

(11) (21) (C) **2,007,985**

(22) 1990/01/17

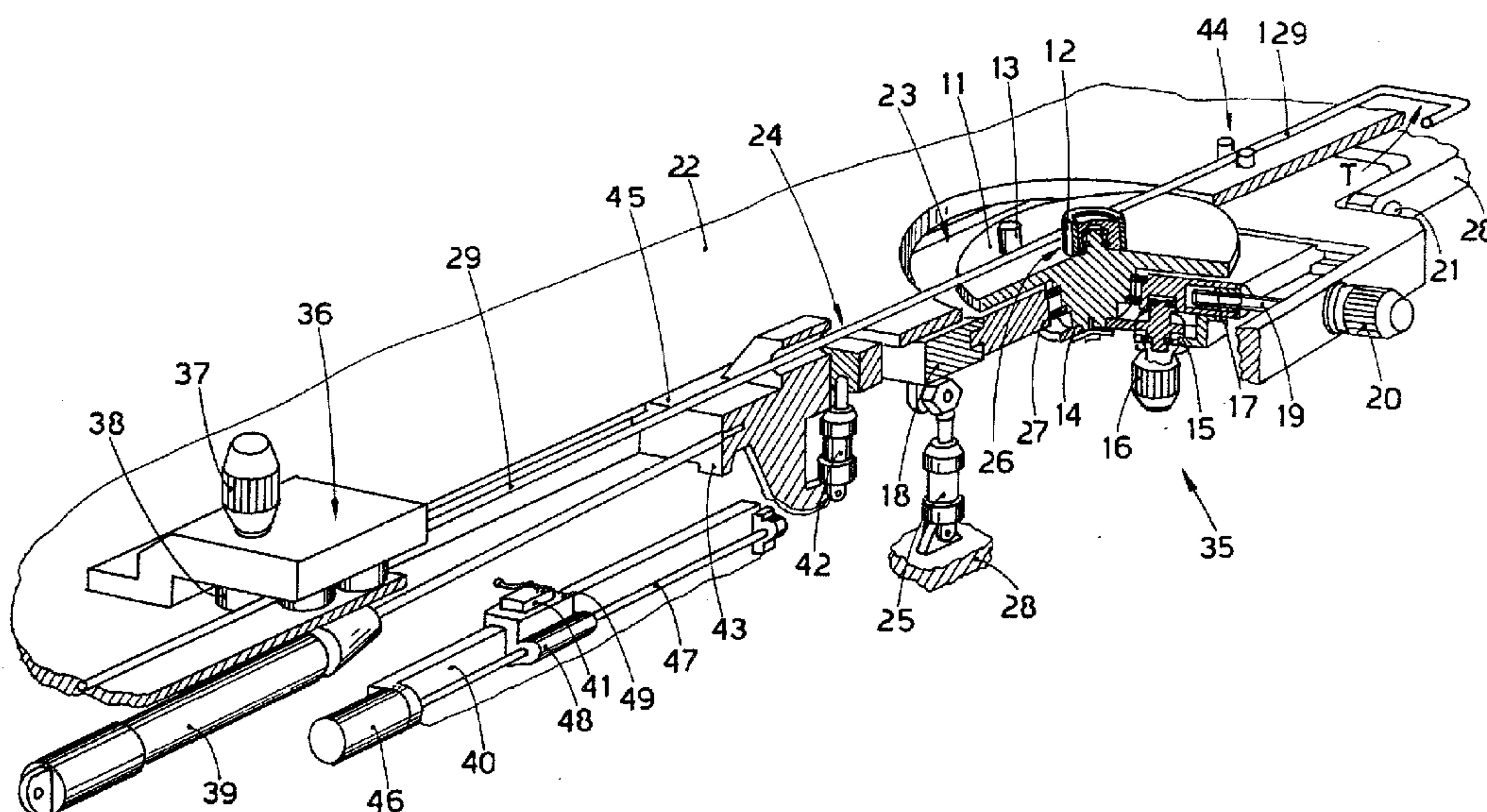
(43) 1990/07/18

(45) 2000/05/30

(72) Del Fabro, Marcello, IT

(72) Del Fabro, Giorgio, IT

(73) M.E.P. Macchine Elettroniche Piegatrici S.p.A., IT


(51) Int.Cl. ⁵ B21D 7/022

(30) 1989/01/18 (15903 A/89) IT

(54) METHODE DE PLIAGE DE L'EXTREMITE DES BARRES

**LONGITUDINALES ET CISAILLES MOBILES EN AMONT DE
LA PLIEUSE**

**(54) MOVABLE SHEARS UPSTREAM OF A BENDING ASSEMBLY
AND METHOD TO BEND THE TRAILING END OF BARS**

(57) Method for the automatic or non-automatic bending of the trailing end of bars in bending-shaping machines having a bending assembly located downstream of a shears (29) and of a bar feeder unit, whereby the bars may be already straightened or already straightened and sheared to size or may require straightening and the bar (29), after the required bends have been applied to its leading end (T), is fed forwards with a movement of distancing of its leading end (T) by an appreciable length at least partly by the feeder unit, and whereby, when this forward length of feed has been completed, the bar (29) is sheared by the shears (24), thus creating a trailing end (C) of the residual bar (129), in which method the movable shears (24) able to slide on a longitudinal slide block (45) is positioned as required in a direction lengthwise to the bar (29) so as to determine the length of the trailing end (C) of the residual bar (129) in relation to the bending assembly (35). Movable shears located upstream of a bending assembly to be fitted to a bar (29) bending-shaping machine having a bending assembly (35) positioned downstream of a shears (24) and of a bar (29) feeder unit (36), the bars being already straightened or already straightened and sheared to size or requiring straightening, the shears (29) being located upstream of the bending assembly (35) and being able to move lengthwise and to be positioned as required along the axis of feed of the bars (29) and being fitted to a slide block (45) able to slide on lengthwise guides that cooperate with a working platform (22) and are located therebelow.

1

ABSTRACT

2 Method for the automatic or non-automatic bending of the
3 trailing end of bars in bending-shaping machines having a
4 bending assembly located downstream of a shears (24) and of
5 a bar feeder unit, whereby the bars may be already
6 straightened or already straightened and sheared to size or
7 may require straightening and the bar (29), after the
8 required bends have been applied to its leading end (T), is
9 fed forwards with a movement of distancing of its leading
10 end (T) by an appreciable length at least partly by the
11 feeder unit, and whereby, when this forward length of feed
12 has been completed, the bar (29) is sheared by the shears
13 (24), thus creating a trailing end (C) of the residual bar
