination address)로서 LLA를 사용하게 된다.

S340 단계에서 단말이 보내는 RS 메시지의 목적지 주소(예를 들어, ff02::2)는 같은 링크 로큰에서 모든 라우터를 나타낼 수 있다(link-local scope all-routers multicast address). 단말이 RS 메시지를 PDN GW로 보내는 경우, 단말은PDN GW의 목적지 주소를 모르므로 RA 메시지 획득을 위하여 RS 메시지의 목적지 주소 ff02::2를 사용할 수 있다. 여기서, PDN GW는 단말로부터 RS 메시지를 수신하고, 수신한 RS 메시지의 소스 주소가 자신이 할당한 IID 값을 사용하였으므로, 수신한 IID 값에 대응하는 프리픽스(prefix) 값을 RA 메시지에 포함시켜 단말에게 전송하게 된다. RFC에서는 이와 같이 과정을 통하여 단말이
라우터의 존재를 알게 되므로 라우터 발견 프로세스(router discovery process)라고 부르기도 한다.

단말은 PDN GW로부터 획득한 라우터 광고(RA) 메시지에 포함되어 있는 64 비트 프리픽스 값과 접속 과정(Attach Procedure)에서 할당받은 64 비트 IID 값을 이용하여 128 비트 글로벌 IPv6 주소를 할당받는다(S350). 즉, 단말은 할당받은 IID을 사용하여 IPv6 SLAAC 과정을 수행하여 글로벌 주소를 할당받게 된다(S350). LTE 시스템에서는 단말에게 글로벌하게 유니크한 프리픽스를 할당하도록 하고 있다. 참고로, LLA에서는 단말이 네트워크 노드(일 예로서, PDN GW)로부터 할당받은 IID 값을 사용하고 있지만, 글로벌 IPv6 주소의 하위 64 비트값(즉, IID 값)은 네트워크 노드(일 예로서, PDN GW)로부터 할당받지 않은 임의의 값을 사용할 수도 있다.

이후 단말은 PDN GW로부터 할당받은 IP 주소를 이용하여 IPv6 테이터 전송 경로를 통해 데이터를 송수신할 수 있다(S355). 단말에게 할당한 IPv6 주소 유효성에 대한 검증을 위해서 PDN GW는 주기적으로 라우터 광고(RA) 메시지를 특정 주기로 단말에게 전송해 줄 수 있다(S360).

여기에, 단말이 추가적인 PDN 연결 전철을 통하여 복수의 PDN GW(P-GW)에 접속함으로써, 복수의 PDN GW로부터 테이터를 송수신할 수 있는 서비스를 받을 수도 있다. 이 경우 단말은 추가적으로 IP를 할당받을 수도 있다. 이 경우 단말은 다중 PDN 연결 접속(multiple PDN connections)을 이용하여 복수 개의 PDN-GW와 테이터 송수신을 할 수가 있다.

도 3에서는 하나의 PDN 연결 전철을 통해 하나의 PDN GW에 접속하여 데이터를 송수신하는 내용을 기술하고 있다. 여기서 더 나아가, 단말은 추가적인 PDN 연결 전철을 통하여 복수의 PDN GW(P-GW)에 접속함으로써, 복수의 PDN GW로부터 테이터를 송수신할 수 있는 서비스를 받을 수도 있다. 이 경우 단말은 추가적으로 IP를 할당받을 수도 있다. 도 3과 같은 과정을 복수의 PDN GW와 각각 수행하여 단말은 다중 PDN 연결 접속을 이용하여 복수 개의 PDN-GW와 데이터 송수신을 할 수 있다.

이하에서, 3GPP2 기술의 CDMA의 HRPD(High-Rate Packet Data) 기술(또는 1x-EVDO 기술)을 LTE의 코어 네트워크와 상호 운용이 가능하도록 개발된 eHRPD (evolved High Rate Packet Data)를 적용한 시스템에 대한 설명을 한다.

도 4는 LTE 시스템과 eHRPD 시스템을 상호 운용하기 위한 시스템 구조의 일 예를 나타낸 도면이다.

