(12) PATENT (11) Application No. AU 199943726 B2 (10) Patent No. 765028 (19) AUSTRALIAN PATENT OFFICE (54) Method for controlling pests in crop cultures International Patent Classification(s) A01N 063/00 (22) Application Date: 1999.06.01 (21)Application No: 199943726 (87) WIPO No: W099/63829 (30)Priority Data (31) Number (32) Date (33) Country 1998.06.05 19825333 DE (43)Publication Date : 1999.12.30 (43)Publication Journal Date: 2000.03.09 (44) Accepted Journal Date : 2003.09.04 Applicant(s) (71)Aventis CropScience GmbH (72)Inventor(s) Manfred Kern (74)Agent/Attorney WATERMARK PATENT and TRADEMARK ATTORNEYS, Locked Bag 5, HAWIHORN VIC 3122 Related Art (56)WO 97/45017

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Baro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :		(11) Internationale Veröffentlichungsnum	mer: V	VO 99/63829
A01N 63/00	A2	(43) Internationales Veröffentlichungsdatum: 16.	Dezember	г 1999 (16.12.99)

(21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum: 1. Juni 1999 (01.06.99)

(30) Prioritätsdaten:

198 25 333.8 5. Juni 1998 (05.06.98)

AVENTIS CROPSCIENCE GMBH [DE/DE]: Miraustrasses 54, D. 13509 Berlin (DE).

Bruningstrasse 50 D-65929 Frankfult
(72) Erfinder: KERN, Manfred; Traminerweg 8, D-55296
Lörzweiler (DE).

PCT/EP99/03779

(81) Bestimmungsstaaten: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: METHOD FOR CONTROLLING PESTS IN CROP CULTURES

(54) Bezeichnung: VERFAHREN ZUR KONTROLLE VON SCHADORGANISMEN IN NUTZPLANZENKULTUREN

The invention relates to a method for combating pests in genetically modified cotton plants. The plants contain a gene derived from Bacillus thuringiensis. This gene codes for and expresses a protein with an insecticide effect. The inventive method is characterised in that an insecticidally effective quantity of one or more compounds from the following groups a-e is applied to the plants, to their seeds or reproductive material and/or to their growing area: a) organophosphorus compounds: triazophos (726), monocrotophos (502), methamidophos (479), chloropyrifos (137), parathion (551), acephate (4), profenofos (594), malathion (448), heptenphos (395); b) tralomethrin (718), cypermethrin (183), cyhalothrin (179), lambda-cyhalothrin (180), deltamethrin (204), fenvalerate (319), (alpha)cypermethrin (183/184), cyfluthrin (176), fenpropathin (312), etofenprox (292); c) carbamates: aldicarb (16), bendiocarb (56), carbaryl (106), carbofuran (109), formetanate (369), pirimicarb (583); d) biopesticides: Bacillus thuringiensis (46, 47), granulose and core polyhedron viruses, Beauveria bassiana (52), Beauveria brogniarii (53), baculoviruses such as Autographa california; e) others: endosulphane (270), abameetin (1), XDE-105 (754), disfenthiuron (208), fipronii (323), chlorofenapyr (123), tebtenencide (67), fenazaquin (301), imidacloprid (418), triazamate (724), fentin (317), amitraz (22), MK-242; f) 4-haloalkyl-3-heterocyclylpyrimidines and 4-haloalkyl-5-heterocyclylpyrimidines of general formula (1), optionally also in the form of their salts. The inventive method enables a reduced quantity of pesticides to be used, said pesticides working synergistically with the transgenetic plants, and increases and diversifies the efficiency of the transgenetic plants. As a result, the invention presents both economic and ecological advantages. the efficiency of the transgenetic plants. As a result, the invention presents both economic and ecological advantages.

Description

Method for controlling harmful organisms in crops of useful plants

The invention relates to a method for controlling harmful organisms in crops of Bt cotton.

Genetically modified cotton plants which express toxins from Bacillus thuringiensis (Bt) and which are consequently resistant to attack by certain harmful insects are known and are increasingly employed in commercial agriculture (see, for example, US-A 5,322,938).

Although cotton which is genetically modified in this way already has very good properties, there are still a number of problems, so that a wide scope for improvement still exists.

For example, Bt toxins are not effective against all important cotton pests (see, for example, Flint, H.M. et al. (1995) Southwestern Entomologist

20/3, 281-292), the efficacy is insufficient at a high infestation intensity (see, for example, EPA Hearing Docket OPP-0478 (1997) Plant Pesticides

Resistance Management, The Agriculture Program, The Texas A&M

University System, College Station, Texas 77843), Bt-resistance or Bt-cross-resistance may occur (see, for example, Gould, F. et al. (1997) Proc. Natl. Acad. Sci. USA 94, 3519-3523 or Bauer, L.S. (1995) Florida Entomologist 78/3, 414), or particular parts of plants may differ

considerably in their insecticidal activity (see, for example, Lozzia, G.C. and Rigamonti, I.E. (1996) Boll. Zool. agr. Buchic Ser II, 28/1, 51-69).

It was therefore another object to provide the most effective and environmentally compatible problem solutions possible for controlling pests of cotton.

15

WO-A 97/45 017 describes a process for controlling Lepidoptera in Bt cotton where an insecticidally active benzoylurea derivative is additionally

used. It is not possible to draw conclusions with respect to the activity of other classes of insecticides from this publication.

Surprisingly, it has now been found that certain classes of insecticides show synergistic effects when used in combination with Bt cotton.

The invention therefore provides a method for controlling harmful organisms in genetically modified cotton plants which contain a gene derived from Bacillus thuringiensis which encodes and expresses an insecticidally active protein, which comprises applying an insecticidally effective amount of one or more compounds from the following groups a-f to the plants, to their seeds or propagation stock and/or to the area in which they are cultivated:

- 15 a) Organophosphorus compounds:
 triazophos (726), monocrotophos (502), methamidophos (479),
 chlorpyrifos (137), parathion (551), acephate (4), profenofos (594),
 malathion (448), heptenophos (395);
- 20 b) Pyrethroids: tralomethrin (718), cypermethrin (183), cyhalothrin (179), (lambda)cyhalothrin (180), deltamethrin (204), fenvalerates (319), (alpha)cypermethrin (183/184), cyfluthrin (176), fenpropathrin (312), etofenprox (292);

c) Carbamates: aldicarb (16), bendiocarb (56), c

aldicarb (16), bendiocarb (56), carbaryl (106), carbofuran (109), formetanates (369), pirimicarb (583)

d) Biopesticides:

> Bacillus thuringiensis (46, 47), granuloses and nuclear polyhedrosis viruses, beauveria bassiana (52), beauveria brogniartii (53), baculoviruses, such as autographa california;

5

- e) Others: endosulfan (270), abamectin (1), XDE-105 (754), diafenthiuron (208), fipronil (323), chlorfenapyr (123), tebufenocides (679), fenazaquin (301), imidacloprid (418), triazamates (724), fentin (317), amitraz (22), MK-242;
- f) 4-Haloalkyl-3-heterocyclylpyridines and 4-haloalkyl-5heterocyclylpyrimidines of the formula (I), if appropriate also in the form of their salts,

15

10

where the symbols and indices have the following meanings:

20 Υ is halo-C₁-C₆-alkyl;

> is CH or N; Х

m is 0 or 1;

is a 5-membered heterocyclic group

a)
$$X^1 = W$$
.

$$X^2 = NR^a$$

a)
$$X^{1} = W$$
, $X^{2} = NR^{a}$, $X^{3} = CR^{b}R^{1}$ or
b) $X^{1} = NR^{a}$, $X^{2} = CR^{b}R^{1}$, $X^{3} = W$ or
c) $X^{1} = V$, $X^{2} = CR^{a}R^{1}$, $X^{3} = NR^{b}$ or

$$X^2 = CR^0R^1$$

$$x^2 = CB^aB$$

$$X^3 = NB^b$$

4

d) $X^1 = V$, $X^2 = CR^aR^2$, $X^3 = CR^bR^3$ or e) $X^1 = V$, $X^2 = CR^4R^5$, $X^3 = CR^6R^7$ or

f) $X^1 = NR^a$, $X^2 = CR^bR^1$, $X^3 = NR^8$:

5 Ra and Rb together are a bond

V is oxygen, sulfur or NR⁹;

W is oxygen or sulfur;

R¹ is hydrogen,

 (C_1-C_{20}) -alkyl, (C_2-C_{20}) -alkenyl, (C_2-C_{20}) -alkynyl, (C_3-C_8) -

10 cycloalkyl

(C₄-C₈)-cycloalkenyl, (C₆-C₈)-cycloalkynyl,

where the six last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, -C(=W) R^{10} , -C(=NOR 10) R^{10} ,

15 $-C(=NNR^{10}_{2})R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_{2}$, $-OC(=W)R^{10}$

 $-OC(=W)OR^{10}$, $-NR^{10}C(=W)R^{10}$, $-N[C(=W)R^{10}]_2$,

-NR¹⁰C(=W)OR¹⁰, -C(=W)NR¹⁰-NR¹⁰2.

 $-C(=W)NR^{10}-NR^{10}[C(=W)R^{10}], -NR^{10}-C(=W)NR^{10}_{2},$

 $-{\sf NR}^{10} - {\sf NR}^{10} {\sf C}(=\!{\sf W}) {\sf R}^{10}, \ -{\sf NR}^{10} - {\sf N[C}(=\!{\sf W}) {\sf R}^{10}]_2, \ -{\sf N[(C=\!W)R}^{10}]_-$

20 NR 10 2.

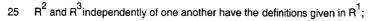
 $-NR^{10}-NR^{10}[(C=W)R^{10}], -NR^{10}-NR^{10}[(C=W)WR^{10}],$

 $\text{-NR}^{10}\text{-R}^{10}[(\text{C=W})\text{NR}^{10}{}_2],\,\text{-NR}^{10}(\text{C=NR}^{10})\text{R}^{10},\\$

-NR¹⁰(C=NR¹⁰)NR¹⁰₂,

-O-NR¹⁰₂, -O-NR¹⁰(C=W)R¹⁰, -SO₂NR¹⁰₂, -NR¹⁰SO₂R¹⁰,

 $-\mathsf{SO_2OR}^{10},\, -\mathsf{OSO_2R}^{10},\, -\mathsf{OR}^{10},\, -\mathsf{NR}^{10}_{\,\, 2i}\, -\mathsf{SR}^{10},\, -\mathsf{SiR}^{10}_{\,\, 3i},$


 $-{\sf SeR}^{10},\,-{\sf PR}^{10}_{\ \ 2},\,-{\sf P(=W)R}^{10}_{\ \ 2},$

-SOR¹⁰, -SO₂R¹⁰, -PW₂R¹⁰₂, -PW₃R¹⁰₂, aryl and the two last-mentioned radicals optionally being substituted by one or more radicals from the group 5 (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C3-C₈)-cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₆-C₈)-cycloalkynyl, (C1-C6)-haloalkyl, (C2-C6)-haloalkenyl, (C2-C6)haloalkynyl, halogen, -OR¹⁰, -NR¹⁰₂, -SR¹⁰, -SiR¹⁰₃, - $C(=W)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}$ 2, $-SOR^{10}$ -SO₂R¹⁰, nitro, cyano and hydroxyl, 10 aryl, which is optionally substituted by one or more radicals from the group (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C3-C8)-15 cycloalkyl, (C₄-C₈)-cycloalkenyl and (C₆-C₈)-cycloalkynyl, where these six abovementioned radicals are optionally substituted by one or more radicals from the group halogen, cyano, nitro, -C(=W)R¹⁰, -C(=W)OR¹⁰, -C(=W)NR¹⁰₂, -OR¹⁰, -NR¹⁰₂, -SR¹⁰, -SOR¹⁰ and -SO₂R¹⁰, 20 halogen, cyano, nitro, -C(=W)R¹⁰, -C(=NOR¹⁰)R¹⁰, $-C(=NNR_{2}^{10})R_{3}^{10}$, $-C(=W)OR_{3}^{10}$, $-C(=W)NR_{2}^{10}$, $-OC(=W)R_{3}^{10}$ -OC(=W)OR¹⁰, -NR¹⁰C(=W)R¹⁰, -N[C(=W)R¹⁰]₂, -NR¹⁰C(=W)OR¹⁰, -OR¹⁰, -NR¹⁰2, -SR¹⁰, -SiR¹⁰3, -PR¹⁰2, -SOR¹⁰, -SO₂R¹⁰, -PW₂R¹⁰₂ and -PW₃R¹⁰₂, 25 heterocyclyl, which is optionally substituted by one or more radicals from the

group

(C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C3-C8)cycloalkyl, (C₄-C₈)-cycloalkenyl and (C₆-C₈)-cycloalkynyl, where the six abovementioned radicals are optionally substituted by one or more radicals from the group cyano, nitro, halogen, -C(=W)R¹⁰, -C(=W)OR¹⁰ 5 $-C(=W)NR^{10}$ 2. $-NR^{10}C(=W)R^{10}$. $-N[C(=W)R^{10}]$ 2. $-OC(=W)R^{10}$, $-OC(=W)OR^{10}$, $-OR^{10}$, $-NR^{10}_{2}$, $-SR^{10}$ -SOR 10 and -SO₂B 10 halogen, cvano, nitro, -C(=W)R¹⁰, -C(=W)OR¹⁰ -C(=W)NR¹⁰₂, -OC(=W)R¹⁰, -OR¹⁰, -NR¹⁰₂, -SR¹⁰, -SOR¹⁰ 10 and -SO₂R¹⁰. $-OR^{10}$, $-NR^{10}_{2}$, $-SR^{10}$, $-SOR^{10}$, $-SO_{2}R^{10}$, $-C(=W)R^{10}$ $-C(=NOR^{10})R^{10} - C(=NNR^{10})R^{10} - C(=W)OR^{10}$ $-C(=W)NR^{10}$ 2, $-OC(=W)R^{10}$, $-OC(=W)OR^{10}$, $-NR^{10}C(=W)R^{10}$ $-N[C(=W)R^{10}]_2$, $-NR^{10}C(=W)OR^{10}$, $-C(=W)NR^{10}-NR^{10}_2$. 15 $-C(=W)NR^{10}-NR^{10}[C(=W)R^{10}]$. $-NR^{10}-C(=W)NR^{10}$ 2. $-NR^{10}$ $NR^{10}C(=W)R^{10}$, $-NR^{10}$ - $NC(=W)R^{10}$ 2, $-N(C=W)R^{10}$ - NR^{10} 2, $-NR^{10}-NR^{10}[(C=W)R^{10}]$, $-NR^{10}-NR^{10}[(C=W)WR^{10}]$, $-NR^{10}$ NR¹⁰[(C=W)NR¹⁰₂], -NR¹⁰(C=NR¹⁰)R¹⁰, -NR¹⁰(C=NR¹⁰)NR¹⁰2, -O-NR¹⁰2, -O-NR¹⁰(C=W)R¹⁰ 20 -SO₂NR¹⁰₂₁ -NR¹⁰SO₂R¹⁰, -SO₂OR¹⁰, -OSO₂R¹⁰ -SC(=W)R¹⁰, -SC(=W)OR¹⁰, -SC(=W)R¹⁰, -PR¹⁰2, -PW2R¹⁰2 -PW₃R¹⁰₂, SiR¹⁰₃ or halogen:

R² and R³ together form a 5- to 7-membered ring which may be partially or fully unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, the oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

R⁴ and R⁶ independently of one another have the definitions given in R¹;

R⁴ and R⁶ together form a 4- to 7-membered ring which may be partially or fully unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, the oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

15 R⁵ and R⁷ independently of one another are hydrogen,

 (C_1-C_{20}) -alkyl, (C_2-C_{20}) -alkenyl, (C_2-C_{20}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_6-C_8) -cycloalkynyl, where the six last-mentioned radicals are optionally substituted by one or more radicals from the group

20

halogen, cyano, nitro, hydroxyl, $-C(=W)R^{10}$, $-C(=NOR^{10})R^{10}$, $-C(=NNR^{10}_2)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_2$, $-OC(=W)R^{10}$, $-OC(=W)R^{10}$, $-OC(=W)R^{10}$, $-N[^{10}C(=W)R^{10}]$, $-N[C(=W)R^{10}]_2$, $-NR^{10}C(=W)R^{10}$, $-C(=W)NR^{10}$ -NR 10 -NR 10

₹

-OR¹⁰, -NR¹⁰₂, -SR¹⁰, -SiR¹⁰₃, -SeR¹⁰, -PR¹⁰₂, -P(=W)R¹⁰2, -SOR¹⁰, -SO2R¹⁰, -PW2R¹⁰2, -PW3R¹⁰2 aryl and heterocyclyl, of which the two mentioned last are optionally substituted by 5 one or more radicals from the group (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C3-C₈)-cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₆-C₈)-cycloalkynyl, $(C_1\text{-}C_6)$ -haloalkyl, $(C_2\text{-}C_6)$ -haloalkenyl, $(C_2\text{-}C_6)$ haloalkynyl, halogen, -OR¹⁰, -NR¹⁰2, -SR¹⁰, -SiR¹⁰3, -C(=W)R¹⁰, -C(=W)OR¹⁰, -C(=W)NR¹⁰2, -SOR¹⁰ 10 -SO₂R¹⁰, nitro, cyano and hydroxyl, aryl, which is optionally substituted by one or more radicals from the 15 (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_8) cycloalkyl, (C₄-C₈)-cycloalkenyl and (C₆-C₈)-cycloalkynyl, where these six abovementioned radicals are optionally substituted by one or more radicals from the group halogen, cyano, nitro, -C(=W)R¹⁰, -C(=W)OR¹⁰, 20 -C(=W)NR¹⁰2, -OR¹⁰, -NR¹⁰2, -SR¹⁰, -SOR¹⁰ and -SO₂R¹⁰. halogen, cyano, nitro, -C(=W)R¹⁰, -C(=NOR¹⁰)R¹⁰. $-C(=NNR^{10}_{2})R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_{2}$, $-OC(=W)R^{10}$, -OC(=W)OR¹⁰, -NR¹⁰C(=W)R¹⁰, -NIC(=W)R¹⁰l₂, 25 $-NR^{10}C(=W)OR^{10}$, $-OR^{10}$, $-NR^{10}_2$, $-SR^{10}$, $-SiR^{10}_3$, $-PR^{10}_2$, -SOR¹⁰, -SO₂R¹⁰, -PW₂R¹⁰, and -PW₂R¹⁰ pyridyl,

which is optionally substituted by one or more radicals from the group

 $(C_1\text{-}C_6)\text{-alkyl}, (C_2\text{-}C_6)\text{-alkenyl}, (C_2\text{-}C_6)\text{-alkynyl}, (C_3\text{-}C_8)\text{-} \text{cycloalkyl}, (C_4\text{-}C_8)\text{-cycloalkenyl} \text{ and } (C_6\text{-}C_8)\text{-cycloalkynyl}, \\ \text{where the six abovementioned radicals are optionally} \\ \text{substituted by one or more radicals from the group} \\ \text{cyano, nitro, halogen, -C(=W)R}^{10}, -C(=W)\text{OR}^{10}, \\ \text{-C(=W)NR}^{10}_{2}, -\text{OR}^{10}, -\text{NR}^{10}_{2}, -\text{SR}^{10}, -\text{SOR}^{10} \text{ and} \\ \text{-SO}_2\text{R}^{10}, \\ \text{halogen, cyano, nitro, -C(=W)R}^{10}, -\text{C(=W)OR}^{10}, -\text{C(=W)NR}^{10}_{2}, -\text{SR}^{10}, -\text{SOR}^{10} \\ \text{and -SO}_2\text{R}^{10}, \\ \text{-C(=W)R}^{10}, -\text{C(=NOR}^{10})\text{R}^{10}, -\text{C(=NNR}^{10}_{2})\text{R}^{10}, -\text{C(=W)OR}^{10}, \\ \text{-C(=W)NR}^{10}_{2} \text{ or halogen;} \\ \text{-C(=W)NR}^{10}_{2} \text{ or halo$

R⁴ and R⁵ together form a 4- to 7-membered ring which may be partially unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

 R^4 and R^5 together form one of the groups =0, =S or =N- R^9 ;

R⁶ and R⁷ together form a 5- to 7-membered ring which may be partially unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

5

10

15

 R^{6} and R^{7} together form one of the groups =0, =S or =N-R⁹;

R⁸ is hydrogen,

(C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₈)
cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₃-C₈)-cycloalkyl-(C₁-C₄)
alkyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl-(C₂
C₄)-alkenyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkenyl, (C₁-C₆)-alkyl
(C₃-C₈)-cycloalkyl, (C₂-C₆)-alkenyl-(C₃-C₈)-cycloalkyl, (C₂-C₆)
alkynyl-(C₃-C₈)-cycloalkyl, (C₁-C₆)-alkyl-(C₄-C₈)-cycloalkenyl,

(C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenyl,

where the fourteen last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C1-C6)-15 alkoxy, (C2-C6)-alkenyloxy, (C2-C6)-alkynyloxy, (C1-C6) $haloalkyloxy, \ (C_2\text{-}C_6)\text{-}haloalkenyloxy, \ (C_2\text{-}C_6)\text{-}haloalkynyloxy, \\$ (C3-C8)-cycloalkoxy, (C4-C8)-cycloalkenyloxy, (C3-C8)halocycloalkoxy, (C₄-C₈)-halocycloalkenyloxy, (C₃-C₈)-20 $cycloalkyl-(C_1-C_4)-alkoxy,\ (C_4-C_8)-cycloalkenyl-(C_1-C_4)-alkoxy,\ (C_4-C_8)-cycloalkenyl-(C_1-C_4)-alkoxy$ alkoxy, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenyloxy, (C₄-C₈)cycloalkenyl-(C1-C4)-alkenyloxy, (C1-C6)-alkyl-(C3-C8)cycloalkoxy, (C2-C6)-alkenyl-(C3-C8)-cycloalkoxy, (C2-C6)alkynyl-(C3-C8)-cycloalkoxy, (C1-C6)-alkyl-(C4-C8)-25 cycloalkenyloxy, (C2-C6)-alkenyl-(C4-C8)-cycloalkenyloxy, (C_1-C_4) -alkoxy- (C_1-C_6) -alkoxy, (C_1-C_4) -alkoxy- (C_2-C_6) alkenyloxy, carbamoyl, (C₁-C₆)-mono- or dialkylcarbamoyl,

(C1-C6)-mono- or dihaloalkylcarbamoyl, (C3-C8)-mono- or dicycloalkylcarbamoyl, (C1-C6)-alkoxycarbonyl, (C3-C8)cycloalkoxycarbonyl, (C1-C6)-alkanoyloxy, (C3-C8)cycloalkanoyloxy, (C1-C6)-haloalkoxycarbonyl, (C1-C6)-5 haloalkanoyloxy, (C1-C6)-alkaneamido, (C1-C6)haloalkaneamido, (C2-C6)-alkeneamido, (C3-C8) $cycloalkaneamido,\ (C_3\text{-}C_8)\text{-}cycloalkyl\text{-}(C_1\text{-}C_4)\text{-}alkaneamido,$ (C1-C6)-alkylthio, (C2-C6)-alkenylthio, (C2-C6)-alkynylthio, (C1-C6)-haloalkylthio, (C2-C6)-haloalkenylthio, (C2-C6)-10 haloalkynylthio, (C3-C8)-cycloalkylthio, (C4-C8)cycloalkenylthio, (C₃-C₈)-halocycloalkylthio, (C₄-C₈)halocycloalkenylthio, (C3-C8)-cycloalkyl-(C1-C4)-alkylthio, $(C_4\text{-}C_8)\text{-}\text{cycloalkenyl-}(C_1\text{-}C_4)\text{-}\text{alkylthio},\ (C_3\text{-}C_8)\text{-}\text{cycloalkyl-}$ (C2-C4)-alkenylthio, (C4-C8)-cycloalkenyl-(C1-C4)-alkenylthio, 15 (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylthio, (C_2-C_6) -alkenyl- (C_3-C_8) $cycloalkylthio, (C_2-C_6)-alkynyl-(C_3-C_8)-cycloalkylthio, (C_1-C_6)-alkynyl-(C_3-C_8)-cycloalkylthio, (C_1-C_8)-alkynyl-(C_3-C_8)-alkynyl-(C_8-C_8)$ alkyl-(C4-C8)-cycloalkenylthio, (C2-C6)-alkenyl-(C4-C8)cycloalkenylthio, (C_1-C_6) -alkylsulfinyl, (C_2-C_6) -alkenylsulfinyl, (C2-C6)-alkynylsulfinyl, (C1-C6)-haloalkylsulfinyl, (C2-C6)-20 haloalkenylsulfinyl, (C2-C6)-haloalkynylsulfinyl, (C3-C8)cycloalkylsulfinyl, (C₄-C₈)-cycloalkenylsulfinyl, (C₃-C₈)halocycloalksulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C₃-C₈)cycloalkyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)alkylsulfinyl, (C_3 - C_8)-cycloalkyl-(C_2 - C_4)-alkenylsulfinyl, (C_4 -C₈)-cycloalkenyl-(C₁-C₄)-alkenylsulfinyl, (C₁-C₆)-alkyl-(C₃-

C₈)-cycloalkylsulfinyl, (C₂-C₆)-alkenyl-(C₃-C₈)cycloalkylsulfinyl, (C2-C6)-alkynyl-(C3-C8)-cycloalkylsulfinyl, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenylsulfinyl, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenylsulfinyl, (C_1-C_6) -alkylsulfonyl, (C_2-C_6) -5 alkenylsulfonyl, (C2-C6)-alkynylsulfonyl, (C1-C6)haloalkylsulfonyl, (C2-C6)-haloalkenylsulfonyl, (C2-C6)haloalkynylsulfonyl, (C3-C8)-cycloalkylsulfonyl, (C4-C8)cycloalkenylsulfonyl, (C3-C8)-halocycloalkylsulfonyl, (C4-C8)halocycloalkenylsulfonyl, (C3-C8)-cycloalkyl-(C1-C4)-10 alkylsulfonyl, (C_4 - C_8)-cycloalkenyl-(C_1 - C_4)-alkylsulfonyl, (C_3 -C₈)-cycloalkyl-(C₂-C₄)-alkenylsulfonyl, (C₄-C₈)-cycloalkenyl- (C_1-C_4) -alkenylsulfonyl, (C_1-C_6) -alkyl- (C_3-C_8) cycloalkylsulfonyl, (C2-C6)-alkenyl-(C3-C8)-cycloalkylsulfonyl, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylsulfonyl, (C_1-C_6) -alkyl- (C_4-C_6) -alkyl- (C_4-C_6) -alkynyl- (C_3-C_8) -cycloalkylsulfonyl, (C_1-C_6) -alkyl- (C_4-C_6) -alkynyl- (C_3-C_8) -cycloalkylsulfonyl, (C_1-C_6) -alkyl- (C_4-C_6) -alkyl 15 C₈)-cycloalkenylsulfonyl, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylsulfonyl, (C1-C6)-alkylamino, (C2-C6)alkenylamino, (C2-C6)-alkynylamino, (C1-C6)-haloalkylamino, (C2-C6)-haloalkenylamino, (C2-C6)-haloalkynylamino, (C3-C₈)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈)-20 $halocycloal kamino, \ (C_4\text{-}C_8)\text{-}halocycloal kenylamino, \ (C_3\text{-}C_8)\text{-}$ $cycloalkyl\hbox{-}(C_1\hbox{-}C_4)\hbox{-}alkylamino, (C_4\hbox{-}C_8)\hbox{-}cycloalkenyl\hbox{-}(C_1\hbox{-}C_4)\hbox{-}$ alkylamino, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenylamino, (C₄-C₈)- $\label{eq:cycloalkenyl-(C1-C4)-alkenylamino, (C1-C6)-alkyl-(C3-C8)-alk$ $cycloalkylamino,\ (C_2\text{-}C_6)\text{-}alkenyl\text{-}(C_3\text{-}C_8)\text{-}cycloalkylamino,$ (C2-C6)-alkynyl-(C3-C8)-cycloalkylamino, (C1-C6)-alkyl-(C4-

C₈)-cycloalkenylamino, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylamino, (C1-C6)-trialkylsilyl, aryl, aryloxy, arylthio, arylamino, arylcarbamoyl, aroyl, aroyloxy, aryloxycarbonyl, $aryl\hbox{-}(C_1\hbox{-}C_4)\hbox{-}alkoxy,\ aryl\hbox{-}(C_2\hbox{-}C_4)\hbox{-}alkenyloxy,\ aryl\hbox{-}(C_1\hbox{-}C_4)\hbox{-}$ alkylthio, aryl-(C2-C4)-alkenylthio, aryl-(C1-C4)-alkylamino, aryl-(C2-C4)-alkenylamino, aryl-(C1-C6)-dialkylsilyl, diaryl-(C1-C₆)-alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl, of which the nineteen last-mentioned radicals are optionally substituted in their cyclic moiety by one or more substituents from the group halogen, cyano, nitro, amino, hydroxyl, thio, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C1-C4)-haloalkoxy, (C1-C4)-alkylthio, (C1-C4)haloalkylthio, (C₁-C₄)-alkylamino, (C₁-C₄)-haloalkylamino, formyl and (C1-C4)-alkanoyl, aryl, which is optionally substituted by one or more radicals from the group halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C1-C6)alkoxy, (C_2 - C_6)-alkenyloxy, (C_2 - C_6)-alkynyloxy, (C_1 - C_6)haloalkyloxy, (C2-C6)-haloalkenyloxy, (C2-C6)-haloalkynyloxy, (C3-C8)-cycloalkoxy, (C4-C8)-cycloalkenyloxy, (C3-C8)halocycloalkoxy, (C₄-C₈)-halocycloalkenyloxy, carbamoyl, (C_1-C_6) -mono- or dialkylcarbamoyl, (C_1-C_6) -alkoxycarbonyl, (C₁-C₆)-alkanoyloxy, (C₁-C₆)-mono- or dihaloalkylcarbamoyl, $(C_1\text{-}C_6)\text{-haloalkoxycarbonyl}, (C_1\text{-}C_6)\text{-haloalkanoyloxy}, (C_1\text{-}$

C₆)-alkaneamido, (C₁-C₆)-haloalkaneamido, (C₂-C₆)-

alkeneamido, (C1-C6)-alkylthio, (C2-C6)-alkenylthio, (C2-C6)-

5

10

15

20

alkynylthio, (C1-C6)-haloalkylthio, (C2-C6)-haloalkenylthio, (C2-C6)-haloalkynylthio, (C3-C8)-cycloalkylthio, (C4-C8)cycloalkenylthio, (C_3 - C_8)-halocycloalkthio, (C_3 - C_8) $halocycloalkenylthio,\ (C_1\text{-}C_6)\text{-}alkylsulfinyl,\ (C_2\text{-}C_6)\text{-}$ alkenylsulfinyl, (C2-C6)-alkynylsulfinyl, (C1-C6) $haloalkylsulfinyl,\ (C_2\text{-}C_6)\text{-}haloalkenylsulfinyl,\ (C_2\text{-}C_6)\text{-}$ haloalkynylsulfinyl, (C3-C8)-cycloalkylsulfinyl, (C4-C8)cycloalkenylsulfinyl, (C3-C8)-halocycloalksulfinyl, (C4-C8)halocycloalkenylsulfinyl, (C1-C6)-alkylsulfonyl, (C2-C6)alkenylsulfonyl, (C2-C6)-alkynylsulfonyl, (C1-C6)haloalkylsulfonyl, (C2-C6)-haloalkenylsulfonyl, (C2-C6)haloalkynylsulfonyl, (C3-C8)-cycloalkylsulfonyl, (C4-C8)cycloalkenylsulfonyl, (C3-C8)-halocycloalksulfonyl, (C4-C8)halocycloalkenylsulfonyl, (C1-C6)-alkylamino, (C2-C6)alkenylamino, (C2-C6)-alkynylamino, (C1-C6)-haloalkylamino, (C2-C6)-haloalkenylamino, (C2-C6)-haloalkynylamino, (C3-C₈)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈)halocycloalkamino and (C₄-C₈)-halocycloalkenylamino, -C(=W)R¹¹, OR¹¹ or NR¹¹₂;

20

5

10

15

 R^9

is (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkyl, (C_3-C_8) -cycloalkyl- (C_2-C_4) -alkenyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenyl, where the nine last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, (C_1-C_6) -alkoxy, (C_2-C_6) -alkenyloxy, (C_2-C_6) -alkynyloxy and (C_1-C_6) -haloalkyloxy;

R¹⁰ is hydrogen,

5

10

15

20

 $(C_1-C_6)-\text{alkyl}, (C_2-C_6)-\text{alkenyl}, (C_2-C_6)-\text{alkynyl}, (C_3-C_8)-\text{cycloalkyl}, (C_4-C_8)-\text{cycloalkenyl}, (C_3-C_8)-\text{cycloalkyl}-(C_1-C_4)-\text{alkyl}, (C_4-C_8)-\text{cycloalkenyl}-(C_1-C_4)-\text{alkyl}, (C_3-C_8)-\text{cycloalkyl}-(C_2-C_4)-\text{alkenyl}, (C_4-C_8)-\text{cycloalkenyl}-(C_1-C_4)-\text{alkenyl}, (C_1-C_6)-\text{alkyl}-(C_3-C_8)-\text{cycloalkyl}, (C_2-C_6)-\text{alkenyl}-(C_3-C_8)-\text{cycloalkyl}, (C_2-C_6)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{alkynyl}-(C_3-C_8)-\text{cycloalkyl}, (C_1-C_6)-\text{alkyl}-(C_4-C_8)-\text{a$

cycloalkenyl, (C₂-C₆)-alkenyl-(C₄-C₈)-cycloalkenyl, where the fourteen last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C_1-C_6) -alkoxy, (C_2-C_6) -alkenyloxy, (C_2-C_6) -alkynyloxy, (C_1-C_6) -haloalkyloxy, (C_2-C_6) -haloalkenyloxy, (C_2-C_6) -haloalkynyloxy, (C_3-C_8) -cycloalkoxy, (C_4-C_8) -cycloalkenyloxy, (C_3-C_8) -

halocycloalkoxy, (C_4-C_8) -halocycloalkenyloxy, (C_3-C_8) -cycloalkyl- (C_1-C_4) -alkoxy, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkoxy, (C_3-C_8) -cycloalkyl- (C_2-C_4) -alkenyloxy, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenyloxy, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkoxy, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkoxy, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkoxy, (C_1-C_6) -alkyl- (C_4-C_8) -cycloalkenyloxy, (C_2-C_6) -alkenyl- (C_4-C_8) -cycloalkenyloxy, (C_1-C_4) -alkoxy- (C_1-C_6) -alkoxy, (C_1-C_4) -alkoxy- (C_2-C_6) -

alkenyloxy, carbamoyl,

AUS TRALLA

 $(C_1\text{-}C_6)$ -mono- or dialkylcarbamoyl, $(C_1\text{-}C_6)$ -mono- or dihaloalkylcarbamoyl, (C3-C8)-mono- or dicycloalkylcarbamoyl, (C1-C6)-alkoxycarbonyl, (C3-C8)cycloalkoxycarbonyl, (C1-C6)-alkanoyloxy, (C3-C8)-5 cycloalkanoyloxy, (C1-C6)-haloalkoxycarbonyl, (C1-C6)haloalkanoyloxy, (C1-C6)-alkaneamido, (C1-C6)haloalkaneamido, (C2-C6)-alkeneamido, (C3-C8)cycloalkaneamido, (C3-C8)-cycloalkyl-(C1-C4)-alkaneamido, (C1-C6)-alkylthio, (C2-C6)-alkenylthio, (C2-C6)-alkynylthio, 10 $(C_1\text{-}C_6)$ -haloalkylthio, $(C_2\text{-}C_6)$ -haloalkenylthio, $(C_2\text{-}C_6)$ haloalkynylthio, (C3-C8)-cycloalkylthio, (C4-C8)cycloalkenylthio, (C3-C8)-halocycloalkthio, (C4-C8)halocycloalkenylthio, (C3-C8)-cycloalkyl-(C1-C4)-alkylthio, (C4-C8)-cycloalkenyl-(C1-C4)-alkylthio, (C3-C8)-cycloalkyl-15 (C_2-C_4) -alkenylthio, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenylthio, (C_1-C_6) -alkyl- (C_3-C_8) -cycloalkylthio, (C_2-C_6) -alkenyl- (C_3-C_8) cycloalkylthio, (C_2 - C_6)-alkynyl-(C_3 - C_8)-cycloalkylthio, (C_1 - C_6)alkyl-(C_4 - C_8)-cycloalkenylthio, (C_2 - C_6)-alkenyl-(C_4 - C_8)cycloalkenylthio, (C1-C6)-alkylsulfinyl, (C2-C6)-alkenylsulfinyl, 20 (C2-C6)-alkynylsulfinyl, (C1-C6)-haloalkylsulfinyl, (C2-C6)haloalkenylsulfinyl, (C2-C6)-haloalkynylsulfinyl, (C3-C8)cycloalkylsulfinyl, (C4-C8)-cycloalkenylsulfinyl, (C3-C8)halocycloalksulfinyl, (C_4 - C_8)-halocycloalkenylsulfinyl, (C_3 - C_8) $cycloalkyl-(C_1-C_4)-alkylsulfinyl,\\$