14 (129), in which method the movable shears (24) able to slide
15 on a longitudinal slide block (45) is positioned as required
16 in a direction lengthwise to the bar (29) so as to determine
17 the length of the trailing end (C) of the residual bar (129)
18 in relation to the bending assembly (35).

19 Movable shears located upstream of a bending assembly to
20 be fitted to a bar (29) bending-shaping machine having a
21 bending assembly (35) positioned downstream of a shears (24)
22 and of a bar (29) feeder unit (36), the bars being already
23 straightened or already straightened and sheared to size or
24 requiring straightening, the shears (24) being located
25 upstream of the bending assembly (35) and being able to move
26 lengthwise and to be positioned as required along the axis
27 of feed of the bars (29) and being fitted to a slide block
28 (45) able to slide on lengthwise guides that cooperate with
29 a working platform (22) and are located therebelow.

1 MOVABLE SHEARS UPSTREAM OF A BENDING ASSEMBLY AND
2 METHOD TO BEND THE TRAILING END OF BARS"

3 * * * * *

4 This invention concerns a shears unit of a movable type
5 for shearing to size, which is positioned upstream of a
6 bending assembly in an automatic or non-automatic bar
7 bending-shaping machine having a bending assembly located
8 downstream of at least one bar feeder unit, a shears being
9 included.

10 The invention concerns also a method to bend the trailing
11 end of bars in an automatic or non-automatic bar bending-
12 shaping machine with a bending assembly located downstream
13 of the shears and with a bar feeder unit upstream pf the
14 shears.

15 The bending-shaping machines to which the invention is
16 applied have the purpose advantageously, but not only, of
17 producing reinforcing bars with one or more bends in the end
18 which is sheared last. They can also be employed to bend
19 solid or hollow bars of any type with bends having a
20 clockwise and/or anticlockwise development.

21 The bars which can be bent with the bending-shaping
22 machines to which the invention is applied can be already
23 straightened or already straightened and sheared to size or
24 may require straightening.

25 One type of bending-shaping machine to which the invention
26 is applied comprises one single bending assembly located
27 imemdiately downstream of a shears and processes bars fed
28 continuously and passing normally beforehand through a
29 straightening assembly forming part of the same machine and
30 performing also the function of a feeder unit.

31 The invention is therefore applied to automatic and non-
32 automatic bar bending-shaping machines including a bending
33 assembly which may comprise either a bending disk able to

1 move orthogonally to the direction of feed or a stationary
2 bending disk.