도 4를 참조하면, HSGW(eHRPD Serving Gateway)는 eHRPD 시스템(혹은 eHRPD 네트워크)에 접속한 단말이 LTE 네트워크의 PDN-GW와 테이터 송수신 경로를 제공하며, 사용자 데이터에 대한 과금(charging) 등의 기능을 수행한다. 특히, HSGW는 프록시 모바일 IPv6(Proxy Mobile IPv6, 이하 PMIPv6)를 사용하여 단말에게 IP 서비스의 연속성을 유지시켜 준다. 예를 들어, 단말이 LTE 네트워크에서 eHRPD 네트워크로 헨드오버(또는 헨드오프)하는 경우, HSGW는
PMIP를 사용하여 단말이 LTE 네트워크에서 사용하고 있던 IP 주소를 PDN GW를 통한 획득한 후 단말에게 다시 할당한다. 이로써 단말은 LTE 네트워크에서 사용하던 IP 주소를 그대로 사용하여 통신할 수 있으므로, 사용자의 데이터는 끊기지 않고 지속적으로 서비스를 받게 된다.

도 4에서, eAN(evolved Access Network)는 eHRPD 네트워크의 무선자원 할당 및 제어 기능을 제공하며, ePCF(evolved Packet Control Function)은 단말의 데이터를 HSGW로 전송 및 제어하는 기능을 담당한다.

도 5는 단말이 이중 네트워크 간의(예를 들어, LTE 네트워크에서 eHRPD 네트워크) 핸드오버 과정의 일 예를 설명한 도면이다.

도 5를 참조하면, 단말(UE)이 LTE 네트워크로부터 IP 데이터 서비스를 받기 위하여 LTE 셀을 찾고 자신의 식별 정보(예를 들어, IMSI)를 네트워크 노드(예를 들어, MME)로 전송한다. 단말이 네트워크에서 서비스를 받기 위해서는 접속 과정(Attach Procedure)을 통하여 자신의 식별자 정보(예를 들어, IMSI(International Mobile Station Identity)를 네트워크에 등록한다. 이를 위해, 단말은 접속 요청(Attach request) 수행 시 자신의 식별자 정보와 자신의 성능(capability) 정보를 포함시켜 기지국을 거쳐 네트워크 노드(일 애에로서, MME)로 전달할 수 있다(S505). 이때, 단말은 PDN 연결 과정(PDN connectivity procedure)을 통한 PDN 연결 요청(PDN connectivity request) 시에 PDN 타임 싱크 단말이 요청 및 사용하고자 하는 IP 버전(예를 들어, IPv4v6) 정보, APN(Access Point Name) 정보(예를 들어, APN=’X’), 요청 타임(예를 들어, 요청 타임=초기 접속) 정보를 포함하여 MME로 전달할 수 있다(S505).

단말로부터 네트워크 접속 요청을 받은 MME는 단말의 현재 위치를 등록하기 위하여 단말의 식별자 정보(예를 들어, IMSI)를 포함하는 위치 검색 요청 메시지를 다른 네트워크 노드(일 애에로서 AAA/HSS)로 전달하여 위치 검색 과정을 수행할 수 있다(S510). 이로 S-GW는 P-GW(PDN-GW)와 PDN 셋업 과정(예를 들어, IP 주소 할당)을 수행하고, MME는 S-GW와 PDN 셋업 과정을 수행할 수 있다(S515). 여기서, P-GW는 단말이 요청 및 사용하고자 하는 IP 버전(예를 들어, IPv4v6)에 대해 IPv4 주소 및 IPv6 주소를 단말에게 할당할 수 있다(S515). 이 애에로서, PDN GW는 해당 단말에게 IPv6 주소를 [Prefix= A:B:C:D IID=1:2:3:4]와 같이, IPv4 주소를 0.0.0.0와 같이 할당할 수 있다.

