a2 United States Patent

St-Pierre et al.

US011607611B2

US 11,607,611 B2
Mar. 21, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

MACHINE LEARNED RESOLUTION
ENHANCEMENT FOR VIRTUAL GAMING
ENVIRONMENT

Applicant: PlayerUnknown Productions B.V.,
Amsterdam (NL)

Inventors: David Lupien St-Pierre, Amsterdam
(NL); Noel Lopez-Gonzaga, Arnhem
(NL); Serge vanKeulen, Rotterdam
(NL)

Assignee: PlayerUnknown Productions B.V.,

Amsterdam (NL)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/994,478

Filed: Aug. 14, 2020

Prior Publication Data
US 2021/0178263 Al Jun. 17, 2021
Related U.S. Application Data

Provisional application No. 62/946,960, filed on Dec.
11, 2019.

Int. CL.

A63F 13/52 (2014.01)

A63F 13/50 (2014.01)

A63F 13/69 (2014.01)

A63F 13/5378 (2014.01)

A63F 13/80 (2014.01)

GO6K 9/62 (2022.01)

(Continued)
U.S. CL
CPCcccee. A63F 13/52 (2014.09); A63F 13/50

(2014.09); A63F 13/5378 (2014.09); A63F
13/69 (2014.09); A63F 13/80 (2014.09); GO6K

9/6257 (2013.01); GO6N 3/0454 (2013.01);
GO6T 17/05 (2013.01); AG3F 2300/8082
(2013.01)
(58) Field of Classification Search
CPC ... AG63F 13/50; A63F 13/52; A63F 2300/66
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,319,129 B1* 11/2001 Igarashic........ AG63F 13/52
463/31
6,747,649 B1* 6/2004 Sanz-Pastor GO6T 17/00
345/428

(Continued)

OTHER PUBLICATIONS

Non-Final Rejection, Co-Pending U.S. Appl. No. 16/994,494, filed
Jun. 8, 2022, 11 pp.

(Continued)

Primary Examiner — Chase E Leichliter

(74) Attorney, Agent, or Firm — Offit Kurman, P.A.;
Chintan A. Desai

(57) ABSTRACT

Virtual game worlds for computer games can be provided
using machine learning. The use of machine learning
enables the virtual game worlds to be generated at run time
by standard consumer hardware devices. Machine learning
agents are trained in advance to the characteristics of the
particular game world. Then, these suitably trained machine
learning agents can be used to generate a relevant portion of
a virtual game world, such as a portion of the virtual game
world that is proximate to a play’s position. Advantageously,
the virtual game world can be provided in high resolution
and is able to cover a substantially larger region than
conventional practical.

22 Claims, 26 Drawing Sheets

US 11,607,611 B2
Page 2

(51) Imt.CL
GO6N 3/04 (2023.01)
GO6T 17/05 (2011.01)
(56) References Cited

9,737,811
9,751,005
10,369,472
10,726,611
11,446,575
2005/0035964
2005/0264576

2013/0321442
2014/0007022

2016/0332074
2017/0046882
2018/0345147
2019/0251717
2019/0340730
2019/0342555
2020/0410741
2021/0001216
2021/0023448
2021/0121781

U.S. PATENT DOCUMENTS

B1* 82017 Penmatsa
. A63F 13/5378
Bl* 82019 Mattar
Bl* 7/2020 Courtccccoevvnee.

B1* 9/2017 Dong ...

B2* 9/2022 St-Pierre
Al 2/2005 Heenen

Al* 12/2005 Sommers

Al 12/2013 Van Os et al.

Al* 1/2014 Tocino Diaz

Al* 11/2016 Marrcooevevinen
Al* 2/2017 Lane
Al* 12/2018 Okajima

Al 8/2019 Liu et al.
Al* 11/2019 Dimitrov
Al* 11/2019 Dimitrov .
Al* 12/2020 Laflamme
Al 1/2021 Sanders et al.
Al* 1/2021

Al* 4/2021 Benedetto

2021/0178267 Al 6/2021 St-Pierre et al.
2021/0178270 Al* 6/2021 Suncooevviiininnne AG63F 13/56
2021/0178274 Al 6/2021 St-Pierre et al.

OTHER PUBLICATIONS

Karras et al., Progressive Growing of GANs for Improved Quality,
Stability, and Variation, Published as a conference paper at ICLR,
2018, 26 pp.

Karras et al., A Style-Based Generator Architecture for Generative
Adversarial Networks, Mar. 29, 2019, 12 pp.

Qui et al., Void Filling of Digital Elevation Models with a Terrain
Texture Learning Model Based on Generative Adversarial Net-
works, Remote Sensing Journal, 2019, 22 pp., vol. 11, 2829.
Ronneberger et al., U-Net: Convolutional Networks for Biomedical
Image Segmentation, May 18, 2015, 8 pp.
https://www.sidefx.com/docs/houdini/model/terrain_workflow.
html., Realistic terrain with heightfields, 8 pp.

Ledig et al., Photo-Realistic Single Image Super-Resolution Using
a Generative Adversarial Network, May 25, 2017, 19 pp.

He et al., Deep Residual Learning for Image Recognition, Dec. 10,
2015, 12 pp.

Sola et al., Image-to-lmage Translation with Conditional Adversarial
Networks, Nov. 26, 2018, 17 pp.

Harshit Kumar, Skip connections and Residual blocks, Sep. 7, 2018,
3 pp.

* cited by examiner

U.S. Patent Mar. 21, 2023 Sheet 1 of 26 US 11,607,611 B2

FIG. 1A

U.S. Patent Mar. 21, 2023 Sheet 2 of 26 US 11,607,611 B2

FIG. 18

U.S. Patent

Mar. 21, 2023

Sheet 3 of 26

US 11,607,611 B2

Task

Algorithm

Input

Output

2. Split Basemap

Streaming
quadires

Basemap

Dynamic quadiree

2.2 Place Tree
Papulation

Madified
pixZpix with
Houdint input

Enhanced resolution
tile

Tree population grid

2.4 Ground Population
Placement

Modified
pix2pix with
Houdini input

Map from 2.3 and
Enhanced resolution
tie

Splat map

FIG. 2A

U.S. Patent

Mar. 21, 2023

Sheet 4 of 26

US 11,607,611 B2

Task

Algorithm

1.2 Make high-
resolution basemap

Modified
pix2pix with
Houdini input

Low-resolution
basemap

High-resolution
basemap

2.2 Increase
Resolution of a Region

Modified
SRGAN

Basemap tile

Increased resolution tile

2.4 Ground Texiure
Population

Modified
pix2pix with
Houdini input

Population grid map
and basemap lile

Splat map

FIG. 2B

U.S. Patent Mar. 21, 2023 Sheet 5 of 26 US 11,607,611 B2

300

- //—'—\\ ///
(START ¥
N /

"

CREATE BASEMAPR T 302

v

PARTITION BASEMAP INTO A PLURALITY OF |
REGIONS

'

INTENTIFY REGION(S) NEEDING HIGH -~ 306
RESOLUTION

Y

INCREASE RESOLUTION OF THE IDENTIFIED
REGION(S)

v

POPULATE GROUND COVERAGE FOR
TERRAIN WITHIN THE IDENTIFIED REGION(S)

v

VISUALIZE RESULTING TERRAIN IN HIGH
RESOLUTION FOR THE IDENTIFIED 312
REGION(S)

L

-
END
- ,/

© 304

S 308

310

,-
o

FIG. 3A

U.S. Patent Mar. 21, 2023 Sheet 6 of 26 US 11,607,611 B2

350
GIB

GENERATE LOW-RESOLUTION BASEMAPRP | 352

.

PROCESS LOW-RESOLUTION BASEMAP TO |~ 364
CREATE HIGH-RESOLUTION BASEMAP

Y

PARTITION BASEMARF INTO APLURALITY OF | 356
REGIONS

v

IDENTIFY REGION(S) NEEDING HIGHER | 358
RESCLUTION

Y

INCREASE RESOLUTION OF THE IDENTIFIED |
REGION(S)

v

POPULATE GROUND COVERAGE FOR
TERRAIN WITHIN THE IDENTIFIED REGION(S)

v

VISUALIZE RESULTING TERRAIN N HIGH
RESOLUTION FOR THE IDENTIFIED ~_ 364
REGION(S)

(EnD)
e

FIG. 3B

360

362

U.S. Patent Mar. 21, 2023 Sheet 7 of 26 US 11,607,611 B2

400
(START) »
IDENTIEY AN IMAGE SOURCE FOR TRAINING |
402
DATA
PROCESS TRAINING DATA FROM IMAGE |,
SOURCE INTO TILES OF A DETERMINED SIZE
SELECT A TRAINING DATA SET OF IMAGES |,
FROM THE TILES
TRAIN MACHINE LEARNING AGENT BASED |, o
ON THE TRAINING DATASET OF IMAGES |
GENERATE BASEMAP IMAGE USING THE |
MACHINE LEARNING AGENT - 410

IR
(&no)

._/

FIG. 4A

U.S. Patent Mar. 21, 2023 Sheet 8 of 26 US 11,607,611 B2

T

@TARD ¥

¥

DOWNLOAD ELEVATION DATA T 452

T
B
E‘

PROCESS ELEVATION DATA TO EXTRACT
TILES

T 454

H
H
g‘

TRAIN MACHINE LEARNING AGENT T 456

GENERATE BASEMAP - 458

i
i
.

FIG. 4B

U.S. Patent Mar. 21, 2023 Sheet 9 of 26 US 11,607,611 B2

500
(START) o
¥
IDENTIFY PROCEDURAL RULES FOR . B2

PRODUCING TRAINING DATA

H
H
g

GENERATE TRAINING DATA USING THE
PROCEDURAL RULES

T 504

T
B
é

SELECT A TRAINING DATA SET OF IMAGES [506

H
H
E

TRAIN MACHINE LEARNING AGENT BASED
ON THE TRAINING DATASET OF IMAGES

508

+
B
é

GENERATE BASEMAP IMAGE USING THE
MACHINE LEARNING AGENT

b

e
(\END)

._/

FIG. 5A

U.S. Patent Mar. 21, 2023 Sheet 10 of 26 US 11,607,611 B2

//M .%\\\
START) ¥
. e

¥

GENERATE LOW-RESOLUTION BASEMAP
FROM A FIRST MACHINE LEARNING AGENT

552

T
i
E‘

DIVIDE LOW-RESOLUTION BASEMAP INTO A |
PLURALITY OF SUB-PORTIONS

+ 554

H
H
a‘

INCREASE RESOLUTION OF EACH SUB-
PORTION USING A SECOND MACHINE - 558
LEARNING AGENT

H
H
!‘

COMBINE THE ENHANCED SUB-PORTIONS

TO FORM HIGH-RESOLUTION BASEMAR |~ 998

iy
END)

e

FIG. 5B

US 11,607,611 B2

Sheet 11 of 26

Mar. 21, 2023

U.S. Patent

560

{ t i t
Pl Pl
o Pl o Pl o
S Pl o P]
x Pl > Pl >
P Pl oy Pl oy
@ 1@ i@
aaaaaaa b T
1 : H i1
;;;;;;; o e e
Pl Pl o
ey
& i i ISP i f o
b4 | i = i i >
p o~ P ey I IS
Lv &3 i m&v3 P ooy @2
N Lo N
L4 N
SSRUDNNS NS N AN DU D SN
o P N P o
I R R B
Xy x Pl %
o . o o4
~ ™ AN B I
© HONIES,

562

512 x 512

FIG. 5C

U.S. Patent Mar. 21, 2023 Sheet 12 of 26 US 11,607,611 B2

600

LOW RESOLUTION »
BASEMAP

4 N

(BASEMAP PARTITIONER Vo 802

N /

RESOLUTION INCREASING MACHINE \\ 604

LEARNING AGENT

N /

HIGH RESQLUTION
BASEMAP

FIG. 6

U.S. Patent Mar. 21, 2023 Sheet 13 of 26 US 11,607,611 B2

(&AR'@) 700

L

£

RECEIVE A BASEMAP T 702

v

PARTITION THE BASEMAPR INTO TILES e 704

v

RETRIEVE PLAYER POSITION ON THE

BASEMAP 706

"y

SELECT (Initia/Next) TILE TO PROCESS " 708

Y

OBTAIN TILE POSITION OF SELECTED TILE

ON BASEMAP - 710

'