3 Moreover, the bending disk may be axially stationary or
4 able to move axially or to rock.

5 Furthermore, the bending disk may be of a type bearing
6 only a bending pin and therefore cooperating with stationary
7 contrast and shaping cams, or else it may comprise a bending
8 pin and a contrast roll solidly fixed to the bending disk
9 itself.

10 The bending-shaping machines to which the invention can be
11 applied are able to process one or more bars at a time
12 automatically or not automatically.

13 By the word "bars" in this invention we mean substantially
14 filiform elements produced by rolling, extrusion, drawing or
15 forming and having any required section (round, square,
16 rectangular, hexagonal, oval, etc.) including even external
17 ribs. The section of the bars may be solid or hollow.

18 EP-A-3-88576 discloses a bending-shaping machine with a
19 bending assembly, in which strip material is fed
20 continuously; the machine is suitable to make the required
21 bends in the strip material automatically. This document
22 teaches the positioning of a movable shears on a support
23 arranged transversely and above the bending plane. This
24 embodiment is very restrictive since the permitted bends are
25 very small and therefore not enough to cover the wide ranges
26 required in modern technology.

27 Our invention has the purpose of producing the required
28 bends automatically or otherwise at both ends of one or more
29 bars; hereinafter the word "bar" shall be taken as always
30 meaning "one or more bars".

31 The bar according to this invention also has a substantial
32 distance between the two ends of two successive bends and
33 this distance must not be less than at least half a metre in

1 the normal dimensions for a bending-shaping machine
2 according to this invention.

3 The device according to the invention and the method which
4 can be obtained with that device are shown and characterized
5 in the respective main claims, while the dependent claims
6 show variants of the idea of the solution.

7 One embodiment of the invention provides for the shears to
8 be able to move along the axis of feed of the bar upstream
9 of the bending assembly and to be actuated by a slider
10 element or carriage able to slide in cooperation with a
11 working platform.

12 According to a first embodiment the shears can move by a
13 maximum determined length and can be positioned as required
14 in any intermediate position.

15 According to a variant, when the shears has performed the
16 shearing, it retreats momentarily by a small value to enable
17 the trailing end of the residual bar to be disengaged from
18 the shears so that the bar can rotate freely during the
19 bending step.

20 According to a further variant the shears not only can
21 move lengthwise to the feed but also has a first shearing
22 position and a second retracted position that frees the
23 upper surface of the working platform so as to allow the
24 trailing end of the residual bar to pass freely. In this
25 second inactive position of non-contact the shears is
26 located advantageously, but not only, below the upper level
27 of the working platform.

28 The movable shears according to the invention enables the
29 residual trailing end of the bar to be sheared from the bar
30 to the required length to permit the required bends in the
31 trailing end of the residual bar.

32 According to another variant a drawing unit is included
33 downstream of the bending assembly and can be actuated to

1 act on the bar so as to position it correctly for
2 performance of the required bends in the trailing end of the
3 residual portion of the bar.

4 Let us now see a preferred embodiment of the invention
5 with the help of the attached figures, which are given as a
6 non-restrictive example and in which:

7 Fig.1 shows a three-dimensional, partly cutaway diagram of
8 part of the bending-shaping machine that employs the
9 invention;

10 Fig.2 shows the embodiment of Fig.1 with some bends made in
11 the leading and trailing ends of the bar;

12 Fig.3 shows the embodiment of Fig.1 with a retractable
13 drawing unit fitted downstream of a bending assembly.

14 In the attached figures the invention is applied to a
15 specific automatic bending-shaping machine to which is
16 fitted a shears 24 able to move along the axis of a bar 29.

17 It is also possible to apply the invention to other types
18 of automatic bending-shaping machines as defined earlier.

19 In Fig.1 the bar 29 is fed continuously in a defined
20 straightened condition and cooperates in its advance with
21 the shears 24 located immediately upstream of a bending
22 assembly 35.

23 The shears 24 can move along the axis of the bar 29 by a
24 determined maximum length. Within this maximum length of
25 travel the shears 24 can be positioned as required in any
26 terminal or intermediate position.

27 The bending assembly 35 of the type shown as an example is
28 the subject of a parallel right belonging to the present
29 applicant and is illustrated in Figs.1 and 3.

30 A drawing unit 10 too shown in Fig.3 is the subject of an
31 independent, parallel patent application in the name of the
32 present applicant.

33 The bending assembly 35 shown comprises a bending disk 11

1 with an axial contrast roll 12 and a bending pin 13. The
2 bending disk 11 is supported rotatably on a slider element
3 27, which can slide on appropriate guides in a rocker base
4 18 and takes up in relation to that base at least two
5 positions suitable to make clockwise and anticlockwise bends
6 respectively.