P-GW는 단말에게 제공할 128 비트 IPv6 주소(즉, 64 비트 프리픽스와 64 비트 IID)와 IPv4 주소를 할당하므로, IPv6 주소 중에서, 64 비트의 IID(예를 들어, IID=1:2:3:4)와, IPv4 주소와, APN 정보(예를 들어, APN=’X’)와, PDN 타임 정보(예를 들어, IPv4v6) 등을 단말에게 NAS 신호(예를 들어, ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지) 등을 통하여 전송할 수 있다(S520). 이후, ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST 메시지에 대한 응답으로, 단말은 MME로 ACTIVATE DEFAULT EPS BEARER CONTEXT ACCEPT 메시지를 보내어 접속 과정이 종료되었음을 알린 수


[64] 만약, 단말이 네트워크로부터 지시를 받는 경우에, 단말은 LTE 네트워크로부터 명시적으로 ‘MobilityFromEUTRACCommand’ 또는 ‘RRConnectionRelease’ 메시지와 같이 CDMA 네트워크로 핸드오버 또는 이동하라는 RRC 메시지를 명시적으로 받아서 핸드오버를 결정할 수 있다. 이와 달리, 단말이 스스로 핸드오버를 결정할 수 있는데, 서비스를 받고 있던 네트워크의 셀이 더 이상 사용 불가능할 경우(예를 들어, 셀의 수신 강도가 특정 임계치 이하로 너무 낮아 셀 분실(cell lost)로 판단한 경우)에는 데이터 통신을 계속하기 위하여 이종 네트워크(예를 들어, eHRPD 네트워크)로 핸드오버 할 수도 있다.

[65] 핸드오버를 결정한 단말은 이종 네트워크(예를 들어, eHRPD 네트워크)에 해당하는 셀을 획득 및 접속(camping on)을 수행할 수 있다.(S550). 이때, 단말은 특성 메시지(예를 들어, VSNCP(Vendor Specific Network Control Protocol) 제어 시그널링)을 통하여 eHRPD 네트워크에 접속할 수 있다. 단말은 접속 태입(Attach type)을 ‘핸드오버’로 지정하고, 또한, LTE 네트워크에서 사용 중이던 데이터 서비스 유지를 위하여 LTE 네트워크에서 연결했던 APN(여기서는, APN=X)과 할당받은 PDN 탐을 IPv4v6로 동일하게 지정할 수 있다.
단말은 ‘VSNCP-Config-Req’ 메시지에 PDN 탐, APN 정보, 접속 태입 정보 등을 포함시켜 네트워크 노드(예를 들어, HSGW)로 전송할 수 있다.(S555). 이때, 단말은 LTE 네트워크에서 기 할당받던 IP 주소 정보를 함께 전송할 수도 있다.(S555).

[66] 이 과정에서 단말은 연결된 PDN에 대하여 PDN 식별자(PDN-ID)를 부여할 수 있다. 단말이 복수 개의 PDN에 접속 시에는 PDN-ID를 사용하여 각 네트워크 접속에 대한 구분을 한다. 또한 발생하는 데이터마다, PDN-ID를 붙여서 네트워크와 단말이 어떤 PDN에서 송수신되고 있는 데이터 인지를 구분하게 된다. 단말은 ‘VSNCP-Config-Req’ 메시지에 PDN-ID를 더 포함시켜 네트워크
노드(예를 들어, HSGW)로 전송할 수 있다(S555).

단말로부터 접속 요청(즉, ‘VSNCP-Config-Req’ 메시지를)을 받은 HSGW는 프록시 바인딩 신청 과정을 통해 단말이 할당받은 서비스를 계속 사용한다는 것을 P-GW에게 알려준다(S560). 이에 대한 응답으로 P-GW는 프록시 바인딩 응답(Proxy Binding Ack)을 해주면(S565), HSGW는 단말에게 단말이 기존에 LTE 네트워크에서 사용하던 동일한 IP 주소(즉, IPv4 주소 및 IPv6 주소)를 할당할 수 있다. 즉, HSGW는 단말에게 ‘VSNCP-Config-Ack’ 메시지에 PDN 타입, 할당한 IPv4 주소 및 IPv6 주소와 APN 정보 등을 포함하여 단말에게 전송해 줄 수 있다(S570).

또한, HSGW는 단말에게 ‘VSNCP-Config-Req’ 메시지에 PDN-ID를 포함하여 전송해 줄 수 있고(S575), 단말은 이에 대한 확인 응답으로 ‘VSNCP-Config-Ack’ 메시지에 PDN-ID를 포함하여 HSGW에게 전송해 줄 수 있다(S580).