COMPUTE SEPARATION DISTANCE
BETWEEN PLAYER POSITION AND TILE |~ 742
POSITION

o~

714 '
/"~&~’ARA"!O\
,\/ DISTANCE - 718~

\\HRE‘%HO D/’/YES y '
7 SUBDIVIDE TILE

)QNO

"/MORF>
TILES

vESNES
NO

U.S. Patent Mar. 21, 2023 Sheet 14 of 26 US 11,607,611 B2

S -~ 800
AR
START
SELECT (initial/Next) TILE OF BASEMAP 1 802

I\

S
804~ \\\

// INCREASE ™

N \IQESO?;UTEON NO
-
.

lvgs

INCREASE RESOLUTION OF SELECTED
TILE USING A RESOLUTION INCREASING . 806
MACHING LEARNING AGENT

808
" N

’ N
MORE?TiLES s

\ E&

FIG. 8

U.S. Patent

800 -

920 -,

Mar. 21, 2023

Sheet 15 of 26

US 11,607,611 B2

1 ™ x 1x 1x 1x | 1x 1x
1x x| 1x 1x 1x ix | X 1x
1x x| ix 1x 1x i] X 1x
1x x| Ix 1x 1x x| 1x 1x
FIG. 9A
1x 1x | Ix 1x 1x x| X 1x
1x tx | Ix 1 1x x| X 1x
1x x| Ix 1x 1x x| x 1x
1x x| x 1x 1x x| X 1x
1x 1x | Ix 1x 1x x| X 1x
1x 1x | 1Ix 1x 1x x| X 1x
1x ix | I 1x 1x LEGR I 1x
1x ix | 2x | 2x | 2x 1x | Ix 1x
FIG. 9B
1x 1x | 2x P 2% tx | 1Ix 1x
1x 1x | 2% | 2x 2% x| x Tx
1x x | 1x 1x 1x 1x | Ix 1x
1x x| 1x 1x 1x x| 1x 1x

U.S. Patent

940 -

US 11,607,611 B2

FIG. 9C

Mar. 21, 2023 Sheet 16 of 26
1x o Ix 1x 1x ix | X 1x
1x x| 14X 1x 2% 2% | 2% 1
1x Ix 1 iy 1x 2% P 2X 1x
1x] ix 1x &x 1 2 1x
1x x| 1x 1x ix | 1x 1x
1x o Ix 1x 1x ix | Ix 1x
1x tx X 1 1x x |k 1x
1x x 0 Ix 1x 1x x| Ix 1x

U.S. Patent Mar. 21, 2023 Sheet 17 of 26 US 11,607,611 B2

1000
-
1002
? FIG. 10A
I
1004
Hie
1000
o
1002~ FIG. 10B
&5
1004 1
12

U.S. Patent Mar. 21, 2023 Sheet 18 of 26 US 11,607,611 B2

Lavel D Level 1 Level 2

(L2-L02) (02

FIG. 10C

U.S. Patent Mar. 21, 2023 Sheet 19 of 26 US 11,607,611 B2

FIG. 10D

U.S. Patent

Mar. 21, 2023 Sheet 20 of 26

F(X)

X

:

WEIGHT LAYER

|

WEIGHT LAYER

FIG. 10E

US 11,607,611 B2

U.S. Patent Mar. 21, 2023 Sheet 21 of 26 US 11,607,611 B2

1100
/ ~N ¥ \
\ELEVAT%GN AND MASK DAT A/\ K\COVERAGE INFO.)
¥
1102~ FIRST RESOLUTION ENHANCEMENT PROCESSING la—
s FIRST RESIDUAL ENHANCEMENT PROCESSING
1104 - 7
{ FIRST ENHANCED ELEVATION/MASK DATA 1106
SECOND RESOLUTION ENHANCEMENT PROCESSING b
114 e SECOND RESIDUAL ENHANCEMENT PROCESSING
NEAREST 1108 / : \
NEIGHBORS (SECOND ENHANCED ELEVATION/MASK DATA)
RESOLUTION 7
ENHANCEMENT
PROCESSING THIRD RESOLUTION ENHANCEMENT PROCESSING b
! L1110

‘> THIRD RESIDUAL ENHANGEMENT PROCESSING
11127

(TH%RD ENHANCED ELEVATION/MASK DATA\/

v

--------------------------- : FINAL RESIDUAL ENHANCEMENT PROCESSING

S V

QFiNAL ENHANCED ELEVATION/MASK DATA)

FIG. 11

U.S. Patent Mar. 21, 2023 Sheet 22 of 26 US 11,607,611 B2

Game world . ./ Streaming world
1- Active part of 4- Portion of the
the world game streaming world
2. The user 3- Background
provides input processing using
Daedalus

FIG. 13

US 11,607,611 B2

Sheet 23 of 26

Mar. 21, 2023

U.S. Patent

X
{ /
¢
H
y fY
2 / 7
. / /
X, 4 k
w ; / e @
I < A3
ol A
/./.\, JMW 7
e I -t
W/, o TR
Y
N,
™,
2
w
~
&
H
fd

FIG. 14

FIG. 15

U.S. Patent Mar. 21, 2023 Sheet 24 of 26 US 11,607,611 B2

1600
.
1606 /‘__\ 1604
? 61 0 7 ;'/ ,§ 60{\?} P
: PLAYER | /
PLAYER GAMING |- >
DEVICE
1612 .
1616 :'"\ 1614
PLAYER | /
PLAYER |Ja—» GAMING (et—>p
DEVICE
NETWORK GAMING
1615 <« NETWORKING
j SYSTEM
1622, 1620
PLAYER | /
PLAYER Jea—» GAMING | > -» (
DEVICE 1602
1624 |
1628 1626
| PLAYER | /
PLAYER GAMING |a——p
DEVICE

FIG. 16

U.S. Patent Mar. 21, 2023 Sheet 25 of 26

US 11,607,611 B2

1700
\\\
o
GAME
o | SERVER
1706 ,® | COMPUTER
1 GAME Y
SERVER
COMPUTER
1 1704
NETWORK [¥
™ nTeErFace [>
Ty
| S DATA
. S o®| STORE
1702 °
DATA
STORE
1708

FIG. 17

U.S. Patent Mar. 21, 2023 Sheet 26 of 26 US 11,607,611 B2

1800

/

P
USER INPUT
DEVICE
1808 1810
l DISPLAY
1802 ?
PROCESSOR 1816

NETWORK /BUS |_(

1811 INTERFACE

? 2

$ é 1818
1806 1804
CACHE FiLE
SYSTEM
¥ (STORAGE DISK)
RAM ROM i
2 3
(
1822 1820

FIG. 18

US 11,607,611 B2

1
MACHINE LEARNED RESOLUTION
ENHANCEMENT FOR VIRTUAL GAMING
ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Patent Provisional
Application No. 62/946,960, filed Dec. 11, 2019, and
entitled “MACHINE LEARNED VIRTUAL GAMING
ENVIRONMENT,” which is hereby incorporated herein by
reference.

This application is also related to: U.S. patent application
Ser. No. 16/994,482, filed Aug. 14, 2020, and entitled
“MACHINE LEARNED GROUND COVERAGE FOR
VIRTUAL GAMING ENVIRONMENT” which is hereby
incorporated herein by reference; and U.S. patent applica-
tion Ser. No. 16/994,494, filed Aug. 14, 2020, and entitled
“MACHINE LEARNED VIRTUAL GAMING ENVIRON-
MENT” which is hereby incorporated herein by reference.

BACKGROUND

Today, computer games are popular and played on many
different platforms. As computer games become more
sophisticated, they demand more computing resources.
Hence, there remains a need for improved approaches to
operate computer games without overburdening computing
resources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates a generative machine learning
approach to generating a terrain where players move within
a virtual world, according to one embodiment.

FIG. 1B illustrates a generative machine learning
approach to generating a terrain where players move within
a virtual world, according to another embodiment.

FIG. 2A illustrates different agents that can be used with
the generative machine learning approach shown in FIG.
1A, according to one embodiment.

FIG. 2B illustrates different machine learning agents that
can be used with the generative machine learning approach
shown in FIG. 1B, according to another embodiment.

FIG. 3A is a flow diagram of a dynamic graphical
presentation process according to one embodiment.

FIG. 3B is a flow diagram of a dynamic graphical
presentation process according to another embodiment.

FIG. 4A illustrates a flow diagram of a basemap formation
process for training a basemap agent and for creating a
basemap according to one embodiment.

FIG. 4B illustrates a basemap formation process for
training a basemap agent and for creating a basemap accord-
ing to another embodiment.

FIG. 5A illustrates a flow diagram of a basemap formation
process for training a basemap agent and for creating a
basemap according to another embodiment.

FIG. 5B illustrates a basemap formation process for
training a basemap agent and for creating a basemap accord-
ing to another embodiment.

FIG. 5C illustrates a representation of basemap division
and resolution enhancement according to one embodiment.

FIG. 6 illustrates a flow diagram of a resolution enhance-
ment process according to one embodiment.

FIG. 7 is a flow diagram of a basemap partition process
according to one embodiment.

10

15

20

25

30

40

45

55

60

65

2

FIG. 8 is a flow diagram of a tile resolution enhancement
process according to one embodiment.

FIG. 9A illustrates a representative basemap that has been
partitioned into discrete tiles.

FIG. 9B illustrates a representative basemap that pertains
to a selectively enhanced resolution basemap.

FIG. 9C illustrates another representative basemap that
pertains to a selectively enhanced resolution basemap.

FIGS. 10A and 10B illustrate of a basemap having a
high-resolution region and a low-resolution region accord-
ing to one embodiment.

FIG. 10C illustrates tiles produced using a quadtree
splitting system that are characterized using logical or
physical coordinates, according to one embodiment.

FIG. 10D illustrates quadtree partitioning with regard to
separation factor according to one embodiment.

FIG. 10E illustrates a computational diagram of a gen-
erator for a resolution enhancement agent.

FIG. 11 is a diagram of a processing architecture for a
generator of a resolution enhancement agent according to
one embodiment.

FIG. 12 is a schematic diagram of how a Unity plugin, can
connects two Unity worlds: a game world and a streaming
world, according to one embodiment.

FIG. 13 illustrates a flow diagram of a streaming process
according to one embodiment.

FIG. 14 illustrates an undulated terrain with a texture
divided into texels, according to one embodiment.

FIG. 15 is a diagram illustrating of a tile “splitting and
merging” procedure, according to one embodiment.

FIG. 16 is a block diagram of an exemplary gaming
system according to one embodiment.

FIG. 17 illustrates a network environment suitable for
carrying out one or more embodiments.

FIG. 18 is a block diagram of an exemplary computing
device.

SUMMARY

Embodiments disclosed herein concern improved
approaches to providing virtual game worlds for computer
games. These approaches make use of machine learning
such that the virtual game worlds can be generated at run
time. Machine learning agents are trained in advance to the
characteristics of the particular game world. Then, these
suitably trained machine learning agents can be used to
generate a relevant portion of a virtual game world as a
player moves through the virtual game world.

In one embodiment, the virtual game world is a graphical
environment that can be built from a basemap having a
reduced resolution representation. As a player position
changes with respect to a basemap, a subset of the basemap
that is proximate to the player position can be identified.
Then, resolution of the subset of the basemap can be
increased using a previously trained machine learning agent
to produce an enhanced basemap. The enhanced basemap
can then be used to produce at least a portion of the graphical
environment for the virtual game world for the computer
game.

Through use of the improved approaches, the virtual
game world can be provided in high resolution and is able
to cover a substantially larger region than conventionally
practical. These approaches are also hardware efficient such
that the computer games can operate on standard consumer
hardware devices.

The invention can be implemented in numerous ways,
including as a method, system, device, or apparatus (includ-

US 11,607,611 B2

3

ing graphical user interface and computer readable
medium). Several embodiments of the invention are dis-
cussed below.

As a method for producing a graphical environment for a
computer game played by at least one player, one embodi-
ment can, for example, include at least: retrieving a player
position relative to a basemap, the basemap being a reduced
resolution representation of the graphical environment;
identifying a subset of the basemap that is proximate to the
player position relative to the basemap; increasing resolution
of the subset of the basemap using a previously trained
machine learning agent to produce an enhanced basemap,
the enhanced basemap being an enhanced resolution repre-
sentation of the graphical environment; and rendering the
enhanced basemap to produce at least a portion of the
graphical environment for the computer game.