 $(C_4\text{-}C_8)\text{-cycloalkenyl-}(C_1\text{-}C_4)\text{-alkylsulfinyl},\ (C_3\text{-}C_8)\text{-cycloalkyl-}$ (C2-C4)-alkenylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)alkenylsulfinyl, (C_1 - C_6)-alkyl-(C_3 - C_8)-cycloalkylsulfinyl, (C_2 - $C_6) \hbox{-alkenyl-} (C_3\hbox{-}C_8) \hbox{-cycloalkylsulfinyl, } (C_2\hbox{-}C_6) \hbox{-alkynyl-} (C_3\hbox{-}C_6) \hbox{-alkynyl-} (C_3\hbox{-}C_6) \hbox{-alkenyl-} (C_3\hbox{-}C_6) \hbox{-alkynyl-} (C_3\hbox{-}C_6)$ 5 C₈)-cycloalkylsulfinyl, (C₁-C₆)-alkyl-(C₄-C₈)cycloalkenylsulfinyl, (C2-C6)-alkenyl-(C4-C8)cycloalkenylsulfinyl, (C1-C6)-alkylsulfonyl, (C2-C6)alkenylsulfonyl, (C_2-C_6) -alkynylsulfonyl, (C_1-C_6) -haloalkylsulfonyl, (C_2-C_6) -10 haloalkenylsulfonyl, (C2-C6)-haloalkynylsulfonyl, (C3-C8)cycloalkylsulfonyl, (C_4 - C_8)-cycloalkenylsulfonyl, (C_3 - C_8)halocycloalksulfonyl, (C_4 - C_8)-halocycloalkenylsulfonyl, (C_3 -C₈)-cycloalkyl-(C₁-C₄)-alkylsulfonyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkylsulfonyl, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenylsulfonyl, 15 $(C_4\text{-}C_8)\text{-cycloalkenyl-}(C_1\text{-}C_4)\text{-alkenylsulfonyl},\ (C_1\text{-}C_6)\text{-alkyl-}$ $(C_3\hbox{-} C_8)\hbox{-cycloalkylsulfonyl},\ (C_2\hbox{-} C_6)\hbox{-alkenyl-}(C_3\hbox{-} C_8)\hbox{-}$ $\hbox{cycloalkylsulfonyl, } (C_2\hbox{-}C_6)\hbox{-alkynyl-}(C_3\hbox{-}C_8)\hbox{-cycloalkylsulfonyl,}\\$ $(C_1\hbox{-} C_6)\hbox{-}alkyl\hbox{-}(C_4\hbox{-} C_8)\hbox{-}cycloalkenylsulfonyl, } (C_2\hbox{-} C_6)\hbox{-}alkenyl\hbox{-}$ (C₄-C₈)-cycloalkenylsulfonyl, 20 (C1-C6)-alkylamino, (C2-C6)-alkenylamino, (C2-C6)alkynylamino, (C1-C6)-haloalkylamino, (C2-C6)haloalkenylamino, (C2-C6)-haloalkynylamino, (C3-C8)cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈) $halocycloalkamino, (C_4\text{-}C_8)\text{-}halocycloalkenylamino, (C_3\text{-}C_8)\text{-}$ $cycloalkyl\hbox{-}(C_1\hbox{-} C_4)\hbox{-}alkylamino, (C_4\hbox{-} C_8)\hbox{-}cycloalkenyl\hbox{-}(C_1\hbox{-} C_4)\hbox{-}$ alkylamino, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenylamino, (C₄-C₈)-

cycloalkenyl-(C1-C4)-alkenylamino, (C1-C6)-alkyl-(C3-C8)cycloalkylamino, (C2-C6)-alkenyl-(C3-C8)-cycloalkylamino, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkylamino, (C_1-C_6) -alkyl- (C_4-C_6) -alky C₈)-cycloalkenylamino, (C₂-C₆)-alkenyl-(C₄-C₈)-5 cycloalkenylamino, (C1-C6)-trialkylsilyl, aryl, aryloxy, arylthio, arylamino, aryl-(C1-C4)-alkoxy, aryl-(C2-C4)-alkenyloxy, aryl-(C1-C4)-alkylthio, aryl-(C2-C4)-alkenylthio, aryl-(C1-C4)alkylamino, aryl-(C2-C4)-alkenylamino, aryl-(C1-C6)dialkylsilyl, diaryl-(C1-C6)-alkylsilyl, triarylsilyl and 5- or 6-10 membered heterocyclyl, where the cyclic moiety of the fourteen last-mentioned radicals is optionally substituted by one or more radicals from the group halogen, cyano, nitro, amino, hydroxyl, thio, (C1-C4)-alkyl, 15 $(C_1\text{-}C_4)\text{-haloalkyl},\ (C_3\text{-}C_8)\text{-cycloalkyl},\ (C_1\text{-}C_4)\text{-alkoxy},\ (C_1\text{-}C_4$ C₄)-haloalkoxy, (C₁-C₄)-alkylthio, (C₁-C₄)-haloalkylthio, (C1-C4)-alkylamino, (C1-C4)-haloalkylamino, formyl and (C1-C4)-alkanoyl, aryl, 5- or 6-membered heteroaromatic, 20 where the two last-mentioned radicals are optionally substituted by one or more radicals from the group halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C1-C6)alkoxy, (C2-C6)-alkenyloxy, (C2-C6)-alkynyloxy, (C1-C6) $haloalkyloxy, \ (C_2\text{-}C_6)\text{-}haloalkenyloxy, \ (C_2\text{-}C_6)\text{-}haloalkynyloxy, \\$ 25 (C3-C8)-cycloalkoxy, (C4-C8)-cycloalkenyloxy, (C3-C8)-

halocycloalkoxy, (C₄-C₈)-halocycloalkenyloxy, carbamoyl,

(C₁-C₆)-mono- or dialkylcarbamoyl, (C₁-C₆)-alkoxycarbonyl, (C1-C6)-alkanoyloxy, (C1-C6)-mono- or dihaloalkylcarbamoyl, (C1-C6)haloalkoxycarbonyl, (C1-C6)-haloalkanoyloxy, (C1-C6)-5 alkaneamido, (C1-C6)-haloalkaneamido, (C2-C6)alkeneamido, (C1-C6)-alkylthio, (C2-C6)-alkenylthio, (C2-C6)alkynylthio, (C1-C6)-haloalkylthio, (C2-C6)-haloalkenylthio, $(C_2\text{-}C_6)$ -haloalkynylthio, $(C_3\text{-}C_8)$ -cycloalkylthio, $(C_4\text{-}C_8)$ cycloalkenylthio, 10 $(C_3\text{-}C_8)$ -halocycloalkthio, $(C_4\text{-}C_8)$ -halocycloalkenylthio, $(C_1\text{-}$ C₆)-alkylsulfinyl, (C₂-C₆)-alkenylsulfinyl, (C₂-C₆)alkynylsulfinyl, (C_1 - C_6)-haloalkylsulfinyl, (C_2 - C_6)haloalkenylsulfinyl, (C2-C6)-haloalkynylsulfinyl, (C3-C8)cycloalkylsulfinyl, (C₄-C₈)-cycloalkenylsulfinyl, (C₃-C₈)-15 halocycloalksulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C₁-C₆)alkylsulfonyl, (C_2 - C_6)-alkenylsulfonyl, (C_2 - C_6)-alkynylsulfonyl, (C1-C6)-haloalkylsulfonyl, (C2-C6)-haloalkenylsulfonyl, (C2-C₆)-haloalkynylsulfonyl, (C₃-C₈)-cycloalkylsulfonyl, (C₄-C₈)cycloalkenylsulfonyl, (C_3 - C_8)-halocycloalksulfonyl, (C_4 - C_8)-20 halocycloalkenylsulfonyl, (C1-C6)-alkylamino, (C2-C6)alkenylamino, (C2-C6)-alkynylamino, (C1-C6)-haloalkylamino, (C2-C6)-haloalkenylamino, (C2-C6)-haloalkynylamino, (C3-C₈)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈) $halocycloal kylamino\ and\ (C_4\text{-}C_8)\text{-}halocycloal kenylamino};$

R¹¹ is (C₁-C₁₀)-alkyl, haloalkyl, aryl,

which is optionally substituted by one or more radicals from the group $\label{eq:continuous} \mbox{halogen, cyano, nitro, } (C_1\text{-}C_4)\mbox{-alkoxy, } (C_1\text{-}C_4)\mbox{-alkyl, amino, } (C_1\text{-}C_4)\mbox{-monoalkylamino and } (C_1\text{-}C_4)\mbox{-dialkylamino,}$

NR¹⁰₂, OR¹⁰ or SR¹⁰.

The numbers in brackets are the reference numbers from The Pesticide Manual, 11th edition, British Crop Protection Council, Farnham 1997.

The method according to the invention makes it possible to reduce the application rate of crop protection agents which act synergistically with the transgenic plants, and also to increase and widen the efficacy of the transgenic plants, and therefore offers economical and ecological advantages.

15

5

The advantages of the method are, on the one hand, synergisms with the Bacillus thuringiensis toxins (Bt toxins) produced in the transgenic plant and, on the other hand, for example, a reduced number of applications or a reduction of the application rates to in some instances sublethal dosages (compared to the conventional application of the individual insecticides) and an associated considerably reduced environmental burden.

In particular combinations of the abovementioned active compounds show, together with the endogenously produced Bt toxins (i.e. produced within the transgenic plants) a distinct synergistic effect on a large number of harmful organisms to be controlled.

The invention also provides the use of compounds from the abovementioned groups a-f for controlling harmful organisms in genetically modified cotton plants which contain a gene derived from Bacillus thuringiensis which encodes and expresses an insecticidally active protein.

For the purpose of the invention, the term "insecticidally active" includes insecticidal, nematicidal, ovicidal action, and a repellent, behavior-modifying and sterilent action.

- 5 Preferred insecticidally active compounds are the abovementioned groups (a) to (e), in particular the organophosphorus compounds, pyrethroids, carbamates, endosulfan, fipronil, abamectin, piperonyl butoxide, XDE-105 and Bacillus thuringiensis.
- Particular preference is given to triazaphos, endosulfan, deltamethrin, fipronil, abamectin, piperonyl butoxide and Bacillus thuringiensis.

Preference is also given to mixtures of two or more, preferably two or three, particularly preferably two, of the insecticidally active compounds.

- 15 Particular preference is given to mixtures of the abovementioned organophosphorus compounds with the abovementioned pyrethroids, for example of triazaphos with deltamethrin.
 - Likewise, particular preference is given to the mixtures listed below: deltamethrin and piperonyl butoxide, deltamethrin and fibronil, deltamethrin and endosulfan, deltamethrin and XDE-105, deltamethrin and chlorphenapyr, deltamethrin and Bacillus thuringiensis, endosulfan and amitraz, endosulfan and Bacillus thuringiensis, cyfluthrin and chlorpyriphos.
- Likewise, preference is given to the 4-haloalkyl-3-heterocyclylpyridines and 4-haloalkyl-5-heterocyclylpyrimidines of group (f).

For these compounds:

The term "halogen" includes fluorine, chlorine, bromine and iodine.

30

The term " (C_1-C_4) -alkyl" is to be understood as a straight-chain or branched hydrocarbon radical having 1, 2, 3 or 4 carbon atoms, such as, for example, the methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl or tert-butyl radical. Correspondingly, alkyl radicals having a

greater range of carbon atoms are to be understood as straight-chain or branched saturated hydrocarbon radicals which contain a number of carbon atoms which corresponds to the range stated. Thus, the term "(C₁-C₆)-alkyl" includes the abovementioned alkyl radicals, and, for example, the pentyl, 2-methylbutyl, 1,1-dimethylpropyl, hexyl radical. The term "(C₁-C₁₀)-alkyl" is to be understood as the abovementioned alkyl radicals, and, for example, the nonyl, 1-decyl or 2-decyl radical and the term "(C₁-C₂₀)-alkyl" is to be understood as the abovementioned alkyl radicals, and, for example, the undecyl, dodecyl, pentadecyl or eicosyl radical.

"(C₁-C₄)-Haloalkyl" is to be understood as an alkyl group mentioned under the term "(C₁-C₄)-alkyl" in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms, preferably by fluorine or chlorine, such as the trifluoromethyl, the 1-fluoroethyl, the 2,2,2-trifluoroethyl, the chloromethyl, fluoromethyl, the difluoromethyl and the 1,1,2,2-tetrafluoroethyl group.

"(C₁-C₄)-Alkoxy" is to be understood as an alkoxy group whose

20 hydrocarbon radical has the meaning given under the term "(C₁-C₄)-alkyl".

Alkoxy groups embracing a greater range of carbon atoms are to be understood correspondingly.

The terms "alkenyl" and "alkynyl" having a prefix stating the range of carbon atoms denote a straight-chain or branched hydrocarbon radical having a number of carbon atoms corresponding to the range stated which comprises at least one multiple bond which may be in any position of the unsaturated radical in question. " (C_2-C_4) -Alkenyl" is thus, for example, the vinyl, allyl, 2-methyl-2-propene or 2-butenyl group; " (C_2-C_6) -alkenyl" denotes the abovementioned radicals and, for example, the pentenyl, 2-methylpentenyl or the hexenyl group. The term " (C_2-C_2) -alkenyl" is to be understood as the abovementioned radicals and, for example, the

2-decenyl or the 2-eicosenyl group. " (C_2-C_4) -Alkynyl" is, for example, the ethynyl, propargyl, 2-methyl-2-propyne or 2-butynyl group. " (C_2-C_6) -Alkynyl" is to be understood as the abovementioned radicals and, for example, the 2-pentynyl- or the 2-hexynyl group and " (C_2-C_{20}) -alkynyl" is to be understood as the abovementioned radicals and, for example, the 2-octynyl or the 2-decynyl group.

"(C₃-C₈)-Cycloalkyl" denotes monocyclic alkyl radicals, such as the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cycloactyl radical and bicyclic alkyl radicals, such as the norbornyl radical.

The term "(C₃-C₈)-cycloalkyl-(C₁-C₄)-alkyl " is to be understood as, for example, the cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclohexylethyl and cyclohexylbutyl radical, and the term "(C₁-C₆)-alkyl-(C₃-C₈)-cycloalkyl is to be understood as, for example, the 1-methylcyclopropyl, 1-methylcyclopentyl, 1-methylcyclohexyl, 3-hexylcyclobutyl and 4-tert-butyl-cyclohexyl radical.

"(C₁-C₄)-Alkoxy-(C₁-C₆)-alkyloxy" is an alkoxy group as defined above
 which is substituted by a further alkoxy group, such as, for example, 1-ethoxyethoxy.

" (C_3-C_8) -Cycloalkoxy" or " (C_3-C_8) -cycloalkylthio" is to be understood as one of the abovementioned (C_3-C_8)-cycloalkyl radicals which is linked via an oxygen or sulfur atom.

"(C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkoxy" is, for example, the cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, cyclohexylethoxy or the cyclohexylbutoxy group;

THE RALL M

25

The term (C_1-C_4) -alkyl- (C_3-C_8) -cycloalkoxy" is, for example, the methylcyclopropyloxy, methylcyclobutyloxy or the butylcyclohexyloxy group.

"(C_1 - C_6)-Alkylthio" is an alkylthio group whose hydrocarbon radical has the meaning given under the term "(C_1 - C_6)-alkyl".

Correspondingly, "(C₁-C₆)-alkylsulfinyl" is, for example, the methyl-, ethyl-, propyl-, isopropyl-, butyl-, isobutyl-, sec-butyl- or tert-butylsulfinyl group and "(C₁-C₆)-alkylsulfonyl" is, for example, the methyl-, ethyl-, propyl-, isopropyl-, butyl-, isobutyl-, sec-butyl- or tert-butylsulfonyl group.

"(C₁-C₆)-Alkylamino" is a nitrogen atom which is substituted by one or two identical or different alkyl radicals of the above definition.

The term " (C_1-C_6) -mono- or dialkylcarbamoyl" is a carbamoyl group having one or two hydrocarbon radicals which have the meaning given under the term " $(C_1-C_6$ -alkyl)" and which, in the case of two hydrocarbon radicals, may be identical or different.

Correspondingly, " (C_1-C_6) -dihaloalkylcarbamoyl" is a carbamoyl group which carries two (C_1-C_6)-haloalkyl radicals in accordance with the above definition or one (C_1-C_6)-haloalkyl radical and one (C_1-C_6)-alkyl radical in accordance with the above definition.

" (C_1-C_6) -Alkanoyl" is, for example, the acetyl, propionyl, butyryl or 2-methylbutyryl group.

25 The term "aryl" is to be understood as an isocyclic aromatic radical preferably having 6 to 14, in particular 6 to 12, carbon atoms, such as, for example, phenyl, naphthyl or biphenylyl, preferably phenyl. "Aroyl" is thus an aryl radical as defined above which is attached via a carbonyl group, such as, for example, the benzoyl group.

The term "heterocyclyl" denotes a cyclic radical which may be fully saturated, partially unsaturated or fully unsaturated and which may be interrupted by at least one or more identical atoms from the group nitrogen. sulfur or oxygen, oxygen atoms, however, not being directly adjacent to one another and at least one carbon atom being present in the ring, such as, for example, a thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, pyrazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,3,4-triazole, 1,2,4-oxadiazole, 1,2,4-triazole, 1,2,4-triazole, 1,2,3-triazole, 1,2,3,4-tetrazole, benzo[b]thiophene, benzo[b]furan, indole, 10 benzo[c]thiophene, benzo[c]furan, isoindole, benzoxazole, benzothiazole, benzimidazole, benzisoxazole, benzisothiazole, benzopyrazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, pyridine, pyrazine, pyrimidine, pyridazine, 1,3,5-triazine, 1,2,4-triazine, 1,2,4,5-tetrazine, quinoline, isoquinoline, quinoxaline. 15 quinazoline, cinnoline, 1,8-naphthyridine, 1,5-naphthyridine, 1,6-naphthyridine, 1,7-naphthyridine, phthalazine, pyridopyrimidine, purine, pteridine 4H-quinolizine; piperidine, pyrrolidine, oxazoline, tetrahydrofuran, tetrahydropyran, isoxazolidine or thiazolidine radical. The term "heteroaromatic" thus embraces, from among the meanings mentioned 20 above under "heterocyclyl", in each case the fullly unsaturated aromatic heterocyclic compounds.

"Aryl- (C_1-C_4) -alkoxy" is an aryl radical which is attached via a (C_1-C_4) -alkoxy group, for example the benzyloxy, phenylethoxy, phenylbutoxy or naphthylmethoxy radical.

"Arylthio" is an aryl radical attached via a sulfur atom, for example the phenylthio or the 1- or 2-naphthylthio radical. Correspondingly, "aryloxy" is, for example, the phenoxy or 1- or 2-naphthyloxy radical.

30

25

"Aryl-(C₁-C₄)-alkylthio" is an aryl radical which is attached via an alkylthio radical, for example the benzylthio, naphthylmethylthio or the phenylethylthio radical.

The term "(C₁-C₆)-trialkylsilyl" denotes a silicon atom which carries three identical or different alkyl radicals in accordance with the above definition. Correspondingly "aryl-(C₁-C₆)-dialkylsilyl" is a silicon atom which carries one aryl radical and two identical or different radicals in accordance with the above defition, "diaryl-(C₁-C₆)-alkylsilyl" is a silicon atom which carries one alkyl radical and two identical or different aryl radicals in accordance with the above definition, and "triarylsilyl" is a silicon atom which carries three identical or different aryl radicals in accordance with the above definition.

In cases where two or more radicals R¹⁰ are present in a substituent, such as, for example, in -C(=W)NR¹⁰₂, these radicals may be identical or different.

15

10

Y in the formula (I) is preferably CF₃. Furthermore, X is preferably the group CH. Likewise, preference is given to compounds in which: $X^1 = 0$ and $X^2 = N$ and $X^3 = CR^1$. Likewise, preference is given to compounds where m = 0.

20

Particular preference is given to compounds of the formula (I) from the group (f) in which the symbols Y, X, X, X¹, X², X³ have the preferred meanings given above, in particular to compounds in which m likewise has the preferred meaning.

25

Preference is given to those compounds from the group (f) with the formula (I) in which

Υ

is C₁-C₆-alkyl which is mono- or polysubstituted by chlorine and/or fluorine;

is zero;

Q is a 5-membered heterocyclic group

in which

5

a)
$$X^2 = NR^a$$
 and $X^3 = CR^bR^1$ or

b)
$$X^{2} = CR^{a}R^{2}$$
 and $X^{3} = CR^{b}R^{3}$ or

c)
$$X^2 = CR^4R^5$$
 and $X^3 = CR^6R^7$;

R^a and R^b together are a bond;

R¹, R², R³, R⁴ and R⁶ are each independently of one another

10

hydrogen, halogen, C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, where the four last-mentioned hydrocarbon radicals are optionally mono- or polysubstituted by identical or different radicals from a group A1 consisting of C₁-C₆-alkylcarbonyl, C₁-C₆-alkylaminocarbonyl, C₁-C₆-

15

alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino, C_1 - C_6 -

alkylcarbonylamino, C_1 - C_6 -alkylsulfonylamino, phenyl, furyl, pyrryl, thienyl, halogen, cyano, phenyloxy, phenylthio and phenylamino, where the eleven first-mentioned radicals of group A1 are each optionally mono- or polysubstituted by identical or different radicals from a group B1 consisting of

20

halogen, cyano, C₁-C₃-alkoxy and phenyl which is optionally mono- or polysubstituted by one or more halogen atoms and where the three last-mentioned radicals of group A1 are each optionally mono- or polysubstituted by identical or different radicals from a group B2 consisting of halogen, cyano, nitro,

25

C₁-C₃-alkyl and C₁-C₃-alkoxy, or are C₁-C₆-alkylcarbonyl,

C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkoxycarbonyl, phenyl, pyridyl, furyl, thienyl, pyrryl, where the eight last-mentioned

radicals are optionally mono- or polysubstituted by identical or different radicals from group B1, or are OR^{10} , SR^{10} or $N(R^{10})_2$:

R⁵ and R⁷

5

15

20

25

are each independently of one another hydrogen, halogen,

C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, where the four last-mentioned hydrocarbon radicals are

optionally mono- or polysubstituted by identical or different radicals from a group A2 consisting of C₁-C₆-alkylcarbonyl,

C₁-C₆-alkylaminocarbonyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-

10 C₆-alkylamino, C₁-C₆-alkylcarbonylamino, phenyl, furyl,

pyrryl, thienyl, halogen, cyano, phenyloxy, phenylthio and phenylamino, where the ten first-mentioned radicals of group A2 are each optionally mono- or polysubstituted by identical or different radicals from the group B1 and the three last-

mentioned radicals of group A2 are each optionally mono- or

polysubstituted by identical or different radicals from the

group B2, or are C₁-C₆-alkylcarbonyl, C₁-C₆-

alkylaminocarbonyl, C₁-C₆-alkoxycarbonyl, phenyl, pyridyl, furyl, thienyl, pyrryl, where the eight last-mentioned radicals

are optionally mono- or polysubstituted by identical or different radicals from the group B1, or are OR 10, SR 10 or

 $N(R^{10})_2;$

R¹⁰ is hydrogen, benzyl, C₁-C₆-alkyl, C₁-C₆-cycloalkyl, C₂-C₆-

alkenyl, C₂-C₆-alkynyl, phenyl, C₁-C₆-alkylcarbonyl or C₁-C₆-alkylsulfonyl, where the eight last-mentioned radicals are optionally mono- or polysubstituted by identical or different

halogen atoms.

Particular preference is given to compounds from the group (f) with the formula (I) in which

is trifluoromethyl; $R^{1}, R^{2}, R^{3}, R^{4}$ and R^{6} are each independently of one another halogen, C₁-C₁₂-alkyl, C₂-C₁₂-alkenyl, where the two last-mentioned radicals are optionally mono- or polysubstituted by identical or 5 different radicals from a group A3 consisting of C1-C4alkylcarbonyl, C1-C4-alkylaminocarbonyl, C1-C4-alkoxy, C1-C₄-alkylthio, C₁-C₄-alkylamino, C₁-C₄-alkylcarbonylamino, C₁-C₄-alkylsulfonylamino, phenyl, furyl, pyrryl, thienyl, fluorine, chlorine, bromine, cyano, phenyloxy, phenylthio and 10 phenylamino, where the eleven first-mentioned radicals of group A3 are each optionally mono- or polysubstituted by identical or different radicals from the group B1 and the three last-mentioned radicals of group A3 are each optionally mono- or polysubstituted by identical or different radicals from the group B2, or are OR^{10} , SR^{10} or $N(R^{10})_2$: 15 R⁵ and R⁷ are each independently of one another halogen, C1-C12-alkyl, C2-C12-alkenyl, where the two last-mentioned radicals are optionally mono- or polysubstituted by identical or different radicals from a group A4 consisting of C1-C4-alkylcarbonyl, 20 C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino, C₁-C₄-alkylcarbonylamino, phenyl, furyl, pyrryl, thienyl, fluorine, chlorine, bromine, cyano, phenyloxy, phenylthio and phenylamino, where the ten first-mentioned radicals of group A4 are each optionally mono- or 25 polysubstituted by identical or different radicals from the group B1 and the three last-mentioned radicals of group A4 are each optionally mono- or polysubstituted by identical or

different radicals from the group B2, or are OR 10, SR 10 or

 $N(R^{10})_{2}$;

R¹⁰

is hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, phenyl, C1-C4-alkylcarbonyl or C1-C4-alkylsulfonyl, where the six last-mentioned radicals are optionally mono- or polysubstituted by identical or different halogen atoms.

5

Very particular preference is given to compounds from the group (f) with the formula (I) in which

 $R^{1}, R^{2}, R^{3}, R^{4}$ and R^{6}

are each independently of one another C₁-C₁₀-

10

are optionally mono- or polysubstituted by identical or different radicals from a group A5 consisting of C1-C4-

alkyl, C2-C10-alkenyl, where the two last-mentioned radicals

alkylcarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄-alkoxy, C₁-

C₄-alkylthio, C₁-C₄-alkylamino, C₁-C₄-alkylcarbonylamino,

15

C₁-C₄-alkylsulfonylamino, phenyl, fluorine, chlorine, bromine, cyano, phenyloxy, phenylthio and phenylamino, where the eight first-mentioned radicals of group A5 are each optionally mono- or polysubstituted by identical or different radicals from the group B1 and the three last-mentioned radicals of group

A5 are each optionally mono- or polysubstituted by identical

or different radicals from the group B2;

20

R⁵ and R⁷

are each independently of one another C1-C10-alkyl, C2-C10alkenyl, where the two last-mentioned radicals are optionally mono- or polysubstituted by identical or different radicals from a group A6 consisting of

25

C₁-C₄-alkylcarbonyl, C₁-C₄-alkylaminocarbonyl, C₁-C₄alkoxy, C1-C4-alkylthio, C1-C4-alkylamino, C1-C4alkylcarbonylamino, phenyl, fluorine, chlorine, bromine, cyano, phenyloxy, phenylthio and phenylamino, where the seven first-mentioned radicals of group A6 are each optionally mono- or polysubstituted by identical or different radicals from the group B1 and the three last-mentioned radicals of group A6 are each optionally mono- or

polysubstituted by identical or different radicals from the group B2.

Particularly preferred compounds from the group (f) with the formula (I) are listed in the following Tables 1 to 5:

Table 1

No.	Х	Υ	m	w	R	m.p. [°C]
1	N	CCl ₃	0	0	СН3	
2	N	CCl ₃	0	0	CH ₂ CH ₃	
3	N	CCl ₃	0	0	COOCH2CH3	
4	СН	CCl ₃	0	0	CH ₃	
5	СН	CCl ₃	0	0	COOCH ₂ CH ₃	
6	N	(CF ₂) ₃₋ CHF ₂	0	0	CH ₃	
7	N	(CF ₂) ₃ - CHF ₂	0	0	COOCH ₂ CH ₃	
8	СН	(CF ₂) ₃ - CHF ₂	0	0	CH ₃	
9	СН	(CF ₂) ₃ - CHF ₂	0	0	COOCH ₂ CH ₃	
10	N	(CF ₂) ₃₋ CHF ₂	0	s	CH ₂ COOC(CH ₃) ₃	
11	N	(CF ₂) ₃₋ CHF ₂	0	s	CH₂CONHCH₃	
12	СН	(CF ₂) ₃ . CHF ₂	0	s	(CH ₂) ₂ CH ₃	
13	СН	(CF ₂) ₃₋ CHF ₂	0	s	COOCH ₂ CH ₃	
14	ı	(CF ₂) ₂ . CHF ₂	0	0	CH ₂ CH ₃	
15	N	(CF ₂) ₂ . CHF ₂	0	0	COOCH ₂ CH ₃	
16	N	(CF ₂) ₂ . CHF ₂	0	0	он	

No.	Х	γ	m	W	R ¹	m.p. [°C]
17	N	(CF ₂) ₂₋	0	1	OCH ₃	
	_	CHF ₂	\bot	<u> </u>		
18	СН	(CF ₂) ₂ .	0	0	CH ₃	
		CHF ₂	┼	<u> </u>		
19	СН	(CF ₂) ₂ .	0	0	COOCH ₂ CH ₃	
	-	CHF ₂	+-	-		
20	СН	(CF ₂) ₂ .	0	0	ОН	
	_	CHF ₂	+	L		
21	СН	(CF ₂) ₂ .	0	0	NHCH ₃	
	<u> </u>	CHF ₂	┼	<u> </u>		
22	N	CF ₂ CF ₃	0		CH ₃	
23	N	CF ₂ CF ₃	0	1	CH ₂ CH ₃	
24	N	CF ₂ CF ₃	0	_	(CH ₂) ₂ CH ₃	
25	N	CF ₂ CF ₃	0		CH(CH ₃) ₂	
26	N	CF ₂ CF ₃	0	0	Cyclo-C ₆ H ₁₁	
27	N	CF ₂ CF ₃	0	0	CH ₂ C=CH ₂	
28	N	CF ₂ CF ₃	0	0	CH ₂ C≡CH	
29	N	CF ₂ CF ₃	0	0	CH ₂ CH ₂ C≡CH	
30	N	CF ₂ CF ₃	0	0	CH ₂ C≡CCH ₂ CH ₃	
31	N	CF ₂ CF ₃	0	0	(CH ₂) ₄ C≡CH	
32	N	CF ₂ CF ₃	0	0	CHFCF3	
33	N	CF ₂ CF ₃	0	0	COOCH ₂ CH ₃	
34	N	CF ₂ CF ₃	o	0	CH ₂ COOC(CH ₃) ₃	
35	Z	CF ₂ CF ₃	0		CH₂CONHCH₃	
36	Ν	CF ₂ CF ₃	0	0	NH ₂	
37	Z	CF ₂ CF ₃	0	0	NHCH ₂ CH ₃	
38	СН	CF ₂ CF ₃	0	0	CH ₃	
39	СН	CF ₂ CF ₃	0	0	CH ₂ CH ₃	
40		CF ₂ CF ₃	0		(CH ₂) ₂ CH ₃	
41		CF ₂ CF ₃	0	-	CH(CH ₃) ₂	
42		CF ₂ CF ₃	0		Cyclo-C ₆ H ₁₁	
43		CF ₂ CF ₃	0		CH ₂ C=CH ₂	
44		CF ₂ CF ₃	0		CH ₂ COOC(CH ₃) ₃	
		CF ₂ CF ₃	0	-	NH ₂	
46		CF ₂ CF ₃	0		NHCOCH ₃	

No.	х	Υ	m	W	R ¹	m.p. [°C]
47	СН	CF ₂ CF ₃	0	0	NHCOCH ₂ CH ₃	
48	N	CF ₂ CF ₃	0	s	CH ₃	
49	N	CF ₂ CF ₃	0	s	CH ₂ CH ₃	
50	N	CF ₂ CF ₃	0	s	(CH ₂) ₂ CH ₃	
51	Ν	CF ₂ Cl	0	0	CH ₃	
52	N	CF ₂ Cl	0	0	CH ₂ CH ₃	
53	N	CF ₂ CI	0	0	(CH ₂) ₂ CH ₃	
54	N	CF ₂ CI	0	0	CH(CH ₃) ₂	
55	N	CF ₂ Cl	0	0	CH ₂ COOC(CH ₃) ₃	
56	N	CF ₂ Cl	0_	0	CH ₂ CONHCH ₃	
57	N	CF ₂ CI	0	0	ОН	
58	N	CF ₂ CI	0	0	OCH ₃	
59	N_	CF ₂ CI	0	0	OCH ₂ CH ₃	
60	Ν	CF ₂ Cl	0	0	NHCH ₃	
61	СН	CF ₂ CI	0	0	CH ₃	
62	СН	CF ₂ CI	0	0	CH ₂ CH ₃	
63	СН	CF ₂ CI	0	0	(CH ₂) ₂ CH ₃	
64	СН	CF ₂ Cl	0	0	CH(CH ₃) ₂	
65	СН	CF ₂ CI	0	0	CH ₂ COOC(CH ₃) ₃	
66	СН	CF ₂ CI	0	0	CH ₂ CONHCH ₃	
67	СН	CF ₂ CI	0	0	ОН	
68	СН	CF ₂ Cl	0	0	OCH ₃	
69	СН	CF ₂ Cl	0	0	OCH ₂ CH ₃	
70	СН	CF ₂ CI	0	0	NHCH ₃	
71	СН	CF ₂ CI	0	0	Cyclo-C ₆ H ₁₁	
72	СН	CF ₂ Cl	0	0	CH ₂ C=CH ₂	
73	СН	CF ₂ CI	0	0	COOCH ₂ CH ₃	
74	СН	CF ₂ CI	0	0	CH ₂ COOC(CH ₃) ₃	
75	СН	CF ₂ CI	0	0	CH ₂ CONHCH ₃	
76	СН	CF ₂ CI	0	0	OCH ₃	
77	СН	CF ₂ CI	0	0	NHCH ₃	
78	СН	CF ₃	0	0	CH ₃	oil
79	СН	CF ₃	0	0	CH ₂ CH ₃	oil
80	СН	CF ₃	0	0	(CH ₂) ₂ CH ₃	oil
81	СН	CF ₃	0	0	CH(CH ₃) ₂	oil

No.	Х	Υ	m	w	R ¹	m.p. [°C]
82	СН	CF ₃	0		Cyclo-C ₃ H ₅	oil
83	СН	CF ₃	0	0	(CH ₂) ₃ CH ₃	oil
84	СН	CF ₃	0	0	CH(CH ₃)CH ₂ CH ₃	oil
85	СН	CF ₃	0	0	CH ₂ CH(CH ₃) ₂	oil
86	СН	CF ₃	0	0	C(CH ₃) ₃	oil
87	СН	CF ₃	0	0	Cyclo-C ₄ H ₇	
88	СН	CF ₃	0	0	(CH ₂) ₄ CH ₃	oil
89	СН	CF ₃	0_	0	CH(CH ₃)(CH ₂) ₂ CH ₃	
90	СН	CF ₃	0	0	(CH ₂) ₂ CH(CH ₃) ₂	
91	СН	CF ₃	0	0	CH ₂ C(CH ₃) ₃	
92	СН	CF ₃	0	0	Cyclo-C ₅ H ₉	oil
93	СН	CF ₃	0	0	(CH ₂) ₅ CH ₃	
94	СН	CF ₃	0	0	C(CH ₂ CH ₃) ₂ CH ₃	
95	СН	CF ₃	0	0	Cyclo-C ₆ H ₁₁	
96	СН	CF ₃	0_	0	(CH ₂) ₆ CH ₃	
97	СН	CF ₃	0	0	CH(CH ₃)(CH ₂) ₄ CH ₃	
98	СН	CF ₃	0	0	Cyclo-C ₇ H ₁₃	
99	СН	CF ₃	0	0	CH ₂ -cyclo-C ₆ H ₁₁	
100	СН	CF ₃	0	0	2-Norbornyl	
101	СН	CF ₃	0	0	(CH ₂) ₇ CH ₃	
102	CH	CF ₃	0	0	CH(CH ₂ CH ₃)(CH ₂) ₅ CH ₃	
103	СН	CF ₃	0	0	(CH ₂) ₈ CH ₃	
104	СН	CF ₃	0	0	(CH ₂) ₃ -cyclo-C ₆ H ₁₁	
105	СН	CF ₃	0	0	(CH ₂) ₉ CH ₃	
106	СН	CF ₃	0	0	1-Adamantyl	
107	СН	CF ₃	0	0	(CH ₂) ₁₀ CH ₃	
108	СН	CF ₃	0	0	(CH ₂) ₁₁ CH ₃	
109	СН	CF ₃	0	0	CH(CH ₃)(CH ₂) ₉ CH ₃	·
110	СН	CF ₃	0	0	(CH ₂) ₁₂ CH ₃	
111	СН	CF ₃	0	0	(CH ₂) ₁₃ CH ₃	
112	Ë	CF ₃	0	0	(CH ₂) ₁₄ CH ₃	
113	СН	CF ₃	0	0	(CH ₂) ₁₅ CH ₃	
114	СН	CF ₃	0	$\overline{}$	(CH ₂) ₁₇ CH ₃	
115	СН	CF ₃	0	0	(CH ₂) ₁₉ CH ₃	
116	СН	CF ₃	0	0	СНО	

No.	х	γ	m	w	R ¹	m.p. [°C]
117	СН	CF ₃	0	1	CH=CH ₂	oil
118	СН	CF ₃	0	0	CH ₂ C=C(CH ₃) ₂	
119	СН	CF ₃	0	0	CH ₂ CH ₂ C=CH ₂	
120	СН	CF ₃	0	0	CH ₂ C=CH ₂	
121	СН	CF ₃	0	0	C(CH ₃)=CH ₂	
122	СН	CF ₃	0	0	(E)-CH ₂ CH=CHCH ₂ CH ₃	
123	СН	CF ₃	0	0	(Z)-CH ₂ CH=CHCH ₂ CH ₃	
124	СН	CF ₃	0	0	(CH ₂) ₅ C=CH ₂	
125	СН	CF ₃	0	0	C(=CHCH ₃)CH ₃	62-64
126	СН	CF ₃	0	0	Geranyl	
127	СН	CF ₃	0	0	3-Menthyl	
128	СН	CF ₃	0	0	C≡CH	
129	СН	CF ₃	0	0	CH ₂ C≡CH	
130	СН	CF ₃	0	0	CH ₂ CH ₂ C≡CH	
131	СН	CF ₃	0	0	CH ₂ CH ₂ C≡CH	
132	СН	CF ₃	0	0	(CH ₂) ₄ C≡CH	
133	СН	CF ₃	0	0	CHFCF ₃	oil
134	СН	CF ₃	0	0	COOCH ₂ CH ₃	oil
135	СН	CF ₃	0	0	CH ₂ CH ₂ OH	oil
136	СН	CF ₃	0	0	CH ₂ CH ₂ OCH ₃	oil
137	СН	CF ₃	0	0	CH ₂ COOC(CH ₃) ₃	oil
138	СН	CF ₃	0	0	CH ₂ SC ₆ H ₅	oil
139	СН	CF ₃	0	0	CH ₂ CONHCH ₃	109-111
140	СН	CF ₃	0	0	CH ₂ CH(OH)CH ₂ OH	
141	СН	CF ₃	0	0	CH ₂ COCH ₃	
142	СН	CF ₃	0	0	соснз	
143	СН	CF ₃	0	0	CH ₂ OC ₆ H ₅	
144	СН	CF ₃	0	0	COC ₆ H ₅	
145	СН	CF ₃	0	0	CO(4-CI)-C ₆ H ₄	
146	СН	CF ₃	0	0	CF ₂ CH ₃	
147	СН	CF ₃	0	0	CH ₂ CN	
148	СН	CF ₃	0	0	CH ₂ CH ₂ CN	
149	СН	CF ₃	0	0	CH ₂ CH(-O-)CH ₂	
150	СН	CF ₃	0	0	CH ₂ (4-OCH ₃)C ₆ H ₅	
151	СН	CF ₃	0	0	CH ₂ -cyclo-(4-Oxo)-C ₆ H ₈	