이후 단말은 LTE 네트워크에서 사용하던 동일한 IPv4 주소를 이용하여 eHRPD 네트워크와 IPv4 테이터 전송 경로를 통해 테이터 송수신을 수행할 수 있다(S585). 그리고, 단말은 LTE 네트워크에서 사용하던 IID와 동일한 IID를 할당받을 수 있으며, 할당받은 IID를 이용하여 IPv6 SLAAC 과정을 거쳐 IPv6 주소를 할당받게 된다(S590). 이러한 과정을 통하여 단말은 LTE 네트워크에서 사용했던 것과 동일한 IPv6 주소를 이용하여 IPv6 테이터 전송 경로를 통해 eHRPD 네트워크로부터 테이터를 송수신할 수 있다.

만일, 단말이 eHRPD 네트워크로 핸드오버 하고 난 이후, 또 다시 LTE 네트워크로 핸드오버를 하게 된다하더라도, 단말은 상기의 절차와 유사한 방법으로 동일한 IP를 할당받아서 사용 가능하므로 서비스에 대한 연결을 계속적으로 유지할 수 있다.

도 6은 본 발명에 따른 이중 네트워크 간의 핸드오버를 지원하는 단말의 구성을 나타낸 블록도이다.

도 6을 참조하면, 단말은 LTE 모뎀 참(S610), CDMA 모뎀 참(S620) 및 IP 스택 모듈(S630)을 포함할 수 있다.

LTE 모뎀 참(S610)은 LTE 무선통신 방식을 이용하여 신호를 전송 및 처리하는 모뎀 참으로 듀얼 IP를 지원한다. LTE 모뎀 기능을 제공하는 LTE 모뎀 참(S610)은 하나의 PDN 연결에 대하여 IPv4 또는 IPv4 IP 비전을 지원하거나 IPv4와 같은 두 개의 IP 비전을 동시에 지원가능하다. LTE 모뎀 참(S610)은 듀얼 IP를 지원이 가능하므로, 단말은 LTE 네트워크에서 서비스를 받는 경우에는 단말은 하나의 PDN에 대하여 IPv4와 IPv6를 동시에 사용하여 사용자에게 서비스를 제공할 수 있다.

CDMA 모뎀 참(S620)은 CDMA 개별의 무선통신 방식을 이용하여 신호를 전송 및 처리하는 모뎀 참으로, 싱글(Single) IP를 지원한다. 따라서, 단말이 eHRPD 네트워크에서 서비스를 받는 경우에는 CDMA 모뎀 참(S620)은 IPv4 또는 IPv6의 하나의 IP 비전만을 사용하여 사용자에게 테이터 서비스를 제공할 수 있다.
CDMA 모델 참(620)은 예를 들어, eHRPD 모델 기능 제공 및 어플리케이션 프로세서(Application Processor, AP) 기능을 제공하는 첨이다. CDMA 모델 참(620)은 하나의 PDN에 대하여 하나의 IP 버전(즉, IPv4 또는 IPv6)을 위한 데이터 전송 경로를 지원하는 첨이 존재하는 첨이다. CDMA 모델 참(620)으로는 MSM 6800 등이 있다.

도 6에서는 CDMA 모델 참(620)이 듀얼 모드 체어를 수행하는 듀얼 모드 체어(625)를 포함하고 있다고 도시하고 있으나, 이에 제한되는 것은 아니며 듀얼 모드 체어(625)는 LTE 모델 참(610) 내부 또는 각 모델 참(610, 620) 외부에 존재할 수도 있다.

IP 스택 모듈(630)은 단말의 IP 서비스를 지원하기 위한 역할을 담당하며, 일 예로서 원도스 운영 체계일 수 있으며, 스마트폰에서는 어플리케이션 프로세서(AP) 타임으로 구현될 수도 있다. IP 스택 모듈(630)은 각 모델 참(610, 620) 내부에 위치할 수도 있지만, 도 6에서와 같이 각 모델 참(610, 620) 외부에 위치한 어플리케이션 프로세서(AP)로서 IP 서비스를 제공해 줄 수 있다.