As a non-transitory computer readable medium including
at least computer program code tangibly stored thereon and
executable by an electronic device to produce a graphical
environment for a computer game played by at least one
player, one embodiment can, for example, include at least:
computer program code for retrieving a player position
relative to a map, the map being a reduced resolution
representation of the graphical environment; computer pro-
gram code for identifying a subset of the map that is
proximate to the player position relative to the map; com-
puter program code for increasing resolution of the subset of
the map using a previously trained machine learning agent
to produce an enhanced map, the enhanced map being an
enhanced resolution representation of the graphical environ-
ment; and computer program code for rendering the
enhanced map to produce at least a portion of the graphical
environment for the computer game.

DETAILED DESCRIPTION

Embodiments disclosed herein concern improved
approaches to providing virtual game worlds for computer
games. These approaches make use of machine learning
such that the virtual game worlds can be generated at run
time. Machine learning agents are trained in advance to the
characteristics of the particular game world. Then, these
suitably trained machine learning agents can be used to
generate a relevant portion of a virtual game world as a
player moves through the virtual game world.

In one embodiment, the virtual game world is a graphical
environment that can be built from a basemap having a
reduced resolution representation. As a player position
changes with respect to a basemap, a subset of the basemap
that is proximate to the player position can be identified.
Then, resolution of the subset of the basemap can be
increased using a previously trained machine learning agent
to produce an enhanced basemap. The enhanced basemap
can then be used to produce at least a portion of the graphical
environment for the virtual game world for the computer
game.

Through use of the improved approaches, the virtual
game world can be provided in high resolution and is able
to cover a substantially larger region than conventionally
practical. These approaches are also hardware efficient such
that the computer games can operate on standard consumer
hardware devices.

The invention can be implemented in numerous ways,
including as a method, system, device, or apparatus (includ-
ing graphical user interface and computer readable
medium). Several embodiments of the invention are dis-
cussed below.

25

35

40

45

4

In some computer games, one or more players can move
through a large, content-rich virtual game world. On con-
sumer hardware used today by players, loading at startup all
of the information and structure of the entire game world
may not be a realistic option. To avoid this dilemma, a map
of the game world can be managed to retain high resolution
while not overwhelming the consumer hardware. The man-
agement can be repeatedly or dynamically performed so that
players can navigate large maps of the game world at high
resolution in real-time using personal consumer hardware.

In one embodiment, for a computer game operating in a
virtual game world, a new basemap can be generated at each
new play session. The generated maps can result from
machine learning and can represent a large region at high
resolution. For example, maps can be generated for a large
area of at least 100x100 km or larger and at a resolution of
at least 0.25 meters. Conventionally, such maps for a virtual
game world would not be possible because the memory
requirements on the game playing electronic device (e.g.,
personal consumer hardware) would be overwhelmed. As
described herein, a large basemap can be generated using
on-demand data generation and data streaming. The data
streaming can make use of a partitioning scheme. In such an
embodiment, a low-resolution version of the large basemap
can be generated. Yet, a high-resolution version of the large
basemap can be rendered at the region surrounding a player
position relative to the large basemap. Advantageously, only
a small portion of the large basemap need be rendered at
high resolution, thus making the large (e.g., entire) basemap
much easier to manage than conventional approaches. In one
embodiment, resolution can be enhanced from the low
resolution to the high resolution by one or more machine-
learning agents. In another embodiment, low to high reso-
Iution enhancements may be set at the time the basemap is
generated. Although the basemaps being generated using the
disclosed techniques are particularly well suited for larger
areas, such as at least 10x10 km?® or larger, it should be
understood that the disclosed techniques are not limited to
any particular size of area or basemap.

Instead of explicitly defining rules that define the appear-
ance of a terrain region of a map for a virtual game world,
a machine learning system can determine which terrain
features are to be applied based on its learning from a
training dataset. Advantageously, maps generated using
machine learning can be produced with substantially less
human effort and time, and in some cases can be even more
visually appealing than conventional procedurally generated
counterparts. By different training, machine learning can
generate maps having completely different terrain regions
(e.g., a desert and a mountain range). The terrain for a map
is able to be generated from training data that includes a set
of images pertaining to the desired terrain.

As an example, an exemplary virtual game world can take
place in a large fictional area of the Black Forest, such as at
least 16x16 km?, for example. The terrain for the Black
Forest can be generated from scratch using a generative
machine learning approach every time the game is launched
at a game playing electronic device.

Although the embodiment described herein principally
concern a game play environment. it should be understood
that other embodiments include a game development envi-
ronment In such other embodiments, all game content
needed not be initially distributed with a game, but can be
generated later at a client machine.

FIG. 1A illustrates a generative machine learning
approach to generating a terrain where players move within
a virtual world, according to one embodiment. The genera-

US 11,607,611 B2

5

tive machine learning approach is able to generate terrain
100 for a map through a series of machine learning agents.
Starting with a basemap 102 generated at game launch with
no human contribution. The basemap 102 can then be split
using a streaming quadtree partitioning scheme 104, where
high-resolution basemap regions 106 are rendered using a
resolution enhancement agent. For each high-resolution
region, the location and type of trees 108, the ground texture
110 and the location of flowers, rocks and other ground
population objects 112 are determined using machine learn-
ing, such as a modified version of pix2pix trained on data
from Houdini. Houdini is a software suite developed by
SideFX.

FIG. 2A illustrates different machine learning agents that
can be used with the generative machine learning approach
shown in FIG. 1A, according to one embodiment. Using a
set of machine learning agents, a basemap is generated and
then different layers of information are progressively added
to the basemap, ultimately determining the environment
where the game takes place. For example, as shown in FIG.
2A, various machine learning agents produced using mod-
els, such as StyleGAN, SRGAN and pix2pix. SRGAN refers
to for super resolution GAN, and this technique uses a deep
neural network to produce higher resolution versions of an
image. Pix2pix is an image-to-image translation algorithm
based on GANs. However, these exemplary machine learn-
ing agents are not required in various other embodiments.
The different machine learning agents and their usage and
operate are described in detail below.

FIG. 3A is a flow diagram of a dynamic graphical
presentation process 300 according to one embodiment. The
dynamic graphical presentation process 300 can produce a
virtual game environment. This virtual game environment
can be produced on nominal computing devices, yet yield
high resolution and excellent game experience.

The dynamic graphical presentation process 300 can
initially create 302 a basemap. Next, the basemap can be
partitioned 304 into a plurality of regions. Then, those one
or more regions needing high-resolution can be identified
306. As discussed below, this determination can, for
example, be based on a player’s position within the virtual
gaming environment. Thereafter, the resolution of the iden-
tified one or more regions can be increased 308. The
resolution increase can, for example, use a machine learning
agent that has been suitably trained for the relevant envi-
ronment.

Next, the identified one or more regions can be populated
310 with ground coverage to produce terrain. The terrain is
that of the virtual game environment. For example, the
terrain can mimic a natural environment (e.g., forest, desert,
etc.) and thus can be referred to as natural-like terrain. The
appropriate ground coverage depends on the natural envi-
ronment being mimicked. Here, one or more machine learn-
ing agents can be used to populate the ground coverage.
Thereafter, the resulting terrain can be visualized 312 in high
resolution. Here, the subset of the basemap with populated
ground coverage is rendered in high resolution, while
remaining portions of the basemap and its ground coverage
are rendered, if at all, in one or more lower resolutions.
Following the visualization 312 of the resulting terrain, the
dynamic graphical presentation process 300 can end. How-
ever, typically, the dynamic graphical presentation process
300 will dynamically adapt to a player’s position within the
computer game. This allows the player’s gaming experience
to appear in high resolution, while the processing burden on
the associated computing device performing the game is
manageable, even by nominal computing devices.

10

20

25

30

35

40

45

50

55

60

6

FIG. 1B illustrates a generative machine learning
approach to generating a terrain where players move within
a virtual world, according to another embodiment. The
generative machine learning approach is able to generate
terrain 150 for a map through a series of machine learning
agents. Starting with a basemap 152 generated at game
launch with no human contribution. The basemap 152 can
then be split using a streaming quadtree partitioning scheme
154, where high-resolution basemap regions 156 are ren-
dered using a resolution enhancement agent. For each high-
resolution region, the location and type of trees 158, the
ground texture 160 and the location of flowers, rocks and
other ground population objects 162 are determined using
machine learning, such as a population agent trained on data
from Houdini as well as a modified version of pix2pix
trained on data from Houdini. A ground texture agent can
also use machine learning in determining ground texture.

FIG. 2B illustrates different machine learning agents that
can be used with the generative machine learning approach
shown in FIG. 1B, according to another embodiment. Using
a set of machine learning agents, a basemap is generated and
then different layers of information are added to the
basemap, ultimately determining the environment where the
game takes place. For example, as shown in FIG. 2B,
various machine learning models can be used in combina-
tion, such as ProGAN, SRGAN and pix2pix. ProGAN is a
machine learning technique for generating images. The
different machine learning agents and their usage and oper-
ating are described in detail below. However, these machine
learning models or agents therefore are not required in
various other embodiments.

FIG. 3B is a flow diagram of a dynamic graphical
presentation process 350 according to another embodiment.
The dynamic graphical presentation process 350 can pro-
duce a virtual game environment. This virtual game envi-
ronment can be produced on nominal computing devices,
yet yield high resolution and excellent game experience.

The dynamic graphical presentation process 350 can
initially generate a low-resolution basemap. Then, the low-
resolution basemap can be processed 352 to create a high-
resolution basemap. The process 352 to resolution increase
can, for example, use a machine learning agent.

Next, the basemap can be partitioned 356 into a plurality
of regions. Then, those one or more regions needing higher
resolution can be identified 358. As discussed below, this
determination can, for example, be based on a player’s
position within the virtual gaming environment. Thereafter,
the resolution of the identified one or more regions can be
increased 360. The resolution increase can, for example, use
a machine learning agent that has been suitably trained for
the relevant environment.

Next, the identified one or more regions can be populated
362 with ground coverage to produce terrain. The terrain is
that of the virtual game environment. For example, the
terrain can mimic a natural environment (e.g., forest, desert,
etc.) and thus can be referred to as natural-like terrain. The
appropriate ground coverage depends on the natural envi-
ronment being mimicked. Here, one or more machine learn-
ing agents can be used to populate the ground coverage.
Thereafter, the resulting terrain can be visualized 364 in
higher resolution. Here, the subset of the basemap with
populated ground coverage is rendered in higher resolution,
while remaining portions of the basemap and its ground
coverage are rendered, if at all, in one or more lower
resolutions. Following the visualization 364 of the resulting
terrain, the dynamic graphical presentation process 350 can
end. However, typically, the dynamic graphical presentation

US 11,607,611 B2

7

process 350 will dynamically adapt to a player’s position
within the game world. This allows the player’s gaming
experience to appear in higher resolution, while the process-
ing burden on the computing device performing the game is
manageable, even by nominal computing devices.

Game Genres

Computer games, also referred to as video games, are
sophisticated today and require complex computing envi-
ronments to support the games, particularly with high-
resolution graphics and/or multiplayer networked games
over the Internet. Additionally, computer games can be
implemented on many types of gaming systems or network
topologies. These systems or network topologies are the
arrangements of elements of a communication and/or com-
puting network used to allow players to play computer
games.

Different gaming systems or topologies can be used,
including: stand-alone device, local area networked system,
wide area networked system, dummy terminal networked
system.

Most stand-alone computers with single central process-
ing units (CPUs) are unable to handle large gaming systems
or topologies. Many players need to buy more expensive
CPUs and/or graphics processing units (GPUs) in order to
handle the processing and memory burdens on the player’s
stand-alone computer to play sophisticated computer games,
including rendering graphic-intensive maps. Heavy process-
ing loads on player’s stand-alone computer can also lead to
overheating. Hence, it is advantageous to reduce burdens
place on stand-alone computers used to perform computer
games.