152 CH CF3	No.	Х	Υ	m	w	R ¹	m.p. [°C]
154 CH CF₃ 0 0 CH=CF₂ 155 CH CF₃ 0 0 CCI=CHCI 156 CH CF₃ 0 0 CCI=CHCI 157 CH CF₃ 0 0 0 2-Pyridyl 99 - 101 157 CH CF₃ 0 0 0 2-Furyl 158 CH CF₃ 0 0 0 2-Thienyl 106 - 108 159 CH CF₃ 0 0 CH₂C=CCH₂CH₂OTHP 160 CH CF₃ 0 0 CH₂CH₂CI oil 161 CH CF₃ 0 0 CH₂CH₂CI 161 CH CF₃ 0 0 CH₂CH₂CI 162 CH CF₃ 0 0 CH₂CH₃ 163 CH CF₃ 0 0 CH₂CH₃ 165 CH CF₃ 0 0 CH₂CH₃ 166 CH CF₃ 0 0 CH₂CH₃ 167 CH CF₃ 0 0 CH₂CH₃ 168 CH CF₃ 0 0 CH₂CH₃ 169 CH CF₃ 0 0 CH₂CH₃ 169 CH CF₃ 0 0 CH₂CH₃ 169 CH CF₃ 0 0 CH₂CH₃ 170 CH CF₃ 0 0 CH₂CH₃ 171 CH CF₃ 0 0 NH2 116 - 118 172 CH CF₃ 0 O NHCH₂CH₃ 173 CH CF₃ 0 O NHCH₂CH₃ 174 CH CF₃ 0 O CCNHCH₂CH₃ 175 CH CF₃ 0 O CCNHCH₂CH₃ 176 CH CF₃ 0 O CCNHCH₂CH₃ 177 CH CF₃ 0 O CCNHCH₂CH₃ 178 CH CF₃ 0 O CCNHCH₂CH₃ 179 CH CF₃ 0 O CCNHCH₂CH₃ 179 CH CF₃ 0 O CCNHCH₂CCH₂ 177 CH CF₃ 0 O CCNHCH₂CCH₂ 178 CH CF₃ 0 O CCNHCH₂CCH₂ 179 CH CF₃ 0 O CCNHCH₂CCH₂ 179 CH CF₃ 0 O CCNHCCCH₃ 180 CH CF₃ 0 O NHCCCH₃ 181 CH CF₃ 0 O NHCCCH₃ 182 CH CF₃ 0 O NHCCH₂CCH₃ 183 CH CF₃ 0 O NHCCH₂CCGHь 184 CH CF₃ 0 O NHCCH₂CCGHь 185 CH CF₃ 0 O NHCCCH₂CGHь	152	СН	CF ₃	0	0	CH ₂ CH(OH)CH ₂ SC ₆ H ₅	
155 CH CF₃ 0 0 CCI=CHCI 156 CH CF₃ 0 0 0 2-PyridyI 99 - 101 157 CH CF₃ 0 0 0 2-FuryI 158 CH CF₃ 0 0 0 2-ThienyI 106 - 108 159 CH CF₃ 0 0 CH₂C=CCH₂CH₂OTHP 160 CH CF₃ 0 0 CH₂C+I₂CI oil 161 CH CF₃ 0 0 CGH₅ 162 CH CF₃ 0 0 CGH₅ 163 CH CF₃ 0 0 CH₂C+I₂CI 164 CH CF₃ 0 0 CH₂C+I₂CI 165 CH CF₃ 0 0 CH₂C+I₃ 166 CH CF₃ 0 0 CH₂C+I₃ 167 CH CF₃ 0 0 CH₂C+I₃ 168 CH CF₃ 0 0 CH₂C+I₃ 169 CH CF₃ 0 0 CH₂C+I₃ 169 CH CF₃ 0 0 CH₂C+I₃ 170 CH CF₃ 0 0 SCG+I₅ 171 CH CF₃ 0 0 NHCH₃ 172 CH CF₃ 0 0 NHCH₂C+I₃ 173 CH CF₃ 0 0 NHCH₂C+I₃ 174 CH CF₃ 0 0 CCN+ICC+I₃ 175 CH CF₃ 0 CCN+ICC+II₃ 176 CH CF₃ 0 CCN+ICC+II₃ 177 CH CF₃ 0 CCN+ICC+II₃ 178 CH CF₃ 0 CCN+ICC+II₃ 179 CH CF₃ 0 CCN+ICC+II₃ 170 CH CF₃ 0 CCN+ICC+II₃ 171 CH CF₃ 0 CCN+ICC+II₃ 172 CH CF₃ 0 CCN+ICC+II₃ 173 CH CF₃ 0 CCN+ICC+II₃ 174 CH CF₃ 0 CCN+ICC+II₃ 175 CH CF₃ 0 CCN+ICC+II₃ 176 CH CF₃ 0 CCN+ICC+II₃ 177 CH CF₃ 0 CCN+ICC+II₃ 178 CH CF₃ 0 CCN+ICC+II₃ 179 CH CF₃ 0 CCN+ICC+II₃ 170 CH CF₃ 0 CCN+ICC+II₃ 171 CH CF₃ 0 CCN+ICC+II₃ 172 CH CF₃ 0 CCN+ICC+II₃ 173 CH CF₃ 0 CCN+ICC+II₃ 174 CH CF₃ 0 CCN+ICC+II₃ 175 CH CF₃ 0 CCN+ICC+II₃ 176 CH CF₃ 0 CCN+ICC+II₃ 177 CH CF₃ 0 CCN+ICC+II₃ 178 CH CF₃ 0 CCN+ICC+II₃ 179 CH CF₃ 0 CCN+ICC+II₃ 170 CH CF₃ 0 CCN+ICC+II₃ 171 CH CF₃ 0 CCN+ICC+II₃ 172 CH CF₃ 0 CCN+ICC+II₃ 173 CH CF₃ 0 CCN+ICC+II₃ 174 CH CF₃ 0 CCN+ICC+II₃ 175 CH CF₃ 0 CCN+ICC+II₃ 176 CH CF₃ 0 CCN+ICC+II₃ 177 CH CF₃ 0 CCN+ICC+II₃ 178 CH CF₃ 0 CCN+ICC+II₃ 179 CH CF₃ 0 CCN+ICC+II₃ 170 CH CF₃ 0 CCN+ICC+II₃ 171 CH CF₃ 0 CCN+ICC+II₃ 171 CH CF₃ 0 CCN+ICC+II₃ 172 CH CF₃ 0 CCN+ICC+II₃ 173 CH CF₃ 0 CCN+ICC+II₃ 174 CH CF₃ 0 CCN+ICC+II₃ 175 CH CF₃ 0 CCN+ICC+II₃ 176 CH CF₃ 0 CCN+ICC+II₃ 177 CH CF₃ 0 CCN+ICC+II₃ 178 CH CF₃ 0 CCN+ICC+II₃ 179 CH CF₃ 170 CH CF	153	СН	CF ₃	0	0	CH ₂ CH ₂ Si(CH ₃) ₃	
156 CH CF₃ 0 0 2-PyridyI 99 - 101 157 CH CF₃ 0 0 0 2-FuryI 106 - 108 158 CH CF₃ 0 0 0 2-ThienyI 106 - 108 159 CH CF₃ 0 0 CH₂C=CCH₂CH₂OTHP 0il 160 CH CF₃ 0 0 CH₂CH₂CI 0il 161 CH CF₃ 0 0 CH₂CH₂CI 0il 162 CH CF₃ 0 0 OCH₃ 163 CH CF₃ 0 O OCH₃ 164 CH CF₃ 0 O OCH₂CH₃ 165 CH CF₃ 0 O OCH₂CH₃ 166 CH CF₃ 0 O OCH₂CH₃ 167 CH CF₃ 0 O OCH₂CH₃ 168 CH CF₃ 0 O OCH₂CH₃ 169 CH CF₃ 0 O OCH₂CH₃ 160 CH CF₃ 0 O OCH₂CH₃ 161 CH CF₃ 0 O OCH₂CH₃ 162 CH CF₃ 0 O OCH₂CH₃ 163 CH CF₃ 0 O OCH₂CH₃ 164 CH CF₃ 0 O OCH₂CH₃ 165 CH CF₃ 0 O OCH₂CH₃ 167 CH CF₃ 0 O OCH₂CH₃ 168 CH CF₃ 0 O OCH₂CH₃ 169 CH CF₃ 0 O OCH₂CH₃ 170 CH CF₃ 0 O OCH₂CH₃ 171 CH CF₃ 0 O ONH∠ 172 CH CF₃ 0 O ONHCH₂CH₃ 173 CH CF₃ 0 O OCH₂CH₃ 174 CH CF₃ 0 O OCH₂CH₂ 175 CH CF₃ 0 O OCH₂CH₂ 176 CH CF₃ 0 O OCH₂CH₂ 177 CH CF₃ 0 O OCH₂CH₂ 178 CH CF₃ 0 O OCH₂CH₂ 179 CH CF₃ 0 O OCH₂CH₃ 180 CH CF₃ 0 O OCH₂CH₃ 181 CH CF₃ 0 O OCH₂CH₃ 182 CH CF₃ 0 O OCH₂CH₃ 183 CH CF₃ 0 O OCH₂CH₃ 184 CH CF₃ 0 O ONHCH₂CH₃ 185 CH CF₃ 0 O ONHCH₂CH₃ 186 CH CF₃ 0 O ONHCOCH₂CH₃ 187 CH CF₃ 0 O ONHCOCH₂CH₃ 188 CH CF₃ 0 O ONHCOCH₂CH₃	154	СН	CF ₃	0	0	CH=CF ₂	
157 CH CF3 0 O 2-Furyl 158 CH CF3 0 O 2-Thienyl 106 -108 159 CH CF3 0 O CH2C=CCH2CH2OTHP 0il 160 CH CF3 0 O CH2CH2CI 0il 161 CH CF3 0 O CH2CH2CI 0il 162 CH CF3 0 O OC6H5 0il 163 CH CF3 0 O OCH3 0 OCH3 165 CH CF3 0 O OCH2CH3 0 OCH2CH3 0 OCH2CH3 0 OCH2CH3 0 OCH2CH3 0 OCH2CH3 0 0 OCH2CH3 0 <t< td=""><td>155</td><td>СН</td><td>CF₃</td><td>0</td><td>0</td><td>CCI=CHCI</td><td></td></t<>	155	СН	CF ₃	0	0	CCI=CHCI	
158 CH CF3 0 O 2-Thienyl 106 -108 159 CH CF3 0 O CH2C=CCH2CH2OTHP oil 160 CH CF3 0 O CH2CH2CI oil 161 CH CF3 0 O Si(CH3)3 O 162 CH CF3 0 O OC6H5 O 163 CH CF3 0 O OCH3 OCH2CH3 164 CH CF3 0 O OCH2CH3 OCH4 165 CH CF3 0 O OCH2CH3 OCH4	156	СН	CF ₃	0	0	2-Pyridyl	99 - 101
159 CH CF₃ 0 CH₂CECCH₂CH₂CTHP 160 CH CF₃ 0 CH₂CECCH₂CH₂CTHP 161 CH CF₃ 0 CH₂CH₂CI Oil 161 CH CF₃ 0 CH₂CH₂CI Oil 162 CH CF₃ 0 CH₂CH₂CI 163 CH CF₃ 0 CH₂CH₂CI 164 CH CF₃ 0 CH₂CH₂CI 165 CH CF₃ 0 CH₂CH₂CH₃ 166 CH CF₃ 0 CH₂CH₃ 166 CH CF₃ 0 CH₂CH₃ 167 CH CF₃ 0 CH₂CH₃ 168 CH CF₃ 0 CH₂CH₃ 169 CH CF₃ 0 CH₂CH₃ 170 CH CF₃ 0 CH₂CH₃ 171 CH CF₃ 0 CH₂CH₃ 172 CH CF₃ 0 CH₂CH₃ 173 CH CF₃ 0 CH₂CH₃ 174 CH CF₃ 0 CH₂CH₃ 175 CH CF₃ 0 CH₂CH₃ 176 CH CF₃ 0 CH₂CH₃ 177 CH CF₃ 0 CH₂CH₃ 178 CH CF₃ 0 CH₂CH₃ 179 CH CF₃ 0 CH₂CH₃ 170 CH CF₃ 0 CH₂CH₃ 170 CH CF₃ 0 CH₂CH₃ 171 CH CF₃ 0 CH₂CH₃ 171 CH CF₃ 0 CH₂CH₃ 172 CH CF₃ 0 CH₂CH₃ 173 CH CF₃ 0 CH₂CH₂ 175 CH CF₃ 0 CH₂CH₂ 176 CH CF₃ 0 CH₂CH₂ 177 CH CF₃ 0 CH₂CH₂ 178 CH CF₃ 0 CH₂CH₂ 179 CH CF₃ 0 CH₂CH₂ 180 CH CF₃ 0 CH₂CH₃ 180 CH CF₃ 0 CH₂CH₃ 180 CH CF₃ 0 CH₂CH₃ 181 CH CF₃ 0 CH₂CH₃ 182 CH CF₃ 0 CH₂CH₃ 183 CH CF₃ 0 CH₂CH₃ 184 CH CF₃ 0 CH∠CH₃CH₂CH₃ 185 CH CF₃ 0 CH∠CH₃CH₂CH₃ 186 CH CF₃ 0 CH∠CH₃CH₃ 187 CH CF₃ 0 CH∠CH₃CH₃ 188 CH CF₃ 0 CH∠CH₃CH₃ 189 CH CF₃ 0 CH∠CH₃CH₃ 180 CH CF₃ 0 CH∠CH₃CH₃ 181 CH CF₃ 0 CH∠CH₃CH₃ 182 CH CF₃ 0 CH∠CH₃CH₃ 183 CH CF₃ 0 CH∠CH₃CH₃CH₃ 184 CH CF₃ 0 CH∠CH₃ 185 CH CF₃ 0 CH∠CH₃CH₃ 186 CH CF₃ 0 CH∠CH₃CH₃CH₃ 187 CH CF₃ 0 CH∠CH₃CH₃CH₃ 188 CH CF₃ 0 CH∠CH₃CH₃CH₃CH₃ 188 CH CF₃ 0 CH∠CH₃CH₃CH₃CH₃ 188 CH CF₃ 0 CH∠CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃C	157	СН	CF ₃	0	0	2-Furyl	
160 CH CF3 0 O CH2CH2CI oil 161 CH CF3 0 O Si(CH3)3 Si(158	СН	CF ₃	0_	0	2-Thienyl	106 -108
161 CH CF3	159	СН	CF ₃	0	0	CH ₂ C≡CCH ₂ CH ₂ OTHP	
162 CH CF3 0 O OC6H5 163 CH CF3 0 O OH 164 CH CF3 0 O OCH3 165 CH CF3 0 O OCH2CH3 166 CH CF3 0 O OCH2C6H5 167 CH CF3 0 O CH2SCH3 168 CH CF3 0 O CH2SCH3 169 CH CF3 0 O SC6H5 170 CH CF3 0 O NH2 171 CH CF3 0 O NH2 172 CH CF3 0 O NHCH3 173 CH CF3 0 O NHCH3 174 CH CF3 0 O NHCH2CH3 175 CH CF3 0 O CONHCH2CH3 176 CH CF3 0 O CONHCH2C=CH2 177 CH CF3 0 O Br 178 CH CF3 0 O CONH2 179 CH CF3 0 O NHCOCH3 179 CH CF3 0 O NHCOCH2CH3 180 CH CF3 0 O NHCOCH2CH3 181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O NHCH3)COOCH2C6H5 183 CH CF3 0 O NHNNH2 185 CH CF3 0 O NHNNH2	160	СН	CF ₃	0	0	CH ₂ CH ₂ CI	oil
163 CH CF3 0 O OH 164 CH CF3 0 O OCH3 165 CH CF3 0 O OCH2CH3 166 CH CF3 0 O OCH2CGH5 168 CH CF3 0 O CH2SCH3 48-49 169 CH CF3 0 O SC6H5 171 CH CF3 0 O SC6H5 171 CH CF3 0 O NHCH3 116 -118 172 CH CF3 0 O NHCH3 116 -118 172 CH CF3 0 O NHCH2CH3 116 -118 172 CH CF3 0 O NHCH2CH3 116 -118 173 CH CF3 0 O NHCH2CH3 116 -118 173 CH CF3 0 O NICH2CH3 107 107 107 CH CF3 0 O CONHCH2CH2CH2CH2 105 - 107 107 107 CH CF3 0 O NHCOCH3CH2CH3 <t< td=""><td>161</td><td>СН</td><td>CF₃</td><td>0</td><td>0</td><td>Si(CH₃)₃</td><td></td></t<>	161	СН	CF ₃	0	0	Si(CH ₃) ₃	
164 CH CF3 0 O OCH3 165 CH CF3 0 O OCH2CH3 166 CH CF3 0 O OCH2C6H5 167 CH CF3 0 O CH2SCH3 48-49 169 CH CF3 0 O SC6H5 171 CH CF3 0 O NH2 116-118 172 CH CF3 0 O NHCH3 171 171 CH CF3 0 O NHCH3 171 171 172 CH CF3 0 O NHCH2CH3 171 172 CH CF3 0 O NHCH2CH3 172 173 CH CF3 0 O CONHCH2C=CH2 105 - 107 174 CH CF3 0 O CONHCH2C=CH2 105 - 107 175 CH CF3 0 O CONHC 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 181 <td>162</td> <td>СН</td> <td>CF₃</td> <td>0</td> <td>0</td> <td>OC₆H₅</td> <td></td>	162	СН	CF ₃	0	0	OC ₆ H ₅	
165 CH CF3 0 O OCH2CH3 166 CH CF3 0 O OCH2C6H5 167 CH CF3 0 O CH2C6H5 168 CH CF3 0 O CH2CH3 48-49 169 CH CF3 0 O SC6H5 171 CH CF3 0 O NHC2 116-118 172 CH CF3 0 O NHCH3 171 171 CH CF3 0 O NHCH3 171 171 172 CH CF3 0 O NHCH3 171 171 172 CH CF3 0 O NHCH2CH3 171 172 173 CH CF3 0 O NHCH2CH3 172 173 174 CH CF3 0 O CONHCH2CH3CH2 105 - 107 175 CH CF3 0 O CONHCH2C=CH2 105 - 107 105 - 107 175 CH CF3 0 O CONHCH2C=CH2 105 - 107 107 107 <	163	СН	CF ₃	0	0	ОН	
166 CH CF3 0 O OCHF2 167 CH CF3 0 O OCH2C6H5 168 CH CF3 0 O CH2SCH3 48-49 169 CH CF3 0 O SC6H5 <	164	СН	CF ₃	0	0	OCH ₃	
167 CH CF3 0 O OCH2C6H5 168 CH CF3 0 O CH2SCH3 48-49 169 CH CF3 0 O SC6H5 SC6H	165	СН	CF ₃	0	0	OCH ₂ CH ₃	
168 CH CF3 0 O CH2SCH3 48-49 169 CH CF3 0 O SC6H5 SC6H5 <td>166</td> <td>СН</td> <td>CF₃</td> <td>0</td> <td>0</td> <td>OCHF₂</td> <td></td>	166	СН	CF ₃	0	0	OCHF ₂	
169 CH CF3 0 O SC6H5 170 CH CF3 0 O SeC6H5 171 CH CF3 0 O NH2 116 -118 172 CH CF3 0 O NHCH3 116 -118 173 CH CF3 0 O NHCH2CH3 174 CH CF3 175 CH CH3	167	СН	CF ₃	0	0	OCH ₂ C ₆ H ₅	
170 CH CF3 0 O SeC ₆ H ₅ 171 CH CF3 0 O NH2 116 -118 172 CH CF3 0 O NHCH ₂ CH ₃ 173 CH CF3 0 O NHCH ₂ CH ₃ 174 CH CF3 0 O CONHCH ₂ C=CH ₂ 105 - 107 176 CH CF3 0 O CI CI 177 CH CF3 0 O Br D <t< td=""><td>168</td><td>СН</td><td>CF₃</td><td>0</td><td>0</td><td>CH₂SCH₃</td><td>48-49</td></t<>	168	СН	CF ₃	0	0	CH ₂ SCH ₃	48-49
171 CH CF3 0 O NH2 116 -118 172 CH CF3 0 O NHCH3 116 -118 173 CH CF3 0 O NHCH2CH3 10 174 CH CF3 0 O CONHCH2C=CH2 105 - 107 175 CH CF3 0 O CI 105 - 107 176 CH CF3 0 O Br 206 - 208 177 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 182 182 CH CF3 0 O N(CH3)COOCH2C6H5 184 183 CH CF3 0 O NHNH2 185 185 CH CF3 0 O NHN(CH3)2	169	СН	CF ₃	0	0	SC ₆ H ₅	
172 CH CF3 0 O NHCH3 173 CH CF3 0 O NHCH2CH3 174 CH CF3 0 O N(CH2CH3)2 175 CH CF3 0 O CONHCH2C=CH2 105 – 107 176 CH CF3 0 O Br 177 CH CF3 0 O Br 178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 181 CH CF3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 184 CH CF3 0 O NHNH2 185 CH CF3 185 CH CF3 0 O NHN(CH3)2	170	СН	CF ₃	0	0	SeC ₆ H ₅	
173 CH CF3 0 O NHCH2CH3 174 CH CF3 0 O N(CH2CH3)2 175 CH CF3 0 O CONHCH2C=CH2 105 – 107 176 CH CF3 0 O CI 177 CH CF3 0 O Br 178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 0 O N(CH3)COOCH2C6H5 184 CH CF3 0 O NHNH2 185 CH CF3 0 O NHN(CH3)2 0 O NHN(CH3)2	171	СН	CF ₃	0	0	NH ₂	116 -118
174 CH CF3 0 O N(CH2CH3)2 175 CH CF3 0 O CONHCH2C=CH2 105 – 107 176 CH CF3 0 O CI 177 CH CF3 0 O Br 206 - 208 178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 182 CH CF3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 184 CH CF3 0 O N(CH3)COOCH2C6H5 185 CH CF3 0 O NHNH2	172	СН	CF ₃	0	0	NHCH ₃	
175 CH CF3 0 O CONHCH2C=CH2 105 – 107 176 CH CF3 0 O CI 177 CH CF3 0 O Br 178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 180 182 CH CF3 0 O N(CH3)COOCH2C6H5 184 184 CH CF3 0 O NHNH2 185 185 CH CF3 0 O NHN(CH3)2	173	СН	CF ₃	0	0	NHCH ₂ CH ₃	
176 CH CF3 0 O CI 177 CH CF3 0 O Br 178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 100-129-131 181 CH CF3 0 O OSO2CH3 100-129-131 182 CH CF3 0 O SOCH2(4-Br)-C6H4 100-129-131 183 CH CF3 0 O N(CH3)COOCH2C6H5 100-129-131 184 CH CF3 0 O NHNH2 100-129-129-129-129-129-129-129-129-129-129	174	СН	CF ₃	0	0	N(CH ₂ CH ₃) ₂	
177 CH CF3 0 O Br 178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 0 O N(CH3)COOCH2C6H5 184 CH CF3 0 O NHNH2 185 CH CF3 0 O NHN(CH3)2 185 CH CF3 0 O NHN(CH3)2	175	СН	CF ₃	0	0	CONHCH ₂ C=CH ₂	105 – 107
178 CH CF3 0 O CONH2 206 - 208 179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 129-131 181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 0 O N(CH3)COOCH2C6H5 184 CH CF3 0 O NHNH2 185 CH CF3 0 O NHN(CH3)2 185 CH CF3 0 O NHN(CH3)2	176	СН	CF ₃	0	0	CI	
179 CH CF3 0 O NHCOCH3 129-131 180 CH CF3 0 O NHCOCH2CH3 181 181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 0 O N(CH3)COOCH2C6H5 184 CH CF3 0 O NHNH2 185 CH CF3 0 O NHN(CH3)2 0 0 NHN(CH3)2 0 <	177	СН	CF ₃	0	0	Br	
180 CH CF3 0 O NHCOCH2CH3 181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 0 O N(CH3)COOCH2C6H5 184 CH CF3 0 O NHNH2 185 CH CF3 0 O NHN(CH3)2	178	СН	CF ₃	0	0	CONH ₂	206 - 208
181 CH CF3 0 O OSO2CH3 182 CH CF3 0 O SOCH2(4-Br)-C6H4 183 CH CF3 0 O N(CH3)COOCH2C6H5 184 CH CF3 0 O NHNH2 185 CH CF3 0 O NHN(CH3)2	179	СН	CF ₃	0	0	NHCOCH3	129-131
182 CH CF3 0 O SOCH ₂ (4-Br)-C ₆ H ₄ 183 CH CF3 0 O N(CH ₃)COOCH ₂ C ₆ H ₅ 184 CH CF3 0 O NHNH ₂ 185 CH CF3 0 O NHN(CH ₃) ₂	180	СН	CF ₃	0	0	NHCOCH ₂ CH ₃	
183 CH CF3 0 O N(CH ₃)COOCH ₂ C ₆ H ₅ 184 CH CF ₃ 0 O NHNH ₂ 185 CH CF ₃ 0 O NHN(CH ₃) ₂	181	СН	CF ₃	0	0	OSO ₂ CH ₃	
184 CH CF ₃ 0 O NHNH ₂ 185 CH CF ₃ 0 O NHN(CH ₃) ₂	182	СН	CF ₃	0	0	SOCH ₂ (4-Br)-C ₆ H ₄	
185 CH CF ₃ 0 O NHN(CH ₃) ₂	183	ÇН	CF ₃	0	0	N(CH ₃)COOCH ₂ C ₆ H ₅	
	184	СН	CF ₃	0	0	NHNH ₂	
186 N CF ₃ 0 O CH ₃	-	-		0			
	186	N	CF ₃	0	0	CH ₃	

No.	x	Υ	m	w	R ¹	m.p. [°C]
187	N	CF ₃	0	0	CH ₂ CH ₃	oil
188	N	CF ₃	0	0	(CH ₂) ₂ CH ₃	oil
189	Ņ	CF ₃	0	0	CH(CH ₃) ₂	oil
190	N	CF ₃	0	0	(CH ₂) ₃ CH ₃	oil
191	N	CF ₃	0	0	CH ₂ CH(CH ₃) ₂	oil
192	Ν	CF ₃	0	0	C(CH ₃) ₃	
193	N_	CF ₃	0	0	(CH ₂) ₄ CH ₃	oil
194	N	CF ₃	0	0	CH(CH ₃)(CH ₂) ₂ CH ₃	
195	N	CF ₃	0	0	CH ₂ C(CH ₃) ₃	
196	N	CF ₃	0	0	Cyclo-C ₅ H ₉	
197	N	CF ₃	0	0	(CH ₂) ₅ CH ₃	
198	N	CF ₃	0	0	Cyclo-C ₆ H ₁₁	
199	N	CF ₃	0	0	CH(CH ₃)(CH ₂) ₄ CH ₃	
200	N	CF ₃	0	0	CH ₂ -cyclo-C ₆ H ₁₁	
201	N	CF ₃	0	0	(CH ₂) ₇ CH ₃	
202	N	CF ₃	0	0	(CH ₂) ₈ CH ₃	
203	N	CF ₃	0	0	(CH ₂) ₉ CH ₃	
204	N	CF ₃	0	0	CH(CH ₃)(CH ₂) ₉ CH ₃	
205	Ν	CF ₃	0	0	(CH ₂) ₁₅ CH ₃	
206	Z	CF ₃	0	0	(CH ₂) ₁₇ CH ₃	
207	N	CF ₃	0	0	(CH ₂) ₁₉ CH ₃	
208	N	CF ₃	0	0	CH ₂ CH=C(CH ₃) ₂	
209	N	CF ₃	0	0	CH ₂ CH ₂ CH=CH ₂	
210	N	CF ₃	0	0	CH ₂ CH=CH ₂	
211	N	CF ₃	0	0	(Z)-CH ₂ CH=CHCH ₂ CH ₃	
212	N	CF ₃	0	0	(CH ₂) ₅ CH=CH ₂	
213	N	CF ₃	0	0	CH ₂ C≡CH	
214	N	CF ₃	0	0	CH ₂ C≡CCH ₂ CH ₃	
215	N	CF ₃	0	0	CHFCF ₃	
216	N	CF ₃	0	0	COOCH ₂ CH ₃	
217	N	CF ₃	0	0	CH ₂ CH ₂ OH	
218	N	CF ₃	0	0	CH ₂ CH ₂ OCH ₃	
219	N	CF ₃	0	0	CH ₂ COOC(CH ₃) ₃	
220	N	CF ₃	0	0	CH ₂ SC ₆ H ₅	
221	N	CF ₃	0	0	CH ₂ CONHCH ₃	
Λ				_		

No.	х	Υ	m	w	R ¹	m.p. [°C]
222	Ν	CF ₃	0	0	CH ₂ CH(OH)CH ₂ OH	
223	Z	CF ₃	0	0	сно	
224	Ν	CF ₃	0	0	сосн3	
225	N	CF ₃	0	0	CH ₂ OC ₆ H ₅	
226	N	CF ₃	0	0	COC ₆ H ₅	
227	N	CF ₃	0	0	CF ₂ CH ₃	
228	N	CF ₃	0	0	CH ₂ CN	
229	N	CF ₃	0	0	CH ₂ CH ₂ CN	
230	N	CF ₃	0	0	CH=CF ₂	
231	Ņ	CF ₃	0	0	2-Furyl	
232	N	CF ₃	0	0	CH ₂ C≡C-I	
233	N	CF ₃	0	0	ОН	
234	N	CF ₃	0	0	OCH ₃	
235	N	CF ₃	0	0	OCH ₂ CH ₃	
236	N	CF ₃	0	0	OCHF ₂	
237	N	CF ₃	0	0	OCH ₂ C ₆ H ₅	
238	N	CF ₃	0	0	SC ₆ H ₅	
239	N	CF ₃	0	0	NH ₂	
240	N	CF ₃	0	0	NHCH ₃	
241	N	CF ₃	0	0	NHCH ₂ CH ₃	
242	N	CF ₃	0	0	N(CH ₂ CH ₃) ₂	
243	Ν	CF ₃	0	0	N(CH ₂ CN) ₂	
244	Ν	CF ₃	0	0	N(CH ₃) ₂	
245	Z	CF ₃	0	0	NHCOCH3	
246	Z	CF ₃	0	0	NHCOCH ₂ CH ₃	
247	N	CF ₃	0	0	OSO ₂ CH ₃	
248	N	CF ₃	0	0	NHNH ₂	
249	СН	CF ₃	0	s	CH ₃	
250	СН	CF ₃	0	s	CH ₂ CH ₃	
251	СН	CF ₃	0	s	(CH ₂) ₂ CH ₃	
252	СН	CF ₃	0	S	СНО	
253	СН	CF ₃	0	s	CHFCF ₃	
254	СН	CF ₃	0	s	CH ₂ C≡CH	
255	СН	CF ₃	0	s	COOCH ₂ CH ₃	
256	СН	CF ₃	0	s	CH ₂ COOC(CH ₃) ₃	

No.	Х	Υ	m	w	R ¹	m.p. [°C]
		CF ₃	0	s	CH ₂ CN	<u> </u>
		CF ₃	0	s	SeC ₆ H ₅	
259	N	CF ₃	0	s	CH ₃	
260	N	CF ₃	0	s	CH ₂ CH ₃	
261		CF ₃	0	s	(CH ₂) ₂ CH ₃	
262		CF ₃	0	s	CHFCF ₃	
263	N	CF ₃	0	s	CH ₂ CH ₂ OH	
264	N	CF ₃	0	s	CH ₂ COOC(CH ₃) ₃	
265	СН	CH ₂ CH ₂ . CI	0	0	CH ₃	
266	СН	CH ₂ CH ₂ . CI	0	0	CH ₂ CH ₃	
267	СН	CH ₂ CH ₂ . Cl	0	0	(CH ₂) ₂ CH ₃	
268	СН	CH ₂ CH ₂ . Cl	0	0	CH(CH ₃) ₂	
269	СН	CH ₂ CH ₂ .	0	0	CH ₂ SC ₆ H ₅	
270	СН	CH ₂ CH ₂ .	0	0	CH₂CONHCH₃	
271	СН	CH ₂ CH ₂ .	0	0	NH ₂	
272	СН	CH ₂ CH ₂ . CI	0	0	NHCH₂CH₃	
273	N	CH ₂ CH ₂ .	0	0	CH ₂ CH ₃	
274	N	CH ₂ CH ₂ .	0	0	NH ₂	
275	N	CH ₂ CI	0	0	CH ₃	
		CH ₂ CI	0		CH ₃	
		CHF ₂	0		CH ₃	
		CHF ₂	0	-	CH ₂ CH ₃	
279	СН	CHF ₂	0		(CH ₂) ₂ CH ₃	
		CHF ₂	0		CH ₂ CH=CH ₂	
281	СН	CHF ₂	0	0	C(CH ₃)=CH ₂	

No.	Х	Υ	m	w	R	m.p. [°C]
282	СН	CHF ₂	0		COOCH2CH3	
283	СН	CHF ₂	0	0	CH ₂ CONHCH ₃	
284	СН	CHF ₂	0	0	CF ₂ CH ₃	
285	СН	CHF ₂	0	0	СНО	
286	СН	CHF ₂	0	0	NH ₂	
287	СН	CHF ₂	0_	0	CI	
288	СН	CHF ₂	0	0	NHCOCH3	
289	СН	CHF ₂	0	0	NHNH ₂	
290	N	CHF ₂	0	0	CH ₃	
291	N	CHF ₂	0	0	CH ₂ CH ₃	
292	N	CHF ₂	0	0	CH(CH ₃)(CH ₂) ₄ CH ₃	
293	N	CHF ₂	0	0	CH ₂ CH=CH ₂	
294	N	CHF ₂	0	0	COOCH ₂ CH ₃	
295	N	CHF ₂	0	0	NH ₂	
296	СН	CF ₃	1	0	CH ₃	
297	СН	CF ₃	1	0	COOCH ₂ CH ₃	
298	СН	CF ₃	1	0	CH ₂ COOC(CH ₃) ₃	
299	СН	CF ₃	1	0	CHFCF ₃	
300	N	CF ₃	0	0	CH ₂ NHSO ₂ CH ₃	
301	N	CF ₃	0	0	(CH ₂) ₂ NHSO ₂ CH ₃	
302	N	CF ₃	0	0	CH ₂ NHSO ₂ CH ₂ CH ₃	
303	N	CF ₃	0	0	CH ₂ NHSO ₂ CH ₂ C ₆ H ₅	
304	СН	CF ₃	0_	0	(CH ₂) ₄ NHSO ₂ CF ₃	
305	СН	CF ₃	0	0	(CH ₂) ₂ S(CH ₂) ₂ CH ₃	
306	СН	CF ₃	0	0	(CH ₂) ₄ S(CH ₂) ₄ OCH ₃	
307	СН	CF ₃	0	s	(CH ₂) ₂ S(CH ₂) ₂ CN	
308	СН	CF ₃	0	s	CH ₂ NHSO ₂ CH ₂ CH ₃	
309	СН	CF ₃	0	s	CH ₂ NHSO ₂ CH ₂ C ₆ H ₅	
310	СН	CF ₃	0	s	(CH ₂) ₂ NHSO ₂ CH ₃	
311	СН	CF ₃	0	s	CH ₂ NHSO ₂ CH ₃	
312	СН	CF ₃	0	s	CH(CH ₃)CH ₂ NHC ₆ H ₅	
313	СН	CF ₃	0	s	(CH ₂) ₂ S(2-F)-C ₆ H ₄	
314	СН	CF ₃	0	s	(CH ₂) ₆ NHCH ₂) ₆ OCH ₃	
315	СН	CF ₃	0	s	(CH ₂) ₂ NH-(2-F)-C ₆ H ₄	
316	СН	CF ₃	0_	s	(CH ₂) ₃ NHCH ₂ CN	