그러나, 이 상황에서 하나의 IP 버전(예를 들어, IPv4만 데이터 전송 경로가 지원가능한 CDMA 모델 참(620)의 경우에 대하여, 단말이 eHRPD 네트워크로 핸드오버를 한 경우, 단말이 eHRPD 네트워크를 향하여 IPv4v6의 PDN 타임으로 연결 요청을 하더라도, 실제로 사용자(예를 들어, 어플리케이션 또는 응용프로그램)에 의하여 사용 가능한 주소는 IPv4의 하나의 버전이므로, IPv6 주소를 할당을 위하여 필요한 IPv6 SLAAC 과정(도 3의 S350, 도 5의 S590 단계)은 불필요하게 된다. 따라서, 실제 단말이 IPv6 주소를 사용 불가능한 상황에서도 불구하고 불필요하게 네트워크가 단말에게 라우터 광고(RA) 메시지를 전송하는 과정(도 3의 S345, S350 단계)을 수행하는 것은 무선 자원의 심각한 낭비를 초래하게 된다.

따라서, 이하에서는 이중 네트워크 간(예를 들어, LTE 네트워크와 eHRPD넷워크 간)의 핸드오버 하는 과정에서, 단말이 두 개의 무선접속 기술에 대하여 PDN 접속 시, 특정 무선접속 기술(예를 들어, LTE 네트워크에서도 사용하는 무선접속 방식)의 연결에 대해서는 동시에 IPv4와 IPv6의 두 개의 IP 버전에 대하여 데이터 전송 경로를 지원하나, 다른 무선접속 기술(예를 들어,
eHRPD 네트워크에서 사용하는 무선접속 방식(의 연결에 대해서는 하나의 IP 버전의 데이터 전송 경로만을 지원하는 경우에 발생할 수 있는 무선 자원 낭비를 방지할 수 있는 방법을 제안한다.

구체적으로, 본 발명에서는 단말이 LTE 네트워크에서 eHRPD 네트워크로 핸드오버하여 eHRPD 네트워크로 연결 접속 시에, LTE 네트워크에서는 하나의 PDN에 대해 IPv4와 IPv6의 데이터 전송 경로를 모두 지원하였지만, eHRPD 네트워크에서는 IPv4 또는 IPv6의 하나의 데이터 전송 경로만을 지원하기 때문에, 단말은 지원 가능한 데이터 전송 경로의 IP 버전을 나타내는 PDN-ID를 이용하여 eHRPD 네트워크에 접속 요청할 것을 제안한다. 이를 위해, 단말은 eHRPD 네트워크로 연결 접속 시에 자신이 지원하는 IP 버전의 데이터 전송 경로의 성능(capability)에 따라서 PDN-ID를 구분하여 사용할 것을 제안한다.

 이를 위해 본 발명은, 네트워크(도 5에서는 HSGW)는 단말이 요청하는 PDN-ID를 바탕으로, IPv6를 지원하지 않는 PDN-ID에 해당하는 연결 요청인 경우에는 IPv6 주소 할당 절차(IPv6 SLAAC) 및 IPv6 주소 생성을 위한 동작을 하지 않도록 할 것을 제안한다. 이에 따라, 단말은 LTE 네트워크에서 eHRPD 네트워크로 핸드오버를 한 이후에, 단말이 동시에 IPv4와 IPv6의 IP 버전을 동시에 지원하는지 여부 또는 어떤 IP 버전에 대한 데이터 전송 경로를 지원하는지 여부를 네트워크 노드(일례에서, HSGW)로 알려주어야, 네트워크 노드(일례에서, HSGW)으로 하여금 불필요하게 발생할 수 있는 무선 자원의 낭비를 방지할 수 있다.

다음 표 1은 본 발명에서 제안하는 PDN-ID를 사용하여 단말의 IP 버전에 따른 데이터 전송 경로의 성능(capability)을 나타내고 있다. 참고로, 3GPP2의 표준 규격에 따라 PDN-ID는 0부터 14까지의 값을 가진다. 다음 표 1과 같은 PDN ID 값과 이에 대응되는 IP 버전에 따른 데이터 전송 경로의 성능은 단말 및 네트워크 간에는 사전에 공유되어 서로 알고 있다고 가정한다.