7 The rocker base 18 is secured to a rocker frame 28 in a
8 direction substantially normal to a working platform 22 by
9 means of a rocker pivot 21 located downstream of the bending
10 disk 11. The rocking movement of the rocker base 18 is
11 produced in this example by a first rocker cylinder/piston
12 assembly 25.

13 The rocker pivot 21 is positioned downstream of the
14 bending assembly 35 and substantially normal to the bar 29
15 and parallel to the working platform 22.

16 The slider element 27 is driven by a first motor 20 of any
17 required type, while the working platform 22 includes a
18 hollow 23 suitable to accommodate the terminal positions of
19 the bending disk 11.

20 In the example shown the first motor 20 is of a rotary
21 type that drives a threaded bolt 19 which by meshing with an
22 internally threaded sleeve 17 conditions the lengthwise
23 position of the slider element 27 within the rocker base 18.

24 Rotation of the bending disk 11 is achieved by means of a
25 driven toothed wheel 14 actuated by a powered toothed wheel
26 15 which in turn is driven by a second motor 16.

27 The means supplying motion and the transmission and/or
28 control means are shown here as an example so as to clarify
29 the method of working of the invention but can be replaced
30 by any other drive, transmission and/or control means
31 suitable for the purpose, and the same applies to any drive,
32 transmission and/or control means mentioned in this
33 description.

1 Fig.1 shows a drawing unit 36 located upstream of the
2 movable shears 24. This drawing unit 36 can be independent
3 and perfom only the task of drawing the bar 29 or may form
4 part or be replaced by a continuous straightening assembly,
5 which should be comprised advantageously in the bending-
6 shaping machine we are describing.

7 According to the example shown the drawing unit 36
8 includes in this case rolls 38 driven by a third motor 37
9 and able to act on the bar 29.

10 The movable shears 24 is located upstream of the bending
11 assembly 35 and in the example shown comprises a slide block
12 45 able to slide in guides positioned in cooperation with
13 the working platform 22.

14 Lengthwise movement of the slide block 45 according to
15 this example is obtained by means of a second
16 cylinder/piston actuator assembly 39. In this case the
17 slide block 45 comprises a positioner projection 43, which
18 abuts against a positioner abutment 41 and halts the slide
19 block 45 in the required position for the shears 24.

20 The positioner abutment 41 can be moved and positioned as
21 required by a slider 49 on a guide 40. The movement and
22 positioning of the slider 49 are obtained with a fourth
23 motor 46 that actuates a screw 47 which cooperates with an
24 internally threaded sleeve 48 of the slider 49.

25 According to the invention the movable shears 24 can be
26 positioned as desired in relation to the bending assembly 35
27 within the limits determined by the minimum and maximum
28 distances of the movable shears 24 from the bending
29 assembly 35. In this way the length of the trailing end "C"
30 of the residual bar 129 determined by the actuation of the
31 shears 24 by a third cylinder/piston actuator assembly 42
32 can be varied as required and will not be a constant length
33 as occurs at the present time.

1 In this way, after the required bends have been made in
2 the leading end "T" of the bar 29, it is also possible to
3 produce bends 26 and/or 126 and possibly also other
4 clockwise and anticlockwise bends in the trailing end "C" of
5 the bar with desired and even considerable distances.

6 According to a variant, when the trailing end "C" has been
7 sheared, the slide block 45 retreats momentarily by a
8 desired length before taking up the pre-set shearing
9 position again. The length of this retreat may range
10 between a few millimetres and the distance to the end of
11 travel farthest from the bending assembly 35.

12 With the embodiment of Figs.1 and 2 it is possible to
13 produce the bend 26 in the trailing end "C" of the bar only
14 with the inclusion of retractable abutment pins 44, which
15 oppose sideways movement of the residual bar 129 during the
16 bending step. These abutment pins 44 can be made to retract
17 with an axial movement or with a sideways overturning
18 movement.

19 The actuation which determines the working position and
20 the retracted position of the abutment pins 44 away from the
21 upper working platform 22 can be provided with any actuation
22 means (not shown here); for instance, a cylinder/piston
23 actuator assembly may be employed.

24 According to the variant of Fig.3 the drawing unit 10 is
25 located downstream of the bending assembly 35 and cooperates
26 with the nominal axis at least of the residual bar 129 when
27 it is in its working position.

28 In this example the drawing unit 10 comprises pairs of
29 entraining rolls 31 which may be thrust resiliently towards
30 each other so as to mate together and draw actively at least
31 the residual bar 129 when so required.