No.	Х	Υ	m	w	R ¹	m.p. [°C]
317	СН	CF ₃	0	1	(CH ₂) ₂ O(3-CI)-C ₆ H ₄	
318	СН	CF ₃	0	s	(CH ₂) ₆ NHCH ₂ CF ₃	
319	СН	CF ₃	0	s	(CH ₂) ₂ O(3-CH ₃)-C ₆ H ₄	
320	СН	CF ₃	0	0	CH ₂ NHC ₆ H ₅	-
321	СН	CF ₃	0	0	(CH ₂) ₄ S(2-Br)-C ₆ H ₄	
322	СН	CF ₃	0	0	(CH ₂) ₆ NH(CH ₂) ₂ OCH ₃	
323	СН	CF ₃	0	0	(CH ₂) ₂ NH(CH ₂) ₄ OCH ₃	
324	СН	CF ₃	0	0	(CH ₂) ₃ NH-(4-CN)-C ₆ H ₄	
325	СН	CF ₃	0	0	(CH ₂) ₂ O(3-CH ₃)-C ₆ H ₄	
326	СН	CF3	0	0	(CH ₂) ₄ NHCH ₂ CF ₃	
327	СН	CF ₃	0	0	(CH ₂) ₄ NHCH ₂ CN	
328	СН	CF ₃	0	0	(CH ₂) ₃ O(4-OCH ₃)-C ₆ H ₄	
329	СН	CF ₃	0	0	CH ₂ SO ₂ -tert-C ₄ H ₉	oil
330	СН	CF ₃	0	0	CH ₂ SO ₂ -(4-F)-C ₆ H ₄	oil
331	СН	CF ₃	0	0	CH ₂ SO ₂ -C ₆ H ₅	oil
332	СН	CF ₃	0	0	CH ₂ SOCH ₃	63
333	СН	CF ₃	0	0	CH ₂ SO-C ₆ H ₅	oil
334	СН	CF ₃	0	0	CH ₂ CONH(CH ₂) ₂ CH ₃	80 – 82
335	СН	CF ₃	0	0	(4-OCF ₃)-C ₆ H ₄	57 – 59
336	СН	CF ₃	0	0	CH ₂ OCH ₃	oil
337	СН	CF ₃	0	0	H ₂ C N	53 – 54
338	СН	CF ₃	0	0	H ₂ C S	oil
339	СН	CF ₃	0	0	CH ₂ CH ₂ OCH ₂ CH ₃	oil
340	СН	CF ₃	0	0	CH ₂ CH ₂ NC ₆ H ₅	80-83
341	СН	CF ₃	0	0	H ₂ C N	80 – 81
342	СН	CF ₃	0	0	CH ₂	110 - 111

			_	_		
No.	Х	Υ	m	w	R'	m.p. [°C]
343	СН	CF ₃	0	0	CH ₂ CH ₂ O(CO)-(4-CI)-C ₆ H ₄	80 – 82
344	СН	CF ₃	0	0	CH ₂ -(4-OCH ₃)-C ₆ H ₄	54 – 55
345	СН	CF ₃	0	0	CH ₂ -(3-Cl)-C ₆ H ₄	51 – 52
346	СН	CF ₃	0	0	CH ₂ -cyclo-C ₃ H ₅	oil
347	СН	CF ₃	0	0	CH ₂ -(4-C ₆ H ₅)-C ₆ H ₄	oil
348	СН	CF ₃	0	0	H ₂ C $\stackrel{N}{\swarrow}$	143 - 144
349	СН	CF ₃	0	0	CH ₂ CH ₂ O(CO)-(2,6-F2)-C ₆ H ₃	57 - 58
350	СН	CF ₃	0	0	CH ₂ CH ₂ O(CO)-(4-NO ₂)-C ₆ H ₄	80 - 81
351	СН	CF ₃	0	0	CH ₂ -(2,6-Cl ₂)-C ₆ H ₃	91 - 92
352	СН	CF ₃	0	0	CH ₂ CH ₂ OSO ₂ CH ₃	oil
353	СН	CF ₃	0	0	CH ₂ CH ₂ O(CO)-tert-C ₄ H ₉	oil
354	СН	CF ₃	0	0	CH ₂ -(3-F)-C ₆ H ₄	50 - 51
355	СН	CF ₃	0	0	CH ₂ CONCH ₂ C=CH	129 - 131
356	СН	CF ₃	0	0	CH ₂ CH ₂ O(CO)-cyclo-C ₃ H ₇	oil
357	СН	CF ₃	0	0	CH ₂ CH ₂ O(CO)CH ₃	oil
358	СН	CF ₃	0	0	CH ₂ -[2,4-(CH ₃) ₂]-C ₆ H ₃	85 - 86
359	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH=CH ₂	210 - 212
360	СН	CF ₃	0	0	CH ₂ CON(CH ₂ CH ₃) ₂	oil
361	СН	CF ₃	0	0	CH ₂ CON(CH ₂) ₃ CH ₃	77 - 79
362	СН	CF ₃	0	0	CH ₂ CONCH ₂ -(2-furyl)	139 - 141
363	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃) ₂	112 - 114
364	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)[(CH ₂) ₄ CH ₃]	73 - 75
365	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ C ₆ H ₅	120 - 122
366	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ OCH ₂ CH ₃	78
367	СН	CF ₃	0	0	CH ₂ CONCH ₂ CF ₃	176 - 178
368	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)[(CH ₂) ₅ CH ₃]	85 – 86
369	СН	CF ₃	0	Ο	F F F	oil

No.	V	Υ	m	w	R ¹	m n [901
		 	0	0	H₂C N	m.p. [°C]
370	Cn	CF ₃	0	٢	<i>i</i>	oil
371	СН	CF ₃	0	0	CH ₂ CH2-(1-pyrryl)	oil
372	СН	CF ₃	0	0	CH ₂ CH ₂ C ₆ H ₅	oil
373	СН	CF ₃	0	0	CH ₂ CI	53 - 54
374	СН	CF ₃	0	0	(CH ₂) ₃ OH	38 - 39
375	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)[(CH ₂) ₂]CH ₃	68 - 69
376	СН	CF ₃	0	0	CH ₂ CH(OCH ₃) ₂	oil
377	СН	CF ₃	0	0	CH ₂ CONCH ₂ C(CH ₃) ₃	oil
378	СН	CF ₃	0	0	CH ₂ CONC(CH ₃) ₂ (CH ₂ CH ₃)	oil
379	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ -cyclo-C ₆ H ₁₁	82 - 85
380	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)(1-naphthyl)	142 - 146
381	СН	CF ₃	0	0	(CH ₂) ₃ Cl	oil
382	СН	CF ₃	0	0	CH ₂ CON-tert-C ₄ H ₉	oil
383	СН	CF ₃	0	0	CH ₂ CON(iso-C ₃ H ₇) ₂	70 - 72
384	СН	CF ₃	0	0	CH ₂ CON(CH ₂) ₇ CH ₃	79 - 81
385	СН	CF ₃	0	0	CH ₂ CON-cyclo-C ₆ H ₁₁	119 - 121
386	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ -(4-CI)-C ₆ H ₄	120 - 121
387	СН	CF ₃	0	0	CH ₂ CONCH ₂ -(2-thienyl)	137 - 139
388	СН	CF ₃	0	0	H,C N F	151 - 153
			_			
389	СН	CF ₃	0		CH ₂ CONHCH(CH ₃)(CH ₂ CH ₃)	87-89
	_	CF ₃	0		(CH ₂) ₃ SCH ₃	oil
391			0	0	(CH ₂) ₃ SOCH ₃	oil
392	СН	CF ₃	0	0	$CH_2CONC(CH_3)_2(C=CH)$	111-113
393	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)CH ₂ CH ₂ CH(CH ₃) ₂	72-74
394	СН	CF ₃	0	0	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	oil
					Ö 🗸	
					H³C CH³	
395	СН	CF ₃	0	0	CH ₂ CON-cyclo-C ₅ H ₉	110 - 112
396			0		CH ₂ CON(CH ₂) ₄ CH ₃	75 - 77

No.	х	Υ	m	w	R ¹	m.p. [°C]
397	СН	CF ₃	0	0	O N S	190 - 192
398	СН	CF ₃	0	0	CH ₂ CON(3-CF ₃)C ₆ H ₄	136 - 138
399	СН	CF ₃	0	0	CH ₂ CON-cyclo-C ₈ H ₁₇	115 - 117
400	СН	CF ₃	0	0	CH ₃ CH ₃	oil
401	СН	CF3	0	0	CH ₂ CON-Adamantyl	oil
402	СН	CF ₃	0	0	CH ₂ CON(CH ₂ CH ₂ CH ₃) ₂	oil
403	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)[(4-F)-C ₆ H ₄]	111 – 113
404	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH(CH ₃) ₂	91 - 93
405	СН	CF ₃	0	0	O CH ₃	Oil
406	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ OC ₆ H ₅	99 - 101
407	СН	CF ₃	0	0	CH ₂ CH=NOCH ₃	oil
408	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ -[3,4-(OCH ₃) ₂]C ₆ H ₃	123-125
409	СН	CF ₃	0_	0	CH ₂ CON-(2-CI)C ₆ H ₄	138 – 140
410	СН	CF ₃	0	0	CH ₂ CON-(2-SCH ₃)C ₆ H ₄	136 – 138
411	СН	CF ₃	0	0	O N CH ₃	222 – 225
412	č	CF ₃	0	0	O N-O CH3	207 – 209
413	ö	CF ₃	0	0	CH ₂ CON-(3-Br)C ₆ H ₄	129 – 131
414	СН	CF ₃	0	0	CH ₂ CON-N-(2,4,6-Cl ₃)C ₆ H ₂	153 – 155
415	СН	CF ₃	0		CH ₂ CON-(4-I)C ₆ H ₄	143 – 145
416	СН	CF ₃	0	0	CH ₂ CON-NCOCH ₂ (3-Thienyl)	185 – 187
417	СН	CF ₃	0		CH ₂ CH ₂ CHO	oil
418	СН	CF ₃	0	0	CH ₂ CON(CH ₃)[(CH ₂) ₃ CH ₃]	oil
419	СН	CF ₃	0	0	CH ₂ CON-(3,5-Cl ₂ -2,4-F ₂)C ₆ H	166 – 167

No.	Х	Υ	m	w	R ¹	m.p. [°C]
420	СН	CF ₃	0	0	CH ₂ CON-C ₆ H ₅	215 ~ 217
421	СН	CF ₃	0	0	CH ₂ CON(CH ₃)(C ₆ H ₁₁)	oil
422	СН	CF ₃	0	0	CH ₂ CON(CH ₂ CH ₃)(CH ₂ CH=CH ₂)	oil
423	СН	CF ₃	0	0	CH ₂ CON(CH ₂ CH ₃)[CH(CH ₃) ₂]	oil
424	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)[(CH ₃) ₂]	108 –110
425	СН	CF ₃	0	0	CH ₂ CON(CH ₂ CH ₃)[CH ₂ C(=CH ₂)-	oil
					(CH ₃)]	
426	СН	CF3	0	0	CH ₂ CONCH ₂ (4-tert-C ₄ H ₉)C ₆ H ₄	oil
427	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)(tert-C ₄ H ₉)	oil
428	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)[CH ₂ CH(CH ₃)-	oil
					(CH ₂ CH ₃)]	
429	СН	CF ₃	0	0	CH ₂ CONCH ₂ COOCH ₂ CH ₃	103 - 105
430	СН	CF ₃	0	0	CH ₂ CON[(CH ₂) ₂ CH ₃](CH ₂ -cyclo-	oil
				L.,	C ₃ H ₇)	
431	СН	CF ₃	0	0	CH ₂ CONCH(CH ₃)CH ₂ CH ₂ CH(CH ₃) ₂	80 - 82
432	СН	CF ₃	0	0	CH ₂ CONCH(CH ₂ CH ₃)[CH ₂ CH(CH ₃) ₂]	oil
433	СН	CF ₃	0	0	CH ₂ C=O-(1-Piperidinyl)	oil
434	СН	CF ₃	0	0	CI /	180 - 182
					N ⁺ CI ⁻	
435	СН	CF ₃	0	0	CH ₂ CONCH ₂ C(=CH2)(CH ₃)	86 -87
436	СН	CF ₃	0	0	CH ₂ CONCH[CH(CH ₃) ₂](COOCH ₃)	oil
437	СН	CF ₃	0	0	CH ₂ CONCH ₂ -cyclo-C ₃ H ₇	oil
438	СН	CF ₃	0	0	CH ₂ CON(CH ₂) ₅ OH	oil
439	СН	CF ₃	0	0	CH ₂ CON(CH ₃)(CH ₂ CO ₂ CH ₃)	oil
440	СН	CF ₃	0	0	CH ₂ CON(CH ₃)(CH ₂ CN)	oil
441	СН	CF ₃	0	0	CH ₂ CONCH[CH ₂ CH(CH ₃) ₂](CO ₂ CH ₃)	oil
442	СН	CF ₃	0	0	CH ₂ CON-(1-Piperidinyl)	oil
443	СН	CF ₃	0	0	CH ₂ CONCH ₂ CH ₂ OCH ₃	97 - 99
444	СН	CF ₃	0	0	CH ₂ CH ₂ SC ₆ H ₅	oil
445	СН	CF ₃	0	0	CH ₂ CH ₂ SCH ₃	oil
446	СН	CF ₃	0	0	CH ₂ CH ₂ SCH ₂ C ₆ H ₅	oil

No.	V	Y	T	w	R ¹	m p [9C]
		CF ₃	m O	0		m.p. [°C] oil
447	СП	CF3	۲	۲		OII
					\	
	ļ	,	-	_	0	
		CF ₃	0_	0	CH ₂ CON-(2-OH)C ₆ H ₄	162 - 164
		CF ₃	0	0	CH ₂ CON-(3-OH)C ₆ H ₄	oil
450	СН	CF ₃	0	1	CH ₂ CON-(2-CH ₃)C ₆ H ₄	163 - 164
_	1	CF ₃	0	0	CH ₂ CON-(3-NO ₂)C ₆ H ₄	176 - 178
452	СН	CF ₃	0	0	CH ₂ CON-(3-OCF ₂ CHFCI)C ₆ H ₄	120 - 121
453	СН	CF ₃	0	0	CH ₂ CON-(3-CF ₃ -4-F)C ₆ H ₃	168 - 170
454	СН	CF ₃	0	0	CH ₂ CON-(2,4-Cl ₂)C ₆ H ₃	120 - 122
455	СН	CF ₃	0	0	CH ₂ CON-(2-F-4.CI)C ₆ H ₃	148 - 151
456	СН	CF ₃	0	0	CH ₂ CON-[2,4-(CH ₃) ₂]C ₆ H ₃	123 - 125
457	СН	CF ₃	0	0	CH ₂ CON-[2,3-(CH ₃) ₂]C ₆ H ₃	waxy
458	СН	CF ₃	0	0	N N O	waxy
					" ,	
150	СП	CF ₃	0	0	CH ₂ CON-(2-CH ₃ -3-CI)C ₆ H ₃	160 - 162
		CF ₃	0	0	CH ₂ CON(CH ₂ CH ₃)(C ₆ H ₅)	oil
\vdash		CF ₃	0	0	01/20014(01/201/3)(08/13)	124 - 126
401		0, 3	١	ľ		124 - 120
					$\langle N_{N} \rangle$	
					O CH,	
462	СН	CF ₃	0	0	CH ₂ CON(2-OCH ₃ -5-Ph)C ₆ H ₃	167 - 169
		CF ₃	0	0		157 - 158
		3		ľ	_ N	
					Ö	
464	СН	CF ₃	0	0	CH ₂ CON-(3-NO ₂ -4-CI)C ₆ H ₃	oil
		CF ₃	0		CH ₂ CON-(2-Cl-4-CH ₃)C ₆ H ₃	106 - 108
	1	CF ₃	0	$\overline{}$	CH ₂ CON-(3-OCH ₂ CH ₃)C ₆ H ₄	waxy
		CF3	0	0	N Br	
					l "o o o	
400	C1.	CE-				100 111
	1	CF ₃	0	_	CH ₂ CON-(4-CH ₃)C ₆ H ₄	139 - 141
469	UH	CF ₃	0	0	CH ₂ CON-(1-Naphthyl)	155 - 157

No.	Х	Υ	m	w	R ¹	m.p. [°C]
470	СН	CF ₃	0		CH ₂ CON-(3-I)C ₆ H ₄	135 - 137
471	СН	CF ₃	0	0	CH ₂ CON-(2-OCH ₂ CH ₃)C ₆ H ₄	138
472	СН	CF ₃	0	0	CH ₂ CON-(2-OCH ₃)C ₆ H ₄	130 - 132
473	СН	CF ₃	0	0	CH ₂ CON-[3,5-(OCH ₃) ₂]C ₆ H ₃	130 - 132
474	СН	CF ₃	0	0	CH ₂ CON-(4-CI)C ₆ H ₄	139 - 141
475	СН	CF ₃	0	0	CH ₂ CON-(3-CH ₃)C ₆ H ₄	oil
476	СН	CF ₃	0	0	CH ₂ CON-(3-OCH ₃)C ₆ H ₄	oil
477	СН	CF ₃	0	0	CH ₂ CON-(4-CH ₂ CH ₃)C ₆ H ₄	122 - 123
478	СН	CF ₃	0	0	CH ₂ CON-(4-CF ₃)C ₆ H ₄	151 - 152
479	СН	CF ₃	0	0	CH ₂ CON-(2-CH ₃ -4-CI)C ₆ H ₃	165 - 167
480	СН	CF ₃	0	0	CH ₂ CH ₂ NCH ₂ C ₆ H ₅	oil
481	СН	CF ₃	0	0	CH ₂ CH ₂ NCH ₂ -(3-Pyridyl)	oil
482	СН	CF ₃	0	0	CH ₂ CH=NOCH ₂ CH ₃	oil
483	СН	CF ₃	0	0	CH ₂ CH=NOC ₆ H ₅	oil
484	СН	CF ₃	0	0	CH ₂ CON-(4-NO ₂)C ₆ H ₄	181 - 183
485	СН	CF ₃	0	0	CH ₂ CON-(2-CH ₃ -4-NO2)C ₆ H ₃	129 - 131
486	СН	CF ₃	0	0	CH ₂ CON-(2-Ci-3-CF ₃)C ₆ H ₃	136
487	СН	CF ₃	0	0	CH ₂ CON-(2-CN-4-CI)C ₆ H ₃	157 - 159
488	СН	CF ₃	0	0	CH ₂ CON-(3,5-Cl ₂)C ₆ H ₃	167 - 169
489	СН	CF ₃	0	0	CH ₂ CON-(3,5-Cl ₂ -4-OCF ₂ CHF ₂)C ₆ H ₂	132 - 134
490	СН	CF ₃	0	0	CH ₂ CON-(2,4,5-Cl ₃)C ₆ H ₂	146
491	СН	CF ₃	0	0	CH ₂ CON-(3,5-Cl ₂ -4-	124 - 126
					OCF ₂ CHFCF ₃)C ₆ H ₂	
492	СН	CF ₃	0	0	CH ₂ CON-(2-CF ₃ -4-Cl)C ₆ H ₃	136
493	СН	CF ₃	0	0	o o	oil
494	СН	CF ₃	0	0	N O	91-93

<u></u>	<u> </u>	ī.,	Т	1	I ₅ 1	
No.		Υ	m		R ¹	m.p. [°C]
495	СН	CF ₃	0	0	N	123-125
496	СН	CF ₃	0	0	N N	81-83
497	СН	CF ₃	0	0	CI	113-115
498	СН	CF ₃	0	0	соон	155-157
499	СН	CF ₃	0	0	4-F-C ₆ H ₄	104-106
500	СН	CF ₃	0	0	CON(C ₂ H ₅) ₂	oil
501	СН	CF ₃	0	0	CONCH(CH ₃) ₂	oil
502	СН	CF ₃	0	0	CON(CH ₃) ₂	52-54
503	СН	CF ₃	0	0	CONHCH2CCH	105-107
504	СН	CF ₃	0	0	CONH-cyclo-C ₃ H ₅	101-103
505	СН	CF ₃	0	0	CONH ₂	206-208
506	СН	CF ₃	0	0	r r	72-74
507	СН	CF ₃	0	0	r r	98-100
508	СН	CF ₃	0	0		108-110

No.	х	Υ	m	w	R ¹	m.p. [°C]
509	СН	CF ₃	0	0	CI CI	140-142
					N'C N	
510	СН	CF ₃	0	0	CONHCH ₃	127-129
511	СН	CF ₃	0	0	CONHCH ₂ CH=CH ₂	oil
512	СН	CF ₃	0	0	CON(CH ₂ CN) ₂	90-92
513	СН	CF ₃	0	0	4-(t-C ₄ H ₉)-C ₆ H ₄	64-66
514	СН	CF ₃	0	0	4-CF ₃ -C ₆ H ₄	89-91
515	СН	CF ₃	0	0	4-CH ₃ -3-F-C ₆ H ₃	104-106
516	СН	CF ₃	0	0	2,4-di-Cl-C ₆ H ₃	70-72
517	СН	CF ₃	0	0	4-(NHSO ₂ CH ₃)-C ₆ H ₄	204-206
518	СН	CF ₃	0	0	2,6-di-Cl-C ₆ H ₃	139-141
519	СН	CF ₃	0	0	COOCH ₂ C ₆ H ₅	83-85
520	СН	CF ₃	0	0	CONHC ₃ H ₇	oil
521	СН	CF ₃	0	0	3,5-di-Br-4-(OCH ₃)-C ₆ H ₂	132-134
522	СН	CF ₃	0	0	CHCl ₂	oil
523	СН	CF ₃	0	0	CCI ₃	oil
524	СН	CF ₃	0	0	CH(OCH3) ₂	oil
525	СН	CF ₃	0	0	3-CF ₃ -C ₆ H ₄	57-59
526	СН	CF ₃	0	0	CON(CH ₂) ₅	oil
527	СН	CF ₃	0	0	CON(CH ₃)CH ₂ C ₆ H ₅	oil
528	СН	CF ₃	0	0	CONHCH ₂ C ₆ H ₅	96-98
529	СН	CF ₃	0	0	, so the second	oil
530	СН	CF ₃	0	0	CONH-n-C ₆ H ₁₃	oil
531	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ C ₆ H ₅	oil
532	СН	CF ₃	0		CONH-c-C ₆ H ₁₁	115-117
533	СН	CF ₃	0	0	CON(n-C ₄ H ₉) ₂	oil

No.	V	γ	Ī.,	w	_P 1	- 7901
		CF ₃	0		0	m.p. [°C]
534	СП	СГЗ	۳	0		oil
					N N	
535		CF ₃	0		CONH-i-C ₄ H ₉	oil
		CF ₃	0	0	<u>о</u>	oil
330	СП	013	۲	۲	CR,	OII
					N Y	
			1		Ĭ	
	011	05	-	_	CH,	
		CF ₃	0		CON(CH ₂) ₄	68-70
	_	CF ₃	0		CON(CH ₃)-n-C ₆ H ₁₃	oil
539	СН	CF ₃	0	0	_	oil
					N	
					, , , o	
					·	
540	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₃	oil
541	СН	CF ₃	0		CONHOCH3	oil
542	СН	CF ₃	0	0	× × ×	oil
					` \	
543	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ CH ₃	oil
544	СН	CF ₃	0	0	CONHCH ₂ CH(OCH ₃) ₂	oil
545	СН	CF ₃	0	0	CONH-t-C4H9	113-115
		CF ₃	0	1	CONHCH ₂ -4-CI-C ₆ H ₄	oil
547	СН	CF ₃	0		CONHCH(CH ₃)C ₆ H ₅	oil
		CF ₃	0	0	CONHCH ₂ CH ₂ OCH ₃	92-94
549	СН	CF ₃	0	0	N N	190-192
550	CH	CF ₃	6		CONHC(CH°)°CCH	00.02
		CF ₃	0		CONHC(CH ₃) ₂ CCH CONHCH ₂ -2-Furyl	90-92 93-95
JJ 1	011	V 3	Įυ.	<u>ч</u>	OOM ION2-2-1 diyi	93-95

No.	Х	Υ	m	W	R	m.p. [°C]
552	СН	CF ₃	0		CON(CH ₂) ₃	91-93
553	СН	CF ₃	0	0	CONHCH ₂ -c-C ₃ H ₅	oil
554	СН	CF ₃	0	0	CONHC(CH ₃) ₂ CH ₂ CH ₃	oil
555	СН	CF ₃	0		CONH(CH ₂) ₃ C ₆ H ₅	oil
556	СН	CF ₃	0	o	CONHCH ₂ -3-Pyridyl	132-134
557	СН	CF ₃	0	0	CON(CH ₃)-n-C ₄ H ₉	oil
558	СН	CF ₃	0	0	CON(CH ₂ CH3)-i-C ₃ H ₇	oil
559	СН	CF ₃	0	0	N CH,	oil
560	СН	CF ₃	0	0	CONHCH2CH2CI	oil
		CF ₃	0	0	CONHCH₂CN	152-157
562	СН	CF ₃	0	0	CON(CH ₃)OCH ₃	oil
563	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH=CH ₂	oil
564	СН	CF ₃	0	0	CONHCH2COOCH3	oil
565	СН	CF ₃	0	0	CON(CH ₃)-i-C ₃ H ₇	oil
566	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ CN	oil
567	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH(OCH ₃) ₂	oil
568	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH(-CH ₂ CH ₂ O-)	oil
569	СН	CF ₃	0	0	CONHCH ₂ C(=CH ₂)CHH ₃	oil
570	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ CH=CH ₂	oil
571	СН	CF ₃	0	0	CONHC ₆ H ₅	83-85
572	СН	CF ₃	0	0	CON(CH3)CH2CCH	oil
573	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CN	oil
574	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ N(CH ₃) ₂	oil
575	СН	CF ₃	0	0	CONHOCH ₂ CH ₃	114-116
576	СН	CF ₃	0	0	CONHCH ₂ CF ₃	74-76
577	СН	CF ₃	0	0	CON(CH ₂ CH ₂ CI) ₂	oil
578	СН	CF ₃	0	0	CONH-c-C4H7	oil
579	СН	CF ₃	0		CON(CH ₂ CH ₂ CH ₃)CH ₂ -c-C ₃ H ₅	oil
		CF ₃	0	0	CON(CH ₃)-c-C ₆ H ₁₁	oil
581	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ C(=CH ₂)CH ₃	oil
582	СН	CF ₃	0	0	CONHOCH ₂ CH=CH ₂	90-92

No.	Х	Υ	m	w	R	m.p. [°C]
583	СН	CF ₃	0	0	CONHOCH ₂ C ₆ H ₅	126-128
584	СН	CF ₃	0	0	CON(CH3)CH2COOCH3	oil
585	СН	CF ₃	0	0	COONHCH3	230-232
586	СН	CF ₃	0	0	CONHCH ₂ CH ₃	83-85
587	СН	CF ₃	0	0	CONHCH(CH3)COOCH3	104-106
588	СН	CF ₃	0	0	CONHCH(i-C ₃ H ₇)COOCH ₃	oil
589	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CON(CH ₃) ₂	oil
590	СН	CF ₃	0	0	CON(CH ₃)-t-C ₄ H ₉	oil
591	СН	CF ₃	0	0	CONHO-t-C4H9	103-105
592	СН	CF ₃	0	0	CON(CH ₃)CH(i-C ₃ H ₇)COOCH ₃	oil
593	СН	CF ₃	0	0	CH(OCH ₂ CH ₃) ₂	oil
594	СН	CF ₃	0	0		oil
					,,	
505		05	_	_	CH,	a:1
595	СН	CF ₃	0	0	l ii	oil
	ŀ					
596	СН	CF ₃	0	0	Ů	oil
					N CH,	
					Y	
					сн,	
597	СН	CF ₃	0	0	l ii C	oil
					, ,	
598	СН	CF ₃	0	0	o 	oil
					CH ₃	
599	СН	CF ₃	0	0	CONHCH ₂ CONHCH ₃	101-103
_		CF ₃	0	-	CON(CH ₂) ₇	oil
		CF ₃	0	0	CON(CH ₂) ₆	oil

No.	х	Υ	m	W	R ¹	m.p. [°C]
	_	CF ₃	0	1	CON(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃	oil
		CF ₃	0	0		oil
604	СН	CF ₃	0	0		oil
605	СН	CF ₃	0	0	° CH,	oil
606	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ CH ₂ CN	oil
607	СН	CF ₃	0	0	N 5	oil
608	СН	CF ₃	0	0	CON(CH ₂ CH ₃)-n-C ₄ H ₉	oil
609	СН	CF ₃	0	0	N N N OH	179-181
610	СН	CF ₃	0	0	CONHCH(CH3)CONHCH3	136-138
611	СН	CF ₃	0		COON(CH ₂) ₄	64-66
612	СН	CF ₃	0		CONHCH ₂ CON(CH ₃) ₂	107-109
613	СН	CF ₃	0	0	CON(CH ₂ COOCH ₂ CH ₃) ₂	oil
614	СН	CF ₃	0	0	N CH,	180-182
615	СН	CF ₃	0	0) N S S	221-223
616	СН	CF ₃	0	0	O N N CH ₁	234-236

No.	X	Υ	m	W	R	m.p. [°C]
617	СН	CF ₃	0	0	CH ₃	oil
618	СН	CF ₃	0	0	CON(CH ₃)CH ₂ -6-Cl-3-pyridyl	oil
619	СН	CF ₃	0	0) No control of the c	105-107
620	СН	CF ₃	0	0	CONHCH(CH ₃)CH(OCH ₃) ₂	oil
621	СН	CF ₃	0	0	CONHCH2CH2SCH3	oil
622	СН	CF ₃	0	0	CONHCH(CH3)CH2OCH3	70-72
623	СН	CF ₃	0	0	CONHCH2CH2NHCOCH3	124-126
624	СН	CF ₃	0	0	CONH(CH ₂) ₃ OCH ₂ CH ₃	oil
625	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃	oil
626	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ OCH ₃	oil
627	СН	CF ₃	0	0	CONHCH ₂ CH ₂ SCH ₂ CH ₃	oil
628	СН	CF ₃	0	0	CONHCH ₂ CH ₂ OCH ₂ CH ₃	59-61
629	СН	CF ₃	0	0		oil
630	СН	CF ₃	0	0		174-176
631	СН	CF ₃	0	0	CONHCH(CH ₃)CH(OCH ₃) ₂	oil
632	СН	CF ₃	0	0	CONHCH ₂ CH ₂ SCH ₃	oil
633	СН	CF ₃	0	0	CONHCH(CH ₃)CH ₂ OCH ₃	70-72
634	СН	CF ₃	0	0	CONHCH ₂ CH ₂ NHCOCH ₃	124-126
635	СН	CF ₃	0	0	CONH(CH ₂) ₃ OCH ₂ CH ₃	oil
636	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH2CH ₂ CH ₃	oil
637	СН	CF ₃	0	0	CON(CH ₂ CH ₃)CH ₂ OCH ₃	oil
638	СН	CF ₃	0	0	CONHCH ₂ CH ₂ SCH ₂ CH ₃	oil
639	СН	CF ₃	0	0	CONHCH(CH ₃)CH ₂ COOCH ₂ CH ₃	oil
640	СН	CF ₃	0	0	CONH-4-COOCH ₃ -C ₆ H ₄	189-191
641	СН	CF ₃	0	0	CONH-4-CONH ₂ -C ₆ H ₄	265-267

No.	Х	Υ	m	W	R ¹	m.p.[°C]
642	СН	CF ₃	0	0	CONHCH ₂ CH ₂ Br	oil
643	СН	CF ₃	0	0	CONHCH ₂ CH=CHCH ₂ CI	oil
644	СН	CF ₃	0	0	CONH-4-CONHCH ₃ -C ₆ H ₄	219-221
645	СН	CF ₃	0	0	CONHCH ₂ CH ₂ CH ₂ Br	oil
646	СН	CF ₃	0	0	CONHCH ₂ CH ₂ CH ₂ OCH ₃	oil
647	СН	CF ₃	0	0	CONH-4-CH ₂ CH ₃ -C ₆ H ₄	97-99
648	СН	CF ₃	0	0	CONHCH ₂ CH ₂ OCH(CH ₃) ₂	oil
649	СН	CF ₃	0	0	CONHCH ₂ CH ₂ CH ₂ OCH ₂ CH ₃	oil
650	СН	CF ₃	0	0	O O O	oil
651	СН	CF ₃	0	0		64-66
652	СН	CF ₃	0	0	O CH ₃ CH ₃	oil
653	СН	CF ₃	0	0	O CH ₃	oil

F			_	1	T 1	, - -
No.		Υ	m	W	R ¹	m.p. [°C]
		CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH ₃	oil
655	СН	CF ₃	0	0	CH ₂ CON(CH ₃) ₂	58-60
656	СН	CF ₃	0	0	CH ₂ CON(CH ₂) ₄	101-103
657	СН	CF ₃	0	0	ů N S	oil
658	СН	CF ₃	0	0	» s	90-92
659	СН	CF ₃	0	0	CH ₂ CONHCH ₂ CH ₃	104-106
660	СН	CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH ₂ OH	oil
661	СН	CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH ₂ CH ₃	oil
662	СН	CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH(-OCH ₂ CH ₂ O-)	oil
663	СН	CF ₃	0	0	CH ₂ CONHCH ₂ CH ₃	104-106
664	СН	CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH ₂ OH	oil
665	СН	CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH ₂ CH ₃	oil
667	СН	CF ₃	0	0	CH ₂ CON(CH ₃)CH ₂ CH(-OCH ₂ CH ₂ O-)	oil
668	СН	CF ₃	0	0		79-81
669	СН	CF ₃	0	0	CH ₂ CONHCH ₂ CH ₂ SCH ₃	65-67
670	СН	CF ₃	0	0	CH ₂ CONHCH(CH ₃)CH ₂ OCH ₃	86-88
671	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH2OCO-c-C ₄ H ₇	oil
672	СН	CF ₃	0	0	CH ₂ CONHCH ₂ CH ₂ Br	87-89
673	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ OCOC ₆ H ₅	oil
674	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ OCO-c-C ₃ H ₅	oil
675	СН	CF ₃	0	0	CONH-2-CH ₃ -C ₆ H ₄	104-106
676	СН	CF ₃	0	0	CH ₂ CON(i-C ₃ H ₇)-4-F-C ₆ H ₄	102-104

No.	Х	Υ	m	W	R ¹	m.p. [°C]
677	СН	CF ₃	0	0	N N N	oil
678	СН	CF ₃	0	0	° СИ,	oil
679	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ OCONHC ₆ H ₅	100-102
680	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ OCONHCH ₂ CH ₃	oil
681	СН	CF ₃	0	0	CON(CH ₃)CH ₂ CH ₂ OSO ₂ CH ₃	oil
682	СН	CF ₃	0	0	CH ₂ CONH-c-C ₄ H ₇	133-135
683	СН	CF ₃	0	0	CH ₂ CONHCH ₂ CN	158-160

Table 2

No.	Х	Υ	w	R ¹	m.p. [°C]
684	N	(CF ₂) ₃ . CHF ₂	0	CH ₃	
685	N	(CF ₂) ₂ . CF ₃	О	CH ₂ CH ₃	
686	N	(CF ₂) ₂₋ CF ₃	0	COOCH ₂ CH ₃	
687	N	(CF ₂) ₂ . CF ₃	0	ОН	
688	N	(CF ₂) ₂ . CF ₃	0	OCH ₃	
689	N	CF ₂ CF ₃	0	CH ₃	
690	N	CF ₂ CF ₃	0	CH ₂ CH ₃	
691	N	CF ₂ CF ₃	S	СН₃	
692	N	CF ₂ CF ₃	s	CH ₂ CH ₃	
693	Ν	CF ₂ CF ₃	s	(CH ₂) ₂ CH ₃	
694	СН	CF ₃	0	СН₃	oil
695	СН	CF ₃	0	CH ₂ CH ₃	
696	СН	CF ₃	0	(CH ₂) ₂ CH ₃	
697	СН	CF ₃	0	CH(CH ₃) ₂	
698	СН	CF ₃	0	(CH ₂) ₃ CH ₃	
699	СН	CF ₃	0	CH(CH ₃)CH ₂ CH ₃	
700	СН	CF ₃	0	CH ₂ CH(CH ₃) ₂	
701	СН	CF ₃	0	C(CH ₃) ₃	oil
702	СН	CF ₃	0	(CH ₂) ₄ CH ₃	
703	СН	CF ₃	0	CH(CH ₃)(CH ₂) ₂ - CH ₃	
704	СН	CF ₃	0	(CH ₂) ₂ CH(CH ₃) ₂	
705	СН	CF ₃	0	CH ₂ C(CH ₃) ₃	

No.	Х	Υ	W	R ¹	m.p. [°C]
706	СН	CF ₃	О	cyclo-C ₅ H ₉	
707	СН	CF ₃	0	cyclo-C ₆ H ₁₁	
708	СН	CF ₃	О	сно	
709	СН	CF ₃	0	CH=CH ₂	
710	СН	CF ₃	0	CH ₂ CH=C(CH ₃) ₂	
711	СН	CF ₃	0	CH ₂ CH=CH ₂	
712	СН	CF ₃	О	C(CH ₃)=CH ₂	
713	СН	CF ₃	0	(CH ₂) ₅ C=CH ₂	
714	СН	CF ₃	0	C(=CHCH3)CH3	
715	СН	CF ₃	0	CH ₂ C≡CH	
716	СН	CF ₃	0	CH ₂ CH ₂ C≡CH	
717	СН	CF ₃	О	CH ₂ C≡CCH ₂ CH ₃	
718	СН	CF ₃	0	(CH ₂) ₄ C≡CH	
719	СН	CF ₃	0	CHFCF ₃	
720	СН	CF ₃	0	COOCH ₂ CH ₃	
721	СН	CF ₃	0	CH ₂ CH ₂ OH	
722	СН	CF ₃	0	CH ₂ CH ₂ OCH ₃	
723	СН	CF ₃	0	CH ₂ COOC(CH ₃) ₃	
724	СН	CF ₃	0	CH ₂ SC ₆ H ₅	
725	СН	CF ₃	0	CH ₂ CONHCH ₃	
726	СН	CF ₃	0	CH ₂ CH(OH)-	
				CH ₂ OH	
727	СН	CF ₃	0	CH ₂ COCH ₃	
728	СН	CF ₃	0	соснз	
729	СН	CF ₃	0	CH ₂ OC ₆ H ₅	
730	СН	CF ₃	0	COC ₆ H ₅	
731	СН	CF ₃	0	CF ₂ CH ₃	
732	СН	CF ₃	0	CH ₂ CN	
733	СН	CF ₃	0	CH ₂ CH(-O-)CH ₂	
734	СН	CF ₃	0	CH ₂ (4-OCH ₃) -	
				C ₆ H ₅	
735	СН	CF ₃	О	CH ₂ CH(OH)CH ₂ S-	
				C ₆ H ₅	
736	СН	CF ₃	0	CH=CF ₂	
737	СН	CF ₃	0	CCI=CHCI	