In a local-area network system (LLAN), multiple comput-
ers are all connected on a small network. This is a common
system for multi-player games that has one computer acting
as a server. However, that one computer needs to have
significant graphic processing capability or each individual
computer connected to the network needs to be able to
render graphic-intensive maps. Unfortunately, rendering
takes valuable computing resources and if one computer lags
in the processing or rendering of the graphic-intensive maps,
it can impede game play on other computers. Moreover,
crashing of the gaming system is often because of the lack
of computer resources. Thus, it is advantageous to reduce the
load on either the server computer and/or all the computers
connected to the LAN, make synchronization of all the
computers easier, and reduce the lag in the game due to the
inefficiencies (i.e., one computer having less computing
resources than other computers) of any one computer.

Wide area networked systems (WAN) have multiple com-
puters connected over a wide network. This allows for even
more players to play the games than possible in the LAN
case. However, similar to the LAN case, synchronization
and lag times are important and crashing of the gaming
system can occur.

Dummy terminal networks have also been used in gaming
systems. Multiple computers with less computing resources
than a server may be used to run the gaming system,
allowing players to play the games on computers or com-
puting devices with significantly less computing resources,
such as a console systems, stand-alone computers, low
power browser based computing devices (i.e., Chrome-
book), mobile devices (including smartphones), and the like.
This type of network generally renders graphics (including
maps) to all the players and streams the graphics to the
player’s computing devices. With multiplayer games, the
server may need to render different graphics (e.g., portions

10

15

20

25

30

35

40

45

50

55

60

65

8

of a map) to each of the players, which causes issues or
problems related to synchronization, lag, and other similar
issues.

The invention herein is suitable for use in all types of
gaming systems (i.e., topologies) as well as in various game
genres. In particular, the invention is useful in gaming
systems where significant computing resources are dedi-
cated to either rendering a play environment and/or keeping
a rendered play environment in active memory. With regard
to game genres, the invention can be applied to any game
genre where the user’s perspective of the play environment
is changing over time.

Today, computer games have many different genres. One
popular genre of computer games is a role-playing game
(RPG). In RPG games, a human player can assume control
of a character or “avatar” that operates in a virtual environ-
ment produced by the game. Players can fashion their own
online personae and interact with other players’ avatars.
People work together, through their avatars, to create
objects, fight off bad actors, or otherwise achieve objectives
in the virtual world. The human player can, for example,
move his or her avatar through the virtual environment,
interact with virtual objects, or interact with other avatars
controlled by other human players and/or game characters.

When playing RPGs, players interact with some type of
map or topography. In conventional games developed using
the classical approach, these maps are pre-designed and are
rendered by the computing device the same way each time
the game being played. Additionally, these game systems
generally only cover relatively confined areas because the
corresponding map consume a lot of resources to design,
render and store in memory. Hence, a large map might be
implemented through a number of smaller maps because the
entire map is too data intensive to be stored in active
memory. But, as a player moves from one map to another
map, the game must pause while the new segment of the map
is rendered and loaded into active memory. Moreover, such
games use fixed transition points between segments. This
results in a lag, especially if players go back and forth
between the different maps, which slows the pace of the
game and annoys players.

Advantageously, the invention provides for the generation
of unique maps for the game being played. Only certain or
specific parts of the map need to be rendered by the
computing device at any given time, therefore allowing
games to be played on less powerful computing devices.
Additionally, this allows for the ability of the less powerful
computing device to display larger maps since fewer com-
puting resources are needed to render the map and play the
game. Beneficially, only smaller portions of the map need to
be rendered in real time, thereby avoiding the need for
loading of distinct smaller maps as the player traverses a
large geographic area in a virtual game world. Additionally,
as the player moves through the virtual game world the map
is generated and rendered in real-time without any need to
switch between distinct smaller maps as would be conven-
tionally required. This allows for seamless movement and
efficient resource utilization so that there is not disruption to
game flow when a player traverses between different seg-
ments a large geographic area in a virtual game world.

One popular type of role-playing game can have a struc-
tured plot. For example, World of Warcraft, is a massively
multiplayer online game (“MMOG”). The game developer
provides a virtual world and a set of characters for the
players to interact with. The player’s avatars play the heroes,
while the game software directs or referees many of the
outcomes.

US 11,607,611 B2

9

One common characteristic of many or most RPGs is that
the multiple players’ avatars share a common game space
and can play at the same time. Various players throughout
the world connect to a network, log to the game server, and
play the game simultaneously. The actions of an avatar
controlled by a player can affect the actions of other avatars
controlled by other players as well as the status of the game.
Such multi-avatar interaction occurs when multiple players
play together at the same time, i.e., the game being played
is a multiplayer game. However, in other cases, the players
need not play at the same time yet the player’s avatar’s
actions can still affect the status of the game and the status
of other avatars. Thus, even though the game being played
is a single-player game from the perspective of each par-
ticipant of the game, at a higher level, it is a multiplayer
game since the non-player avatars of the other players and
the status of the game can be affected.

Games are inherently social, and many players like to play
games for the challenge of the game. However, many
players also enjoy the social aspect of gaming and the ability
to meet up to interact with other players. RPG is a broad
family of games where players assume the roles of charac-
ters in a fictional setting. For example, a player may assume
the role of a character in a fantasy-themed role-playing game
and partake in various game interactions such as befriending
other characters, battling monsters, completing quests,
building and/or trading items, and so on. Actions taken
within the game succeed or fail according to a formal system
of rules and guidelines. In live action role-playing games
(LARPs), players physically perform their characters’
actions. In both forms, a director (game master (GM))
usually decides on rules and settings to be used and acts as
referee, while other players play the role of one or more
characters in the game.

Computer-assisted gaming has been used to add elements
of computer gaming to in-person and pen and paper role-
playing. In these games, computers are used for record-
keeping and sometimes to resolve combat, while the par-
ticipants generally make decisions concerning character
interaction. Several varieties of RPG also exist in primarily
electronic media, including multi-player text-based multi-
user dungeons (MUDs) and their graphics-based successors,
massively multiplayer online role-playing games
(MMORPGS). Role-playing games also include single-
player offline role-playing video games in which players
control a character or team who perform game interactions
(e.g., competing in battle, conversing with other players or
characters, partaking in quests, trading with merchants, etc.).
These games often share settings and rules with pen-and-
paper RPGs, but generally emphasize character interaction
and/or advancement more than collaborative storytelling.

MMORPGsS, such as Blizzard Entertainment’s World of
Warcraft, Sony Online Entertainment’s Ever Quest, or Jagex
Games Studio’s RuneScape, combine the large-scale social
interaction and persistent world of MUDs with graphical
interfaces. A persistent world is a virtual world that generally
continues to exist even after a user exits the world. User-
made changes to its state are, to some extent, permanent.
Servers, data structures, algorithms, and other computer
assisted technology and software associated with the per-
sistent world generally remain available and operational for
the user, or other users from around the world. These are
available for the user to join and interact with the persistent
world and with other players at any time. Most MMORPGs
do not actively promote in-character role-playing; however,
players can use the games’ communication functions to

20

30

35

40

45

50

10

role-play, which they may do to varying extents. These
games often utilize even larger maps than the RPGs and thus
have similar issues to RPGs.

More generally, a massively multiplayer online game
(also called MMOG or MMO) is a multiplayer video game
which is capable of supporting hundreds to hundreds of
thousands of players simultaneously, and need not be of the
RPG type, but can be applied to any competitive or coop-
erative endeavor. An MMOG is generally played on a
computer network such as the Internet, and features at least
one persistent virtual world. In some cases, multiple
instances of a persistent virtual world may be maintained for
the MMOG. Each instance may be governed by a different
set of rules or conventions and may be available to different
regions of the world. Some MMOGs are designed as a
multiplayer browser game to reduce infrastructure costs and
used a thin client. The players can play the game using a
computing device. Examples of a computing device use by
a player can include personal computing devices (laptop
computers, tablet computers, desktop computers), gaming
consoles, smartphones or other mobile devices.

Multiplayer games and networked activities, such as
MMOGs and MMORPGs, enable players to cooperate and
compete on both a small and large scale, and sometimes to
interact meaningfully with people around the world.
Examples of game-play types include, but are not limited to:

Massively Multiplayer Online First Person Shooter
(MMOFPS) is a subset of popular first-person shooter-
type games where a player views an environment or
virtual world through the eyes of a character. MMOFPS
is an online gaming genre which typically features a
world (e.g., persistent world) and a large number of
simultaneous players in a first-person shooter fashion.
These games provide large-scale, sometimes team-
based combat.

Massively Multiplayer Online Real-Time Strategy Games
(MMORTS) often combine real-time strategy (RTS)
with a persistent world though in some cases worlds are
“instanced” for the duration of a game, a match, a
tournament, or other specified time period. Players may
assume the role of a general, king, or other figurehead
leading an army into battle while maintaining the
resources needed for such warfare. The games are often
based in a science fiction or fantasy universe.

Massively Multiplayer Online Sports Games (MMOSG)
allow players to compete in more traditional sports,
such as soccer, basketball, baseball, hockey, golf or
football.

Massively Multiplayer Online Racing (MMOR) is a large,
online racing game, although some games may include
elements of combat.

Massively multiplayer online rhythm games (MMORGS),
or massively multiplayer online dance games
(MMODGs), are MMOGs that are also music video
games.

Massively multiplayer online management games
(MMOMGs) are often considered easy to play and do
not take much time. Players log in a few times each
week, set orders for an in-game team, and finds how to
defeat fellow players.

Massively Multiplayer Online Social Games focus on
socialization instead of objective-based game-play.
These games can emphasize socializing, world-build-
ing, and an in-world virtual economy.

Alternate reality games (ARGs) can be massively-multi-
player, allowing thousands of players worldwide to
co-operate in puzzle trails and mystery solving. ARGs

US 11,607,611 B2

11

may take place in a unique mixture of online and
real-world play that usually does not involve a persis-
tent world, and are not necessarily multiplayer.

Games can also be a blended MMO game incorporating
features of various game-play types described above or
other contemplated game-play types.

Given the large variety of games and the ever increasing
need to enhance a player’s experience, there is a need to
further improve gaming systems or topologies that allow for
better synchronization of game play, less lag, less load on the
server or player’s computing device, less chance of crashing
the game system, and the ability to use a computing device
(e.g., player’s game play electronic device) with much less
resources (i.e., standard memory size, standard processor/
CPU, standard hard or solid state drive, standard graphics
card).

Generative Adversarial Networks

Generative Adversarial networks (“GANs”) are machine
learning systems consisting of two elements with competing
interests: a generator and a discriminator. As an example, a
GAN might be designed to produce realistic faces from a
portraits database. In this case, the goal of the generator is
to generate a portrait as close as possible to those in a
training set, and the goal of the discriminator will be to
distinguish as well as possible between fake and real images.
GANSs are designed so that, as the training progresses, both
the generator and the discriminator become better at their
task, thus making the generated data increasingly realistic.
More formally, the generator and discriminator of a GAN
are the players of a zero-sum game with the goal of reaching
a Nash equilibrium. A zero-sum game is a mathematical
representation of a situation in which each participant’s gain
or loss of utility is exactly balanced by the losses or gains of
the utility of the other participants. A Nash equilibrium is a
stable state of a system involving the interaction of different
participants, in which no participant can gain by a unilateral
change of strategy if the strategies of the others remain
unchanged. In other words, il each player has chosen a
strategy, and no player can benefit by changing strategies
while the other players keep theirs unchanged, then the
current set of strategy choices and their corresponding
payoffs constitutes a Nash equilibrium.

In the last few years, progressively complicated GANs
architectures have been introduced to generate new art-
works, resulting in increasingly realistic results. Noteworthy
GANSs-based architectures include DCGAN, ProGAN and
StyleGAN.

StyleGAN is a recent GAN architecture from researchers
at NVIDIA Corporation. StyleGAN is an alternative gen-
erator architecture for generative adversarial networks, bor-
rowing from style transfer literature. The new architecture
leads to an automatically learned, unsupervised separation
of high-level attributes (e.g., pose and identity when trained
on human faces) and stochastic variation in the generated
images (e.g., freckles, hair), and it enables intuitive, scale-
specific control of the synthesis. The naming includes style,
a term borrowed from neural style transfer, which is an area
of computer vision exploring how to transfer the style of an
image onto another one. Considering a painting, content
denotes its largescale elements and the style indicates the
finer details, such as the brush strokes, the color contrast and
SO on.