32 The entraining rolls 31 may all be powered or some may be
33 powered, for instance by a fifth motor 32 suitable for the

1 purpose. In the example shown the entraining rolls 31 have
2 their axes normal to the working platform 22 and are upheld
3 on a support 33, which too in this example is capable of
4 being rocked at 121 with the rocker pivot 21 which secures
5 the support 33 to the frame 28.

6 The rocking movement of the support 33 is achieved with a
7 four cylinder/piston rocker assembly 34 or another suitable
8 means such as a cam or another means. The support 33 can be
9 accommodated within a lodgement opening 30 machined in the
10 working platform 22.

11 When the drawing unit 10 is fully retracted below the
12 working platform 22, a levelling closure may be provided to
13 close the lodgement opening 30.

14 The drawing unit 10 cooperates with a measurement unit
15 that determines the length of drawing of the bar 29. This
16 measurement unit, which is not shown here, takes into
17 account the distance between the axis of the bending disk 11
18 and the position of the drawing unit 10.

19 According to a variant the shears 24 can not only move but
20 also be retracted. When the shears 24 is retractable, the
21 length of the sides of the bends in the trailing end "C" of
22 the bar becomes free of structural conditionings by the
23 bending-shaping machine and therefore the distance between
24 the bends can be natural.

25 When the movable shears 24 has defined the trailing end
26 "C" of the residual bar 129, the drawing unit 10 positions
27 the trailing end "C" of the residual bar 129 and determines
28 a first bend 26 and thereafter a second bend 126.

29 If the movable shears 24 is retractable, the length of the
30 sides of the bends made in the trailing end "C" of the bar
31 is free of conditioning, whereas if the movable shears 24 is
32 not retractable, the maximum length of the sides of the
33 bends made in the trailing end "C" is determined by the

1 momentary position of the movable shears 24 or by the
2 temporary position of maximum retreat of the movable shears
3 24.

CLAIMS

1. A method for bending of a trailing end of bars in a bending-shaping machine having a bar feeder unit for feeding bars in a longitudinally extending feed direction, movable shears provided on a slide block slidable along an axis of said longitudinally extending feed direction, and a bending assembly provided downstream of said shears and of said feeder unit with respect to said longitudinally extending feed direction, said method comprising:

feeding a bar in said longitudinally extending feed direction until a leading end is at said bending assembly;

bending said leading end of said bar with said bending assembly;

feeding said bar at least partly using said feeding unit in said longitudinally extending feed direction;

positioning said slide block and movable shears to a predetermined position along said axis of said longitudinally extending feed direction;

shearing said bar with said movable shears to form a trailing end of said bar, a length of said trailing end being determined by a distance between said bending assembly and said movable shears; and

laterally holding said bar by abutment pins located downstream of said bending assembly and bending

said trailing end of said bar while laterally holding said bar by said abuttment pins.

2. A method according to claim 1, further comprising, after said shearing of said bar with said movable shears to form said trailing end of said bar, moving said movable shears a predetermined distance away from said trailing end of said bar in a direction upstream from said trailing end of said bar.

3. A method according to claim 1, wherein said feeder unit is a drawing unit and wherein said bar is drawn while being fed in said longitudinally extending feed direction.

4. A method according to claim 1, wherein said feeder unit is a continuous straightening assembly and wherein said bar is straightened while being fed in said longitudinally extending feed direction.

5. A method for bending of a trailing end of bars in a bending-shaping machine having a bar feeder unit for feeding bars in a longitudinally extending feed direction, movable shears provided on a slide block slidable along an axis of said longitudinally extending feed direction, and a bending assembly provided downstream of said shears and of said feeder unit with respect to said longitudinally extending feed direction, said method comprising:

feeding a bar in said longitudinally extending feed direction until a leading end is at said bending assembly;

bending said leading end of said bar with said bending assembly;

feeding said bar at least partly using said feeding unit in said longitudinally extending feed direction;

positioning said slide block and movable shears to a predetermined position along said axis of said longitudinally extending feed direction;

shearing said bar with said movable shears to form a trailing end of said bar, a length of said trailing end being determined by a distance between said bending assembly and said movable shears; and

after said shearing of said bar with said movable shears to form said trailing end of said bar, feeding said bar in said longitudinally extending feed direction by a drawing unit located downstream of said bending assembly, said drawing unit comprising at least one pair of rollers, and bending said trailing end of said bar while laterally holding said bar between said at least one pair of rollers.

6. A method according to claim 5, further comprising, after said shearing of said bar with said movable shears to form said trailing end of said bar, momentarily withdrawing said shears to a position below a level of said trailing end of said bar.