No.	Х	Υ	w	R ¹	m.p. [°C]
738	СН	CF ₃	0	2-Pyridyl	
739	СН	CF ₃	0	OC ₆ H ₅	
740	СН	CF ₃	0	он	
741	СН	CF ₃	0	OCH ₃	
742	СН	CF ₃	0	OCH ₂ CH ₃	
743	СН	CF ₃	0	OCHF ₂	
744	СН	CF ₃	o	OCH ₂ C ₆ H ₅	
745	СН	CF ₃	o	SCH₃	
746	СН	CF ₃	0	SC ₆ H ₅	
747	СН	CF ₃	О	NH ₂	
748	СН	CF ₃	0	NHCH ₃	
749	СН	CF ₃	0	NHCH ₂ CH ₃	
750	СН	CF ₃	0	N(CH ₂ CH ₃) ₂	
751	СН	CF ₃	0	N(CH ₂ CN) ₂	
752	СН	CF ₃	0	N(CH ₃) ₂	
753	СН	CF ₃	0	NHCOCH3	
754	СН	CF ₃	0	NHCOCH ₂ CH ₃	
755	СН	CF ₃	0	OSO ₂ CH ₃	
756	СН	CF ₃	0	SOCH ₂ (4-Br)-	
				C ₆ H ₄	
757	СН	CF ₃	0	N(CH ₃)COOCH ₂ -	
				C ₆ H ₅	
758	N	CF ₃	0	CH ₃	
759		CF ₃	0	CH ₂ CH ₃	
760		CF ₃	0	(CH ₂) ₂ CH ₃	
761	N	CF ₃	0	CH(CH ₃) ₂	
762		CF ₃	0	(CH ₂) ₃ CH ₃	
763	N	CF ₃	0	CH ₂ CH(CH ₃) ₂	
764	-	CF ₃	0	C(CH ₃) ₃	
765	N	CF ₃	0	CH ₂ C(CH ₃) ₃	
766	N	CF ₃	0	cyclo-C ₅ H ₉	
767	N	CF ₃	0	cyclo-C ₆ H ₁₁	
768		CF ₃	0	CH ₂ C=C(CH ₃) ₂	
769		CF ₃	0	CH ₂ CH ₂ C=CH ₂	
770	N	CF ₃	0	CH ₂ CH=CH ₂	

No.	Х	Υ	W	R ¹	m.p. [°C]
771	N	CF ₃	0	(CH ₂) ₅ CH=CH ₂	
772	N	CF ₃	0	CH ₂ C≡CH	
773	N	CF ₃	0	CH ₂ C≡CCH ₂ CH ₃	
774	N	CF ₃	0	CHFCF3	
775	N	CF ₃	0	COOCH ₂ CH ₃	
776	N	CF ₃	0	CH ₂ CH ₂ OH	
777	N	CF ₃	0	CH ₂ CH ₂ OCH ₃	
778	N	CF ₃	0	CH ₂ COOC(CH ₃) ₃	
779	N	CF ₃	0	CH ₂ SC ₆ H ₅	
780	N	CF ₃	0	CH2CONHCH3	
781	N	CF ₃	0	CH ₂ CH(OH) -	
				СН₂ОН	
782	N	CF ₃	0	сно	
783	N	CF ₃	0	COCH3	
784	N	CF ₃	0	CH ₂ OC ₆ H ₅	
785	N	CF ₃	0	COC ₆ H ₅	
786	N	CF ₃	0	CF ₂ CH ₃	
787	N	CF ₃	0	CH ₂ CN	
788	N	CF ₃	0	CH ₂ CH ₂ CN	
789	N	CF ₃	0	CH=CF ₂	
790	N	CF ₃	0	2-Furyl	
791	N	CF ₃	0	он	
792	N	CF ₃	0	OCH ₃	
793	N	CF ₃	0	OCH ₂ CH ₃	
794	N	CF ₃	0	OCHF ₂	
795	N	CF ₃	0	OCH ₂ C ₆ H ₅	
796	N	CF ₃	0	NH ₂	
797	N	CF ₃	0	NHCH ₃	
798		CF ₃	0	NHCH ₂ CH ₃	
799	N	CF ₃	0	N(CH ₂ CH ₃) ₂	
800	N	CF ₃	0	N(CH ₂ CN) ₂	
801	N	CF ₃	0	N(CH ₃) ₂	
802	N	CF ₃	0	NHCOCH ₃	
803		CF ₃	0	NHCOCH ₂ CH ₃	
804		CF ₃	0	OSO ₂ CH ₃	
-ئىت	_		l	-2-10	l

No.	х	Υ	w	R ¹	m.p. [°C]
805	СН	CF ₃	S	CH ₃	
		CF ₃	s	CH ₂ CH ₃	
807	СН	CF ₃	s	(CH ₂) ₂ CH ₃	
808	СН	CF ₃	S	сно	
809	СН	CF ₃	s	CHFCF ₃	
810	СН	CF ₃	s	CH ₂ C≡CH	
811	СН	CF ₃	S	COOCH ₂ CH ₃	
812	СН	CF ₃	s	CH ₂ COOC(CH ₃) ₃	
813	СН	CF ₃	S	CH ₂ CN	
814	N	CF ₃	S	CH ₃	
815	N	CF ₃	S	CH ₂ CH ₃	
816	N	CF ₃	S	(CH ₂) ₂ CH ₃	
817	N	CF ₃	s	CHFCF ₃	
818	N	CF ₃	s	CH ₂ CH ₂ OH	
819	N	CF ₃	s	CH ₂ COOC(CH ₃) ₃	
820	N	CH ₂ CH ₂ -	0	CH ₂ CH ₃	
		CI			
821	N	CH ₂ CH ₂ -	0	NH ₂	
		CI			
822		CH ₂ CI	0	CH ₃	
		CHF ₂	0	CH ₃	
824	СН	CHF ₂	0	CH ₂ CH ₃	
		CHF ₂	0	(CH ₂) ₂ CH ₃	
	_	CHF ₂	0	CH ₂ C=CH ₂	
		CHF ₂	0	C(CH ₃)=CH ₂	
828	СН	CHF ₂	0	COOCH ₂ CH ₃	
829	СН	CHF ₂	0	CH ₂ CONHCH ₃	
$\overline{}$		CHF ₂	0	CF ₂ CH ₃	
831	СН	CHF ₂	0	сно	
-		CHF ₂	0	NH ₂	
		CHF ₂	0	NHCOCH3	
834		CHF ₂	0	CH ₃	
835		CHF ₂	0	CH ₂ CH ₃	
836	N	CHF ₂	0	CH(CH ₃)(CH ₂) ₄ -	
I				CH ₃	

No.	Х	Υ	w	R ¹	m.p. [°C]
837	N	CHF ₂	О	CH ₂ CH=CH ₂	
838	N	CHF ₂	0	COOCH ₂ CH ₃	
839	N	CHF ₂	0	NH ₂	

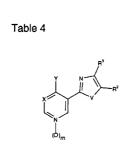
Table 3

No.	Х	Υ	m	V	R ¹	m.p. [°C]
840	N	(CF ₂) ₃ CHF ₂	0	0	CH ₃	
841	N	(CF ₂) ₂ CF ₃	0	0	CH ₂ CH ₃	
842	Ν	(CF ₂) ₂ CF ₃	0	0	COOCH ₂ CH ₃	
843	N	(CF ₂) ₂ CF ₃	0	0	SH	
844	N	(CF ₂) ₂ CF ₃	0	0	SCH ₃	
845	N	(CF ₂) ₂ CF ₃	0	0	SCH ₂ C≡CH	
846	N	CF ₂ CF ₃	0	0	CH ₃	
847	N	CF ₂ CF ₃	0	0	CH ₂ CH ₃	
848	N	CF ₃	0	0	CH ₃	
849	N	CF ₃	0	0	CH ₂ CH ₃	
850	N	CF ₃	0	0	(CH ₂) ₂ CH ₃	
851	N	CF ₃	0	0	CH(CH ₃) ₂	
852	N	CF ₃	0	0	(CH ₂) ₃ CH ₃	
853	N	CF ₃	0	0	CH ₂ CH(CH ₃) ₂	
854	N	CF ₃	0	0	C(CH ₃) ₃	
855	N	CF ₃	0	0	CH ₂ C(CH ₃) ₃	
856	N	CF ₃	0	0	Cyclo-C ₅ H ₉	
857	N	CF ₃	0	0	Cyclo-C ₆ H ₁₁	
858	N	CF ₃	0	0	CH ₂ CH=C(CH ₃) ₂	
859	N	CF ₃	0	0	CH ₂ CH ₂ CH=CH ₂	
860	N	CF ₃	0	0	CH ₂ CH=CH ₂	
861	N	CF ₃	0	0	(CH ₂) ₅ CH=CH ₂	
862	N	CF ₃	0	0	CH ₂ C≡CH	
863	N	CF ₃	0	0	CH ₂ C≡CCH ₂ CH ₃	
864	N	CF ₃	0	0	CHFCF ₃	

No.	х	Υ	m	V	R ¹	m,p.
	\vdash	<u> </u>	-	<u> </u>		[°C]
865	N	CF ₃	0_	0	COOCH ₂ CH ₃	
866	N	CF ₃	0	0	CH ₂ CH ₂ OH	
867	N	CF ₃	0	0	CH ₂ CH ₂ OCH ₃	
868	N	CF ₃	0	0	CH ₂ COOC(CH ₃) ₃	
869	N	CF ₃	0	0	CH ₂ SPh	
870	N	CF ₃	0_	0	CH ₂ CONHCH ₃	
871	N	CF ₃	0	0	CH ₂ CH(OH)CH ₂ OH	
872	N	CF ₃	0	0	сно	
873	N	CF ₃	0	0	COCH ₃	
874	N	CF ₃	0	0	CH ₂ OC ₆ H ₅	
875	N	CF ₃	0	0	COPh	
876	N	CF ₃	0	0	CF ₂ CH ₃	
877	N	CF ₃	0	0	CH ₂ CN	
878	N	CF ₃	0	0	CH ₂ CH ₂ CN	
879	N	CF ₃	0	0	CH=CF ₂	
880	N	CF ₃	0	0	2-Furyi	-
881	N	CF ₃	0	0	он	
882	Ν	CF ₃	0	0	OCH ₃	
883	N	CF ₃	0	0	OCH ₂ CH ₃	
884	N	CF ₃	0	0	OCHF ₂	
885	N	CF ₃	0	0	OCH ₂ Ph	
886	N	CF ₃	0	0	NH ₂	
887	N	CF ₃	0	0	NHCH ₃	
888	N	CF ₃	0	0	NHCH ₂ CH ₃	
889	Ν	CF ₃	0	0	N(CH ₂ CH ₃) ₂	
890	N	CF ₃	0	0	N(CH ₂ CN) ₂	
891	N	CF ₃	0	0	N(CH ₃) ₂	
892	N	CF ₃	0	0	NHCOCH ₃	
893	N	CF ₃	0	0	NHCOCH ₂ CH ₃	
894	N	CF ₃	0	0	OSO ₂ CH ₃	
895	N	CH ₂ CH ₂ CI	0	0	CH ₂ CH ₃	. "
896	N	CH ₂ CH ₂ CI	0	0	NH ₂	
897	N	CH ₂ CI	0	0	CH ₃	
898	N	CHF ₂	0	0	CH ₃	

Х	Υ	m	V	R ¹	m.p.
 	0	-	<u> </u>		[°C]
+	<u> </u>	 	 		
\mathbf{T}		 	f		
_		1			ļ
N		0	1		<u> </u>
N	CHF ₂	0	0		
СН	CF ₃	0	0		60-61
СН	CF ₃	1	0	CH ₃	
СН	CF ₃	0	0	CH ₂ CH ₃	oil
СН	CF ₃	1	0	CH ₂ CH ₃	oil
СН	CF ₃	0	0	(CH ₂) ₂ CH ₃	oil
СН	CF ₃	1	0	(CH ₂) ₂ CH ₃	oil
СН	CF ₃	0	0	CH(CH ₃) ₂	
СН	CF ₃	1	0	CH(CH ₃) ₂	
СН	CF ₃	0	0	(CH ₂) ₃ CH ₃	
СН	CF ₃	1	0	(CH ₂) ₃ CH ₃	
СН	CF ₃	0	0		
	1	1	0		
СН	CF ₃	0	0	CH ₂ CH(CH ₃) ₂	
СН	CF ₃	1	0	CH ₂ CH(CH ₃) ₂	
СН	CF ₃	0	0		
СН	CF ₃	1	0		
СН	CF ₃	0	0		
	1	1	О		
		0	О		
СН	CF ₃	0	0		
СН	CF ₃	0	0		
	 	0	0		
	·	0	0		
1		-			oil
	 	_	 		J
		+			
		_	·		61-63
		1			3. 33
	1	_	 		
		N CHF ₂ N CHF ₂ N CHF ₂ N CHF ₂	N CHF2 0 CH CF3 0 CH CF3 1 CH CF3 0 CH CF3 1 CH CF3 1 CH CF3 0 CH CF3 0 CH CF3 1 CH CF3 0	N CHF2 0 0 CH CF3 0 0 CH CF3 1 0	N CHF2 0 O CH2CH3 N CHF2 0 O CH(CH3)(CH2)4CH3 N CHF2 0 O CH2CH=CH2 N CHF2 0 O COCCH2CH3 N CHF2 0 O NH2 CH CF3 0 O CH3 CH CF3 1 O CH2CH3 CH CF3 1 O CH(CH3)2 CH CF3 1 O CH2CH(CH3)2 CH CF3 1

		I	_			
No.	Х	Υ	m	V	R ¹	m.p.
						[°C]
933	СН	CF ₃	0	0	C(CH ₃)=CH ₂	
934	СН	CF ₃	0	0	(CH ₂) ₅ C=CH ₂	
935	СН	CF ₃	0	0	C(=CHCH ₃)CH ₃	
936	СН	CF ₃	0	0	CH ₂ C≡CH	
937	СН	CF ₃	0	0	CH ₂ CH ₂ C≡CH ₂	
938	СН	CF ₃	0	0	CH ₂ C≡CCH ₂ CH ₃	
939	СН	CF ₃	0	0	(CH ₂) ₄ C≡CH	
940	СН	CF ₃	0	0	CHFCF ₃	
941	СН	CF ₃	0	0	COOCH ₂ CH ₃	
942	СН	CF ₃	0	О	CH ₂ CH ₂ OH	
943	СН	CF ₃	0	0	CH ₂ CH ₂ OCH ₃	
944	СН	CF ₃	0	0	CH ₂ COOC(CH ₃) ₃	
945	СН	CF ₃	0	0	CH ₂ SPh	
946	СН	CF ₃	0	0	CH ₂ CONHCH ₃	
947	СН	CF ₃	0	0	CH ₂ CH(OH)CH ₂ OH	
948	СН	CF ₃	0	0	CH ₂ COCH ₃	
949	СН	CF ₃	0	0	СОСНЗ	
950	СН	CF ₃	0	0	CH ₂ Oph	
951	СН	CF ₃	0	0	COPh	
952	СН	CF ₃	0	0	CF ₂ CH ₃	
953	СН	CF ₃	0	0	CH ₂ CN	oil
954	СН	CF ₃	0	0	CH ₂ CH(-O-)CH ₂	
955	СН	CF ₃	0	0	CH ₂ (4-OCH ₃)Ph	
956	СН	CF ₃	0	0	CH ₂ CH(OH)CH ₂ SPh	
957	СН	CF ₃	0	0	CH=CF ₂	
958	СН	CF ₃	0	0	CCI=CHCI	
959	СН	CF ₃	0	0	Ph	120-
						121
960	СН	CF ₃	0	0	2-Thienyl	87-89
961	СН	CF ₃	0	0	Oph	
962	СН	CF ₃	0	0	ОН	
963	СН	CF ₃	0	0	OCH ₃	
964		CF ₃	0	0	OCH ₂ CH ₃	
965	СН	CF ₃	0	0	OCHF ₂	



No.	х	Υ	m	V	R ¹	m.p. [°C]
966	СН	CF ₃	0	0	OCH ₂ Ph	
967	СН	CF ₃	0	0	SCH ₃	
968	СН	CF ₃	0	0	SPh	
969	СН	CF ₃	0	0	NH ₂	190- 191
970	СН	CF ₃	0	0	NHCH ₃	
97 1	СН	CF ₃	0	0	NHCH ₂ CH ₃	
972		CF ₃	0	0	N(CH ₂ CH ₃) ₂	
973	СН	CF ₃	0	0	N(CH ₂ CN) ₂	
974	СН	CF ₃	0	0	N(CH ₃) ₂	
975	СН	CF ₃	0	0	NHCOCH3	
976	СН	CF ₃	0	0	NHCOCH ₂ CH ₃	
977		CF ₃	0	0	OSO ₂ CH ₃	
978	СН	CF ₃	0	0	SOCH ₂ (4-Br)-C ₆ H ₄	
979	СН	CF ₃	0	0	N(CH ₃)COOCH ₂ Ph	
980	СН	CF ₃	0	NCH ₃	CH ₃	
981	СН	CF ₃	0	NCH ₂ CH ₃	CH ₃	
982	СН	CF ₃	0	NCH ₂ CH ₃	CH ₂ CH ₃	
983	СН	CF ₃	0	NCH ₂ CN	CH ₂ CH ₃	
984	СН	CF ₃	0	NCH ₂ OCH ₃	NHCH ₃	
985	СН	CF ₃	0	NCH ₂ OCH ₂ CH ₃	CN	
986	СН	CF ₃	0	NCH ₂ CH=CH ₂	CH ₃	
987	СН	CF ₃	0	NCH ₂ CH=CF ₂	SCH ₃	
988	СН	CF ₃	0	NCH ₂ OCH ₃	SCH ₂ CH ₃	
989	СН	CF ₃	0	NCH ₂ OCH ₃	SCH ₂ Ph	
990	СН	CHF ₂	0	0	CH ₃	
991	СН	CHF ₂	0	0	CH ₂ CH ₃	
992	СН	CHF ₂	0	0	(CH ₂) ₂ CH ₃	
993	СН	CHF ₂	0	0	CH ₂ CH=CH ₂	
994	СН	CHF ₂	0	0	C(CH ₃)=CH ₂	
995		CHF ₂	0	0	COOCH ₂ CH ₃	
996	_	CHF ₂	0	0	CH ₂ CONHCH ₃	
997		CHF ₂	0	0	CF ₂ CH ₃	
998		CHF ₂	0	0	СНО	

No.	Х	Υ	m	V	R ¹	m.p. [°C]
999	СН	CHF ₂	0	0	NH ₂	
1000	СН	CHF ₂	0	0	NHCOCH3	
1001	N	CF ₂ CF ₃	0	S	CH ₃	
1002	Z	CF ₂ CF ₃	0	s	CH ₂ CH ₃	
1003	N	CF ₂ CF ₃	0	S	(CH ₂) ₂ CH ₃	
1004	N	CF ₃	0	s	CH ₃	
1005	N	CF ₃	0	s	CH ₂ CH ₃	
1006	N .	CF ₃	0	s	(CH ₂) ₂ CH ₃	
1007	Ν	CF ₃	0	S	CHFCF ₃	
1008	Ν	CF ₃	0	S	CH ₂ CH ₂ OH	
1009	N	CF ₃	0	s	CH ₂ COOC(CH ₃) ₃	
1010	СН	CF ₃	0	S	CH ₃	
1011			0	s	CH ₂ CH ₃	
1012	СН	CF ₃	0	s	(CH ₂) ₂ CH ₃	
1013	СН	CF ₃	0	s	СНО	
1014			0	s	CHFCF ₃	
1015	СН	CF ₃	0	S	CH ₂ C≡CH	
1016			0	s	COOCH ₂ CH ₃	
1017			0	s	CH ₂ COOC(CH ₃) ₃	
1018	СН	CF ₃	0	s	CH ₂ CN	

No.	X	Υ	m	٧	R ²	R ³	m.p. [°C]
1019	N	(CF ₂) ₃ CHF ₂	0	s	Н	CH ₂ CH ₃	
1020	N	CF ₂ CF ₂ CF ₃	0	s	Н	CH ₂ CH ₃	
1021	N	CF ₂ CF ₃	0	s	Н	CH ₂ CH ₃	
1022	Ν	CH ₂ CH ₂ CI	0	s	Н	CH ₂ CH ₃	
1023	N	CH ₂ CI	0	s	Н	CH ₂ CH ₃	
1024	N	CF ₃	0	s	CH ₂ CH ₃	CH ₂ CH ₃	
1025	N	CF ₃	0	s	(CH ₂) ₂ CH ₃	Н	
1026	N	CF ₃	0	s	CH(CH ₃) ₂	Н	
1027	N	CF ₃	0	1	CH ₂ CH(CH ₃) ₂	Н	
1028	N	CF ₃	0		C(CH ₃) ₃	Н	
1029	СН	CF ₃	0	s	Н	CH ₃	oil
1030	СН	CF ₃	0	s	Н	CH ₂ CH ₃	oil
1031	СН	CF ₃	0	s	Н	C(CH ₃) ₃	oil
1032	СН	CF ₃	0	s	CH ₂ CH ₃	COOCH ₂ CH ₃	
1033	СН	CF ₃	0	s	(CH ₂) ₂ CH ₃	COOCH ₂ CH ₃	
1034	СН	CF ₃	0		CH(CH ₃) ₂	COOCH ₂ CH ₃	
1035	СН	CF ₃	0		CH(CH ₃) ₂	CONHCH ₂ CH ₃	
1036	СН	CF ₃	0		CH(CH ₃) ₂	CONHCH ₂ CH ₃	
1037	СН	CF ₃	0		CH(CH ₃) ₂	CON(CH ₂ CH ₃) ₂	
1038	СН	CF ₃	0		CH(CH ₃) ₂	CONH-cyclo-C ₃ H ₇	
1039	СН	CF ₃	0		C(CH ₃) ₃	COOCH ₂ CH ₃	
1040	СН	CF ₃	0	s	Н	CONHCH ₂ CH ₃	
1041	СН	CF ₃	0	s	Н	CON(CH ₂ CH ₃) ₂	
1042	СН	CF ₃	0	s	Н	COOCH ₂ CH ₃	oil

No.	х	Y	Ī	v	\mathbb{R}^2	B ³	Γ
INO.	^	T	m	ľ	n	lu lu	m.p.
1043		CEo		6	ш	CH-COOCH-CH-	[°C]
1043	_		0	s s	H	CH ₂ COOCH ₂ CH ₃	oil
			1	1	H 	CH ₂ CHO	
1045			0	S	H 	CH ₂ OCH ₃	
1046			0	S	H	CH ₂ OCH ₂ Ph	-
1047	*		0	S	H	H	
1048			0	_	cyclo-C ₅ H ₉	H	
1049			0	$\overline{}$	CON(CH ₃) ₂	CH ₃	oil
1050	_		0	_	CH ₃	CH ₂ CH ₂ OH	
1051			0_		CH ₃	CH ₂ CH ₂ OCH ₃	
1052			0	_	CH ₃	CH ₂ CH ₂ OCH ₂ Ph	
1053			0		CH ₃	CH ₂ CH ₂ SPh	
1054	СН	CF ₃	0		CH ₃	CH ₃	oil
1055			0		CH ₃	CH ₂ CH ₂ CHO	
1055	СН	CF ₃	0	s	CH ₃	CH ₂ CH ₂ CHNPh	
1057	СН	CF ₃	0	S	CH ₃	CH ₂ CH ₂ CONH ₂	
1058	СН	CF ₃	0	s	Н	(4-CF ₃ O)C ₆ H ₄	120-
							121
1059			0	S	CH ₂ C≡CH	Н	
1060	СН	CF ₃	0	s	CH ₂ CH ₂ C≡CH	Н	
1061	СН	CF ₃	0	s	CH ₂ C≡CCH ₂ CH ₃	Н	
1062	СН	CF ₃	0	s	CH ₂ CH=C(CH ₃) ₂	H	
1063	СН	CF ₃	0	s	CH ₂ CH ₂ CH=CH ₂	Н	
1064	СН	CF ₃	0	s	CH ₂ CH=CH ₂	Н	
1065	СН	CF ₃	0	s	C(CH ₃)=CH ₂	Н	
1066	СН	CF ₃	0	s	CHFCF3	Н	
1067	СН	CF ₃	0	s	COOCH ₂ CH ₃	Н	
1068	СН	CF ₃	0	s	CH ₂ CH ₂ OH	Н	
1069	СН	CF ₃	0	s	CH ₂ CH ₂ OCH ₃	Н	
1070	СН	CF ₃	0	-	CH ₂ COOC(CH ₃) ₃	Н	
1071	СН	CF ₃	0	s	CH ₂ COCH ₃	Н	
1072	_		0	-	СОСНЗ	Н	
1073	$\overline{}$		0		CH ₂ Oph	H	
1074			0		COPh	H	
1075			0			Н	

No.	х	Υ	m	٧	R ²	R ³	m.p.
1076	СН	CF ₃	0	s	CF ₂ CH ₃	Н	
1077	СН	CF ₃	0	s	CH ₂ CN	Н	
1078	СН	CF ₃	0	s	CH ₂ CH ₂ CN	Н	
1079	N	CF ₃	0	s	H	Н	
1080	N	CF ₃	0	S	Н	CH ₂ CH ₂ CN	
1081	N	CF ₃	0	s	Н	CH ₂ CO ₂ C(CH ₃) ₃	
1082	N	CF ₃	0	s	Н	CH₂CHO	
1083	Ν	CF ₃	0	s	Н	CH ₂ CH ₂ OH	
1084	Ν	CF ₃	0	s	Н	CH ₂ CH ₂ OCH ₃	
1085	N	CF ₃	0	s	cyclo-C ₅ H ₉	Н	
1086	Ν	CF ₃	0	s	СН₃	COOCH ₂ CH ₃	
1087	N	CF ₃	0	s	CH ₃	соон	
1088	N	CF ₃	0	s	СН3	CONH ₂	
1089	Ν	CF ₃	0	s	CH ₃	CONHCH ₂ CH ₃	
1090	N	CF ₃	0	s	СН₃	CON(CH ₂ CH ₃) ₂	
1091	N	CF ₃	0	s	CH ₃	CONHCH3	
1092	N	CF ₃	0	s	CH ₃	CONHCH2CN	
1093	Ν	CF ₃	0	s	СН3	CON(CH ₂ CN) ₂	
1094	N	CF ₃	0	s	CH ₃	CON(CH ₃) ₂	
1095	N	CF ₃	0	s	CH ₂ C≡CH	OCH ₂ CH ₃	
1096	N	CF ₃	0	s	CH ₂ CH ₂ C≡CH	OCH ₂ CH ₃	
1097	N	CF ₃	0	s	CH ₂ C≡CCH ₂ CH ₃	OCH ₂ CH ₃	
1098	Ń	CF ₃	0	s	CH ₂ CH=C(CH ₃) ₂	OCH₂CH₃	
1099	N	CF ₃	0	s	CH ₂ CH ₂ CH=CH ₂	OCH ₂ CH ₃	
1100	N	CF ₃	0	s	CH ₂ CH=CH ₂	OCH ₂ CH ₃	
1101	N	CF ₃	0	s	C(CH ₃)=CH ₂	OCH ₂ CH ₃	
1102	N	CF ₃	0	s	CHFCF ₃	OCH ₂ CH ₃	
1103	Ν	CF ₃	0	s	COOCH ₂ CH ₃	OCH ₂ CH ₃	
1104	N	CF ₃	0	s	CH ₂ CH ₂ OH	OCH ₂ CH ₃	
1105	N	CF ₃	0	S	CH ₂ CH ₂ OCH ₃	OCH ₂ CH ₃	
1106	N	CF ₃	0	s	CH ₂ COOC(CH ₃) ₃	OCH ₂ CH ₃	
1107	N	CF ₃	0		CH ₂ COCH ₃	Н	
1108	N	CF ₃	0	s	соснз	Н	
1109	Ν	CF ₃	0	s	CH ₂ Oph	Н	

	г—			_	1-0 · · ·	Τ-0	
No.	Х	Υ	m	٧	R ²	R ³	m.p.
	<u> </u>			<u> </u>			[°C]
1110	N	CF ₃	0	s	COPh	Н	
1111		CF ₃	0	s	CO(4-CI)-C ₆ H ₄	Н	
1112		CF ₃	0	s	CF ₂ CH ₃	Н	
1113	N	CF ₃	0	s	CH ₂ CN	Н	
1114	N	CF ₃	0	s	CH ₂ CH ₂ CN	H	
1115	СН	CF ₃	0	0	CH ₂ CH ₃	CH ₂ CH ₃	
1116	СН	CF ₃	0	0	(CH ₂) ₂ CH ₃	Н	
1117	СН	CF ₃	0	0	Н	CH ₂ CH ₃	oil
1118	СН	CF ₃	0	0	CH(CH ₃) ₂	COOCH ₂ CH ₃	
1119	СН	CF ₃	0	0	CH(CH ₃) ₂	СООН	
1120	СН	CF ₃	0	0	CH(CH ₃) ₂	CONH ₂	
1121	СН	CF ₃	0	0	CH(CH ₃) ₂	CH ₃	
1122	СН	CF ₃	0	0	C(CH ₃) ₃	Н	
1123	СН	CF ₃	0	0	Н	CH ₃	
1124	ᇙ	CF ₃	0	0	Н	cyclo-C ₅ H ₉	
1125	ŭ	CF ₃	0	0	Н	CH ₂ CH ₂ CH ₃	
1126	СН	CF ₃	0	0	Н	Ph	103-
							104
1127	СН	CF ₃	0	0	Н	2-Pyridyl	
1128	СН	CF ₃	0	0	Н	2-Furyl	
1129	СН	CF ₃	0	0	cyclo-C ₅ H ₉	Н	
1130	СН	CF ₃	0	0	CH ₃	COOCH ₂ CH ₃	
1131	СН	CF ₃	0_	0	СНЗ	соон	
1132	СН	CF ₃	0	0	CH ₃	CONH ₂	
1133	СН	CF ₃	0	O	CH ₃	CONHCH2CH3	
1134	СН	CF ₃	0	0	CH ₃	CON(CH ₂ CH ₃) ₂	
1135	СН	CF ₃	0	0	CH ₃	CONHCH3	
1136	СН	CF ₃	0	0	CH ₃	CONHCH ₂ CN	
1137	СН	CF ₃	0	0	CH ₃	CON(CH ₂ CN) ₂	
1138	СН	CF ₃	0	0	CH ₃	CON(CH ₃) ₂	
1139	СН	CF ₃	0	0	CH ₂ C≡CH	Н	
1140	СН	CF ₃	0		CH ₂ CH ₂ C≡CH	Н	
1141	СН	CF ₃	0	_	CH ₂ C≡CCH ₂ CH ₃		
1142			0		CH ₂ CH=C(CH ₃) ₂		

No.	х	Υ	m	٧	R ²	R ³	m.p.
	_		<u> </u>	ļ_			[°C]
1143	СН	CF ₃	0	0	CH ₂ CH ₂ C=CH	H	
1144	СН	CF ₃	0	0	CH ₂ CH=CH ₂	Н	
1145	СН	CF ₃	0	0	C(CH ₃)=CH ₂	Н	
1146	СН	CF ₃	0	0	CHFCF ₃	Н	
1147	СН	CF ₃	0	0	COOCH ₂ CH ₃	Н	
1148	СН	CF ₃	0	0	CH ₂ CH ₂ OH	Н	
1149	СН	CF ₃	0	0	CH ₂ CH ₂ OCH ₃	Н	
1150	СН	CF ₃	0	0	CH ₂ COOC(CH ₃) ₃	Н	
1151	СН	CF ₃	0	0	CH ₂ COCH ₃	Н	
1152	СН	CF ₃	0	0	СОСНЗ	Н	
1153	СН	CF ₃	0	0	CH ₂ Oph	Н	
1154	СН	CF ₃	0	0	COPh	Н	
1155	СН	CF ₃	0	0	CO(4-CI)-C ₆ H ₄	Н	
1156	СН	CF ₃	0	0	CF ₂ CH ₃	Н	
1157	СН	CF ₃	0	0	CH₂CN	Н	
1158	СН	CF ₃	0	0	CH ₂ CH ₂ CN	Н	
1159	N	CF ₃	0	0	CH ₂ CH ₃	CH ₂ CH ₃	
1160	N	CF ₃	0	0	(CH ₂) ₂ CH ₃	Н	
1161	N .	CF ₃	0	0	CH(CH ₃) ₂	CONH ₂	
1162	N	CF ₃	0	0	CH(CH ₃) ₂	CH ₃	_
1163	N	CF ₃	0	0	C(CH ₃) ₃	Н	
1164	N	CF ₃	0	0	Н	CH ₃	
1165	Ν	CF ₃	0	0	Н	CH₂CH₃	
1166	N	CF ₃	0	0	Н	CH ₂ CH ₂ CH ₃	
1167	N	CF ₃	0	0	Н	Ph	
1168	N	CF ₃	0	0	н	2-Pyridyl	
1169	N	CF ₃	0	0	Н	2-Furyl	
1170	N	CF ₃	0	0	cyclo-C ₅ H ₉	Н	
1171	N	CF ₃	0	0	CH ₃	COOCH ₂ CH ₃	
1172	N	CF ₃	0	0	CH ₃	СООН	
1173	N	CF ₃	0			CONH ₂	
1174	N	CF ₃	0			CONHCH ₂ CH ₃	
1175	Ν	CF ₃	0			CON(CH ₂ CH ₃) ₂	
1176		CF ₃	0			CONHCH ₃	

No.	х	Υ	m	٧	R ²	R ³	m.p.
ļ							[°C]
1177		CF ₃	0	 	CH ₃	CONHCH ₂ CN	
1178	N	CF ₃	0	0	CH ₃	CON(CH ₂ CN) ₂	
1179	N	CF ₃	0	_	CH ₃	CON(CH ₃) ₂	
1180	N	CF ₃	0	0	CH ₂ C≡CH	H	
1181	N	CF ₃	0	0	CH ₂ CH ₂ C≡CH	Н	
1182	N	CF ₃	0	0	CH ₂ C≡CCH ₂ CH ₃	Н	
1183	N	CF ₃	0	0	CH ₂ CH≈C(CH ₃) ₂	Н	
1184	N	CF ₃	0	0	CH ₂ CH ₂ CH=CH ₂	Н	
1185	N	CF ₃	0	0	CH ₂ CH=CH ₂	Н	
1186	N	CF ₃	0	0	C(CH ₃)=CH ₂	н	
1187	N	CF ₃	0	0	CHFCF ₃	н	
1188	N	CF ₃	0	0	COOCH ₂ CH ₃	Н	
1189	N	CF ₃	0	0	CH ₂ CH ₂ OH	Н	
1190	Ν	CF ₃	0	0	CH ₂ CH ₂ OCH ₃	H	
1191	N	CF ₃	0	0	CH ₂ COOC(CH ₃) ₃	Н	
1192	Z	CF ₃	0	0	CH ₂ COCH ₃	Н	
1193	Ν	CF ₃	0	0	СОСН3	Η	
1194	Ν	CF ₃	0	0	CH ₂ Oph	Н	
1195	Ν	CF ₃	0	0	COPh	Н	
1196	N	CF ₃	0	0	CO(4-CI)-C ₆ H ₄	H	
1197	N	CF ₃	0	0	CF ₂ CH ₃	Н	
1198	Ν	CF ₃	0	0	CH ₂ CN	Н	
1199	Ν	CF ₃	0	0	CH ₂ CH ₂ CN	Н	l
1200	Ν	CF ₃	0	0	CH ₂ NHSO ₂ CH ₃	CH ₃	
1201	N	CF ₃	0	0	(CH ₂) ₂ NHSO ₂ - CH ₃	CH ₃	
1202	N	CF ₃	0	0	CH ₂ NHSO ₂ CH ₂ - CH ₃	CH ₃	
1203	N	CF ₃	0	0	Н	CH ₂ NHSO ₂ CH ₂ Ph	
1204			0	0	(CH ₂) ₄ NHSO ₂ - CF ₃	CH ₃	
1205	СН	CF ₃	0	0	(CH ₂) ₂ S(CH ₂) ₂ - CH ₃	CH ₂ CH ₂ CH ₃	

No.	х	Υ	m	٧	R ²	R ³	m.p.
1206	СН	CF ₃	0	0	(CH ₂) ₄ S(CH ₂) ₄ - OCH ₃	CH ₃	
1207	СН	CF ₃	0	s	CH ₃	(CH ₂) ₂ S(CH ₂) ₂ CN	
1208	СН	CF ₃	0	s	CH ₂ NHSO ₂ - CH ₂ CH ₃	СН3	
1209	СН	CF ₃	0	s	CH ₂ NHSO ₂ - CH ₂ Ph	CH ₂ CH ₂ CH ₃	
1210	СН	CF ₃	0	s	(CH ₂) ₂ NHSO ₂ - CH ₃	CF ₃	
1211	СН	CF ₃	0	s	Н	CH ₂ NHSO ₂ CH ₃	
1212	СН	CF ₃	0	s	CH(CH ₃)CH ₂ NH- Ph		
1213	СН	CF ₃	0	s	(CH ₂) ₂ S(2-F)- C ₆ H ₄	CH ₂ CH ₂ CH ₃	
1214	СН	CF ₃	0	s	(CH ₂) ₆ NHCH ₂) ₆ - OCH ₃	CF ₃	
1215	СН	CF ₃	0	s	Н	(CH ₂) ₂ NH-(2-F)- C ₆ H ₄	
1216	СН	CF ₃	О	s	(CH ₂) ₃ NHCH ₂ CN		
1217	СН	CF ₃	0	s	(CH ₂) ₂ O(3-CI)- C ₆ H ₄	CH ₃	
1218	СН	CF ₃	0	s	CF ₃	(CH ₂) ₆ NHCH ₂ CF ₃	
1219	СН	CF ₃	0	s	CH ₃	(CH ₂) ₂ O(3-CH ₃)- C ₆ H ₄	
1220	СН	CF ₃	0	0	Н	CH ₂ NHPh	
1221	СН	CF ₃	0	0	CH ₃	(CH ₂) ₄ S(2-Br)- C ₆ H ₄	
1222	СН	CF ₃	0	0	(CH ₂) ₆ NH(CH ₂) ₂ OCH ₃	CH ₃	
1223	СН	CF ₃	0	0	(CH ₂) ₂ NH(CH ₂) ₄ OCH ₃	Н	
1224	СН	CF ₃	0	0	CF ₃	(CH ₂) ₃ NH-(4-CN)- C ₆ H ₄	