20

25

30

35

40

45

50

55

60

65

12

Mathematically, given two images I' and I, the difference
in content between the two is given by the content loss
Lcontent, defined as:

Leomen(li, 1) = 1/2) (Fy = Fy)?

where F, and F, are the features map of I, and I,, respec-
tively.

To quantify the style of an image, the conventional
approach is to use a Gram matrix. For an image Ij, its Gram
matrix is calculated by multiplying the features map by its
transpose,

T
G=F/F)

with this notation, the difference in style between the two
images can be expressed using the style loss Lstyle, defined
as

Loy,) = @) wi(Gry = Gy

where i indicates the layer number and Wi the weight
assigned, for each convolutional layer, to the corresponding
Gram matrix.

The StyleGAN architecture consists of the mapping net-
work f, the synthesis network g and two latent spaces, Z and
W, with the latter defined as the intermediate latent space.
The mapping network f maps the elements of Z into W, and
the synthesis network g maps the elements of W into images,
as represented by the following:

— —
frEeZloweW

g:w.e WoI AR

where nxn is the size in pixels of the generated image, Zi and
Wi are the i-th latent vectors and Ii is the i-th generated
image.

StyleGAN generates images using a progressive architec-
ture, with which the size and resolution of the “image in
generation” increases as the training proceeds. In this way
progressively finer details are added to the generated images,
down to the style-level. For example, when generating a
portrait of a person, the fine details can correspond to
determining the location of single hairs on the person’s head.

With StyleGAN, both the style and the content of the
generated image are defined starting from a latent vector.
Other style transfer techniques consider instead an image as
a source. Using elements of the latent space as a starting
point has the advantage that vector operations in the latent
space correspond to morphological operations in the gener-
ated images: summing the Zi corresponding to a girl with
glasses with the Zi relative to an old man we will get a
picture closer to an old woman with glasses. It should be
noted that the dimensionality m of the latent space is
determined by the architecture in use. As a result, in prin-
ciple, an infinite number of different images can be gener-
ated from a latent space. Furthermore, the number of mor-
phological features of an image that can be controlled by
controlling the elements of the corresponding latent vector
can be increased by increasing m.

ProGAN generates images using a progressive architec-
ture, with which the size and resolution of the “image in

US 11,607,611 B2

13

generation” increases as the training proceeds. In this way
progressively finer details are added to the generated images,
down to the style-level.

ProGAN was introduced in 2017 by T. Karras and his
colleagues at NVIDIA and Aalto University. See Karras et
al., “Progressive Growing of GANS for ImprovedQuality,
Stability, and Variation”, 2018. See also, Brownlee, “A
Gentle Introduction to the Progressive Growing GAN”,
2019.

The generator of ProGAN have a progressive architec-
ture, consisting of layers generating images of increasing
size. The discriminator of ProGAN checks the images
generated by the generator. In this way, both the generator
and the discriminator can learn large scale details first, and
fine-scale ones later. As the training continues layers are
incrementally, increasing the resolution of the generated
images.

As input, the ProGAN generator takes a vector z, usually
referred to as the latent vector. Latent vectors populate the
latent space Z, a manifold which is only locally Euclidean.
Intuitively, the generator projects each vector of Zin a
distinct image. A remarkable property of the latent space is
that by moving along given directions, morphological fea-
tures in the generated images can be altered. As an example,
by modifying the latent vector, one can control how much a
person smiles in the image produced by the generator.

To overcome the limitation of dealing with a non-Euclid-
ean manifold, improvements of ProGAN such as StyleGAN
have a more complicated structure, consisting of two latent
spaces: Zand the intermediate latent space W. See Tero
Karras et al., “A style-based generator architecture for
generative adversarial networks,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4401-4410, 2019. Incidentally, this allows can yield
better feature control and more realistic images.

Basemap Generation

The gaming system provides graphical imagery for a
computer-based game. In doing so, the graphical imagery is
constructed from various layers, including a base layer. The
base layer for the graphical imagery is referred to as a
basemap. In one embodiment, the graphical imagery serves
as terrain for a game. The terrain is able be computer
generated in real-time for the game, while also being real-
istic of a naturally existing terrain. In one embodiment,
machine learning from satellite images of the natural exist-
ing terrain can be used to generate the graphical imagery for
the terrain. In another embodiment, machine learning from
procedural rules (e.g., defined by an artist) can be used to
generate the graphical imagery for the terrain, and by
varying the parameters characterizing the terrain multiple
versions of a given area can be created. The generation of a
basemap is further described below.

To automatically produce a new map for the terrain for a
game as needed, a basemap can be formed and relative
agents can be trained using a database of images acquired
from an image source. The images can be generated using
procedural rules or can be acquired from a satellite. With
procedural generated images, training images are generated
by machine learning agent(s) in view of the procedural rules.
Alternatively, with satellite images, the images are actually
acquired from satellites and are thus natural and can pertain
to any region in the world. In this case, images are generated
by machine learning agent(s) that seek to mimic the training
images. As an example, training images can be the Appa-
lachia region of the United States, which provides diversity
in its structural components, such as reliefs, water bodies,

10

15

20

25

30

40

45

50

55

60

65

14

basins, etc. The inventive approach is particularly advanta-
geous for terrains that cover a large area, such as 10x10 km
or larger.

FIG. 4A illustrates a flow diagram of a basemap formation
process 400 for training a basemap agent and for creating a
basemap according to one embodiment. The basemap for-
mation process 400 can identify an image source for training
data. The image source for this embodiment can, for
example, be satellite acquired images. Once training data is
obtained from the identified training source, the training data
can be processed 404 into tiles of a determined size. Then,
a training dataset of images from the tiles can be selected
406. After the training dataset of images has been selected
406, a machine learning agent can be trained 408 based on
the training dataset of images. Finally, a basemap image can
be generated 410 using the machine learning agent that has
been trained.

FIG. 4B illustrates a basemap formation process 450 for
training a basemap agent and for creating a basemap accord-
ing to another embodiment. The basemap formation process
450 can download 452 elevation data, such as elevation data
collected by satellites. Depending on a desired resolution for
the basemap, different sources for the elevation data can be
utilized. The elevation data can then be processed 454 to
extract tiles. A machine learning agent can then be trained
456 using the processed elevation data to make objects (e.g.,
images) similar to those found in the elevation data. In one
implementation, the machine learning agent is StyleGAN.
After the machine learning agent has been suitably trained
456, a basemap can be generated 458.

An exemplary implementation of the basemap formation
process 500 described below includes details on how train-
ing data is prepared for StyleGAN, how training can be
performed with StyleGAN, how a basemap can then be
produced, and further how the resulting basemap can be
visualized. For example, the resulting basemap can be
visualized using the Unity editor available at unity3d.com.

The basemap to be created normally has a desired reso-
Iution. The source of satellite images for training data should
have a similar resolution as the desired resolution of the
training data. Hence, to generate a basemap with a given
resolution, StyleGAN can be trained using a training dataset
of images with the same or similar resolution. Each training
dataset of images can be prepared from satellite data down-
loaded from the chosen source of satellite images, such as
the sources of differing resolutions listed in the Table 1.

TABLE 1
Resolution Covered Regions Source
90 meters World, 0-60° longitude Open Topography
30 meters World, 0-60° longitude 30-Meter SRTM
Elevation Data
Downloader
10 meters USGS
5 meters Germany Bondsman fur
Kartographie und
Geodasie
5 meters Alaska USGS
3 meters Part of U.S. USGS
1 meter Part of U.S. USGS

In the embodiment illustrated in FIG. 4B, the downloaded
data is elevation data provided in a downloaded image from
a satellite. After the elevation data is downloaded 452, the
elevation data can be processed 454 to extract tiles of a
desired size from the downloaded image. The tile dataset can
then be fed into a machine learning agent, such as StyleGAN

US 11,607,611 B2

15

in one implementation, for training 456. Once trained, the
basemap has been generated 458. In one implementation, the
basemap can be loaded in Unity. Unity provides a code base
that can provide viewing and rendering functionality. Addi-
tional information in Unity can be found at
www.docs.unity3d.com.

The basemap can be generated by a machine learning
agent running, which in this embodiment is StyleGAN. The
machine learning agent can be trained using elevation data
collected by satellites and publicly available. For example,
the elevation data can contain elevation values shown in
grey scale (e.g., black=maximum depth, white=maximum
height). The elevation data from satellites can be from any
region in the world. For example, the regions could be
mountainous (e.g., Appalachia, Alps), arid (e.g., Sahara
Desert) or coastal (e.g., San Diego), as a few examples. It
should be noted that elevation data from satellites is more
accurate with respect to regions near the Equator, such as
below 60° longitude, otherwise there are projection-related
issues that can distort the elevation data.

The extraction of tiles from the elevation data can be
performed using a 2D sampling approach, such that a given
number of tiles with the desired size are extracted from a
satellite image containing elevation values.

Using StyleGAN’s default settings, the generator for
256%256 pixels images has 23 million parameters. As such,
realistic 256x256 pixels basemaps can be generated using
1000 training images. For larger basemaps, it is advanta-
geous to use a larger dataset for training. For example, a
1024x1024 pixels resolution might be trained using 5000 or
more images.

Depending on the size of the basemap to be generated,
StyleGAN can be trained using elevation data downloaded
from different sources (see Table 1). In one implementation,
the basemap can be a 30x30 km made of 256x256 pixels,
which corresponds to a resolution of 120 m per pixel. To get
training data with the same resolution, elevation data can be
downloaded with 30-meter resolution from dwtkns.com, as
an example. The downloaded elevation data can be binned
at 4x4 to prepare the training database, which consists of
images with a resolution of 120 m.

When processing the downloaded elevation data images
with the GIS data, a significant number of images (e.g.,
1000) can be extracted from the GIS data source (e.g., one
or more satellite images), thus building a training set.

In one implementation, StyleGAN can be trained using a
database of one thousand 256x256 pixels images stored in
the 24-bit png format, as the training set. Each image used
for the training is a matrix with size 256x256x3, or 256x256
with three channels. StyleGAN, as originally developed,
concerned photos and three channels, the first channel stored
intensity values for the red color, the second channel stored
intensity values for green and the third channel stored
intensity values for blue, following the RGB acronym. In
this implementation, the data type is an image providing
elevation data, so different information can be stored the
channels. For example, in training StyleGAN, a set of
images in the png format can store elevation data in the first
channel, and zeros can be stored in the other two channels
since they are not needed.

In training the StyleGAN agent, the number of training
iterations can vary. However, the training appears to settle
after 10 M iterations. For example, training for 25 M
iterations is more than sufficient for most cases. Once the
StyleGAN agent is trained, it can be used to generate
basemap images. In one implementation, the basemap
images can be 3-channel RGB pngs with 8-bit channels. As

20

25

30

35

40

45

60

16

a result, the values that can be stored in each pixel are
limited to the range {O, 255}. In this implementation, the
training data has its data only in the first channel.

Each value stored in a 24-bit png must be an integer
between 0 and 255. On the other hand, elevation values
collected by satellites range from the thousands of meters of
mountain tops to the negative thousand meters of the oce-
anic depths. To store elevation data in a channel of a png
image, the tiles extracted from the downloaded GIS data can
be resealed so that for each tile the elevation ranges from 0
to 255. In one embodiment, the elevation values Eoriginal
recorded by a satellite stored in a png can be resealed as
follows:

ERescaled=round[(255x1/(M-m)xEoriginal], m?-0

where ERescaled is the resealed elevation value, and m and
Mare the minimum positive and the maximum elevation
value in the image, respectively. “Round” indicates the
operation of approximating to the closest integer value.

To represent the elevation values in millimeters instead
than using absolute values, the elevation values can be
resealed and can be stored in a different file format. For
example, the resealed elevation values can be stored in raster
format with 32-bit available per entry.

Once a training dataset is prepared, StyleGAN can be
trained using the training dataset. For such training, from
recommendations from the official page on GitHub, the steps
that can, for example, be followed are: (1) store the training
data as TFRecords, and (2) launch the training script. See,
e.g., Karras et al., “StyleGAN—Official Tensor-Flow Imple-
mentation”; see also “TFRecords and tf.Example”.