표 1

<table>
<thead>
<tr>
<th>IP version capability</th>
<th>PDN ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>APN_A</td>
</tr>
<tr>
<td>IPv4, IPv6</td>
<td>0</td>
</tr>
<tr>
<td>IPv4</td>
<td>1</td>
</tr>
<tr>
<td>IPv6</td>
<td>2</td>
</tr>
</tbody>
</table>

단말은 LTE 네트워크에서는 IPv4와 IPv6의 데이터 전송 경로를 동시에 지원받을 수 있으므로 PDN 타입=IPv4v6로 LTE 네트워크에 접속하였으나(이 경우 APN_A라는 APN으로 LTE 네트워크에 접속했다고 가정한다), eHRPD 네트워크로 핸드오버 할 경우에, IPv4에 대한 데이터 전송 경로만 지원되는
경우라면, 단말은 eHRPD 네트워크 접속 시에 PDN-ID의 값으로 상기 표 1에서와 같이 ‘1’을 사용하여 eHRPD 네트워크에게 IPv4에 대한 데이터 전송만을 지원됨을 알려 줄 수 있다. 단말이 이전의 LTE 네트워크에서는 IPv4와 IPv6에 대한 IP 주소를 할당하고, IPv6 주소를 위한 IPv6 SLAAC 할당 과정의 동작을 수행하였다. 그러나, 단말이 eHRPD 네트워크로 헌드오버 한 이후에는 eHRPD 네트워크는 IPv6의 성능(capability)이 없으므로, IPv4의 주소만 할당하고, 추가적인 IPv6 주소 할당과정인 IPv6 SLAAC 과정을 생략한다. 상기 표 1에서는 APN의 예들로 APN_A, APN_B 등을 나타내고 있는데 이는 특정 APN을 나타내기 위한 것이다.

단말이 LTE 네트워크에 다중망 연결 접속(multiple PDN connections) 상태에서 eHRPD 네트워크로 헌드오버하는 경우에는 접속하는 PDN 따라(즉, 접속 APN에 따라) PDN-ID를 복수 개 사용하게 된다. 즉, eHRPD 네트워크로 헌드오버를 위해 APN_A를 사용하는 데이터 전송 경로는 IPv4만 사용 가능하다면, 상기 표 1에서와 같이 이에 해당하는 PDN-ID인 ‘1’을 접속 시에 사용하며, APN_B를 위해 사용 가능한 데이터 전송 경로가 IPv6이면, 이에 해당하는 PDN-ID인 ‘5’를 추가적인 접속 시에 사용하게 된다.

다음 도 7을 참조하여 본 발명에서 제안하는 IP 버전에 따른 데이터 전송 경로 생성에 따라 PDN-ID를 사용하는 일 예를 설명한다.

도 7은 단말이 이중 네트워크 간의(예를 들어, LTE 네트워크에서 eHRPD 네트워크) 헌드오버 과정의 다른 예를 설명한 도면이다.

도 7과 관련하여 1) 단말은 LTE 네트워크에서 특정 APN(예를 들어, 상기 표 1의 APN_A)에 접속하여, IPv4 주소와 IPv6 주소를 할당받아 통신하는 중에, eHRPD 네트워크로 헌드오버를 하게 되나 하나의 PDN에 대하여 IPv4 또는 IPv6만 지원되는 상황이며, 2) IP 버전을 지원하는 데이터 전송 경로의 성능을 나타내는 PDN-ID는 단말과 네트워크 사이에 복식적으로 협의 또는 약속되어 사용되고, 3) LTE에 대해서는 하나의 PDN에 대하여 IPv4와 IPv6의 데이터 전송 경로 둘 다를 지원하나, eHRPD에 대해서는 IPv4 또는 IPv6 중 IPv4 데이터 전송 경로만을 지원한다고 가정한다.