7. A method according to claim 5, further comprising engaging said bar with said drawing unit while shearing said bar with said movable shears to form said trailing end of said bar, and, thereafter, feeding said bar in said longitudinally extending feed direction with said drawing unit.

8. Movable shears of a bending-shaping machine for bending bars having a working platform, a feeder unit for feeding said bars in a longitudinally extending feed direction, and bending means for bending said bars located downstream with respect to said feed direction of said feeder unit, comprising:

guide means for guiding said movable shears provided below said working platform;

a slide block provided on said guide means such that said slide block is able to move on said guide means along an axis of said longitudinally extending feed direction upstream of said bending means;

shears fitted to said slide block for shearing said bars; and

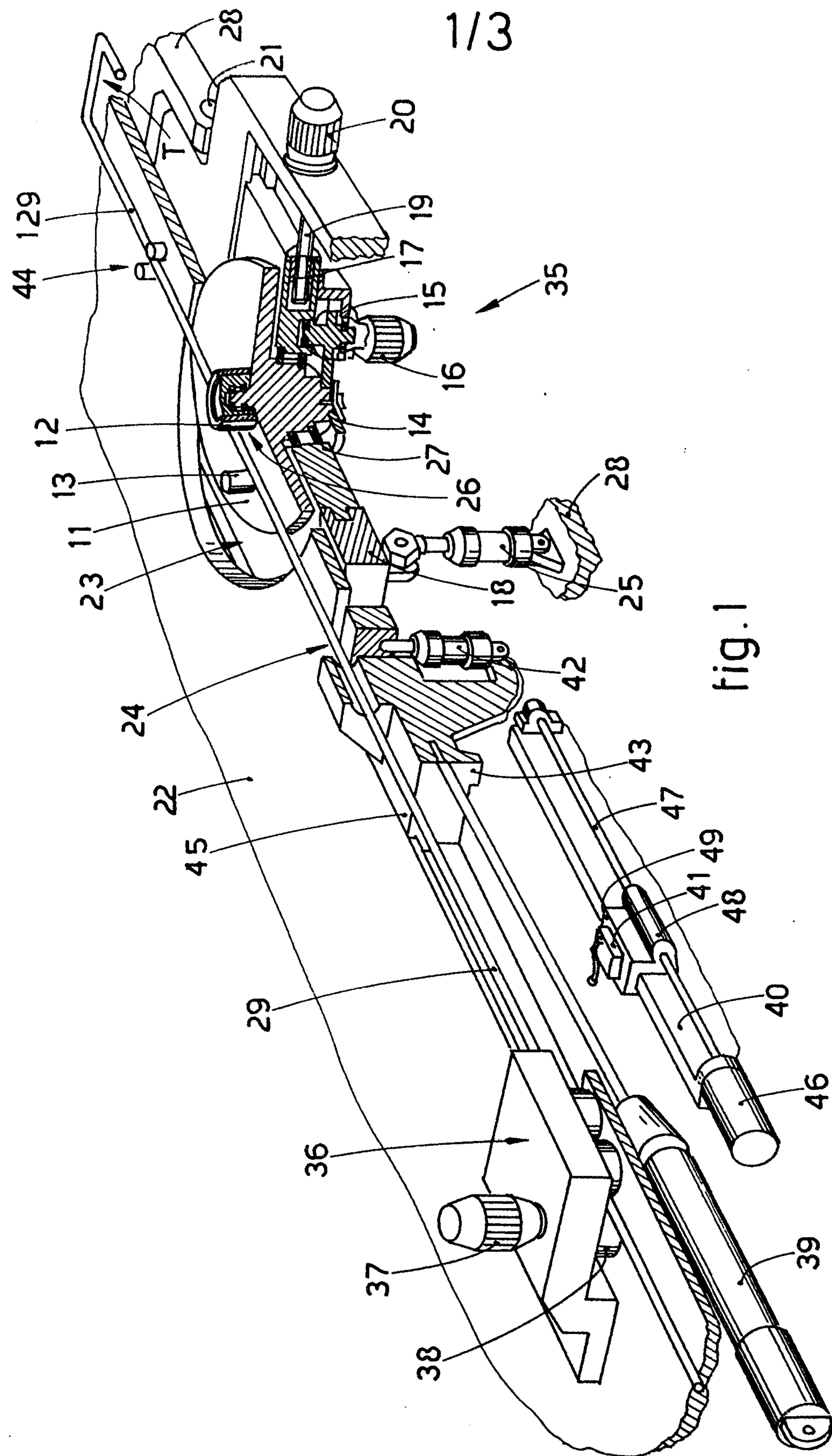
retractable abutment pins downstream of said bending assembly which may momentarily cooperate with said bar to laterally hold said bar while said bending means bends a trailing end of said bar.