No.	X	Υ	m	٧	R ²	R ³	m.p. [°C]
1225	СН	CF ₃	0	0	(CH ₂) ₄ NHCH ₂ - CF ₃	CH ₃	
1226	СН	CF ₃	0	0	C ₂ F ₅	(CH ₂) ₂ O(3-CH ₃)- C ₆ H ₄	
1227	СН	CF ₃	0	0	(CH ₂) ₄ NHCH ₂ CN	Н	
1228	СН	CF ₃	0	0	(CH ₂) ₃ O(4-Cl)- C ₆ H ₄	C ₂ F ₅	

Table 5

No.	Х	Υ	V	R ⁴	R ⁵	R ⁶	R ⁷	m.p. [°C]
1229	СН	CF ₃	0	Н	Н	н	Н	oil
1230	СН	CF ₃	0	Ι	Н	CH ₃	Н	oil
1231	СН	CF ₃	0	Н	Н	CH ₂ CH ₃	Н	oil
1232	СН	CF ₃	0	Н	Н	CH(CH ₃) ₂	Н	
1233	СН	CF ₃	0	Н	Н	CH ₂ CH(CH ₃) ₂	Н	
1234	СН	CF ₃	0	Н	H	CH(CH ₃)CH ₂ - CH ₃	Н	
1235	СН	CF ₃	0	Н	Н	CH ₂ OH	н	
1236	СН	CF ₃	0	Н	Н	CH(OH)CH ₃	Н	
1237	СН	CF ₃	0	Н	Н	CH ₂ SH	Н	
1238	СН	CF ₃	0	Н	Н	CH ₂ CH ₂ SCH ₃	Н	
1239	СН	CF ₃	0	Н	Н	(CH ₂) ₃ NH ₂	Н	
1240	СН	CF ₃	0	Н	Н	(CH ₂) ₄ NH ₂	Н	
1241	СН	CF ₃	0	Н	Н	CH=CH ₂	Н	
1242	СН	CF ₃	0	н	Н	(CH ₂) ₂ -	Н	
	<u> </u>					COOCH3		
1243	СН	CF ₃	0	H	H	(CH ₂) ₂ COOH	Н	
1244		CF ₃	0	H	Н	(CH ₂) ₂ CONH ₂	Н	
1245	СН	CF ₃	s	CH ₃	CH ₃	H	Н	
1246	СН	CF ₃	0	Н	Н	CH ₃	CH ₃	oil
1247	СН	CF ₃	0	Н	Н	CH ₂ COOCH ₃	Н	
1248	СН	CF ₃	0	Н	Н	CH ₂ COOH	Н	
1249	СН	CF ₃	0	Н	H_	CH ₂ CONH ₂	Н	
1250	СН	CF ₃	0	Н	Н	CH ₂ Ph	Н	

No.	х	Υ	٧	R ⁴	R ⁵	R ⁶	R ⁷	m.p.
1251	СН	CF ₃	0	Н	Н	CH ₂ -(4-OH)- C ₆ H ₄	Н	
1252	СН	CF ₃	0	Н	Н	CH ₂ -(3-Indolyl)	Н	
1253	СН	CF ₃	0	CH ₃	СНз	Н	Н	oil
1254	СН	CF ₃	0	CH ₃	Н	Н	Н	oil
1255	СН	CF ₃	0	CH ₃	Н	Н	Ph	
1256	СН	CF ₃	0	Н		(CH ₂) ₄	Н	
1257	СН	CF ₃	NH	Н		(CH ₂) ₄	Н	
1258	СН	CF ₃	NCH ₃	Н		(CH ₂) ₄	Н	
1259	СН	CF ₃	NCH ₂ - C ₆ H ₄	Н		(CH ₂) ₄	Н	
1260	СН	CF ₃	NCH- (CH ₃) ₂	Н		(CH ₂) ₄	Н	
1261	СН	CF ₃	0	Ph	Н	Ph	Н	
1262	СН	CF ₃	NH	Ph	Н	Ph	Н	
1263	СН	CF ₃	NCH ₃	Ph	Н	Ph	Н	
1264	СН	CF ₃	NCH ₂ - C ₆ H ₄	Ph	Н	Ph	Н	
1265	N	CF ₃	0	Н	Н	CH ₂ CH ₃	Н	oil
1266	N	CF ₃	0	Н	Н	CH(CH ₃) ₂	Н	
1267	N	CF ₃	0	Н	Н	CH ₂ CH(CH ₃) ₂	Н	
1268	N	CF ₃	0	Н	Н	CH ₂ COOH	Н	
1269	N	CF ₃	О	Н	Н	CH ₂ COOCH ₃	Н	
1270	N	CF ₃	0	Н	Н	CH ₂ CONH ₂	Н	
1271	N	CF ₃	0	СН3	CH ₃	Н	Н	
1272	N	CF ₃	0	Н	(CH ₂) ₄		Н	
1273	N	CF ₃	0	Н	H	CH ₂ CH ₂ SCH ₃	Н	
1274	СН	CF ₃	s	Н	Н	Н	Н	oil

Table 6

No.	х	Υ	R ⁸	R ¹	m.p. [°C]
1275	СН	CF ₃	CH ₃	SH	209-210
1276	СН	CF ₃	CH ₃	SCH ₃	
1277	СН	CF ₃	CH ₃	SCH ₂ CH ₃	
1278	СН	CF ₃	CH ₃	S(CH ₂) ₂ CH ₃	
1279	СН	CF ₃	CH ₃	SCH(CH ₃) ₂	
1280	СН	CF ₃	CH ₃	SPh	
1281	СН	CF ₃	CH ₃	S(CH ₂) ₃ CH ₃	
1282	СН	CF ₃	CH ₃	SCH(CH ₃)CH ₂ CH ₃	
1283	СН	CF ₃	CH ₃	SCH ₂ CH(CH ₃) ₂	
1284	СН	CF ₃	CH ₃	ОН	119-120
1285	СН	CF ₃	CH ₃	OCH ₃	
1286	СН	CF ₃	CH ₃	OCH ₂ CH ₃	
1287	СН	CF ₃	CH ₃	OCHF ₂	
1288	СН	CF ₃	CH ₃	OCH ₂ Ph	
1289	СН	CF ₃	CH ₃	OCONHPh	
1290	СН	CF ₃	CH ₃	OCONH-(4-F)-C ₆ H ₄	
1291	СН	CF ₃	CH ₃	OCONH-(3,5-di-Cl)-C ₆ H ₃	
1292	СН	CF ₃	CH ₂ CN	OCH ₃	
1293	СН	CF ₃	CH ₂ CN	OCH ₂ CH ₃	
1294	СН	CF ₃	CH ₂ CN	OCHF ₂	
1295	СН	CF ₃	CH ₂ CN	OCH ₂ Ph	
1296	СН	CF ₃	CH ₂ CN	OCONHPh	
1297	СН	CF ₃	CH ₂ CN	OCONH-(4-F)-C ₆ H ₄	
1298	СН	CF ₃	CH ₂ OCH ₂ CH ₃	OCH ₃	
1299	СН	CF ₃	CH ₂ OCH ₂ CH ₃	OCH ₂ CH ₃	
1300	СН	CF ₃	CH ₂ OCH ₂ CH ₃	OCHF ₂	

No.	х	Υ	R ⁸	R ¹	m.p. [°C]
1301	СН	CF ₃	CH ₂ OCH ₂ CH ₃	OCH ₂ Ph	' - '
1302	СН	CF ₃	CH ₂ OCH ₂ CH ₃	OCONHPh	
1303	СН	CF ₃	Н	CH ₃	203-204
1304	СН	CF ₃	H	CH ₂ CH ₃	134-135
1305	СН	CF ₃	Н	(CH ₂) ₂ CH ₃	
1306	СН	CF ₃	Н	CH(CH ₃) ₂	
1307	СН	CF ₃	Н	Cyclo-C ₃ H ₅	
1308	СН	CF ₃	Н	(CH ₂) ₃ CH ₃	
1309	СН	CF ₃	Н	CH(CH ₃)CH ₂ CH ₃	
1310	СН	CF ₃	Н	CH ₂ CH(CH ₃) ₂	
1311	СН	CF ₃	Н	CH=CH ₂	
1312	СН	CF ₃	Н	CH ₂ CH=C(CH ₃) ₂	
1313	СН	CF ₃	н	CH ₂ CH ₂ CH=CH ₂	
1314	СН	CF ₃	Н	CH ₂ CH=CH ₂	
1315	СН	CF ₃	Н	C(CH ₃)=CH ₂	
1316	СН	CF ₃	H	CHFCF3	
1317	СН	CF ₃	Н	COOCH ₂ CH ₃	
1318	СН	CF ₃	Н	CH ₂ CH ₂ OH	
1319	СН	CF ₃	Н	CH ₂ CH ₂ OCH ₃	
1320	СН	CF ₃	Н	CH ₂ COOC(CH ₃) ₃	
1321	СН	CF ₃	CH ₃	CH ₂ COOC(CH ₃) ₃	
1322	СН	CF ₃	CH ₂ CN	CH ₂ COOC(CH ₃) ₃	
1323	СН	CF ₃	CH ₂ OCH ₂ CH ₃	CH ₂ COOC(CH ₃) ₃	
1324	СН	CF ₃	н	CH ₂ SPh	
1325	СН	CF ₃	H	CH ₂ CONHCH ₃	
1326	СН	CF ₃	H	CH ₂ COCH ₃	
1327	СН	CF ₃	Н	соснз	
1328	СН	CF ₃	н	CH ₂ Oph	
1329	СН	CF ₃	Н	COPh	
1330	СН	CF ₃	Н	CO(3-CI)-C ₆ H ₄	
1331	СН	CF ₃	Н	CF ₂ CH ₃	
1332	СН	CF ₃	Н	CH ₂ CN	
1333	СН	CF ₃	Н	CH ₂ CH ₂ CN	
1334	СН	CF ₃	Н	CH ₂ CH(-O-)CH ₂	
1336	СН	CF ₃	H	CH ₂ (4-OCH ₃)Ph	

1337 N CF3 CH3 SH 1338 N CF3 CH3 SCH3 1339 N CF3 CH3 SCH2CH3 1340 N CF3 CH3 SPh 1341 N CF3 CH3 OH 1342 N CF3 CH3 OH 1343 N CF3 CH3 OCH3 1344 N CF3 CH3 OCH2CH3 1345 N CF3 CH3 OCH2Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH2Ph 1348 N CF3 CH2CN OCH2Ph 1349 N CF3 CH2CN OCH2Ph 1350 N CF3 CH2CN OCH2Ph 1351 N CF3 CH2COH2CH3 OCH3 1352 N CF3 H CH3 1353	No.	Х	Υ	R ⁸	R ¹	m.p. [°C]
1339 N CF3 CH3 SCH2CH3 1340 N CF3 CH3 SPh 1341 N CF3 CH3 SCH2CH(CH3)2 1342 N CF3 CH3 OCH2CH3 1343 N CF3 CH3 OCH2CH3 1344 N CF3 CH3 OCH2Ph 1345 N CF3 CH3 OCH2Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1349 N CF3 CH2CN OCH2Ph 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2CN OCONHPh 1352 N CF3 CH2COH2CH3 OCH2Ph 1353 N CF3 H CH3 1354 N CF3 H CH3	1337	N	CF ₃	CH ₃		
1340 N CF3 CH3 SPh 1341 N CF3 CH3 SCH2CH(CH3)2 1342 N CF3 CH3 OH 1343 N CF3 CH3 OCH3 1344 N CF3 CH3 OCH2CH3 1345 N CF3 CH3 OCONHPh 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1349 N CF3 CH2CN OCONHPh 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2OCH2CH3 OCH2Ph 1353 N CF3 CH2OCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1356 N CF3 H CH(CH3)2	1338	N	CF ₃	CH ₃	SCH ₃	
1341 N CF3 CH3 SCH2CH(CH3)2 1342 N CF3 CH3 OH 1343 N CF3 CH3 OCH3 1344 N CF3 CH3 OCH2CH3 1345 N CF3 CH3 OCH2Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1348 N CF3 CH2CN OCH2Ph 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2CN OCONHPh 1351 N CF3 CH2COCH2CH3 OCH2Ph 1353 N CF3 CH2OCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1357 N CF3 H CH(CH3)2 <t< td=""><td>1339</td><td>N</td><td>CF₃</td><td>CH₃</td><td>SCH₂CH₃</td><td></td></t<>	1339	N	CF ₃	CH ₃	SCH ₂ CH ₃	
1342 N CF3 CH3 OH 1343 N CF3 CH3 OCH3 1344 N CF3 CH3 OCH2CH3 1345 N CF3 CH3 OCH2Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1349 N CF3 CH2CN OCONHPh 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2OCH2CH3 OCH2Ph 1351 N CF3 CH2OCH2CH3 OCH2Ph 1352 N CF3 CH2OCH2CH3 OCH2Ph 1353 N CF3 H CH3 1354 N CF3 H CH2CH3 1355 N CF3 H CH2CH3 1356 N CF3 H CH(CH3)2	1340	N	CF ₃	CH ₃	SPh	
1343 N CF3 CH3 OCH3 1344 N CF3 CH3 OCH2CH3 1345 N CF3 CH3 OCH2Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2Ph 1350 N CF3 CH2CN OCH2Ph 1351 N CF3 CH2CN OCH3Ph 1351 N CF3 CH2CN OCH3Ph 1352 N CF3 CH2CN OCH2Ph 1353 N CF3 CH2OCH2CH3 OCH3 1354 N CF3 CH2OCH2CH3 OCH3Ph 1355 N CF3 H CH3 1355 N CF3 H CH2CH3 1356 N CF3 H CH2CH3 1357 N CF3 H CH2CH3 1358 N CF3 H CH2CH3 1359 N CF3 H CH2CH3 1359 N CF3 H CH2CH3 1360 N CF3 H CH2CH3 1361 N CF3 H CH2CH3 1361 N CF3 H CH2CH3 1361 N CF3 H CH2CH3 1362 N CF3 H CH2CH3 1363 N CF3 H CH2CH3 1364 N CF3 H CH2CH3 1365 N CF3 H CH2CH3PA 1366 N CF3 H CH2CH3PA 1367 N CF3 H CH2CH3PA 1368 N CF3 H CH2CH2CH3 1368 N CF3 H CH2CH2CH3 1369 N CF3 H CH2CH2CH3 1364 N CF3 H CH2CH2CH3 1365 N CF3 H CH2CH2CH3 1366 N CF3 H CH2CH2CH3 1367 N CF3 H CH2CH2CH3 1368 N CF3 H CH2CH2CH3 1368 N CF3 H CH2CH2CH3 1369 N CF3 H CH2CH2CH3 1369 N CF3 H CH2COC(CH3)3 1369 N CF3 H CH2CH2CH3 1369 N CF3 H CH2COC(CH3)3 1370 N CF3 H CH2COCH3	1341	N	CF ₃	CH ₃	SCH ₂ CH(CH ₃) ₂	
1344 N CF3 CH3 OCH2CH3 1345 N CF3 CH3 OCH2Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1349 N CF3 CH2CN OCH2Ph 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2CCH2CH3 OCH3 1352 N CF3 CH2CCH2CH3 OCH2Ph 1353 N CF3 CH2CCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1355 N CF3 H CH2CH3 1355 N CF3 H CH2CH3 1357 N CF3 H CH(CH3)2 1358 N CF3 H CH(CH3)CH2CH3	1342	N	CF ₃	CH ₃	ОН	
1345 N CF3 CH3 OCH ₂ Ph 1346 N CF3 CH3 OCONHPh 1347 N CF3 CH ₂ CN OCH ₂ CH3 1348 N CF3 CH ₂ CN OCH ₂ CH3 1349 N CF3 CH ₂ CN OCH ₂ Ph 1350 N CF3 CH ₂ CN OCH ₂ Ph 1351 N CF3 CH ₂ CN OCH ₂ Ph 1352 N CF3 CH ₂ CCN OCH ₂ Ph 1353 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₃ 1354 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₂ Ph 1355 N CF3 H CH ₂ OCH ₂ CH ₃ 1356 N CF3 H CH ₂ CH ₃ 1357 N CF3 H CH ₂ CH ₃ 1358 N CF3 H CH ₂ CH ₃ 1359 N CF3 H CH ₂ CH ₃ 1360 N CF3 H CH ₂ CH ₃ 1361 N CF3 H CH ₂ CH ₃ 1362 N CF3 H CH ₂ CH ₃ 1363 N CF3 H CH ₂ CH ₃ CH ₃ 1364 N CF3 H CH ₂ CH ₃ CH ₃ 1365 N CF3 H CH ₂ CH ₃ CH ₃ 1366 N CF3 H CH ₂ CH ₂ CH ₃ 1367 N CF3 H CH ₂ CH ₂ CH ₃ 1368 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1360 N CF3 H CH ₂ CH ₂ CH ₃ 1361 N CF3 H CH ₂ CH ₂ CH ₃ 1362 N CF3 H CH ₂ CH ₂ CH ₃ 1363 N CF3 H CH ₂ CH ₂ CH ₃ 1364 N CF3 H CH ₂ CH ₂ CH ₃ 1365 N CF3 H CH ₂ CH ₂ CH ₃ 1366 N CF3 H CH ₂ CH ₂ CH ₃ 1367 N CF3 H CH ₂ CH ₂ CH ₃ 1368 N CF3 H CH ₂ COOC(CH ₃) ₃ 1368 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃	1343	N	CF ₃	CH ₃	OCH ₃	
1346 N CF3 CH3 OCONHPh 1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1349 N CF3 CH2CN OCONHPh 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2OCH2CH3 OCH2Ph 1352 N CF3 CH2OCH2CH3 OCONHPh 1353 N CF3 CH2OCH2CH3 OCH2Ph 1353 N CF3 CH2OCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1356 N CF3 H CH(CH3)2 1357 N CF3 H CH(CH3)32 1358 N CF3 H CH2CH(CH3)2 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2CH=CH2 <td>1344</td> <td>N</td> <td>CF₃</td> <td>CH₃</td> <td>OCH₂CH₃</td> <td></td>	1344	N	CF ₃	CH ₃	OCH ₂ CH ₃	
1347 N CF3 CH2CN OCH3 1348 N CF3 CH2CN OCH2CH3 1349 N CF3 CH2CN OCH2Ph 1350 N CF3 CH2CN OCONHPh 1351 N CF3 CH2OCH2CH3 OCH3 1352 N CF3 CH2OCH2CH3 OCH2Ph 1353 N CF3 CH2OCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH3 1356 N CF3 H CH2CH3 1357 N CF3 H CH(CH3)2 1358 N CF3 H CH(CH3)3CH2CH3 1359 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2CH(CH3)2 1362 N CF3 H CH2CH2CH2CH2 1363 N CF3 H CH2CH2CH2CH3	1345	N	CF ₃	CH ₃	OCH ₂ Ph	
1348 N CF3 CH ₂ CN OCH ₂ CH ₃ 1349 N CF3 CH ₂ CN OCH ₂ Ph 1350 N CF3 CH ₂ CN OCONHPh 1351 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₃ 1352 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₂ Ph 1353 N CF3 CH ₂ OCH ₂ CH ₃ OCONHPh 1354 N CF3 H CH ₃ 1355 N CF3 H CH ₂ CH ₃ 1356 N CF3 H CH ₂ CH ₃ 1357 N CF3 H CH ₂ CH ₃ 1358 N CF3 H CH ₂ CH ₃ 1359 N CF3 H CH ₂ CH ₃ 1360 N CF3 H CH ₂ CH ₃ CH ₃ 1361 N CF3 H CH ₂ CH ₃ CH ₃ 1362 N CF3 H CH ₂ CH ₂ CH ₃ 1363 N CF3 H CH ₂ CH ₂ CH ₃ 1364 N CF3 H CH ₂ CH ₂ CH ₃ 1365 N CF3 H CH ₂ CH ₂ CH ₃ CH ₃ 1366 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1367 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1368 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOCH ₃	1346	N	CF ₃	CH ₃	OCONHPh	
1349 N CF3 CH ₂ CN OCH ₂ Ph 1350 N CF3 CH ₂ CN OCONHPh 1351 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₃ 1352 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₂ Ph 1353 N CF3 CH ₂ OCH ₂ CH ₃ OCONHPh 1354 N CF3 H CH ₃ 1355 N CF3 H CH ₂ CH ₃ 1355 N CF3 H CH ₂ CH ₃ 1356 N CF3 H CH ₂ CH ₃ 1357 N CF3 H CH ₂ CH ₃ 1358 N CF3 H CH ₂ CH ₃ 1359 N CF3 H CH ₂ CH ₃ CH ₃ 1360 N CF3 H CH ₂ CH ₃ CH ₃ 1361 N CF3 H CH ₂ CH ₂ CH ₃ 1362 N CF3 H CH ₂ CH ₂ CH ₃ 1363 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1364 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1365 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1366 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1367 N CF3 H CH ₂ CH ₂ CH ₃ 1368 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOHCH ₃	1347	N	CF ₃	CH ₂ CN	OCH ₃	
1350 N CF3 CH ₂ CN OCONHPh 1351 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₃ 1352 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₂ Ph 1353 N CF3 CH ₂ OCH ₂ CH ₃ OCONHPh 1354 N CF3 H CH ₃ 1355 N CF3 H CH ₂ CH ₃ 1356 N CF3 H CH ₂ CH ₃ 1357 N CF3 H CH(CH ₃) ₂ 1358 N CF3 H CH(CH ₃) ₂ 1359 N CF3 H CH(CH ₃) ₂ 1360 N CF3 H CH ₂ CH(CH ₃) ₂ 1361 N CF3 H CH ₂ CH(CH ₃) ₂ 1362 N CF3 H CH ₂ CH(CH ₃) ₂ 1363 N CF3 H CH ₂ CH(CH ₂ CH ₂ 1364 N CF3 H CH ₂ CH ₂ CH ₃ 1365 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1366 N CF3 H CH ₂ CH ₂ CH ₃ 1367 N CF3 H CH ₂ CH ₂ CH ₃ 1368 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOCH ₃	1348	N	CF ₃	CH ₂ CN	OCH ₂ CH ₃	
1351 N CF3 CH2OCH2CH3 OCH3 1352 N CF3 CH2OCH2CH3 OCH2Ph 1353 N CF3 CH2OCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1356 N CF3 H CH(CH3)2 1357 N CF3 H CH(CH3)2 1358 N CF3 H CH(CH3)2 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2CH2CHCH2 1362 N CF3 H CH2CH2CH2CH2 1363 N CF3 H COOCH2CH3 1364 N CF3 H CH2CH2OH 1365 N CF3 H CH2CH2OCH3 1367 N CF3 H CH2COOC(CH3)3	1349	N	CF ₃	CH ₂ CN	OCH ₂ Ph	
1352 N CF3 CH ₂ OCH ₂ CH ₃ OCH ₂ Ph 1353 N CF3 CH ₂ OCH ₂ CH ₃ OCONHPh 1354 N CF3 H CH ₂ CH ₃ 1355 N CF3 H CH ₂ CH ₃ 1356 N CF3 H CH ₂ CH ₃ 1357 N CF3 H CH(CH ₃) ₂ 1358 N CF3 H CH(CH ₃) ₂ 1359 N CF3 H CH(CH ₃) ₂ 1360 N CF3 H CH ₂ CH(CH ₃) ₂ 1361 N CF3 H CH ₂ CH(CH ₃) ₂ 1362 N CF3 H CH ₂ CH ₂ CH(CH ₃) ₂ 1363 N CF3 H CH ₂ CH ₂ CH ₂ CH ₂ 1364 N CF3 H CH ₂ CH ₂ CH ₂ CH ₃ 1365 N CF3 H COOCH ₂ CH ₃ 1366 N CF3 H CH ₂ CH ₂ CH ₃ 1367 N CF3 H CH ₂ CH ₂ CH ₃ 1368 N CF3 H CH ₂ CH ₂ CH ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOC(CH ₃) ₃ 1369 N CF3 H CH ₂ COOCH ₃	1350	N	CF ₃	CH ₂ CN	OCONHPh	
1353 N CF3 CH2OCH2CH3 OCONHPh 1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1356 N CF3 H CH2CH3 1357 N CF3 H CH(CH3)2 1358 N CF3 H CH(CH3)2 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH(CH3)CH2CH3 1361 N CF3 H CH2CH(CH3)2 1362 N CF3 H CH2CHCH2 1363 N CF3 H CH2CH2CH2 1364 N CF3 H CH2CH2CH2 1365 N CF3 H CH2CH2CH2 1366 N CF3 H CH2CH2CH3 1366 N CF3 H CH2CH2CH3 1367 N CF3 H CH2CH2CH3 1368 N CF3 H CH2CH2CH3 1368 N CF3 H CH2CH2CH3 1369 N CF3 H CH2COOC(CH3)3 1369 N CF3 H CH2COOC(CH3)3 1369 N CF3 H CH2COOCH3	1351	N	CF ₃	CH ₂ OCH ₂ CH ₃	OCH ₃	
1354 N CF3 H CH3 1355 N CF3 H CH2CH3 1356 N CF3 H (CH2)2CH3 1357 N CF3 H CH(CH3)2 1358 N CF3 H CH(CH3)2 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2CH=CH2 1362 N CF3 H C(CH3)H=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H CH2CH2OH 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2CONHCH3 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1352	N	CF ₃	CH ₂ OCH ₂ CH ₃	OCH ₂ Ph	
1355 N CF3 H CH2CH3 1356 N CF3 H (CH2)2CH3 1357 N CF3 H CH(CH3)2 1358 N CF3 H (CH2)3CH3 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2CH=CH2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H COOCH2CH3 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COOC(CH3)3 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1353	N	CF ₃	CH ₂ OCH ₂ CH ₃	OCONHPh	
1356 N CF3 H (CH2)2CH3 1357 N CF3 H CH(CH3)2 1358 N CF3 H (CH2)3CH3 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2C=C(CH3)2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COC(CH3)3 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1354	N	CF ₃	Н	CH ₃	
1357 N CF3 H CH(CH3)2 1358 N CF3 H (CH2)3CH3 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2C=C(CH3)2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COC(CH3)3 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1355	N	CF ₃	Н	CH ₂ CH ₃	
1358 N CF3 H (CH2)3CH3 1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2C=C(CH3)2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COC(CH3)3 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1356	N	CF ₃	Н	(CH ₂) ₂ CH ₃	
1359 N CF3 H CH(CH3)CH2CH3 1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2C=C(CH3)2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COOC(CH3)3 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1357	N	CF ₃	Н	CH(CH ₃) ₂	
1360 N CF3 H CH2CH(CH3)2 1361 N CF3 H CH2C=C(CH3)2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COC(CH3)3 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1358	N	CF ₃	Н	(CH ₂) ₃ CH ₃	
1361 N CF3 H CH2C=C(CH3)2 1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COOC(CH3) 1367 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1359	N	CF ₃	Н	CH(CH ₃)CH ₂ CH ₃	
1362 N CF3 H CH2CH=CH2 1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2COC(CH3) 1367 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1360	N	CF ₃	Н	CH ₂ CH(CH ₃) ₂	
1363 N CF3 H C(CH3)H=CH2 1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2CH2OCH3 1367 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1361	N	CF ₃	Н	CH ₂ C=C(CH ₃) ₂	
1364 N CF3 H COOCH2CH3 1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2CH2OCH3 1367 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1362	N	CF ₃	H	CH ₂ CH=CH ₂	
1365 N CF3 H CH2CH2OH 1366 N CF3 H CH2CH2OCH3 1367 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1363	N	CF ₃	н	C(CH ₃)H=CH ₂	
1366 N CF3 H CH2CH2OCH3 1367 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1364	N	CF ₃	Н	COOCH ₂ CH ₃	
1367 N CF3 H CH2COOC(CH3)3 1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1365	N	CF ₃	Н	CH ₂ CH ₂ OH	
1368 N CF3 H CH2SPh 1369 N CF3 H CH2CONHCH3 1370 N CF3 H CH2COCH3	1366	N	CF ₃	Н	CH ₂ CH ₂ OCH ₃	
1369 N CF ₃ H CH ₂ CONHCH ₃ 1370 N CF ₃ H CH ₂ COCH ₃	1367	N	CF ₃	Н	CH ₂ COOC(CH ₃) ₃	
1370 N CF ₃ H CH ₂ COCH ₃	1368	N	CF ₃	Н	CH ₂ SPh	
	1369	N	CF ₃	Н	CH ₂ CONHCH ₃	
1371 N CF ₃ H COCH3	1370	N	CF ₃	Н	CH ₂ COCH ₃	
	1371	N	CF ₃	Н	СОСНЗ	

No.	х	Υ	R ⁸	R ¹	m.p. [°C]
1372	N	CF ₃	Н	CH ₂ Oph	
1373	N	CF ₃	Н	COPh	
1374	N	CF ₃	Н	CH ₂ CN	
1375	N	CF ₃	Н	CH ₂ CH ₂ CN	
1376	СН	CF ₃	CH ₃	CH ₂ CH ₃	oil

The insecticidally active compounds used according to the invention are known and commercially available.

Deltamethrin, endosulfan, triazaphos, amitraz, piperonyl butoxide and Bacillus thuringiensis, for example, are obtainable from Hoechst Schering AgrEvo GmbH, Berlin, Germany.

The compounds are furthermore described in detail in The Pesticide Manual, 11th ed., British Crop Protection Council, Farnham 1997. Instructions for their preparation are likewise given in this publication.

Baculum viruses are described, for example, in J. Ind. Microbiol. & Biotech. 1997, 19, 192.

The compounds of group (f) are described in WO-A98/57 969, with preparation processes and use examples.

These sources and the literature cited therein are expressly referred to herewith; they are incorporated into this description by reference.

- The insecticides used according to the invention are usually obtainable as commercial formulations. However, they can be formulated, if appropriate, in various ways, depending on the biological and/or chemical physical parameters which prevail. Possible formulations are, for example:
- wettable powders (WP), emulsifiable concentrates (EC), aqueous solutions (SL), emulsions, sprayable solutions, oil- or water-based dispersions (SC), suspoemulsions (SE), dusting agents (DP), seed-dressing products, granules in the form of microgranules, spray granules, coated granules and adsorption granules, water-dispersible granules (WG), ULV formulations, microcapsules, waxes or baits.

These individual types of formulation are known in principle and are described, for example, in:

Winnacker-Küchler, "Chemische Technologie" [Chemical Technology], Volume 7, C. Hauser Verlag Munich, 4th ed. 1986; van Falkenberg,

10

"Pesticides Formulations", Marcel Dekker N.Y., 2nd ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd ed. 1979, G. Goodwin Ltd. London.

The formulation auxiliaries required, such as inert materials, surfactants, solvents and other additives, are likewise known and are described, for example, in:

Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd ed., Darland Books, Caldwell N.J.; H.v. Olphen, "Introduction to Clay Colloid
10 Chemistry", 2nd ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents Guide", 2nd ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte" [Surface-Active
15 Ethylene Oxide Adducts], Wiss. Verlagsgesell., Stuttgart 1967; Winnacker-Küchler, "Chemische Technologie", Volume 7, C. Hauser Verlag Munich, 4th ed. 1986.

Based on these formulations, it is also possible to produce combinations with other pesticidally active compounds, fertilizers and/or growth regulators, for example in the form of a readymix or a tank mix. Wettable powders are preparations, uniformly dispersible in water, which contain, beside the active compound and in addition to a diluent or inert material, wetting agents, for example polyethoxylated alkylphenols, polyethoxylated fatty alcohols, alkyl- or alkylphenolsulfonates, and dispersing agents, for example sodium ligninsulfonate or sodium 2,2'-dinaphthylmethane-6,6'-disulfonate.

Emulsifiable concentrates are prepared by dissolving the active compound in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons, with addition of one or more emulsifiers. As emulsifiers, the following can be used, for example: calcium salts of alkylarylsulfonates, such as Ca dodecylbenzenesulfonate, or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide/ethylene oxide condensation products, alkyl polyethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters or polyoxyethylene sorbitol esters.

Dusting agents are obtained by grinding the active compound with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite, pyrophillite or diatomaceous earth. Granules can be prepared either by atomizing the active compound onto adsorptive, granulated inert material or by applying active compound concentrates onto the surface of carriers such as sand or kaolinites, or of granulated inert material, by means of adhesives, for example polyvinyl alcohol or sodium polyacrylate, or alternatively mineral oils. Suitable active compounds can also be granulated in the fashion conventional for the preparation of fertilizer granules, if desired as a mixture with fertilizers.

10

15

In wettable powders, the concentration of active compound is, for example, from approximately 10 to 90% by weight, the remainder to 100% by weight being composed of customary formulation components. In the case of emulsifiable concentrates, the concentration of active compound may be from approximately 5 to 80% by weight. Formulations in dust form comprise at most from 5 to 20% by weight of active compound, sprayable solutions from about 2 to 20% by weight. In the case of granules, the content of active compound depends partly on whether the active compound is in liquid or solid form and on which granulation auxiliaries, fillers, etc. are being used.

In addition, the abovementioned formulations of active compound comprise, if appropriate, the tackifiers, wetting agents, dispersants, emulsifiers, penetrants, solvents, fillers or carriers which are customary in each case.

The concentrates, which are in the commercially customary form, are if appropriate diluted in the customary manner for their use, for example using water in the case of wettable powders, emulsifiable concentrates, dispersions and some microgranules. Dust and granule preparations, and also sprayable solutions, are normally not diluted any further with other inert substances before being used.

The application rate required varies with the external conditions, such as temperature and humidity among others. It can fluctuate within wide limits, for example between 0.1 g/ha and 1.0 kg/ha or more of active compound, but is preferably between 0.1 g/ha and 0.3 kg/ha. Owing to the synergistic

effects between Bt cotton and insecticide, particular preference is given to application rates of from 0.5 to 50 g/ha.

For pyrethroids (b), application rates of from 0.1 to 10 g/ha are preferred and particular preference is given to application rates of from 0.1 to 6.0 g/ha.

The active compounds according to the invention may be present in their commercially customary formulations, and in the application forms prepared from these formulations, as mixtures with other active compounds, such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth regulators or herbicides.

Other preferred co-components for mixtures are

15

20

25

1. from the group of phosphorus compounds azamethiphos, azinphos-ethyl-, azinphosmethyl, bromophos, bromophosethyl, cadusafos (F-67825), chlorethoxyphos, chlorfenvinphos, chlorpyrifos-methyl, demeton, demeton-S-methyl, demeton-S-methyl sulfone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, EPN, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitriothion, fensulfothion, fenthion, fonofos, formothion, fosthiazate (ASC-66824), isozophos, isothioate, isoxathion, methacrifos, methidathion, salithion, mevinphos, naled, omethoate, oxydemeton-methyl, phenthoate, phorate, phosalone, phosfolan, phosphocarb (BAS-301), phosmet, phosphamidon, phoxim, pirimiphos, primiphos-ethyl, pirimiphos-methyl, propaphos, proetamphos, prothiofos, pyraclofos, pyridapenthion, quinalphos, sulprofos, temephos, terbufos, tebupirimfos, tetrachlorvinphos, thiometon, triazophos, trichlorphon, vamidothion;

30

2. from the group of carbamates alanycarb, 2-sec-butylphenyl methylcarbamate (BPMC), carbosulfan, cloethocarb, benfuracarb, ethiofencarb, furathiocarb, HCN-801, isoprocarb, methomyl, 5-methyl-m-cumenyl butyryl(methyl)carbamate, oxamyl, propoxur, thiodicarb, thiofanox, 1-methylthio(ethylideneamino) N-methyl-N-(morpholinothio)carbamate (UC 51717), triazamate;

- from the group of carboxylic acid esters
 acrinathrin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)-(1R)-cis, 2,2-di-methyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, betacyfluthrin, beta-cypermethrin, bioallethrin, bioallethrin ((S)-cyclopentyl isomer), bioresmethrin, biphenthrin, (RS)-1-cyano-1-(6-phenoxy-2-pyridyl)-methyl (1RS)-trans-3-(4-tert-butylphenyl)-2,2-dimethylcyclopropane-carboxylate (NCI 85193), cycloprothrin, cythithrin, cyphenothrin, empenthrin, esfenvalerate, fenfluthrin, flucythrinate, flumethrin, fluvalinate
 (D isomer), imiprothrin (S-41311), permethrin, phenothrin ((R) isomer), prallethrin, pyrethrins (naturally occurring products), resmethrin, tefluthrin, tetramethrin, theta-cypermethrin (TD-2344), transfluthrin, zeta-cypermethrin (F-56701);
- 4. from the group of amidines chlordimeform;
 - from the group of tin compounds cyhexatin;

20

25

30

6. others

ABG-9008, acetamiprid, Anagrapha falcitera, AKD-1022, AKD-3059, ANS-118, Bacillus thuringiensis, Beauveria bassianea, bensultap, bifenazate (D-2341), binapacryl, BJL-932, bromopropylates, BTG-504, BTG-505,

buprofezin, camphechlor, cartap, chlorobenzilates, chlorfluazuron, 2-(4-chlorophenyl)-4,5-diphenylthiophene (UBI-T 930), chlorfentezines, chromafenozides, (ANS-118), CG-216, CG-217, CG-234, A-184699, (2-naphthylmethyl) cyclopropanecarboxylate (Ro12-0470), cyromazin, diacloden (thiamethoxam), ethyl N-(3,5-dichloro-4-(1,1,2,3,3,3-hexafluoro-1-propyloxy)phenyl)carbamoyl)-2-chloro-benzocarboximidate, DDT, dicofol, diflubenzuron, N-(2,3-dihydro-3-methyl-1,3-thiazol-2-ylidene)-2,4-xylidene, dinobuton, dinocap, diofenolan, DPX-062, emamcetin-benzoates (MK-

244), endosulfan, ethiproles, (sulfethiproles), ethofenprox, etoxazoles (YI-5301), fenoxycarb, fluazuron, flumites, (flufenzines, SZI-121), 2-fluoro-5-(4-

(4-ethoxyphenyl)-4-methyl-1-pentyl)diphenyl ether (MTI 800), granulosis and nuclear polyhedrosis viruses, fenpyroximates, fenthiocarb, flubenzimines, flucycloxuron, flufenoxuron, flufenprox (ICI-A5683), fluproxyfen, gamma-HCH, halofenocides (RH-0345), halofenprox (MTI-732), hexaflumuron (DE-473), hexythiazox, HOI-9004, hydramethylnon (AC 217300), lufenuron, indoxacarb (DPX-MP062), kanemites (AKD-2023), M-020, MIT-446, ivermectin, M-020, methoxyfenocides (Intrepid, RH-2485), milbemectin, NC-196, neemgard, nitenpyram (TI-304), 2-nitromethyl-4,5-dihydro-6H-thiazine (DS 52618), 2-nitromethyl-3,4-dihydrothiazole (SD 35651), 2-nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), pyriproxyfen (S-71639), NC-196, NC-1111, NNI-9768, novaluron (MCW-275), OK-9701, OK-9601, OK-9602, propargites, pymethrozines, pyridaben, pyrimidifen (SU-8801), RH-0345, RH-2485, RYI-210, S-1283, S-1833, SB7242, SI-8601, silafluofen, silomadines (CG-177), SU-9118, tebufenpyrad (MK-239), teflubenzuron, tetradifon, 15 tetrasul, thiacloprid, thiocyclam, TI-435, tolfenpyrad (OMI-88), triflumuron, verbutin, vertalec (Mykotal), YI-5301.