Instead of making a map manually, generative neural
networks are used. In this way, instead of needing to
explicitly define numerous rules, artificial intelligence can
be used to learn terrain features from a training dataset of
images. In the above embodiment, we used satellite images
for training of the artificial intelligence. However, in one
embodiment, procedural rules defined by a technical artist
are used for training of the artificial intelligence. Here,
basemaps are able to be procedurally generated by machine
learning argents that follow a set of rules defined by a
technical artist (e.g., using Houdini). Using such a proce-
dural approach, by varying parameters that characterize the
terrain, multiple versions of a given area can be generated as
basemaps. The map generation herein takes into account the
location where the video game takes place. For example, to
get a Black Forest-like look, operations or parameters can be
adjusted to mimic the natural terrain, such as the impact of
geological erosion caused by water flow and by thermal
weathering. Although satellite images are not used for
training images in this embodiment, satellite images of the
corresponding natural terrain to be mimicked can still be
used as references, to evaluate the ability of the machine
learning agents to produce natural-like basemaps.

Generating a basemap using a machine learning agent can
provide the following advantages: (i) every time the game
starts, a new basemap can be generated on the user’s
machine; and (ii) features of the generated map can be
controlled by controlling the vector provided as input to
ProGAN; and (iii) the approach used is able to generate
various different terrains (e.g., a desert or a mountain range).
For example, to set the game in a new region, the basemap
agent would need to be retained with an appropriate set of
training images.

FIG. 5A illustrates a flow diagram of a basemap formation
process 500 for training a basemap agent and for creating a
basemap according to another embodiment. The basemap

US 11,607,611 B2

17

formation process 500 can identify 502 procedural rules for
producing training data. Next, generate 504 training data
using the procedural rules. The training data includes at least
a plurality of images. Then, a training dataset of images can
be selected 506. After the training dataset of images has been
selected 506, a machine learning agent can be trained 508
based on the training dataset of images. Finally, a basemap
image can be generated 510 using the machine learning
agent that has been trained.

FIG. 5B illustrates a basemap formation process 550 for
training a basemap agent and for creating a basemap accord-
ing to another embodiment. The basemap formation process
550 can generate 552 a low-resolution basemap from a first
machine learning agent. Next, the low-resolution basemap is
divided 554 into a plurality of sub-portions. The resolution
of each sub-portion can be increased 556 using a second
machine learning agent. Thereafter, the enhanced sub-por-
tions can be combined 558 to form a high-resolution
basemap.

In one embodiment, basemaps can be generated by run-
ning two machine learning agents. For example, a basemap
agent can generate a 64x64 pixels basemap modeled after
the Black Forest morphology, and an upres-basemap agent
can increase the basemap size from 64x64 to 512x512
pixels. Elevation values can be represented in colorscale.
The map can, for example, have a size of 16x16 km? and a
resolution of 32 m/pixel. The training dataset can be proce-
durally generated in Houdini based on the features of the
Black Forest in Germany.

In one embodiment, to prepare a dataset to be used for
training the basemap agent and the upres-basemap agent
there are two basic steps: generating the training data and
pre-processing the training data. The first step pertains to
procedurally generating a large number of basemaps (e.g.,
4000), modeled after a desired terrain for the virtual game
world. Houdini can be used to generate the basemaps. In one
implementation, the basemaps can be stored as .npz' files
with a size of 512x512 pixels each. Each .npz' file can
contain multiple Numpy files (.npy), which allow data with
64-bit precision to be stored. In this way, one is able to
directly store elevation data with sub-mm resolution. Once
loaded into Python, each basemap file can be pre-processed
to make the training more e[Jective. For example, the
training dataset can be augmented by appending to the
tensor relative to each map its horizontal and vertical
gradient, calculate using the Sobel operator. Then, the Sobel
operator can be used to emphasize slopes in the training
basemaps, thus helping agents to learn the morphology of
the desired terrain. See Zhonghang Qiu et al., “Void filling
of digital elevation models with a terrain texture learning
model based on generative adversarial networks,” Remote
Sensing, 11(23): 2829, 2019.

In this embodiment, there are two machine learning
agents used to generate a basemap. A basemap agent gen-
erates a low-resolution basemap (e.g., 64x64 pixels). A
upres-basemap agent can be used to increase the size of the
basemap to a high-resolution basemap (e.g., 512x512). The
upres-basemap agent does not only increase the size of the
basemap, but also adds fine-level details. Both agents are
trained online and executed when the game starts.

In one embodiment, the basemap agent operates to gen-
erate a new basemap as a 64x64 pixels map. In one embodi-
ment, this basemap agent can be trained using ProGAN. In
one implementation thereof, a PyTorch reimplementation of
ProGAN can be used. See Animesh Karnewar, “ProGAN
reimplementation in PyTorch,” 2019, for additional infor-
mation on re-implementation in PyTorch. To estimate which

20

40

45

60

18

training parameters give satisfying results, the trend of the
loss function, for both the generator and the discriminator,
and the perceptual quality of the generated images can both
be considered.

The basemap agent can be trained for a different number
of'epochs at different resolutions, as shown in Table 2 below.

TABLE 2
Resolution Number of
(pixels) epochs
4 x4 300
8 x 8 400
16 x 16 500
32 x 32 2000
64 x 64 2000

The generated images can initially be 4x4 pixels, and then
have their size/resolution increased by a factor of two
several times. As shown in Table 2, the number of epochs
increases with the resolution. In general, the training time is
increased as the size of the generated images increases—the
more details there are, the longer the generator needs to learn
them.

To more efficiently train the basemap and the upres-
basemap agent, the training dataset can be augmented using
the Sobel operator. For example, using horizontal and ver-
tical gradients, the training dataset can be augmented to
emphasize slopes in the training basemaps.

After the “low-resolution” (e.g., 64x64 pixels) basemap
has been generated by the basemap agent, its resolution can
be increased. In one implementation, the low-resolution
basemap can be split into 32x32 pixels regions, and then
each region can have its resolution increased to 256x256
pixels by the upres-basemap agent. In this way, the resolu-
tion of the entire basemap is increased from 64x64 pixels up
to 512x512 pixels. In one implementation, by using a U-net
structure, the upres-basemap agent only needs to be applied
once to increase the resolution of the basemap by eight
times. Furthermore, realistic details are added during the
increasing of its resolution by the upres-basemap agent. As
an example, the upres-basemap agent can be trained using
the following parameters: a batch size of 32 images, 300
iterations, and a learning rate of 0.0001. For additional
information on a U-net structure, see Olaf Ronneberger et
al., “U-net: Convolutional networks for biomedical image
segmentation,” International Conference on Medical image
computing and computer-assisted intervention, pages 234-
241, Spring 2015.

Once a video game is started, a 512x512 pixels basemap
can be generated. In one embodiment, the basemap can be
generated in accordance with the following procedure:

First, generate a 64x64 pixels basemap using the basemap
agent.

Second, divide the basemap into multiple portions (e.g.,
nine portions).

Third, using the upres-basemap agent, increase the reso-
Iution of each of the multiple parts of the low-resolution
basemap. For example, the upres-basemap agent can
increase the resolution by a factor of eight, so each 32x32
pixels portion is increased in resolution to 256x256 pixels.

Fourth, deemphasize border data of each the parts of the
low-resolution basemap that have been resolution enhanced.
For example, each resolution enhanced part can be multi-
plied by a 2D Gaussian (e.g., size: 256x256 pixels, standard
deviation: 64 pixels). In this way, each resolution enhanced
part of the basemap can be altered to emphasize information

US 11,607,611 B2

19

at its center region and progressively de-emphasize infor-
mation going outward from the center region to its borders.
This allows to eliminate artifacts at borders when stitching
together the resolution enhanced parts to form the high-
resolution basemap.

Fifth, combine the resolution enhanced parts into a high-
resolution basemap, such as a 512x512 pixels basemap. This
can also be referred to as stitching the parts together to form
the high-resolution basemap. The parts of the high-resolu-
tion basemap are recombined as follows: (a) recombine the
resolution enhanced parts following border deemphasizing
(i.e., 256x256 pixel portions multiplied by 2D Gaussians)
onto another high-resolution pixel matrix (e.g., a 512x512
pixels matrix); (b) recombine a single 512x512 pixels matrix
the different 2D Gaussians, each with 256x256 pixels; and;
(c) divide the recombined resolution enhanced portions after
border deemphasizing by the recombined 2D Gaussians. For
each resulting pixel, its value is the weighted average of the
signal from all portions containing it.

FIG. 5C illustrates a representation of basemap division
and resolution enhancement according to one embodiment.
An initial basemap 560, which is a low-resolution basemap,
is depicted as being divided into multiple parts (e.g., as
depicted nine (9) parts), which overlap at adjacent bound-
aries. The degree or depth of overlap can vary, but as an
example the overlap can be 16. The resulting basemap 562,
which is a high-resolution basemap, is the basemap used in
subsequent processing.

For example, using a basemap agent, a low-resolution
basemap can first be produced, such as a 64x64 pixels
basemap. That low-resolution basemap can then been
divided into nine partially overlapping parts, each with a size
of 32x32 pixels. Then, using the upres-basemap agent, the
32x32 pixels regions are converted into 256x256 pixels
images. Finally, the resulting 256x256 pixels images are
then combined into the final map, with a size of 512x512
pixels.

Resolution Enhancement

The map of a virtual game world can be constructed from
a basemap and a resolution enhancement agent. A basemap
can be partitioned into regions, such that each region of the
basemap can be provided in a different resolution, if desired.
The resolution enhancement agent can be used to selectively
increase resolution of those regions of the basemap that are
more relevant to current game play, such as where a player
is located within the map of the game world. These tech-
niques are particularly useful for games having a large map
area where game play can occur (i.e., virtual game world).

In one embodiment, the partitioning of a basemap can be
performed using a partitioning algorithm, such as a stream-
ing quadtree partitioning scheme. Using the streaming
quadtree partitioning scheme, different regions of a basemap
can be rendered at different resolutions. By partitioning, it is
possible to render maps of arbitrary size at high resolution
while keeping the computational resources (e.g., processor
and memory usage) required to a manageable level for
typical gaming devices performing the game. The gaming
device can, for example, be a player’s game play electronic
device or some type of personal computing device. Back-
ground information on a quadtree partitioning scheme can
be found in documentation of a Proland library, developed
by scientists working at INRIA in Grenoble, France, see
Proland homepage.

FIG. 6 illustrates a flow diagram of a resolution enhance-
ment process 600 according to one embodiment. The reso-
Iution enhancement process 600 can be performed by a
gaming device. In one embodiment, the gaming device can

10

15

20

25

30

35

40

45

50

55

60

65

20

be a personal computing device (e.g., personal computer)
with typical hardware components. For example, the per-
sonal computing device can be a smartphone, desktop com-
puter, tablet computer or notebook computer. In another
embodiment, the resolution enhancement process 600 can be
performed on a network-connected server computer.

The resolution enhancement process 600 can receive a
low-resolution basemap. For example, the received low-
resolution basemap might have a resolution in the tens of
meters scale. The low-resolution basemap can be supplied to
a basemap partitioner 602. The basemap partitioner 602 can
operate on the incoming low-resolution basemap to partition
the low-resolution basemap into a plurality of distinct
regions. In one implementation, the distinct regions can
include one or more tiles which are normally of uniform
size.

The partitioned low-resolution basemap can then be pro-
vided to a resolution increasing machine learning agent 604.
The resolution increasing machine learning agent can indi-
vidually operate on one or more of the distinct regions of the
low-resolution basemap to increase the resolution of the
corresponding region for the basemap. The resolution
increasing machine learning agent 604 can operate to
increase the resolution of some or all of the distinct regions.
Typically, however, the resolution increasing machine learn-
ing agent 604 is selectively applied to increase the resolution
only of certain of the regions. By selectively increasing
resolution of just those regions that are more important, the
processing burden on the gaming device can be managed.
The result produced by the resolution increasing machine
learning agent 604 is a high (or higher) resolution basemap
region. For example, the high resolution basemap can have
a resolution up to 0.25 meters. In one implementation, the
resolution increase is in the x-y plane, with no change to the
7 plane resolution. As noted, the resolution of the basemap
is higher in only those regions that have had their resolution
increased by the resolution increasing machine learning
agent 604.

FIG. 7 is a flow diagram of a basemap partition process
700 according to one embodiment. The basemap partition
process 700 operates to perform a partitioning process on a
basemap. The partitioning of the basemap into the plurality
of tiles can, for example, be performed by the basemap
partitioner 602 of the resolution enhancement process 600
shown in FIG. 6.