도 7을 참조하면, S705에서 S750 단계에서의 내용은 도 5에서 설명한 S505에서 S550 단계 내용과 동일하다. 다만, 도 5와 달리 APN은 APN_A라고 가정하였다. 단말은 VSNCP 세어 시그널링 등을 통하여 eHRPD 네트워크에 접속할 수 있다.

단말은 접속 타입(Attach type)을 ‘헌드오버’로 지정하고, 또한, LTE 네트워크에서 사용중이던 서비스 유지를 위하여 LTE 네트워크에서 연결했던 APN(여기서는, APN_A)과 할당받은 PDN 타입을 IPv4v6로 지정한다. 그리고, 단말은 IPv4의 데이터 전송 경로만을 지원함으로 상기 표 1에 따라 PDN-ID 값으로 ‘1’을 사용한다(S755). 단말은 ‘VSNCP-Config-Req’ 메시지에 PDN 타입, APN 정보(예를 들어, APN_A), 접속 타입 정보, PDN-ID(즉, PDN-ID='1') 등을 포함시켜 네트워크 노드(예를 들어, HSGW)로 전송할 수 있다(S755). 이때,
단말은 LTE 네트워크에서 기 할당받았던 IP 주소 정보를 함께 전송할 수도 있다(S755).

[91] 단말로부터 접속 요청(즉, ‘VSNCP-Config-Req’ 메시지)을 받은 HSGW는 P-GW와 프록시 바인딩 갱신(Proxy Binding update) 과정을 통하여 PDN GW에게는 HSGW에서 단말이 할당받은 서비스를 계속 사용한다는 것을 알려 주게 되며, 단말에게는 LTE 네트워크에서 사용하던 동일한 IP 정보를 할당하게 된다. 이 과정에서 단말은 LTE 네트워크에서 사용하던 동일한 IPv4 주소를 이용하여 망과 통신이 가능하게 된다.


[93] HSGW는 IPv4주소와 IPv6의 주소는 Proxy Binding update/Proxy Binding Ack 과정을 통하여 유지하기 때문에, 단말이 eHRPD 네트워크로 헨드오버하고 난 이후, 또다시 LTE 네트워크로 헨드오버하더라도, eHRPD 네트워크에서 사용하던 IP 주소를 그대로 사용하려고 상기 절차와 유사한 방법으로 데이터 송수신이 가능할 수 있다.

[94] 도 7에서는 단말이 LTE 네트워크에서 eHRPD 네트워크로 헨드오버하는 경우를 가정하여 설명하였지만, 도 7에 기술된 내용은 반대로 단말이 eHRPD 네트워크에서 LTE 네트워크로 헨드오버 하는 경우에도 적용될 수 있다.

[95] 앞서 설명한 도 5 및 도 7과 관련된 도면에서 단말의 하나의 PDN 연결 접속만을 설명하였지만, 단말이 추가적인 PDN 연결 접속을 통하여 복수의 PDN GW(P-GW)에 접속함으로써, 복수의 PDN GW로부터 데이터를 송수신할 수 있는 서비스를 받을 수도 있다. 이 경우 단말은 추가적으로 IP를 할당받을 수도 있으며, 다중 PDN 연결 접속(multiple PDN connections)을 이용하여 복수 개의 PDN-GW와 데이터 송수신을 할 수 있다.

[96] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로
결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 독자들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특히 창구범위에서 명시적인 인용 관계가 있지 않은 창구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 창구항으로 포함시킬 수 있음은 자명하다.

본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특징한 형태로 구체화될 수 있음을 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 창구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