The active compound content of the use forms prepared from the commercial formulations can be from 0.00000001 to 95% by weight, preferably between 0.00001 and 1% by weight, of active compound.

Owing to the synergistic effects with the Bt cotton plants and with one another, in particular mixtures of the active compounds used according to the invention can be employed in more dilute formulations.

Formulations of mixtures of pyrothroids and organophosphorus compounds contain correspondingly, for example, preferably from 0.05 to 0.01% by weight of pyrethroid and from 0.25 to 0.20% by weight of organophosphorus compound, particularly preferably from 0.01 to 0.001% by weight of pyrethroid and from 0.2 to 0.1% by weight of organophosphorus compound.

For mixtures of pyrethroids and endosulfan, preference is given to a ratio of from 0.05 to 0.01% by weight of pyrethroid to from 0.7 to 0.2% by weight of endosulfan, and particular preference is given to from 0.01 to 0.001% by weight of pyrethroid and from 0.35 to 0.2% by weight of endosulfan.

5

15

For mixtures of pyrethroids and Bacillus thuringiensis Bt, the values given above for pyrethroids apply, and the Bt proportion is preferably from 0.01 to 0.001, particularly preferably from 0.005 to 0.001, % by weight.

Mixtures of endosulfan and amitraz preferably contain from 0.35 to 0.2% by weight of endosulfan and from 0.6 to 0.2% by weight of amitraz.

In their commercial formulations, the active compounds used according to the invention can also be employed in combination with other fungicides which are known from the literature.

Suitable fungicides which are known from the literature are, for example, the following products:

aldimorph, andoprim, anilazine, azoxystrobin, azaconazole, BAS 450F, benalaxyl, benodanil, benomyl, bethoxazin, binapacyl, bion (CGA-245704), bitertanol, bromuconazole, buthiobate, captafol, captan, carbendazim, carboxin, carpropamides, CGA 173506, cymoxanil, cyproconazoles, cyprodinil, cyprofuram, diflumetorim, dichlofluanid, dichlomezin, diclobutrazol, diclocymet (S-2900), diclomezine, diethofencarb,

difenconazole (CGA 169374), difluconazole, dimethirimol, dimethomorph, diniconazole, dinocap, dithianon, dodemorph, dodine, edifenfos, epoxiconazole, ethirimol, etridiazol, famoxadone, (DPX-JE874), fenarimol, fenazaquin, fenbuconazole, fenfuram, fenhexamid, fenpiclonil, fenpropidin, fenpropimorph, fentin acetates, fentin hydroxides, ferimzone (TF164),

fluazinam, fluobenzimine, fludioxonil, flumetover (RPA-403397), fluquinconazole, fluorimide, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, fosetylaluminum, fuberidazole, furalaxyl, furconazole, furametpyr (S-82658), furmecyclox, guazatine, hexaconazole, imazalil, imibenconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, KNF 317, kresoxime-

methyl (BAS-490F), copper compounds such as Cu oxychloride, oxime-Cu, Cu oxides, mancozeb, maneb, mepanipyrim (KIF 3535), mepronil, metalaxyl, metalaxyl-M (CGA-329351), metconazole, methasulfocarb, methfuroxam, metominofen (SSF-126), mentominostrobin (fenominostrobin, SSF-126), MON 24000, MON-6550, MON-41100, myclobutanil, nabam, nitrothalidopropyl, nuarimol, ofurace, OK-9601, OK-9603, oxadixyl, oxycarboxin, paclobutrazole, penconazole, pencycuron, PP 969, polyoxins, probenazole, propineb, prochloraz, procymidon, propamocarb, propiconazole, prothiocarb, pyracarbolid, pyrazophos, 10 pyrifenox, pyrimethanil, pyroquilon, quinoxyfen (DE-795), rabenzazole, RH-7592, RH-7281, sulfur, spiroxamine, SSF-109, tebuconazole. tetraconazole, TTF 167, thiabendazole, thicyofen, thifluzamides (RH-130753), thiofanatemethyl, thiram, TM-402, tolclofos-methyl, tolyfluanid, triadimefon, triadimenol, triazoxide, trichoderma, harzianum(DHF-471), 15 tricyclazole, tridemorph, triflumizol, triforine, triflumizoles, (UCC-A815), triticonazoles, uniconazole, validamycin, vinchlozoline, XRD 563, zineb, sodium dodecylsulfonates, sodium dodecylsulfate, sodium C13-C15alcohol ether sulfonate, sodium cetostearyl phosphate ester, dioctyl sodium sulfosuccinate, sodium isopropyl naphthalenesulfonate, sodium methylenebisnaphthalene sulfonate, cetyl-trimethyl-ammonium chloride, salts of long-chain primary, secondary or tertiary amines, alkylpropyleneamines, laurylpyrimidinium bromide, ethoxylated quaternized fatty amines, alkyldimethylbenzylammonium chloride and 1-hydroxyethyl-2alkylimidazoline.

25

The abovementioned co-components are known active compounds, most of which are described in C.D.S. Tomlin, S.B. Walker, The Pesticide Manual, 11th edition (1997), British Crop Protection Council.

The content of active compound of the use forms prepared from the commercial formulations can vary within wide ranges; the active compound concentration of the use forms can be from 0.0001 to 95% by weight of active compound, and is preferably between 0.0001 and 1% by weight. Such mixtures contain, for example, from 0.05 to 0.01% by weight of a pyrethroid and from 0.5 to 2% by weight of a fungicide, such as pyrazofos

or prochloraz. The application is carried out in a customary manner adapted to the use forms.

The content of active compound of the use forms prepared from the
commercial formulations can be from 0.00000001 to 95% by weight of
active compound and is preferably between 0.00001 and 1% by weight.

In a preferred variant of the process according to the invention, the insecticidally active compound and a fungicide are applied together.

Application is carried out in a customary manner adapted to the use forms.

The process according to the invention is preferably suitable for application in the first (L1) larval stage, but preference is likewise given to application in later (L2 and/or L3) larval stages and/or in adult insects, in particular when controlling Lepidoptera.

For the purpose of the invention, the term "Bt cotton" is to be understood as cotton plants or crops which are genetically modified in such a way that they contain and express one or more genes from Bacillus thuringiensis which encode crystal proteins from the Cry family, see, for example, D.L. Prieto-Sansónor et al., J. Ind. Microbiol. & Biotechn. 1997, 19, 202 and 1997 BCPL Symposium Proceedings No. 68, 83-100).

Preference is given to genes encoding the proteins Cry1Aa, Cry1Ad, Cry1Ab, Cry1Ae, Cry1Ac, Cry1Fa, Cry1Fb, Cry1Ga, Cry1Gb, Cry1Da, Cry1Db, Cry1Ha, Cry1Hb, Cry1Ca, Cry1Cb, Cry1Ea, Cry1Eb, Cry1Ja, Cry1Db, Cry1Bb, Cry1Bc, Cry1Bd, Cry1Ba, Cry1Ka, Cry1la, Crylb, Cry7Aa, Cry7Ab, Cry9Ca, Cry9Da, Cry9Ba, Cry9Aa, Cry8Aa, Cry8Ba, Cry8Ca,
Cry3Aa, Cry3Ca, Cry3Ba, Cry3Bb, Cry4Aa, Cry4Ba, Cry10Aa, Cry19Aa, Cry19Ba, Cry16Aa, Cry17Aa, Cry5Ab, Cry5Ba, Cry12Aa, Cry13Aa, Cry14Aa, Cry15Aa, Cry2Aa, Cry2Ab, Cry2Ac, Cry18Aa, Cry11Aa, Cry11Ba, Cyt1Aa, Cyt1Ab, Cyt1Ba, Cyt2Aa, Cyt2Ba, Cry6Aa, Cry6Ba.

10

15

Particular preference is given to Cry3Ca, CryIAb, Cry7Aa, Cry9C and CryIDa.

Likewise, particular preference is given to CrylAa, CrylAb, CrylAc, CrylB, CrylC, Cry2A, Cry3, Cry3A, Cry3C,Cry5 and Cry9C.

Very particular preference is given to the subfamilies Cryl and Cry9, in particular to Cry IA, CryIC, CryIF, and Cry9C.

10 Preference is furthermore given to using plants containing genes for a plurality of Bt proteins.

In addition to the expression of toxins from Bacillus thuringiensis (Bt) for insect resistance, the transgenic crop plants may also have other

15 transgenic properties, for example further insect resistances (for example by expression of a protease or peptidase inhibitor, cf. WO-A-95/35031), herbicide resistances (for example against glufosinates or glyphosates by expression of the pat or bar gene) or else resistance against nematodes, fungi or viruses (for example by expression of a glucanase, chitinase), or

20 may also be genetically modified in their metabolic properties, resulting in a qualitative and/or quantitative change of ingredients (for example by modification of the energy, carbohydrate, fatty acid or nitrogen metabolism or by metabolite streams which influence these).

Preference is given, for example, to Bt cotton plants which additionally have glufosinate or glyphosate resistance.

Bt cotton is known and, including methods for its preparation, described in detail, for example, in US-A-5,322,938; Prietro-Samsonór et al., J. Ind. Microbiol. & Biotechn. 1997, 19, 202, and H. Agaisse and D. Lereclus, J.

30 Bacteriol. 1996, 177, 6027.

Bt cotton is furthermore commercially available in different varieties, for example under the name NuCOTN® from Deltapine (USA).

For the method according to the invention, preference is given to the following types of Bt cotton: NuCOTN33® and NuCOTN33B®.

Routes for preparing transgenic plants which, in comparison to naturally occurring plants, have modified properties, consist, for example, in the use of genetic engineering process (see, for example, Willmitzer L., 1993, Transgenic plants. In: Biotechnology, A Multivolume Comprehensive Treatise, Rehm et al. (eds.) Vol.2, 627-659, VCH Weinheim, Germany; D'Halluin et al., 1992, Biotechnology 10, 309-314, McCormick et al., Plant Cell Reports, 1986, 5, 81-84; EP-A-0221044 and EP-A-0131624).

What is described is, for example, the preparation of genetically modified plants with respect to modifications of the hydrocarbon metabolism of the plant (for example WO 94/28146, WO 92/11376, WO 92/14827, WO 91/19806), resistances against certain herbicides, for example of the glufosinate type (cf., for example EP-A-0242236, EP-A-242246) or glyphosate type (for example WO 92/00377).

Numerous techniques of molecular biology which allow the preparation of novel transgenic plants having modified properties are known to the person skilled in the art; see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker, Gene und Klone [Genes and clones], VCH Weinheim 2nd Edition, 1996 or Christou, Trends in Plant Science 1 (1996) 423-431).

In order to carry out such genetic manipulations, it is possible to introduce suitable nucleic acid molecules into plants or plant cells, for example by using suitable vectors which allow mutagenesis or a change in the sequence to occur by recombination of DNA sequences. Using the abovementioned standard processes, it is possible, for example, to exchange bases, to remove partial sequences or to add natural or synthetic sequences. It is also possible, for example, to replace the naturally occurring genes completely by heterologous or synthetic genes,

preferably under the control of a promoter which is active in plant cells ("gene replacement"). To link the DNA fragments with each other, it is possible to attach adapters or linkers to the fragments.

5 Plant cells having a reduced activity of a gene product can be prepared, for example, by expressing at least one appropriate antisense-RNA, a sense-RNA to achieve a cosuppression effect, or by expressing at least one appropriately constructed ribozyme which specifically cleaves transcripts of the abovementioned gene product.

10

15

To this end, it is possible to employ both DNA molecules which comprise the entire coding sequence of the gene product including any flanking sequences that may be present, and DNA molecules which comprise only parts of the coding sequence, it being necessary for these parts to be long enough to cause an antisense effect in the cells. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but which are not entirely identical.

When expressing nucleic acid molecules in plants, the synthesized protein can be localized in any desired compartment of the plant cells. However, to achieve localization in a certain compartment, it is, for example, possible to link the coding region with DNA sequences which ensure localization in a certain compartment or at a certain point of time (at a certain stage or chemically or biologically induced) (for example transit or signal peptides, time- or site-specific promoters). Such sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).

30 Transgenic plant cells can be regenerated to whole plants using known techniques.

In this manner, it is possible to obtain transgenic plants which have modified properties by overexpression, suppression or inhibition of homologous (i.e. natural) genes or gene sequences or by expression of heterologous (i.e. foreign) genes or gene sequences.

The process according to the invention is suitable for controlling a large

number of harmful organisms which occur, in particular, in cotton, in
particular insects, arachnids and helminths, very particularly preferably
insects and arachnids. The abovementioned pests include:
From the order of the Acarina, for example Acarus siro, Argas spp.,
Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta
oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma
spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp.,
Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.,
Eotetranychus spp., Oligonychus spp. and Eutetranychus spp.
From the order of the Isopoda, for example, Oniscus asselus, Armadium
vulgar and Porcellio scaber.

From the order of the Diplopoda, for example, Blaniulus guttulatus.

From the order of the Chilopoda for example, Geophilus carpophagus and Scutigera spp.

From the order of the Symphyla, for example, Scutigerella immaculata.

- From the order of the Thysanura, for example, Lepisma saccharina.

 From the order of the Collembola, for example, Onychiurus armatus.

 From the order of the Orthoptera, for example, Blatta orientalis, Periplaneta americana, Leucophaea madeirae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides,
- 25 Melanoplus differentialis and Schistocerca gregaria.
 From the order of the Isoptera, for example, Reticulitermes spp.
 From the order of the Anoplura, for example, Phylloera vastatrix,
 Pemphigus spp., Pediculus humanus corporis, Haematopinus spp. and
 Linognathus spp.
- 30 From the order of the Mallophaga, for example, Trichodectes pp. and Damalinea spp.

From the order of the Thysanoptera, for example, Hercinothrips femoralis, Thrips tabaci.

From the order of the Heteroptera, for example, Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus and Triatoma spp.

From the order of the Homoptera, for example, Aleurodes brassicae,

Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelus bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae,

Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp and Psylla spp.
From the order of the Lepidoptera, for example, Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria,

Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella,
 Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana,
 Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea,
 Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella,
 Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria
 mellonella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana,

Clysia ambiguella, Homona magnanima, Tortrix viridana.

From the order of the Coleoptera, for example, Anobium punctatum,
Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus,
Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon
cochleariae, Diabrotica spp., Psylloides chrysocephala, Epilachna

varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrynchus assimilis, Hypera postica, Dermestes spp., Trogoderma, Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha,

Amphimallon solstitialis, Costelytra zealandica.

From the order of the Hymenoptera, for example, Diprion spp.,

Hoplocampa spp., Lasius spp., Monomorium pharaonis and Vespa spp.

OFFICE NATA

25

30

From the order of the Diptera, for example, Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp., Stomoxys spp., Oestrus spp.,

5 Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae and Tipula paludosa.

From the order of the Siphonaptera, for example, Xenopsylla cheopsis and Ceratophyllus spp.

From the order of the Arachnida, for example, Scorpio maurus and Latrodectus mactans.

From the class of Helminthen, for example, Haemonchus,
Trichostrongulus, Ostertagia, Cooperia, Chabertia, Strongyloides,
Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaris and Heterakis
as well as Fasciola.

The method according to the invention is preferably suitable for controlling insects from the orders Homoptera, preferably Bemisia tabaci,
Trialeurodes vaporariorum, Aphis gossypii, Myzus spp., Lepidoptera,
preferably Agrotis spp., Heliothis spp., Mamestra brassicae, Prodinia litura,
Spodoptera spp., Trichoplusia ni, and Coleoptera, preferably Anthonomus spp.

The method according to the invention is particularly preferably suitable for controlling insects from the class of the Lepidoptera, particularly preferably of Spodoptera, Agrotis, Heliothis, and very particularly preferably of Spodoptera littoralis, Agrotis segetum and Heliothis virescens.

Surprisingly, the method is also suitable for controlling harmful organisms which are resistant to individual classes of insecticides, such as pyrethroids, organophosphorus compounds or Bt.

15

The invention is illustrated in more detail by the examples, without limiting it thereby.

The contents of German Patent Application 198 25 333.8, whose priority is claimed by the present application, and the contents of the appended abstract, are incorporated herein specifically by way of reference; they are considered as part of the present description by way of citation.

Example 1

Heliothis virescens

10

15

Seven-week-old cotton plants (common cotton, Vulkano®) and Bt cotton (NuCOTN 33B®, Delta Pine) were sprayed with the insecticides to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 8 (L3) larvae of Heliothes virescens. Feeding damage and mortality were assessed after 2 and 4 days.

Test conditions: greenhouse, 23°C, 60 % atmospheric humidity. All three active compounds showed a synergistic effect.

		2 d				4 d					
		Feedin	g dama	age/mort	ality	Feeding damage/mortality					
Compour	nd	Cotton		Bt cotto	on	Cotton		Bt cotton			
g of activ	е										
compoun	id/ha										
Control 1		5	0	<1	0	7	0	1	75		
Control 2		10	0	<1	25	15	0	1	88		
Thiodan											
(endosulf	an)						į				
EC 33	525	0	100	<1	63	0	100	<1	88		
l	175	3	63	<1	0	3	63	<1	75		
	58	5	0	<1	0	7	0	<1	75		
	19	10	0	<1	0	15	0	<1	88		
	6.5	10	0	<1	0	20	0	2	75		
Decis											
(deltamet	hrin)										
EC 2.5	10	0	75	0	75	0	100	0	100		
	3.3	0	75	0	75	0	100	0	100		
	1.1	2	75	<1	75	2	100	<1	88		
	0.37	3	13	1	37	7	50	1	100		
	0.12	12	0	<1	37	12	25	1	88		
Dipel (Bt)					l						
WP3	100	<1	0	<1	13	1	100	1	100		
	33	1	0	<1	75	2	100	<1	100		
	11	1	0	<1	50	2	100	<1	100		
	3.7	4	0	<1	25	4	50	<1	100		
	1.2	6	0	<1	0	10	0	1	100		

Decis and Dipel showed a synergistic effect.

Spodoptera littoralis

Three-month-old cotton plants (common cotton, Vulkano) and Bt cotton (NuCOTN 33B®) were sprayed with the insecticide to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 10 (L3) larvae of Spodoptera littoralis.

Feeding damage and mortality were assessed after 2, 4 and 7 days.

10

Test conditions: (as for Example 1)

		2d				4d				7d				
		Feedi	ing dar	nage/		Feed	ling da	mage/	'	Feeding damage/				
		morta	ılity			morta	ality			morta	ality			
Compour	nd	Cotto	n	Bt co	tton	Cotto	on	Bt co	tton	Cotto	n	Bt co	tton	
active														
compoun	ids/ha													
Control 1		8	10	8	0	15	10	12	0	20	10	35	0	
Control 2		10	20	10	0	12	20	15	0	20	20	50	0	
Control 3		6	20	10	0	15	20	10	0	20	20	45	0	
Hostathic	n													
(triazopho	os)							1						
EC 40	125	3	100	1	100	3	100	1	100	3	100	1	100	
	42	8	20	2	40	10	30	2	60	15	30	2	100	
	14	5	10	3	40	10	20	5	40	15	20	15	50	
	5	5	40	7	10	6	40	8	20	10	40	25	20	
	1.5	5	30	6	0	8	30	10	0	20	30	25	0	

Spodoptera littoralis

5 Six-week-old cotton plants (common cotton, Vulkano®) and Bt cotton (NuCOTN 33B®) were sprayed with the insecticide to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 10 (L3) larvae of Spodoptera littoralis.

Feeding damage and mortality were assessed after 2, 4 and 7 days.

10

Test conditions: (see Example 1)

		2d				4d				7d			
		Feeding damage/ mortality				Feedi morta	•	mage/		Feeding damage/ mortality			
Compour	nd	Cotto	n	Bt cot	ton	Cotto	n	Bt cot	ton	Cotto	n	Bt cot	ton
active													
compoun	ds/ha												
Control 1		8	0	10	0	20	0	20	0	60	0	50	0
Control 2		10	0	10	0	40	0	40	0	60	0	70	0
Control 3		10	0	10	0	25	0	50	0	70	0	40	0
Thiodan													
(endosulf	an)									i			
EC 33	525	2	40	3	80	5	40	3	80	10	50	4	90
	175	6	0	2	10	15	0	6	30	25	0	8	80
	58	6	0	8	0	20	0	25	0	35	0	50	0
	19	12	0	8	0	40	0	30	0	80	0	50	0
	6.5	10	0	10	0	40	0	40	0	100	0	50	0

Spodoptera littoralis

5 Seven-week-old cotton plants (common cotton, Felix®) and Bt cotton (NuCOTN 33B®) were sprayed with the insecticides to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 10 (L3) larvae of Spodoptera littoralis.

Feeding damage and mortality were assessed after 2, 4 and 7 days.

10

Test conditions: (see Example 1)

	2d				4d				7d			
	Feeding damage/ mortality				Feed mort	•	lamage	e/	Feeding damage/ mortality			
Compound active	Cotto	on	Bt co	tton	Cotto	on	Bt co	tton	Cotto	Cotton Bt cotto		
compounds/ha												
Control 1	12	0	10	0	20	0	20	0	40	0	50	0
Control 2	12	0	10	0	25	0	25	0	40	0	50	0
Control 3	12	0	10	0	30	0	30	0	40	0	40	0
Brestan (fentin)												
1000	3	0	3	20	4	0	3	50	4	80	3	100
300	8	0	10	0	10	20	10	20	10	70	12	80
100	10	0	10	0	25	0	25	0	30	0	40	30
30	10	0	10	0	30	0	20	0	50	0	40	0
Piperonyl butoxide												
1500	10	0	10	0	20	20	25	20	50	20	30	50
500	10	0	10	0	20	0	25	20	40	0	40	40
166	10	0	10	0	25	0	25	0	50	0	35	20
56	10	0	8	0	20	0	20	0	40	0	40	0
Vertimec												
(acemectin) EC 1.8												
300	7	20	5	20	8	20	5	90	10	100	8	100
100	8	0	8	10	8	20	12	50	10	80	12	100
30	10	0	10	0	15	0	10	50	25	20	10	90
10	10	0	8	0	30	0	12	30	50	0	30	70

Spodoptera littoralis

5 Five-week-old cotton plants (common cotton, Vulkano®) and Bt cotton (NuCOTN 33B®) were sprayed with the insecticides to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 10 (L3) larvae of Spodoptera littoralis.

Feeding damage and mortality were assessed after 2, 4 and 7 days.

10

Test conditions: (see Example 1)

	2d				4d				7d			
	Fee	ding da	ımage	/	Fee	eding d	lamag	e/	Feeding damage/			
	mor	tality	,		mo	rtality			mort	ality		
Compound active	Cot	ton	Bt co	otton	Cot	ton	Bt co	otton	Cotton Bt co			tton
compounds/ha												
Control	10	0	10	0	35	0	15	0	50	0	20	0
Decis EC 2.5												
30	0	80	1	100	0	100	1	100	0	100	1	100
10	1	90	3	70	1	100	3	80	1	100	8	100
3	5	20	5	70	25	20	6	80	40	20	8	100
1	10	10	8	10	25	10	12	10	40	10	25	10
Thiodan EC33												
1000	1	90	0	80	1	100	0	100	1	100	0	100
300	4	40	0	80	5	40	0	80	8	40	0	100
100	5	40	3	60	10	40	6	60	20	40	10	60
Decisdan EC 0.5												
(5+350g/l)												
30+2100	0	100	0	100	0	100	0	100	0	100	0	100
10+700	0	100	0	100	0	100	0	100	0	100	0	100
3+210	1	90	0	100	2	90	0	100	2	90	0	100
1+70	5	30	5	60	15	30	12	60	25	30	25	60
Decisdan EC 0.5												
(5+300g/l)												
30+2100	0	100	0	100	0	100	0	100	0	100	0	100
10+700	0	100	0	80	0	100	0	100	0	100	0	100
3+210	1	90	1	90	1	90	3	90	1	90	5	90
1+70	5	50	3	60	10	50	8	60	25	50	15	60

Decis, Thiodan and Decisdan (5 + 350 g/l) showed a synergistic effect.

Agrotis segetum

5 Eight-week-old cotton plants (common cotton, Felix®) and Bt cotton (NuCOTN 33B®) were sprayed with the insecticides to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 10 (L3) larvae of Agrotis segetum.

Feeding damage and mortality were assessed after 2, 4 and 7 days.

10

Test conditions: (see Example 1)

	2 d				4 d					
	Feeding	dama	age/morta	ality	Feeding damage/mortality					
Compound	Cotton		Bt cotto	n	Cotton		Bt cotton			
active										
compounds/ha										
Control 1	3	0	3	0	10	0	4	0		
Control 2	0	0	3	0	10	0	3	0		
Piperonyl										
butoxide										
3000	1	80	0	80	1	90	0	100		
1000	1	30	0	30	2	60	1	90		
300	0	50	1	60	2	60	1	90		
Vertimec EC										
(avamectin)										
1.8										
300	0	40	1	80	3	60	2	100		
100	0	50	1	90	1	80	1	90		
30	1	10	1	0	1	10	1	20		

Example 7

Agrotis segetum

5 Seven-week-old cotton plants (common cotton, Felix®) and Bt cotton (NuCOTN 33B®) were sprayed with the insecticide to be tested with the aid of a track sprayer (200 l/ha). After drying, plants were infected with 10 (L3) larvae of Agrotis segetum.

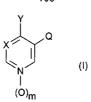
Feeding damage and mortality were assessed after 2, 4 and 7 days.

10

Test conditions: (see Example 1)

	2d				4d				7d			
	Feeding damage/				Feeding damage/				Feeding damage/			
	mortality				mortality				mortality			
Compound	Cotton		Bt cotton		Cotton		Bt cotton		Cotton		Bt cotton	
active												
compounds/ha												
Control 1	10	0	35	0	10	0	40	0	10	0	50	0
Control 2	40	0	10	0	50	0	20	0	50	0	20	0
Control 3	20	0	20	0	30	0	30	0	40	0	35	0
Control 4	30	0	30	0	40	0	40	0	40	0	45	0
Decis												
(deltamethrin)												
EC 2.5												
10	1	60	0	50	2	70	0	90	2	80	0	100
3.3	0	0	0	40	3	30	0	50	3	30	0	50
1.1	2	0	0	20	2	20	0	30	3	20	0	30
0.37	3	0	10	20	5	20	15	20	5	10	15	20
0.12	2	0	3	0	5	0	0	0	5	0	0	0

15 A synergistic effect is clearly noticeable.


Comprises/comprising and grammatical variations thereof when used in this specification are to be taken to specify the presence of stated features, integers, steps or components or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

•:•••

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

- 1. A method for controlling harmful organisms in genetically modified cotton plants which contain a gene derived from Bacillus thuringiensis which encodes and expresses an insecticidally active protein, which comprises applying an insecticidally effective amount of one or more compounds from the following groups a-f to the plants, to their seeds or propagation stock and/or to the area in which they are cultivated:
- a) Organophosphorus compounds:
 triazophos, monocrotophos, methamidophos, chlorpyrifos, parathion,
 acephate, profenofos, malathion, heptenophos;
- Pyrethroids:
 tralomethrin, cypermethrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, fenvalerates, (alpha)-cypermethrin, cyfluthrin, fenpropathrin, etofenprox;
- c) Carbamates:
 aldicarb, bendiocarb, carbaryl, carbofuran, formetanates, pirimicarb;
- d) Biopesticides:
 Bacillus thuringiensis, granuloses and nuclear polyhedrosis viruses,
 Beauveria bassiana, Beauveria brogniartii, baculoviruses, such as
 Autographa california;
- Others:

 endosulfan, abamectin, XDE-105, diafenthiuron, fipronil, chlorfenapyr,
 tebufenocides, fenazaquin, imidacloprid, triazamates, fentin, amitraz, MK-242;
- f) 4-Haloalkyl-3-heterocyclylpyridines and 4-haloalkyl-5heterocyclylpyrimidines of the formula (I), if appropriate also in the form of their salts,

where the symbols and indices have the following meanings:

- is halo-C₁-C₆-alkyl;
- is CH or N;
- is 0 or 1;
- is a 5-membered heterocyclic group

in which

a)
$$X^1 = W$$
, $X^2 = NR^a$, $X^3 = CR^bR^1$ or

b)
$$X^1 = NR^a$$
, $X^2 = CR^bR^1$, $X^3 = W$ or

c)
$$X^1 = V$$
, $X^2 = CR^aR^1$, $X^3 = NR^b$ or

c)
$$X^1 = V$$
, $X^2 = CR^aR^1$, $X^3 = NR^b$ or
d) $X^1 = V$, $X^2 = CR^aR^2$, $X^3 = CR^bR^3$ or

e)
$$X^1 = V$$
, $X^2 = CR^4R^5$, $X^3 = CR^6R^7$ or

f)
$$X^1 = NR^a$$
, $X^2 = CR^bR^1$, $X^3 = NR^8$;

R^a and R^b together are a bond

V is oxygen, sulfur or NR⁹;

W is oxygen or sulfur;

 R^1 is hydrogen, (C1-C20)-alkyl, (C2-C20)-alkenyl, (C2-C20)-alkynyl, (C3-C8)cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₆-C₈)-cycloalkynyl, 5 where the six last-mentioned radicals are optionally substituted by one or more radicals from the group halogen, cyano, nitro, hydroxyl, -C(=W) R^{10} , -C(=NOR 10) R^{10} , $-C(=NNR^{10}_{2})R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_{2}$, $-OC(=W)R^{10}$ $-OC(=W)OR^{10}$, $-NR^{10}C(=W)R^{10}$, $-N[C(=W)R^{10}]_2$. -NR¹⁰C(=W)OR¹⁰, -C(=W)NR¹⁰-NR¹⁰₂, 10 $-C(=W)NR^{10}-NR^{10}[C(=W)R^{10}]$, $-NR^{10}-C(=W)NR^{10}$ 2. $-NR^{10}-NR^{10}C(=W)R^{10}$, $-NR^{10}-NIC(=W)R^{10}$ b, $-NI(C=W)R^{10}$ l-NR¹⁰2. $-NR^{10}-NR^{10}[(C=W)R^{10}]$, $-NR^{10}-NR^{10}[(C=W)WR^{10}]$. $-NB^{10}-B^{10}[(C=W)NB^{10}a]$ $-NB^{10}(C=NB^{10})B^{10}$ 15 -NR¹⁰(C=NR¹⁰)NR¹⁰2. -O-NR¹⁰2, -O-NR¹⁰(C=W)R¹⁰, -SO₂NR¹⁰2, -NR¹⁰SO₂R¹⁰ -SO₂OR¹⁰. -OSO₂R¹⁰. -OR¹⁰. -NR¹⁰2. -SR¹⁰. -SiR¹⁰3. -SeR¹⁰, -PR¹⁰₂, -P(=W)R¹⁰₂, -SOR¹⁰, -SO₂R¹⁰, -PW₂R¹⁰₂, -PW₃R¹⁰₂, aryl and 20 heterocyclyl, the two last-mentioned radicals optionally being substituted by one or more radicals from the group (C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C3-25 C₈)-cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₆-C₈)-cycloalkynyl, (C1-C6)-haloalkyl, (C2-C6)-haloalkenyl, (C2-C6)haloalkynyl, halogen, -OR¹⁰, -NR¹⁰₂, -SR¹⁰, -SiR¹⁰₃, -

111

 $C(=W)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_2$, $-SOR^{10}$, $-SO_2R^{10}$, nitro, cyano and hydroxyl,

aryl,

5

10

15

20

25

which is optionally substituted by one or more radicals from the group

$$\begin{split} &(C_1\text{-}C_6)\text{-alkyl},\ (C_2\text{-}C_6)\text{-alkenyl},\ (C_2\text{-}C_6)\text{-alkynyl},\ (C_3\text{-}C_8)\text{-}\\ &\text{cycloalkyl},\ (C_4\text{-}C_8)\text{-cycloalkenyl}\ \text{and}\ (C_6\text{-}C_8)\text{-cycloalkynyl},\\ &\text{where these six abovementioned radicals are optionally}\\ &\text{substituted by one or more radicals from the group}\\ &\text{halogen, cyano, nitro, -C(=W)R}^{10},\ -\text{C}(=W)\text{OR}^{10},\\ &\text{-C}(=W)\text{NR}^{10}_2,\ -\text{OR}^{10},\ -\text{NR}^{10}_2,\ -\text{SR}^{10},\ -\text{SOR}^{10}\ \text{and}\\ &\text{-SO}_2\text{R}^{10}, \end{split}$$

halogen, cyano, nitro, $-C(=W)R^{10}$, $-C(=NOR^{10})R^{10}$, $-C(=NNR^{10}_2)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_2$, $-OC(=W)R^{10}$, $-OC(=W)R^{10}$, $-NR^{10}C(=W)R^{10}$, $-N[C(=W)R^{10}]_2$, $-NR^{10}C(=W)OR^{10}$, $-OR^{10}$, $-OR^{10}_2$, $-SR^{10}$, $-SiR^{10}_3$, $-PR^{10}_2$, $-SOR^{10}$, $-SO_2R^{10}$, $-PW_2R^{10}_2$ and $-PW_3R^{10}_2$,

heterocyclyl,

which is optionally substituted by one or more radicals from the group

 $\begin{aligned} &(C_1\text{-}C_6)\text{-alkyl}, \ (C_2\text{-}C_6)\text{-alkenyl}, \ (C_2\text{-}C_6)\text{-alkynyl}, \ (C_3\text{-}C_8)\text{-} \\ &\text{cycloalkyl}, \ (C_4\text{-}C_8)\text{-cycloalkenyl} \ \text{and} \ (C_6\text{-}C_8)\text{-cycloalkynyl}, \\ &\text{where the six abovementioned radicals are optionally} \\ &\text{substituted by one or more radicals from the group} \\ &\text{cyano, nitro, halogen, } -C(=W)R^{10}, \ -C(=W)OR^{10}, \\ &-C(=W)NR^{10}_2, \ -NR^{10}C(=W)R^{10}, \ -N[C(=W)R^{10}]_2, \\ &-OC(=W)R^{10}, \ -OC(=W)OR^{10}, \ -OR^{10}, \ -NR^{10}_2, \ -SR^{10}, \\ &-SOR^{10} \ \text{and} \ -SO2R^{10}. \end{aligned}$

OFFICE SALANSIA

halogen, cyano, nitro, -C(=W)R¹⁰, -C(=W)OR¹⁰ $-C(=W)NR^{10}_{2}$, $-OC(=W)R^{10}$, $-OR^{10}$, $-NR^{10}_{2}$, $-SR^{10}$, $-SOR^{10}$ and -SO₂R¹⁰ -OR¹⁰, -NR¹⁰2, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, -C(=W)R¹⁰ -C(=NOR¹⁰)R¹⁰, -C(=NNR¹⁰₂)R¹⁰, -C(=W)OR¹⁰ 5 $-C(=W)NR^{10}$ 2, $-OC(=W)R^{10}$, $-OC(=W)OR^{10}$, $-NR^{10}C(=W)R^{10}$ $-N[C(=W)R^{10}]_2$, $-NR^{10}C(=W)OR^{10}$, $-C(=W)NR^{10}-NR^{10}$ 2. $-C(=W)NR^{10}-NR^{10}[C(=W)R^{10}].-NR^{10}-C(=W)NR^{10}$ 2.-NR¹⁰ NR¹⁰C(=W)R¹⁰, -NR¹⁰-NC(=W)R¹⁰2, -N(C=W)R¹⁰-NR¹⁰2, $-NR^{10}-NR^{10}[(C=W)R^{10}]. -NR^{10}-NR^{10}[(C=W)WR^{10}]. -NR^{10}$ 10 NR¹⁰[(C=W)NR¹⁰2], -NR¹⁰(C=NR¹⁰)R¹⁰ -NR¹⁰(C=NR¹⁰)NR¹⁰₂, -O-NR¹⁰₂, -O-NR¹⁰(C=W)R¹⁰, -SO₂NR¹⁰₂, -NR¹⁰SO₂R¹⁰, -SO₂OR¹⁰, -OSO₂R¹⁰, $-SC(=W)R^{10}$, $-SC(=W)OR^{10}$, $-SC(=W)R^{10}$, $-PR^{10}$, $-PW_2R^{10}$ -PW₃R¹⁰₂, SiR¹⁰₃ or halogen: 15

R² and R³ independently of one another have the definitions given in R¹;

R² and R³ together form a 5- to 7-membered ring which may be partially or fully unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, the oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

25 R⁴ and R⁶ independently of one another have the definitions given in R¹;

R⁴ and R⁶ together form a 4- to 7-membered ring which may be partially or fully unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, the oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹:

R⁵ and R⁷ independently of one another are hydrogen,

 (C_1-C_{20}) -alkyl, (C_2-C_{20}) -alkenyl, (C_2-C_{20}) -alkynyl, (C_3-C_8) -cycloalkyl, (C_4-C_8) -cycloalkenyl, (C_6-C_8) -cycloalkynyl,

where the six last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, -C(=W)R¹⁰, -C(=NOR¹⁰)R¹⁰, -C(=NNR¹⁰₂)R¹⁰, -C(=W)OR¹⁰, -C(=W)NR¹⁰₂, -OC(=W)R¹⁰,

 $\text{-OC}(=\!W)\text{OR}^{10},\,\text{-NR}^{10}\text{C}(=\!W)\text{R}^{10},\,\text{-N[C}(=\!W)\text{R}^{10}]_2,$

-NR¹⁰C(=W)OR¹⁰, -C(=W)NR¹⁰-NR¹⁰₂, -C(=W)NR¹⁰-NR¹⁰[C(=W)R¹⁰], -NR¹⁰-C(=W)NR¹⁰₂,

-C(=W)NR¹⁰-NR¹⁰[C(=W)R¹⁰], -NR¹⁰-C(=W)NR¹⁰₂, -NR¹⁰-NR¹⁰C(=W)R¹⁰. -NR¹⁰-NIC(=W)R¹⁰₁₂. -NI(C=W)R¹⁰1-

 NR^{10}_{2} , $-NR^{10}_{1}$

-NR¹⁰-NR¹⁰[(C=W)NR¹⁰2], -NR¹⁰(C=NR¹⁰)R¹⁰.