The basemap partition process 700 can begin by receiving
702 a basemap to be processed. The basemap can then be
partitioned 704 into a plurality of tiles. At this point, the
entire basemap has been initially partitioned uniformly into
tiles of a low or base resolution.

Next, the basemap partition process 700 can further
process each of the tiles to determine which of those tiles are
to be further subdivided to provide greater resolution at that
tile of the basemap. In this regard, a player position on the
basemap being processed can be retrieved 706. Next, a tile
within the basemap can be selected 708 for processing. The
tile position of the selected tile on the basemap can be
obtained 710. Then, a separation distance between the player
position and the tile position can be computed 712. A
decision 714 can then determine whether the separation
distance is less than a threshold amount. When the decision
714 determines that the separation distance is less than a
threshold amount, the tile being processed can be subdivided
716. The subdivision 716 of the tile produces multiple
sub-tiles that take the place of the tile being processed. The
subdivision of the tile forms a plurality of sub-tiles and the

US 11,607,611 B2

21

effect is to increase the resolution by a factor of the number
of sub-tiles being produced by the tile being subdivided 716.

For example, if the tile being processed is subdivided into
four (4) sub-tiles, then the resolution of each of the indi-
vidual sub-tiles would by two times (2x) resolution of the
tile being processed.

On the other hand, when the decision 714 determines that
the separation distance is not less than the threshold, the tile
being processed does not need to be further subdivided.
Hence, following the decision 714 when the separation
distance is not less than the threshold (as well as following
the block 712), a decision 718 can determine whether there
are more tiles associated with the basemap to be processed.
When the decision 718 determines that there are more tiles
to be processed, the basemap partition process 700 can
repeat the block 708 and subsequent blocks to process a next
selected tile. Finally, when the decision 718 determines that
there are no more tiles of the basemap to be processed, the
basemap partition process 700 can end.

The subdivision of a basemap into tiles and their subse-
quent selective increase in resolution can be controlled to
vary depending on how close the given tile is to the player
position in a virtual game world. This provides a way to
provide high resolution gaming world to players, while not
overly taxing the computing resources of the player’s gam-
ing device. This approach is particularly advantageous with
gaming worlds that correlate to large gaming areas that are
potentially graphically rendered during game play.

In another embodiment, during game play, the player has
a vision region in the game that corresponds to the player
position. In such case, the subset area of the basemap is
dependent on the vision region. The vision region can
pertain to what a player’s character can see during game
play. The vision region can also be impacted to environ-
mental conditions at that region in the game. For example,
rain, fog, cloud coverage, fullness of moon, etc. can impact
the extent of vision available to the player’s character. In any
event, the vision region can be used as an alternative, or in
addition to, the player position.

FIG. 8 is a flow diagram of a tile resolution enhancement
process 800 according to one embodiment. The tile resolu-
tion enhancement process 800 can operate by a gaming
device (e.g., personal computing device) to increase the
resolution of a given tile. Typically, the tile resolution
enhancement process would be performed after the parti-
tioning or subdivision of the regions of a basemap to form
tiles. The tile resolution enhancement process 800 can, for
example, be performed by the resolution increasing machine
learning agent 604 of the resolution enhancement process
600 shown in FIG. 6.

The tile resolution enhancement process 800 can initially
select 802 an initial tile of the basemap to be processed.
Then, a decision 804 can determine whether to increase the
resolution of the selected tile. When the decision 804
determines that the resolution of the selected tile should be
increased, the resolution of the selected tile can be increased
806 using a resolution increasing machine learning agent.
Alternatively, when the decision 804 determines that the
resolution of the selected tile should not be increased, the
block 806 can be bypassed. Thereafter, following the block
806 when resolution has been increased or following the
decision 804 when resolution is not to be increased, a
decision 808 can determines whether there are more tiles to
be processed. When the decision 808 determines that there
are more tiles to be processed, the tile resolution enhance-
ment process 800 can return to repeat the block 802 and
subsequent blocks so that a next tile can be selected 802

10

15

20

25

30

35

40

45

50

55

60

65

22

from the basemap and similarly processed. On the other
hand, when the decision 808 determines that there are no
more tiles to be processed, the tile resolution enhancement
process 800 can end.

In one embodiment, an area of a map centered on a player
of'a computer-implemented game can be rendered at higher
resolution, and regions surrounding that area can be ren-
dered at increasingly lower resolution. The high-resolution
region moves as the player moves, iteratively and dynami-
cally.

FIG. 9A illustrates a representative basemap 900 that has
been partitioned into discrete tiles. The tiles as shown in
FIG. 9A all have a low resolution denoted as 1x.

FIG. 9B illustrates a representative basemap 920 that
pertains to a selectively enhanced resolution basemap. The
representative basemap 920 illustrates a player position (P)
with respect to the representative basemap 920. The repre-
sentative basemap 920 indicates that most of the tiles still
have a low resolution (1x), but a subset of the tiles have an
increased resolution denoted as 2x. In this particular exem-
plary embodiment, the tiles having an increased resolution
are proximate to, or in this example adjacent (e.g., surround-
ing), the player position (P).

FIG. 9C illustrates a representative basemap 940 that also
pertains to a selectively enhanced resolution basemap. The
representative basemap 940 is similar to the representative
basemap 920 in that a subset of the tiles proximate (e.g.,
adjacent) to the player position (P) have an enhanced
resolution. However, the representative basemap 940 corre-
sponds to a different player position (P). Hence, the selec-
tively enhanced resolution basemap can be dynamically
produced and can thus selectively enhance the resolution of
tiles that are proximate to the current player position (P). As
the player position changes, the basemap can be dynami-
cally updated such that the high-resolution region(s) in effect
follows the movement of the player. Comparing the repre-
sentative basemap 920 shown in FIG. 9B with the repre-
sentative basemap 940 shown in FIG. 9C, one can see that
those tiles adjacent the player position can differ as the
player position changes and thus dynamically rendering the
representative basemap with selectively enhanced tiles
thereof.

In one implementation, tiles can be grouped in levels
depending on their resolution, with each tile containing a
portion of a basemap. The level numbering can start with
zero, which corresponds to the tiles covering the entire
basemap in a very coarse way (so called base resolution),
and then the level numbering can increase as the tiles get
closer to the player’s position relative to the basemap.
Computationally, each tile can be given the same amount of
resources available to describe or render the region it covers.
This allows to high-level tiles to be rendered at higher
resolution than low-level resolution tiles. As the player
moves, different high-resolution tiles can be generated and
old high-resolution tiles that are no longer need to be at a
higher resolution can be merged with neighboring tiles (to
dynamically manage resources). If desired, the total number
of'tiles can be fixed to a given value. At every partition (or
split) of a tile level, the area of the tile, is divided by four.
In this way, each tile gets the resources to describe four times
more detail than before. In other words, tiles can be con-
tinuously destroyed and recreated. As an example, when a
player moves from a first position to a second position, the
resolution of the tiles adapt as the player moves, and tiles
previously rendered at high resolution can be merged
together and thus returned to a lower resolution.

US 11,607,611 B2

23

FIGS. 10A and 10B illustrate of a basemap 1000 having
a high-resolution region (T1) 1002 and a lower-resolution
region (T2) 1004 according to one embodiment. The remain-
ing region of the basemap 100 (excluding regions T1 and
T2) can be referred to as a base-resolution region. FIG. 10A
is an illustration of the basemap 1000 having the high-
resolution region (T1) 1002 and the lower-resolution region
(T2) 1004 relative to an updated player position (P). The
basemap 1000 is partitioned into a plurality of tiles. The
basemap 1000 can pertain to a terrain. In FIG. 10A, the
high-resolution region (T1) 1002 is centered around a player
position (P). Each of the tiles within the high-resolution
region (T1) 1002 are render at a high resolution. Each of the
tiles within the lower-resolution region (T2) 1004 that are
also outside the high-resolution region (T1) 1002 are ren-
dered at a lower resolution. Each of the remaining tiles not
in either the high-resolution region (T1) 1002 or the lower-
resolution region (T2) are rendered at a base resolution
which is a resolution lower than the resolution of the tiles in
the lower-resolution region (T2). As the player position (P)
moves relative to the basemap 1000, the high-resolution
region (T1) 1002 and the lower-resolution region (T2) 1004
can adapt and thus change.

FIG. 10B is an illustration of the basemap 1000 having the
high-resolution region (T1) 1002' and the lower-resolution
region (T2) 1004’ relative to an updated player position (P').
Since the updated player position (P') is different than the
player position (P) shown in FIG. 10A, (i) the corresponding
tiles within the high-resolution region (T1) 1002 are differ-
ent than those in the high-resolution region (T1) 1002, and
(ii) the corresponding tiles within the lower-resolution
region (T2) 1004' are different than those in the lower-
resolution region (T2) 1004. Hence, as the player moves
through the terrain represented by the basemap 1000, the
high-resolution tiles and the lower-resolution tiles are
dynamically determined. With this approach, the processing
and memory requirements on a player’s gaming device are
manageable and thus not overloaded. The player’s experi-
ence with the terrain is realistic and high quality, such as
being crisp and rich in details. As an example, the basemap
1000 can have a base resolution of 1x, a lower resolution of
2%, and a high resolution of 4x.

The partitioning process can split the basemap into tiles of
different dimensions, where smaller tile sizes yield higher
resolution. Each tile can have the same resources available
for its graphical rendering. Therefore, the higher resolution
areas of the basemap can be rendered using the smaller tiles.

In one embodiment, to increase the resolution of tiles,
several different machine learning agents can be applied.
These agents can increase the resolution by determining
what covers the ground and which objects are placed over it.
In the case of ground terrain, the machine learning agents
can include: a resolution enhancement agent, population
agents (e.g., one for ground objects and another agent for
trees), and a ground coverage agent. The various agents can
be trained using data procedurally generated using the
Houdini software package. For example, the resolution
enhancement agent can be a Super Resolution GAN (SR-
GAN) agent. As a player moves over the terrain, the various
agents can be called for all tiles at all levels. For low-
resolution tiles, little or no content need be generated. Each
tile can be assigned a unique ID and the agents being used
are deterministic. Temporarily destroying a tile does not
affect its content, as its content can regenerated afterwards.

Each region of the quadtree can be referred to a quad and
the data contained in a quad forms a tile. The quads and tiles
can be referenced by coordinates. The quadtree partitioning

20

25

30

35

40

45

50

55

60

65

24

system can split a 2D or 3D surface into quads. A basic
assumption is that all tiles can be produced independently.
Individual quads and tiles can be identified using logical
coordinates or physical coordinates.

With logical coordinates, each quad or tile is identified by
three values: its level in the quadtree scheme (O is the level
of the entire base region) and its (tx, ty) coordinates at this
level. For tx and ty we set the origin in the lower left corner
and require tx, tyE [0, 2’evel-1]. Mathematically, logical
coordinates are of the type (level, tx, ty). Tile (0, 0, 0) can
contains data corresponding to the whole basemap, at a
coarse resolution. Higher level tiles contain only part of the
data, but rendered at higher resolution (the higher the level,
the higher the resolution).

Alternatively, physical coordinates (Ox, Oy; I) can be
used. With these, each quad is characterized by the horizon-
tal (Ox) and vertical (Qy) distance of its bottom left corner
from the center of the quadtree system, expressed as a
function of I and of the logical coordinates (tx, ty):

L
I= Slevel

t~

ox=—-=+1-tx

B~ o

+1-ty

oy=—=

v}

While logical coordinates apply to both quads and tiles,
physical coordinates are only applicable to quads. In one
embodiment, the origin of a tile can be considered to be at
its bottom-left corner. In this way, the physical coordinates
of a tile in virtual world space will remain the same, but
coordinates within a tile will go from (0, 0) to (I, L) with L
being the size of a tile.

FIG. 10C illustrates tiles produced using a quadtree
splitting system that are characterized using logical (top) or
physical coordinates (bottom), according to one embodi-
ment. In both coordinate systems, the level of a tile depends
on the number of times the considered data distribution has
been divided. In other words, a level two tile is the result of
two splitting operations and consists of data rendered at
higher resolution than the data in a level one tile. With
logical coordinates, the lower left corner is (0, 0) and each
tile or quad has coordinates (level, tx, ty), with tx, ty E [0,
2evel_1]. Using logical coordinates, each tile is character-
ized by a triplet (Ox, Oy, I), where:

L L
= W'0x=—§—+l-[x-0y=—5+l-ly.