산업상 이용가능성

IP 데이터 송수신 방법 및 이를 위한 장치는 산업상으로 다양한 형태로 이용될 수 있다.
청구범위

[청구항 1] 이중 네트워크 간 핸드오버를 수행할 단말이 IP(Internet Protocol) 데이터를 송수신하는 방법에 있어서,
상기 단말이 제 1 및 제 2 IP 버전에 해당하는 IP 주소들을 이용하여
제 1 네트워크의 제 1 네트워크 노드와 데이터를 송수신하는 단계;
상기 단말이 상기 제 1 네트워크의 제 1 네트워크 노드로부터 제 2
네트워크로 핸드오버하는 단계;
상기 단말이 상기 제 1 및 제 2 IP 버전 중 지원가능한 IP 버전에
대한 정보를 포함하는 메시지를 상기 제 2 네트워크의 제 2
네트워크 노드로 전송하는 단계; 및
상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소를 이용하여
상기 제 2 네트워크의 제 2 네트워크 노드와 데이터를 송수신하는
단계를 포함하되,
상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소는 핸드오버
이전에 제 1 네트워크에서 할당받은 IP 주소이며, 상기 제 2
네트워크는 상기 제 1 네트워크와 이중 네트워크에 해당하는, IP
데이터를 송수신하는 방법.

[청구항 2] 제 1항에 있어서,
상기 단말이 지원가능한 IP 버전에 대한 정보는 PDN(Packet Data
Network) 식별자 값 태임으로 전송되는, IP 데이터를 송수신하는
방법.

[청구항 3] 제 2항에 있어서,
상기 메시지는 접속 태임(Attach type) 정보 및 PDN(Packet Data
Network) 태임 정보 중 적어도 하나를 더 포함하는, IP 데이터를
송수신하는 방법.

[청구항 4] 제 3항에 있어서,
상기 단말 자신이 지원가능한 IP 버전은 하나이며, 상기 PDN
태임은 상기 제 1 IP 버전 및 제 2 IP 버전을 포함하는, IP 데이터를
송수신하는 방법.

[청구항 5] 제 1항에 있어서,
상기 제 1 네트워크는 LTE(Long Term Evolution) 네트워크이며
상기 제 2 네트워크는 eHRPD(evolved High Rate Packet Data)
네트워크인, IP 데이터를 송수신하는 방법.

[청구항 6] 제 5항에 있어서,
상기 제 2 네트워크의 제 2 네트워크 노드는 HSGW(eHRPD Serving
Gateway)인, IP 데이터를 송수신하는 방법.

[청구항 7] 제 5항에 있어서,
상기 메시지는 VSNCP(Vendor Specific Network Control Protocol) 제어 시그널링(control signalling) 타입인, IP 데이터를 송수신하는 방법.

[청구항 8]
제 2항에 있어서,
상기 PDN 식별자 값은 상기 단말이 지원가능한 IP 버전 정보 외에 상기 단말이 연결을 요청하는 APN(Access Point Name) 정보를 더 고려하여 결정된 값인, IP 데이터를 송수신하는 방법.

[청구항 9]
IP(Internet Protocol) 데이터를 송수신하는 단말 장치에 있어서,
제 1 및 제 2 IP 버전에 해당하는 IP 주소들을 이용하여 제 1 네트워크의 제 1 네트워크 노드와 데이터를 송수신하고, 상기 제 1 네트워크의 제 1 네트워크 노드로부터 제 2 네트워크로 핸드오버를 수행하도록 제어하는 제 1 모델 참;
상기 단말이 지원가능한 IP 버전에 대한 정보를 포함하는 메시지를 제 2 네트워크의 제 2 네트워크 노드로 전송하도록 구성된 IP 스택 모듈; 및
상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소를 이용하여 상기 제 2 네트워크의 제 2 네트워크 노드와 데이터를 송수신하도록 구성된 제 2 모델 참을 포함하되,
상기 단말이 지원가능한 IP 버전에 해당하는 IP 주소는 핸드오버 이전에 제 1 네트워크에서 할당받은 IP 주소이며, 상기 제 2 네트워크는 상기 제 1 네트워크와 이종 네트워크에 해당하는, 단말 장치.

[청구항 10]
제 9항에 있어서,
상기 단말이 지원가능한 IP 버전에 대한 정보는 PDN(Packet Data Network) 식별자 값 타입으로 전송되는, 단말 장치.

[청구항 11]
제 9항에 있어서,
상기 제 1 모델 참은 LTE(Long Term Evolution) 모델 참이며 상기 제 2 모델 참은 eHRPD(evolved High Rate Packet Data) 모델 참인, 단말 장치.
[Fig. 1]

MME / S-GW

MME / S-GW

S1

S1

eNB

eNB

X2

X2

cNB

eNB

E-UTRAN