-NR¹⁰(C=NR¹⁰)NR¹⁰₂, -O-NR¹⁰₂, -O-NR¹⁰(C=W)R¹⁰,

 $-OR^{10}$, $-NR^{10}$ 2, $-SR^{10}$, $-SiR^{10}$ 3, $-SeR^{10}$, $-PR^{10}$ 2,

 $-P(=W)R^{10}_{\ 2},\ -SOR^{10},\ -SO_2R^{10},\ -PW_2R^{10}_{\ 2},\ -PW_3R^{10}_{\ 2},$

aryl and heterocyclyl,

of which the two mentioned last are optionally substituted by one or more radicals from the group

(C1-C6)-alkyl, (C2-C6)-alkenyl, (C2-C6)-alkynyl, (C3-

 $C_8)\hbox{-cycloalkyl, } (C_4\hbox{-}C_8)\hbox{-cycloalkenyl, } (C_6\hbox{-}C_8)\hbox{-cycloalkynyl,}$

 (C_1-C_6) -haloalkyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -

15

20

haloalkynyl, halogen, $-OR^{10}$, $-NR^{10}_{2}$, $-SR^{10}$, $-SiR^{10}_{3}$, $-C(=W)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_{2}$, $-SOR^{10}$, $-SO_{2}R^{10}$, nitro, cyano and hydroxyl,

aryl,

which is optionally substituted by one or more radicals from the group

 $\label{eq:condition} $$(C_1-C_6)-alkyl, (C_2-C_6)-alkynyl, (C_3-C_8)-cycloalkyl, (C_4-C_8)-cycloalkenyl and (C_6-C_8)-cycloalkynyl,$

where these six abovementioned radicals are optionally substituted by one or more radicals from the group halogen, cyano, nitro, $-C(=W)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_{2}$, $-OR^{10}$, $-NR^{10}_{2}$, $-SR^{10}$, $-SOR^{10}$ and $-SO_{2}R^{10}$,

15

10

5

$$\begin{split} &\text{halogen, cyano, nitro, -C(=W)R}^{10}, \text{-C(=NOR}^{10})R}^{10}, \\ &\text{-C(=NNR}^{10}{}_2)R}^{10}, \text{-C(=W)OR}^{10}, \text{-C(=W)NR}^{10}{}_2, \text{-OC(=W)R}^{10}, \\ &\text{-OC(=W)OR}^{10}, \text{-NR}^{10}C(=W)R}^{10}, \text{-N[C(=W)R}^{10}]_2, \\ &\text{-NR}^{10}C(=W)OR}^{10}, \text{-OR}^{10}, \text{-NR}^{10}{}_2, \text{-SR}^{10}, \text{-SiR}^{10}{}_3, \text{-PR}^{10}{}_2, \\ &\text{-SOR}^{10}, \text{-SO}_2R}^{10}, \text{-PW}_2R}^{10}{}_2 \text{ and -PW}_3R}^{10}{}_2, \end{split}$$

20 pyridyl,

which is optionally substituted by one or more radicals from the group

25

(C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₈)-cycloalkyl, (C₄-C₈)-cycloalkenyl and (C₆-C₈)-cycloalkynyl, where the six abovementioned radicals are optionally substituted by one or more radicals from the group cyano, nitro, halogen, -C(=W)R¹⁰, -C(=W)OR¹⁰.

 $\begin{array}{c} & \\ & -\text{C}(=\text{W})\text{NR}^{10}{}_2, -\text{OR}^{10}, -\text{NR}^{10}{}_2, -\text{SR}^{10}, -\text{SOR}^{10} \text{ and} \\ & -\text{SO}_2\text{R}^{10}, \\ & \text{halogen, cyano, nitro, -C}(=\text{W})\text{R}^{10}, -\text{C}(=\text{W})\text{OR}^{10}, \\ & -\text{C}(=\text{W})\text{NR}^{10}{}_2, -\text{OC}(=\text{W})\text{R}^{10}, -\text{OR}^{10}, -\text{NR}^{10}{}_2, -\text{SR}^{10}, -\text{SOR}^{10} \\ & \text{and -SO}_2\text{R}^{10}, \\ & -\text{C}(=\text{W})\text{R}^{10}, -\text{C}(=\text{NOR}^{10})\text{R}^{10}, -\text{C}(=\text{NNR}^{10}{}_2)\text{R}^{10}, -\text{C}(=\text{W})\text{OR}^{10}, \\ & -\text{C}(=\text{W})\text{NR}^{10}{}_2 \text{ or halogen;} \end{array}$

R⁴ and R⁵ together form a 4- to 7-membered ring which may be partially unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

R⁴ and R⁵ together form one of the groups =0, =S or =N-R⁹;

R⁶ and R⁷ together form a 5- to 7-membered ring which may be partially unsaturated and may be interrupted by one or more atoms from the group nitrogen, oxygen and sulfur, oxygen atoms not being directly adjacent to one another, and the ring optionally being substituted by one or more, but at most 5, radicals R¹;

R⁶ and R⁷ together form one of the groups =O, =S or =N-R⁹;

is hydrogen,

(C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₈)cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₃-C₈)-cycloalkyl-(C₁-C₄)alkyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl-(C₂C₄)-alkenyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkenyl, (C₁-C₆)-alkyl-

15

 $\label{eq:condition} $$(C_3-C_8)$-cycloalkyl, $$(C_2-C_6)$-alkenyl-(C_3-C_8)$-cycloalkyl, $$(C_2-C_6)$-alkyl-(C_4-C_8)$-cycloalkenyl, $$(C_2-C_6)$-alkenyl-(C_4-C_8)$-cycloalkenyl, $$(C_2-C_6)$-alkenyl-(C_4-C_8)$-cycloalkenyl, $$$(C_2-C_6)$-alkenyl-(C_4-C_8)$-cycloalkenyl, $$$(C_2-C_6)$-alkenyl-(C_4-C_8)$-cycloalkenyl, $$$(C_2-C_6)$-alkenyl-(C_4-C_8)$-cycloalkenyl, $$$(C_2-C_6)$-alkenyl-(C_4-C_8)$-cycloalkenyl, $$$(C_2-C_8)$-cycloalkenyl, $$$(C_$

5 where the fourteen last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C1-C6)alkoxy, (C2-C6)-alkenyloxy, (C2-C6)-alkynyloxy, (C1-C6)haloalkyloxy, (C2-C6)-haloalkenyloxy, (C2-C6)-haloalkynyloxy, (C₃-C₈)-cycloalkoxy, (C₄-C₈)-cycloalkenyloxy, (C₃-C₈) $halocycloalkoxy, \ (C_4\text{-}C_8)\text{-}halocycloalkenyloxy}, \ (C_3\text{-}C_8)\text{-}$ cycloalkyl-(C₁-C₄)-alkoxy, (C₄-C₈)-cycloalkenyl-(C₁-C₄)alkoxy, (C3-C8)-cycloalkyl-(C2-C4)-alkenyloxy, (C4-C8) $cycloalkenyl-(C_1-C_4)-alkenyloxy,\ (C_1-C_6)-alkyl-(C_3-C_8)-alkyl-(C_8-C_8$ cycloalkoxy, (C2-C6)-alkenyl-(C3-C8)-cycloalkoxy, (C2-C6)alkynyl-(C_3 - C_8)-cycloalkoxy, (C_1 - C_6)-alkyl-(C_4 - C_8)cycloalkenyloxy, (C2-C6)-alkenyl-(C4-C8)-cycloalkenyloxy, (C_1-C_4) -alkoxy- (C_1-C_6) -alkoxy, (C_1-C_4) -alkoxy- (C_2-C_6) alkenyloxy, carbamoyl, (C1-C6)-mono- or dialkylcarbamoyl, $(C_1\text{-}C_6)$ -mono- or dihaloalkylcarbamoyl, $(C_3\text{-}C_8)$ -mono- or dicycloalkylcarbamoyl, (C1-C6)-alkoxycarbonyl, (C3-C8)cycloalkoxycarbonyl, (C1-C6)-alkanoyloxy, (C3-C8)cycloalkanoyloxy, (C1-C6)-haloalkoxycarbonyl, (C1-C6)haloalkanoyloxy, (C1-C6)-alkaneamido, (C1-C6)haloalkaneamido, (C2-C6)-alkeneamido, (C3-C8)-

10

15

cycloalkaneamido, (C3-C8)-cycloalkyl-(C1-C4)-alkaneamido, (C₁-C₆)-alkylthio, (C₂-C₆)-alkenylthio, (C₂-C₆)-alkynylthio, $(C_1\text{-}C_6)\text{-haloalkylthio, }(C_2\text{-}C_6)\text{-haloalkenylthio, }(C_2\text{-}C_6)\text{-}$ haloalkynylthio, (C3-C8)-cycloalkylthio, (C4-C8)-5 cycloalkenylthio, (C3-C8)-halocycloalkylthio, (C4-C8) $halocycloalkenylthio,\ (C_3\text{-}C_8)\text{-}cycloalkyl\text{-}(C_1\text{-}C_4)\text{-}alkylthio,$ $(C_4\text{-}C_8)\text{-}cycloalkenyl\text{-}(C_1\text{-}C_4)\text{-}alkylthio, } (C_3\text{-}C_8)\text{-}cycloalkyl\text{-}$ (C2-C4)-alkenylthio, (C4-C8)-cycloalkenyl-(C1-C4)-alkenylthio, $(C_1\text{-}C_6)\text{-}alkyl\text{-}(C_3\text{-}C_8)\text{-}cycloalkylthio, } (C_2\text{-}C_6)\text{-}alkenyl\text{-}(C_3\text{-}C_8)\text{-}alkenyl\text{-}(C_3\text{-}C_8)\text{-}alkyl\text{-}alkyl\text{-}$ 10 $\label{eq:cycloalkylthio} cycloalkylthio, (C_2-C_6)-alkynyl-(C_3-C_8)-cycloalkylthio, (C_1-C_6)-alkynyl-(C_3-C_8)-cycloalkylthio, (C_1-C_8)-alkynyl-(C_3-C_8)-alkynyl-(C$ alkyl- $(C_4$ - $C_8)$ -cycloalkenylthio, $(C_2$ - $C_6)$ -alkenyl- $(C_4$ - $C_8)$ cycloalkenylthio, (C1-C6)-alkylsulfinyl, (C2-C6)-alkenylsulfinyl, (C2-C6)-alkynylsulfinyl, (C1-C6)-haloalkylsulfinyl, (C2-C6)haloalkenylsulfinyl, (C2-C6)-haloalkynylsulfinyl, (C3-C8)-15 $\label{eq:cycloalkylsulfinyl, (C_4-C_8)-cycloalkenylsulfinyl, (C_3-C_8)-cycloalkylsulfinyl, (C$ halocycloalksulfinyl, (C4-C8)-halocycloalkenylsulfinyl, (C3-C8)- $\label{eq:cycloalkyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkylsulfiny$ alkylsulfinyl, (C3-C8)-cycloalkyl-(C2-C4)-alkenylsulfinyl, (C4- $C_8)\hbox{-cycloalkenyl-}(C_1\hbox{-} C_4)\hbox{-alkenylsulfinyl},\ (C_1\hbox{-} C_6)\hbox{-alkyl-}(C_3\hbox{-}$ 20 C₈)-cycloalkylsulfinyl, (C₂-C₆)-alkenyl-(C₃-C₈)cycloalkylsulfinyl, (C2-C6)-alkynyl-(C3-C8)-cycloalkylsulfinyl, $(C_1\text{-}C_6)\text{-}alkyl\text{-}(C_4\text{-}C_8)\text{-}cycloalkenylsulfinyl,} \ (C_2\text{-}C_6)\text{-}alkenyl\text{-}$ (C₄-C₈)-cycloalkenylsulfinyl, (C₁-C₆)-alkylsulfonyl, (C₂-C₆)alkenylsulfonyl, (C2-C6)-alkynylsulfonyl, (C1-C6)haloalkylsulfonyl, (C2-C6)-haloalkenylsulfonyl, (C2-C6)-

haloalkynyisulfonyl, (C3-C8)-cycloalkylsulfonyl, (C4-C8)cycloalkenylsulfonyl, (C3-C8)-halocycloalkylsulfonyl, (C4-C8)halocycloalkenylsulfonyl, (C3-C8)-cycloalkyl-(C1-C4)alkylsulfonyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkylsulfonyl, (C₃-5 C8)-cycloalkyl-(C2-C4)-alkenylsulfonyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkenylsulfonyl, (C1-C6)-alkyl-(C3-C8)cycloalkylsulfonyl, (C_2-C_6) -alkenyl- (C_3-C_8) -cycloalkylsulfonyl, $(C_2-C_6)\text{-}alkynyl\text{-}(C_3-C_8)\text{-}cycloalkylsulfonyl, } (C_1-C_6)\text{-}alkyl\text{-}(C_4-C_6)\text{-}alkyl\text{-}alkyl\text{-}alkyl\text{-}alkyl\text{-$ C₈)-cycloalkenylsulfonyl, (C₂-C₆)-alkenyl-(C₄-C₈)-10 cycloalkenylsulfonyl, (C1-C6)-alkylamino, (C2-C6)alkenylamino, (C_2 - C_6)-alkynylamino, (C_1 - C_6)-haloalkylamino, (C2-C6)-haloalkenylamino, (C2-C6)-haloalkynylamino, (C3-C₈)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈)halocycloalkamino, (C₄-C₈)-halocycloalkenylamino, (C₃-C₈)-15 cycloalkyl-(C1-C4)-alkylamino, (C4-C8)-cycloalkenyl-(C1-C4)alkylamino, (C3-C8)-cycloalkyl-(C2-C4)-alkenylamino, (C4-C8)cycloalkenyl-(C1-C4)-alkenylamino, (C1-C6)-alkyl-(C3-C8)cycloalkylamino, (C2-C6)-alkenyl-(C3-C8)-cycloalkylamino, (C2-C6)-alkynyl-(C3-C8)-cycloalkylamino, (C1-C6)-alkyl-(C4-20 C₈)-cycloalkenylamino, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylamino, (C1-C6)-trialkylsilyl, aryl, aryloxy, arylthio, arylamino, arylcarbamoyl, aroyl, aroyloxy, aryloxycarbonyl, $aryl-(C_1-C_4)-alkoxy,\ aryl-(C_2-C_4)-alkenyloxy,\ aryl-(C_1-C_4)-alkenyloxy,\ aryl$ alkylthio, aryl-(C2-C4)-alkenylthio, aryl-(C1-C4)-alkylamino, aryl-(C2-C4)-alkenylamino, aryl-(C1-C6)-dialkylsilyl, diaryl-(C1-C₆)-alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl,

of which the nineteen last-mentioned radicals are optionally substituted in their cyclic moiety by one or more substituents from the group

halogen, cyano, nitro, amino, hydroxyl, thio, $(C_1-C_4)\text{-alkyl}, \ (C_1-C_4)\text{-haloalkyl}, \ (C_1-C_4)\text{-alkoxy}, \\ (C_1-C_4)\text{-haloalkoxy}, \ (C_1-C_4)\text{-alkylthio}, \ (C_1-C_4)\text{-haloalkylamino}, \\ \text{haloalkylthio}, \ (C_1-C_4)\text{-alkylamino}, \ (C_1-C_4)\text{-haloalkylamino}, \\ \text{formyl and } \ (C_1-C_4)\text{-alkanoyl},$

aryl, which is optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C1-C6)alkoxy, (C2-C6)-alkenyloxy, (C2-C6)-alkynyloxy, (C1-C6)haloalkyloxy, (C2-C6)-haloalkenyloxy, (C2-C6)-haloalkynyloxy, (C₃-C₈)-cycloalkoxy, (C₄-C₈)-cycloalkenyloxy, (C₃-C₈)halocycloalkoxy, (C₄-C₈)-halocycloalkenyloxy, carbamoyl, (C₁-C₆)-mono- or dialkylcarbamoyl, (C₁-C₆)-alkoxycarbonyl, (C₁-C₆)-alkanoyloxy, (C₁-C₆)-mono- or dihaloalkylcarbamoyl, (C1-C6)-haloalkoxycarbonyl, (C1-C6)-haloalkanoyloxy, (C1-C₆)-alkaneamido, (C₁-C₆)-haloalkaneamido, (C₂-C₆)alkeneamido, (C1-C6)-alkylthio, (C2-C6)-alkenylthio, (C2-C6)alkynylthio, (C1-C6)-haloalkylthio, (C2-C6)-haloalkenylthio, (C2-C6)-haloalkynylthio, (C3-C8)-cycloalkylthio, (C4-C8)cycloalkenylthio, (C3-C8)-halocycloalkthio, (C3-C8)halocycloalkenylthio, (C1-C6)-alkylsulfinyl, (C2-C6)alkenylsulfinyl, (C2-C6)-alkynylsulfinyl, (C1-C6)haloalkylsulfinyl, (C2-C6)-haloalkenylsulfinyl, (C2-C6)haloalkynylsulfinyl, (C3-C8)-cycloalkylsulfinyl, (C4-C8)-

HAT A PART OF LAND AND A SAND AND A SAND AND A SAND A SAND

5

10

15

cycloalkenylsulfinyl, (C₃-C₈)-halocycloalksulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C₁-C₆)-alkylsulfonyl, (C₂-C₆)-alkenylsulfonyl, (C₂-C₆)-alkynylsulfonyl, (C₁-C₆)-haloalkylsulfonyl, (C₂-C₆)-haloalkenylsulfonyl, (C₂-C₆)-haloalkynylsulfonyl, (C₃-C₈)-cycloalkylsulfonyl, (C₄-C₈)-cycloalkenylsulfonyl, (C₃-C₈)-halocycloalksulfonyl, (C₄-C₈)-halocycloalkenylsulfonyl, (C₁-C₆)-alkylamino, (C₂-C₆)-alkenylamino, (C₂-C₆)-alkynylamino, (C₁-C₆)-haloalkylamino, (C₃-C₈)-haloalkenylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₈)-cycloalkylamino, (C₃-C₈)-halocycloalkenylamino, (C₃-C₈)-halocycloalkamino and (C₄-C₈)-halocycloalkenylamino, -C(=W)R¹¹, OR¹¹ or NR¹¹₂;

is (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₂-C₆)-alkynyl, (C₃-C₈)
cycloalkyl, (C₄-C₈)-cycloalkenyl, (C₃-C₈)-cycloalkyl-(C₁-C₄)
alkyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkyl, (C₃-C₈)-cycloalkyl-(C₂
C₄)-alkenyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkenyl,

where the nine last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, (C₁-C₆)-alkoxy, (C₂-C₆)-alkenyloxy, (C₂-C₆)

alkynyloxy and (C₁-C₆)-haloalkyloxy;

is hydrogen, $(C_1\text{-}C_6)\text{-alkyl}, (C_2\text{-}C_6)\text{-alkenyl}, (C_2\text{-}C_6)\text{-alkynyl}, (C_3\text{-}C_8)\text{-}$ $\text{cycloalkyl}, (C_4\text{-}C_8)\text{-cycloalkenyl}, (C_3\text{-}C_8)\text{-cycloalkyl-}(C_1\text{-}C_4)\text{-}$ $\text{alkyl}, (C_4\text{-}C_8)\text{-cycloalkenyl-}(C_1\text{-}C_4)\text{-alkyl}, (C_3\text{-}C_8)\text{-cycloalkyl-}$

 (C_2-C_4) -alkenyl, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenyl, (C_1-C_6) alkyl-(C3-C8)-cycloalkyl, (C2-C6)-alkenyl-(C3-C8)-cycloalkyl, (C_2-C_6) -alkynyl- (C_3-C_8) -cycloalkyl, (C_1-C_6) -alkyl- (C_4-C_8) $cycloalkenyl,\ (C_2\text{-}C_6)\text{-}alkenyl\text{-}(C_4\text{-}C_8)\text{-}cycloalkenyl,}$ where the fourteen last-mentioned radicals are optionally 5 substituted by one or more radicals from the group halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C1-C6)alkoxy, (C2-C6)-alkenyloxy, (C2-C6)-alkynyloxy, (C1-C6) $haloalkyloxy, \ (C_2\text{-}C_6)\text{-}haloalkenyloxy, \ (C_2\text{-}C_6)\text{-}haloalkynyloxy, \\$ 10 (C₃-C₈)-cycloalkoxy, (C₄-C₈)-cycloalkenyloxy, (C₃-C₈)halocycloalkoxy, (C₄-C₈)-halocycloalkenyloxy, (C₃-C₈)cycloalkyl- (C_1-C_4) -alkoxy, (C_4-C_8) -cycloalkenyl- (C_1-C_4) alkoxy, (C3-C8)-cycloalkyl-(C2-C4)-alkenyloxy, (C4-C8)cycloalkenyl-(C1-C4)-alkenyloxy, (C1-C6)-alkyl-(C3-C8)-15 cycloalkoxy, (C_2 - C_6)-alkenyl-(C_3 - C_8)-cycloalkoxy, (C_2 - C_6)alkynyl-(C3-C8)-cycloalkoxy, (C1-C6)-alkyl-(C4-C8)cycloalkenyloxy, (C2-C6)-alkenyl-(C4-C8)-cycloalkenyloxy, (C_1-C_4) -alkoxy- (C_1-C_6) -alkoxy, (C_1-C_4) -alkoxy- (C_2-C_6) alkenyloxy, carbamoyl, 20 $(C_1\text{-}C_6)$ -mono- or dialkylcarbamoyl, $(C_1\text{-}C_6)$ -mono- or dihaloalkylcarbamoyl, (C3-C8)-mono- or dicycloalkylcarbamoyl, (C1-C6)-alkoxycarbonyl, (C3-C8)cycloalkoxycarbonyl, (C1-C6)-alkanoyloxy, (C3-C8)cycloalkanoyloxy, (C1-C6)-haloalkoxycarbonyl, (C1-C6)haloalkanoyloxy, (C1-C6)-alkaneamido, (C1-C6)haloalkaneamido, (C2-C6)-alkeneamido, (C3-C8)-

cycloalkaneamido, (C3-C8)-cycloalkyl-(C1-C4)-alkaneamido, (C1-C6)-alkylthio, (C2-C6)-alkenylthio, (C2-C6)-alkynylthio, (C1-C6)-haloalkylthio, (C2-C6)-haloalkenylthio, (C2-C6)haloalkynylthio, (C3-C8)-cycloalkylthio, (C4-C8)cycloalkenylthio, (C3-C8)-halocycloalkthio, (C4-C8)-5 halocycloalkenylthio, (C3-C8)-cycloalkyl-(C1-C4)-alkylthio, (C4-C8)-cycloalkenyl-(C1-C4)-alkylthio, (C3-C8)-cycloalkyl- (C_2-C_4) -alkenylthio, (C_4-C_8) -cycloalkenyl- (C_1-C_4) -alkenylthio, $(C_1-C_6)\text{-}alkyl\text{-}(C_3-C_8)\text{-}cycloalkylthio, } (C_2-C_6)\text{-}alkenyl\text{-}(C_3-C_8)\text{-}$ 10 cycloalkylthio, (C2-C6)-alkynyl-(C3-C8)-cycloalkylthio, (C1-C6)alkyl- (C_4-C_8) -cycloalkenylthio, (C_2-C_6) -alkenyl- (C_4-C_8) $cycloalkenylthio,\ (C_1-C_6)-alkylsulfinyl,\ (C_2-C_6)-alkenylsulfinyl,$ (C2-C6)-alkynylsulfinyl, (C1-C6)-haloalkylsulfinyl, (C2-C6) $haloalkenylsulfinyl,\ (C_2\hbox{-} C_6)\hbox{-}haloalkynylsulfinyl,\ (C_3\hbox{-} C_8)\hbox{-}$ 15 cycloalkylsulfinyl, (C₄-C₈)-cycloalkenylsulfinyl, (C₃-C₈)halocycloalksulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C₃-C₈)cycloalkyl-(C1-C4)-alkylsulfinyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkylsulfinyl, (C₃-C₈)-cycloalkyl-(C2-C4)-alkenylsulfinyl, (C4-C8)-cycloalkenyl-(C1-C4)-20 alkenylsulfinyl, (C1-C6)-alkyl-(C3-C8)-cycloalkylsulfinyl, (C2- $C_6) \hbox{-alkenyl-} (C_3 \hbox{-} C_8) \hbox{-cycloalkylsulfinyl}, \ (C_2 \hbox{-} C_6) \hbox{-alkynyl-} (C_3 \hbox{-} C_6) \hbox{-alkynyl$ C₈)-cycloalkylsulfinyl, (C₁-C₆)-alkyl-(C₄-C₈)cycloalkenylsulfinyl, (C2-C6)-alkenyl-(C4-C8)cycloalkenylsulfinyl, (C1-C6)-alkylsulfonyl, (C2-C6)alkenylsulfonyl,

(C2-C6)-alkynylsulfonyl, (C1-C6)-haloalkylsulfonyl, (C2-C6)haloalkenylsulfonyl, (C2-C6)-haloalkynylsulfonyl, (C3-C8)cycloalkylsulfonyl, (C₄-C₈)-cycloalkenylsulfonyl, (C₃-C₈)halocycloalksulfonyl, (C₄-C₈)-halocycloalkenylsulfonyl, (C₃-5 C₈)-cycloalkyl-(C₁-C₄)-alkylsulfonyl, (C₄-C₈)-cycloalkenyl-(C₁-C₄)-alkylsulfonyl, (C₃-C₈)-cycloalkyl-(C₂-C₄)-alkenylsulfonyl, (C4-C8)-cycloalkenyl-(C1-C4)-alkenylsulfonyl, (C1-C6)-alkyl-(C₃-C₈)-cycloalkylsulfonyl, (C₂-C₆)-alkenyl-(C₃-C₈)cycloalkylsulfonyl, (C2-C6)-alkynyl-(C3-C8)-cycloalkylsulfonyl, 10 (C1-C6)-alkyl-(C4-C8)-cycloalkenylsulfonyl, (C2-C6)-alkenyl-(C₄-C₈)-cycloalkenylsulfonyl, (C1-C6)-alkylamino, (C2-C6)-alkenylamino, (C2-C6)alkynylamino, (C1-C6)-haloalkylamino, (C2-C6)haloalkenylamino, (C2-C6)-haloalkynylamino, (C3-C8)-15 cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈)halocycloalkamino, (C₄-C₈)-halocycloalkenylamino, (C₃-C₈)cycloalkyl-(C1-C4)-alkylamino, (C4-C8)-cycloalkenyl-(C1-C4)alkylamino, (C3-C8)-cycloalkyl-(C2-C4)-alkenylamino, (C4-C8)cycloalkenyl-(C1-C4)-alkenylamino, (C1-C6)-alkyl-(C3-C8)-20 cycloalkylamino, (C2-C6)-alkenyl-(C3-C8)-cycloalkylamino, (C2-C6)-alkynyl-(C3-C8)-cycloalkylamino, (C1-C6)-alkyl-(C4-C₈)-cycloalkenylamino, (C₂-C₆)-alkenyl-(C₄-C₈)cycloalkenylamino, (C1-C6)-trialkylsilyl, aryl, aryloxy, arylthio, arylamino, aryl-(C1-C4)-alkoxy, aryl-(C2-C4)-alkenyloxy, aryl-(C1-C4)-alkylthio, aryl-(C2-C4)-alkenylthio, aryl-(C1-C4)-

alkylamino, aryl- (C_2-C_4) -alkenylamino, aryl- (C_1-C_6) -dialkylsilyl, diaryl- (C_1-C_6) -alkylsilyl, triarylsilyl and 5- or 6-membered heterocyclyl, where the cyclic moiety of the fourteen last-mentioned

radicals is optionally substituted by one or more radicals from the group

halogen, cyano, nitro, amino, hydroxyl, thio, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_3-C_8) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkylthio, (C_1-C_4) -haloalkylamino, formyl and

 (C_1-C_4) -alkanoyl,

aryl, 5- or 6-membered heteroaromatic, where the two last-mentioned radicals are optionally substituted by one or more radicals from the group

halogen, cyano, nitro, hydroxyl, thio, amino, formyl, (C_1-C_6) -alkoxy, (C_2-C_6) -alkenyloxy, (C_2-C_6) -alkynyloxy, (C_1-C_6) -haloalkyloxy, (C_2-C_6) -haloalkynyloxy, (C_3-C_6) -haloalkoxy, (C_4-C_6) -cycloalkenyloxy, (C_3-C_8) -halocycloalkoxy, (C_4-C_8) -halocycloalkenyloxy, carbamoyl, (C_1-C_6) -mono- or dialkylcarbamoyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkanoyloxy,

 $\label{eq:continuous} $$(C_1-C_6)$-mono- or dihaloalkylcarbamoyl, (C_1-C_6)-haloalkanoyloxy, (C_1-C_6)-haloalkanoyloxy, (C_1-C_6)-alkaneamido, (C_1-C_6)-haloalkaneamido, (C_2-C_6)-alkenylthio, (C_2-C_6)-alkylylthio, (C_1-C_6)-haloalkylthio, (C_2-C_6)-haloalkenylthio, (C_1-C_6)-haloalkylthio, (C_2-C_6)-haloalkenylthio, (C_1-C_6)-haloalkenylthio, (C_1-C_6)-haloalkylthio, (C_1-C_6)-haloalkylthio, (C_1-C_6)-haloalkenylthio, (C_1-C_6)-haloalkenylthi$

TAY DAY

5

10

15

 $(C_2\text{-}C_6)\text{-haloalkynylthio}, \quad (C_3\text{-}C_8)\text{-cycloalkylthio}, \quad (C_4\text{-}C_8)\text{-cycloalkenylthio},$ (C₃-C₈)-halocycloalkthio, (C4-C8)-halocycloalkenylthio, (C₁-C₆)alkylsulfinyl, (C_2-C_6) -alkenylsulfinyl, (C_2-C_6) -alkynylsulfinyl, (C_1-C_6) $haloalkylsulfinyl, \quad (C_2\text{-}C_6)\text{-}haloalkenylsulfinyl,} \quad (C_2\text{-}C_6)\text{-}haloalkynylsulfinyl,}$ (C₃-C₈)-cycloalkylsulfinyl, (C₄-C₈)-cycloalkenylsulfinyl, (C_3-C_8) halocycloalksulfinyl, (C₄-C₈)-halocycloalkenylsulfinyl, (C₁-C₆)-alkylsulfonyl, $(C_2\text{-}C_6)\text{-}alkenylsulfonyl, \ (C_2\text{-}C_6)\text{-}alkynylsulfonyl, \ (C_1\text{-}C_6)\text{-}haloalkylsulfonyl,}$ (C2-C6)-haloalkenylsulfonyl, (C2-C6)-haloalkynylsulfonyl, (C_3-C_8) cycloalkylsulfonyl, (C4-C8)-cycloalkenylsulfonyl, (C_3-C_8) $halocycloalksulfonyl,\ (C_4-C_8)-halocycloalkenylsulfonyl,\ (C_1-C_6)-alkylamino,$ (C2-C6)-alkenylamino, (C2-C6)-alkynylamino, (C1-C6)-haloalkylamino, (C2-C₆)-haloalkenylamino, (C₂-C₆)-haloalkynylamino, (C₃-C₈)-cycloalkylamino, (C₄-C₈)-cycloalkenylamino, (C₃-C₈)-halocycloalkylamino and (C₄-C₈)halocycloalkenylamino;

....

•:•••

- R^{11} is (C₁-C₁₀)-alkyl, haloalkyl, aryl, which is optionally substituted by one or more radicals from the group halogen, cyano, nitro, (C₁-C₄)-alkoxy, (C₁-C₄)-alkyl, amino, (C₁-C₄)-monoalkylamino and (C₁-C₄)-dialkylamino, R^{10}_{2} , R^{10}_{2} or R^{10}_{3} or R^{10}_{3} .
- NR 2, OR or SR .
- 2. The method as claimed in claim 1, wherein a compound from the group consisting of
- a) triazophos, monocrotophos, parathion, malathion, heptenophos;

- b) tralomethrin, cypermethrin, cyhalothrin, fenvalerates, (alpha)-cypermethrin, fenpropathrin, etofenprox;
- c) bendiocarb, carbaryl, carbofuran, formetanates, pirimicarb;
- Bacillus thuringiensis, granuloses and nuclear polyhedrosis viruses,
 Beauveria brogniartii, baculoviruses, such as Autographa california;
- e) abamectin, diafenthiuron, tebufenocides, fenazaquin, triazamates, fentin, MK-242;

is used.

- 3. The method as claimed in claim 2, wherein a compound from the group consisting of monocrotophos and malathion is used.
- 4. The method as claimed in any one of claims 1 to 3, wherein a mixture of two or more of the insecticidally active compounds is used.
- 5. The method as claimed in any one of claims 1 to 4, wherein the insecticidally active compound is applied at an application rate of from 0.001 to 0.3 kg/ha.
- 6. The method as claimed in any one of claims 1 to 5, wherein the insecticidally active compound is employed as from 0.00001 to 1% by weight strength formulation.
- 7. The method as claimed in any one of claims 1 to 6, wherein the insecticidally active Bt-protein in the cotton plant is a crystal protein from the subfamily Cryl or IX.
- 8. The method as claimed in any one of claims 1 to 7, wherein cotton plants are used which are glufosinate- or glyphosate-resistant.

- 9. The method as claimed in any one of claims 1 to 8, wherein the harmful organisms are insects which belong to the orders Homoptera, Lepidoptera and/or Coleoptera.
- 10. The method as claimed in any one of claims 1 to 9, wherein the insecticidally active compound is used against larvae in the L1 stage.
- 11. The method as claimed in any one of claims 1 to 9, wherein the insecticidally active compound is used against larvae in the L2 and/or L3 stage and/or against adult animals.
- 12. The method as claimed in any one of claims 1 to 11, wherein, in addition to one or more insecticidally active compounds from the group a-f, one or more other insecticidally, fungicidally or herbicidally active compounds are employed.
- 13. The method as claimed in claim 7, wherein the insecticidally active protein in the cotton plant is Cry3Ca, CryIAb, Cry7Aa, Cry9C and CryIDa.
- 14. The method as claimed in claim 7, wherein the insecticidally active protein in the cotton plant is CrylAa, CrylAb, CrylAc, CrylB, CrylC, Cry2A, Cry3, Cry3A, Cry3C, Cry5,Cry9C.
- 15. The use of compounds from groups a-f

..::--

- a) Organophosphorus compounds:
 triazophos, monocrotophos, methamidophos, chlorpyrifos, parathion,
 acephate, profenofos, malathion, heptenophos;
- Pyrethroids:
 tralomethrin, cypermethrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, fenvalerates, (alpha)-cypermethrin, cyfluthrin, fenpropathrin, etofenprox;
- c) Carbamates: aldicarb, bendiocarb, carbaryl, carbofuran, formetanates, pirimicarb;

d) Biopesticides:

Bacillus thuringiensis, granuloses and nuclear polyhedrosis viruses, Beauveria bassiana, Beauveria brogniartii, baculoviruses, such as Autographa california;

e) Others:

endosulfan, abamectin, XDE-105, diafenthiuron, fipronil, chlorfenapyr, tebufenocides, fenazaquin, imidacloprid, triazamates, fentin, amitraz, MK-242;

f) 4-Haloalkyl-3-heterocyclylpyridines and 4-haloalkyl-5-heterocyclylpyrimidines of the formula (I) in claim 1, if appropriate also in the form of their salts,

for controlling harmful organisms in genetically modified cotton plants which contain a gene derived from Bacillus thuringiensis which encodes and expresses an insecticidally active protein.

- 16. The use as claimed in claim 15 of compounds from groups a-e
- a) triazophos, monocrotophos, parathion, malathion, heptenophos;
- b) tralomethrin, cypermethrin, cyhalothrin, fenvalerates, (alpha)-cypermethrin, fenpropathrin, etofenprox;
- c) bendiocarb, carbaryl, carbofuran, formetanates, pirimicarb;

- Bacillus thuringiensis, granuloses and nuclear polyhedrosis viruses,
 Beauveria brogniartii, baculoviruses, such as Autographa california;
- e) abamectin, diafenthiuron, tebufenocides, fenazaquin, triazamates, fentin, MK-242.
- 17. The use as claimed in claim 16 of the compounds monocrotophos and malathion.
- 18. A method for controlling harmful organisms in genetically modified cotton plants which contain a gene derived from the Bacillus thuringiensis which encodes and expresses an insecticidally active protein substantially as hereinbefore described with reference to the examples.

DATED this 14th day of July 2003 **AVENTIS CROPSCIENCE GMBH**

WATERMARK PATENT & TRADE MARK ATTORNEYS 290 BURWOOD ROAD HAWTHORN VICTORIA 3122 AUSTRALIA

KJS/TAP/VRH P18595AU00