9. Movable shears according to claim 8, wherein said slide block is provided on said guide means

such that it may move on said guide means along said axis of said longitudinally extending feed direction to a predetermined momentary shearing position and may move further upstream of said predetermined momentary shearing position to a momentary retreat position.

10. Movable shears of a bending-shaping machine for bending bars having a working platform, a feeder unit for feeding said bars in a longitudinally extending feed direction, and bending means for bending said bars located downstream with respect to said feed direction of said feeder unit, comprising:

guide means for guiding said movable shears provided below said working platform;


a slide block provided on said guide means such that said slide block is able to move on said guide means along an axis of said longitudinally extending feed direction upstream of said bending means;

shears fitted to said slide block for shearing said bars; and

a drawing unit downstream of said bending assembly for at least momentarily drawing said bar, said drawing unit comprising at least one pair of rollers for holding said bar therebetween while a trailing end of said bar is bent by said bending means.

11. Movable shears according to claim 10, further comprising means for positioning said shears below said working platform.

2007985

Frederick Hague December 1 1907 to Senator Walter

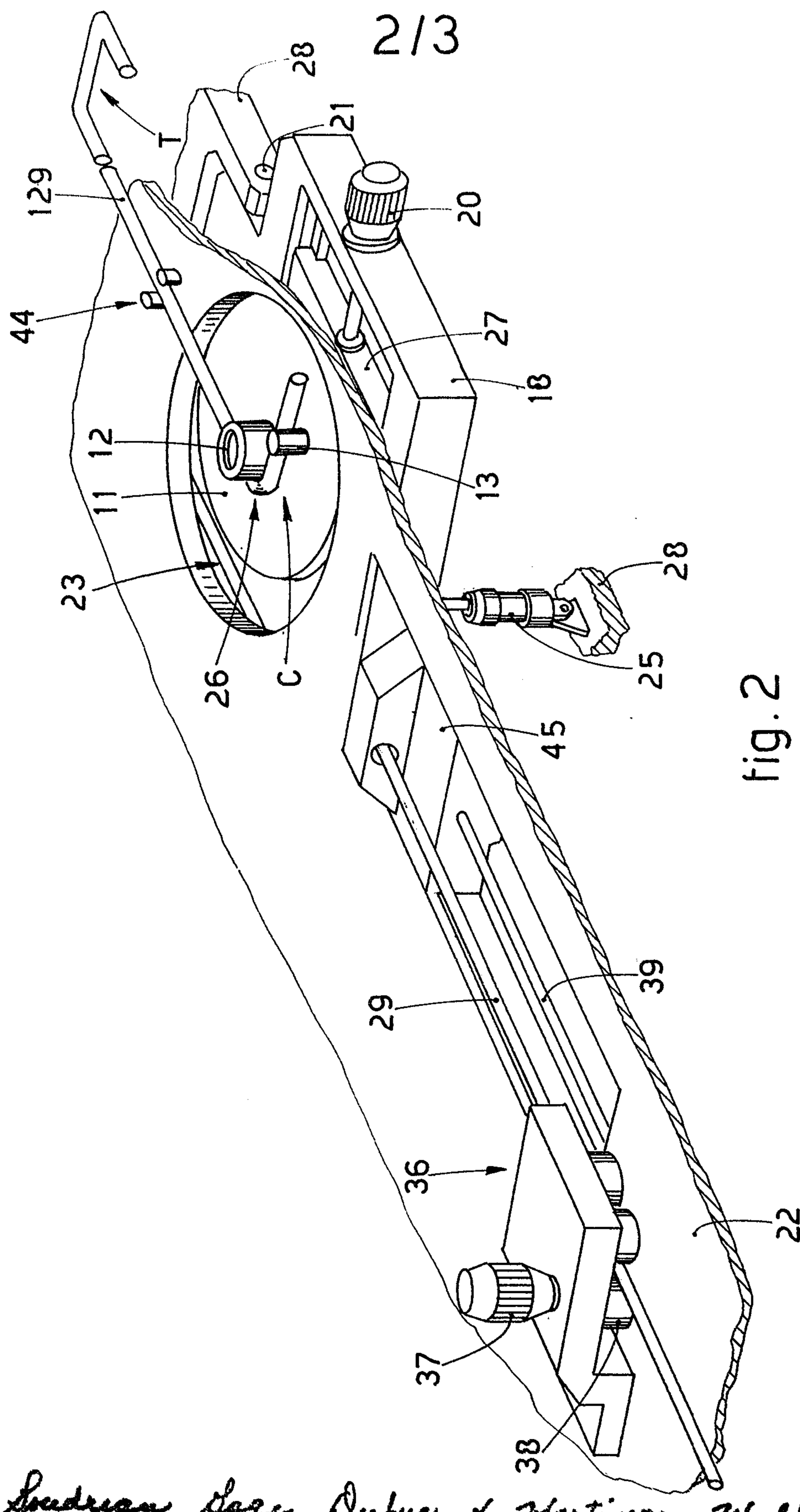
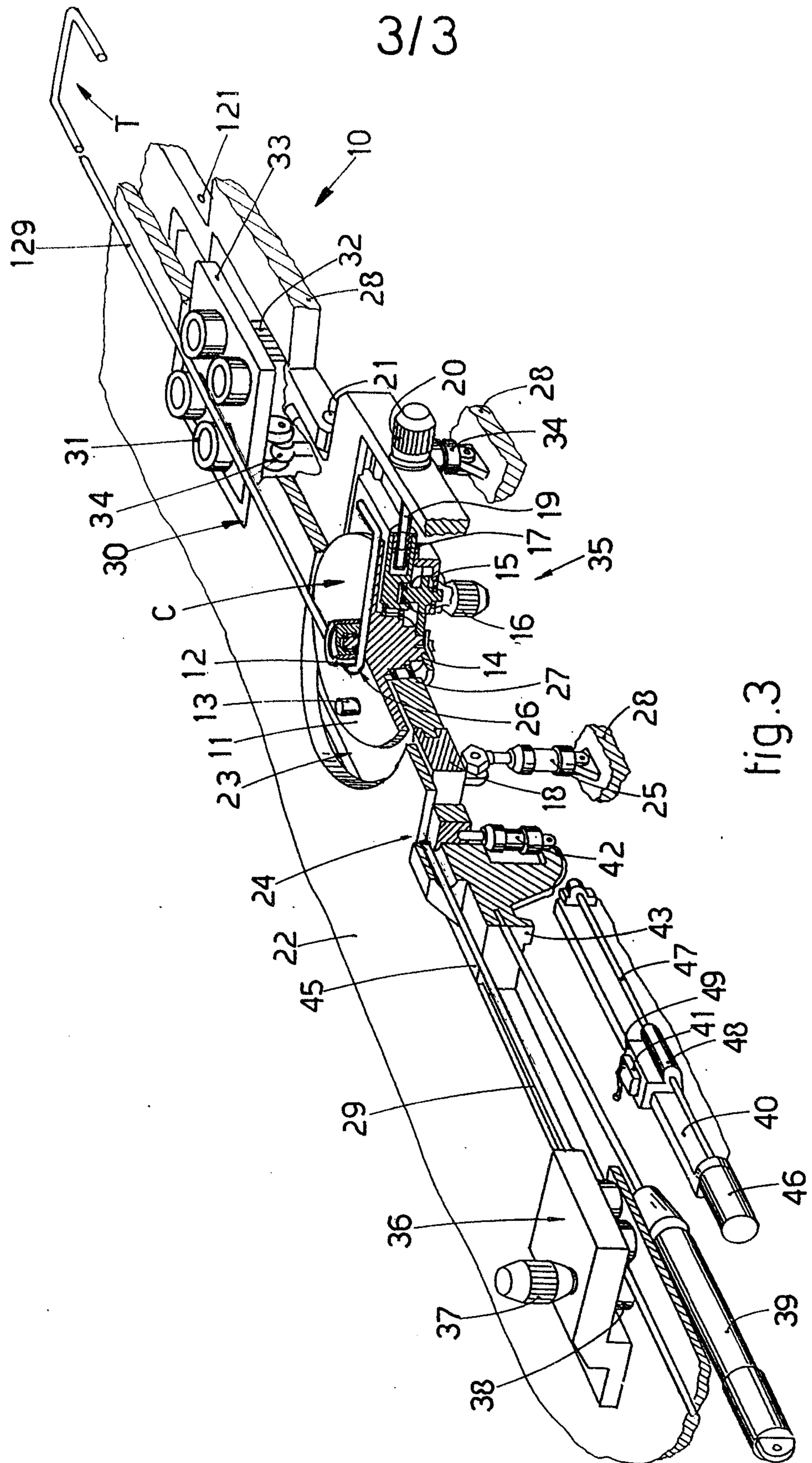



fig. 2

Andrea Sage Dubus & Martinez Walker