One embodiment for determining whether to split (or
subdivide) a quad can be in accordance with the following
pseudocode:

1: Provide as input the camera position, the screen size,
the field of view and the desired number of pixels per
texture element (“texel”)

2: Calculate the physical coordinates of the tile, (ox, oy,
D

3: Calculate the distance between the player and a tile. For
a given position

(x,ly) of the player, the distance d is calculated as

4: d:max(min(lx—oxl, Ix—ox—Le=), min(ly—oyl, ly—oy—
L==))

US 11,607,611 B2

25

5: if d<KL then

6: Split the tile and the quad

7: end if

In other words, a quad can be subdivided if the distance
of the player from the quad is less than K times its size, with
K being the split distance factor, which determines how
quads are subdivided. The higher the K value, the sooner
quads are divided and the smaller they are rendered on
screen. The subdivision lgorithm can be implemented as a
plugin used to render agent-generated data in Unity, such a
subdivision algorithm, and it can be referred to herein as
Daedalus.

FIG. 10D illustrates quadtree partitioning with regard to
separation factor according to one embodiment. As illus-
trated, the separation factor K used with quadtree subdivi-
sion varies from left-to-right, as K=1.1, 1.5, 2.0 and 2.8. The
location of the player is marked by a solid dot. As illustrated,
the higher the value of K, the finer the quads are divided.
Resolution Enhancement Agent

The resolution enhancement agent is used to generate
realistic high-resolution terrain. The resolution enhancement
agent can be used to increase resolution of a given basemap
region. The resolution enhancement agent can be imple-
mented as a neural network trained to increase the resolution
of a basemap region by adding more (or finer) details. The
resolution enhancement agent can increase the resolution of
a region by increasing the amount of information it contains.
With a quadtree partitioning scheme, the number of pixels
available to store information for a given basemap region
increases at every split. As a result, a given basemap region
has increased space to store additional information gener-
ated by the resolution enhancement agent.

In one embodiment, a resolution enhancement agent can
have been trained using Houdini-generated data. Houdini is
a software suite developed by SideFX. Additional informa-
tion can be found in SideFX’s documentation concerning a
heuristic workflow using the heightfield tools, based on
experience generating realistic-looking terrain, entitled
“Realistic terrain with heightfields”.

A procedural landscape generation and population model
can be used in the Houdini software for training data.
Technical artists can generate terrain starting from a list of
features-defining rules (e.g., for weather erosion, animal
paths, etc.). By varying the parameters of the features, a
large set of maps (up to several thousand elements) can be
generated and then used for training the different agents.
Each time an agent is trained, the goal is to learn some
specific features of the generated maps, such as the oro-
graphic features, or how trees are distributed. In this way,
new maps can be automatically generated by applying the
style of the artist which developed the procedural landscape
generation and population model.

The resolution enhancement agent can then be trained
using a dataset procedurally generated by Houdini. In one
embodiment, where the map pertains to a terrain, the ele-
ments of the training dataset are maps storing information on
ground elevation and on what covers the ground, described
using labels. For example, one training map can include,
among others, labels indicating the location of streams and
water bodies. Another training map for the same region can,
for example, provide an approximation of a splatmap, illus-
trating how different textures are combined. Still another
training map can, for example, show distribution of conif-
erous and/or deciduous trees population.

In one embodiment, the resolution enhancement agent can
be trained using data generated procedurally (following a set
of artist-defined rules) in Houdini. The map generation

10

15

20

25

30

35

40

45

50

55

60

65

26

workflow can be designed to generate thousands of maps of
arbitrary size. Each map can contain the standard elevation
information usually stored in a basemap, together with
labels describing which elements cover the map surface. The
map generation workflow can be designed to take into
account the location where the game play takes place. More
precisely, to render a particular terrain for a game, the
training data can be custom to that type of terrain. For
example, if the terrain for game play is within a Black
Forest, the training data can provide a Black Forest like
flavor by including operations mimicking features of that
environment, such as geological erosion caused by water
flow and by thermal weathering, for example. The training
data can then generate a set of maps with the “look and feel”
of the Black Forest. Some trial and error can be performed
to determined which operations return basemaps most simi-
lar to those typical of the Black Forest. In the case of
Houdini, the training maps can be saved using the .npy
format, as NumPy arrays, see NumPy homepage, before
using them for training the resolution enhancement agent.
Alternatively, the training maps could be saved in the .geo
format.

In one embodiment, the resolution enhancement agent can
receive three types of data as inputs: elevation data, masks,
and coverage information.

The elevation data can contain information on the eleva-
tion profile of a basemap tile. The elevation data can be
stored using one channel and can have a shape of (1, 1, w,
h), where wand h are the width and the height of a tile, in
pixels. In one implementation, the height and width can be
32 pixels, though these values can vary widely depending on
implementation.

The masks can contain information on ground coverage,
such as the location of water bodies and exposed bedrock,
for example. The masks can store data in two channels and
can have a shape of (1, 2, w, h), where wand h are the width
and the height of a tile, in pixels. For example, the first
channel can store information on the distribution of water
bodies, and the second channel can store information on the
location of exposed bedrock.

The coverage information can describe the resolution of a
tile. The coverage information can include a coverage vec-
tor. In one implementation, the coverage vector can have a
size (1,9) and each of its elements can represent a different
resolution level. For example, a coverage vector [1, 0, 0, 0,
0, 0, 0, 0, 0] can correspond to a resolution of 32 m.

In one implementation, the elevation data and masks can
be obtained from maps generated using Houdini, which can
have a resolution of 0.25 m. These maps can then be
down-sampled to the desired low-resolution version, such as
resolution in the range from 0.25 m to 32 m.

As outputs, the resolution enhancement agent returns
elevation data and masks of the associated tile. Hence, in
summary, the resolution enhancement agent can receive as
inputs a low-resolution tile characterized by (i) elevation
data, masks and (iii) coverage information. The outputs then
of the resolution enhancement agent are (i) an increased-
resolution tile characterized by elevation data and (ii) masks.

In one embodiment, to increase the resolution of a
basemap tile, a resolution enhancement agent based on
Super Resolution GAN (SRGAN) can be used. SRGAN is
designed to improve resolution of images. Starting from a
low-resolution version of an image, SRGAN can reconstruct
the original high-resolution version. SRGAN was described
in Ledig et al., “Photo-realistic single image super-resolu-
tion using a generative adversarial network,” Proceedings of

US 11,607,611 B2

27
the IEEE conference on computer vision and pattern recog-
nition, pages 4681-4690, 2017.

In one implementation, an ad-hoc adaptation of SRGAN
can be used as the resolution enhancement agent. To reduce
computational cost, most operations can be done at low
resolution (32x32 pixels) with its output at high resolution
(64x64 pixels). As common with GANs, the architecture of
the resolution enhancement agent includes a generator and a
discriminator. In one embodiment, the generator can include
eight major residual blocks, each consisting of a series of
secondary residual blocks, batch normalization, Rel.U and
convolution operations. For additional information concern-
ing GAN architecture see, e.g., He et al.,, “Deep residual
learning for image recognition,” Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 770-778, 2016; Goodfellow et al., “Deep learning,”
MIT press, 2016.

FIG. 10E illustrates a computational diagram of a gen-
erator for a resolution enhancement agent. The computa-
tional diagram provides for residual blocks. In general, a
residual block is a structure that can be introduced so that
deep networks do not perform worse than shallow networks.
The general idea of residual blocks is to use an identity
operator, which works as follows:

1. Start from an input x.

2. Apply a set of operations F: x-F(x).

3. Sum the initial input x to F(x).

Shallow network and deep network are two expressions
commonly used in machine learning to quantify the com-
plexity of a neural network. Every neural network consists
of an input layer and an output layer. Any additional layer
between the input and the output layer is called a hidden
layer. Neural networks with one or two hidden layers are
referred to as shallow neural networks. Networks with more
than two layers are referred to as deep neural networks. An
unwanted effect of using a deep neural network is that it
could perform worse than a shallow neural network. The use
of residual blocks serves to mitigate this unwanted effect.

Here, the resolution of basemap tiles can be increased
using a modified version of SRGAN. One feature of
SRGAN is the use of residual blocks, sets of operations here
denoted using F. Summing the original input to the output,
residual blocks help avoiding information loss. An advan-
tage of this architecture is that if a set of operations is
unnecessary, such operations can be skipped without losing
the original information.

As noted, the resolution enhancement agent can use a
generator in increasing resolution of appropriate regions of
a basemap. According to one embodiment, the generator can
receive as inputs three types of information about a region
(e.g., tile) of a basemap, namely, elevation data, mask
information and coverage information, and outputs
enhanced elevation data and masks for the enhanced reso-
Iution region. Two features of the generator are the use of
residual blocks, which serve to limit the loss of information,
and the use nearest neighbors as a guiding function.

FIG. 11 is a diagram of a processing architecture 1100 for
a generator of a resolution enhancement agent according to
one embodiment. The generator processing architecture
1100 performs first resolution enhancement processing
1102. The first resolution enhancement processing 1102
receives elevation and mask data, which includes elevation
data that is to be enhanced as well as mask information. In
addition, the first resolution enhancement processing 1102
receives coverage information. From these inputs, the first
resolution enhancement processing 1102 produces enhanced
data which is supplied to a first residual block processing

25

35

40

45

28
1104. The first residual block processing 1104 also includes
the native (un-enhanced) elevation and mask data. Follow-
ing the residual block processing of the first residual block
processing 1104, first enhanced elevation and mask data is
output.

Next, if still greater resolution enhancement is desired, the
processing blocks similar to blocks 1102 and 1104 can be
repeatedly performed to successively increase the resolu-
tion. In this example illustrated in FIG. 11, the processing is
repeated two additional times as described below. In this
regard, the first enhanced elevation and mask data are
provided to a second resolution enhancement processing
1106. The output data from the second resolution enhance-
ment processing 1106 is supplied to a second residual block
processing 1108. The second residual block processing 1108
also receives the first enhanced elevation and mask data.
Following the residual block processing of the second
residual block processing 1108, second enhanced elevation
and mask data are output.

Next, the second enhanced elevation and mask data is
provided to a third resolution enhancement processing 1110.
The output data from the third resolution enhancement
processing 1110 is supplied to a third residual block pro-
cessing 1112. The third residual block processing 1112 also
receives the second enhanced elevation and mask data.
Following the residual block processing of the third residual
block processing 1112, third enhanced elevation and mask
data are output.

Thereafter, as a final stage of processing, the native
elevation and mask data can be supplied to a nearest
neighbors resolution enhancement processing 1114. The
third enhanced elevation and mask data can be provided to
a final residual block processing 1116. The final residual
block processing 1116 can also receive the output data from
the nearest neighbors resolution enhancement processing
1114. Following the final residual block processing 1116,
final enhanced elevation and mask data can be output.

In the processing architecture 1100 illustrated in FIG. 11,
there are four stages, which can provide a resolution increase
of four times (4x). However, the number of stages can vary
with implementation. Hence, in another embodiment, the
processing architecture could include eight stages to yield a
resolution increase of eight times (8x).

According to one embodiment, the structure of the reso-
Iution enhancement generator can be described in pseudo-
code as follows:

: Provide as input elevation data and masks

: Provide information on coverage

: Perform resolution increase operations

: Add elevation data and mask information
:foriE[1, 8] do

: Provide coverage information

: Perform resolution increase operations

: Add previously resolution increased elevation data
: end for

10: Perform resolution increase operations

11: Add elevation resolution increased using nearest

neighbors method

12: Output: resolution increased elevation data and masks

For a tile undergoing resolution enhancement, the cover-
age data provides information on the resolution of the input
data. This is useful because even if the operation of the
resolution enhancement agent is fundamentally the same, it
can act differently at different resolutions. In detail, the
coverage data is passed to a linear layer which shifts the
elevation values from {zi) to {zi'}, with Zi' defined as:

O 0~ N BN =

US 11,607,611 B2

29

z;/=0xz£p.

where the coefficients o and [are determined by the
network. Considering the architecture of the generator of the
resolution enhancement agent, after all the residual blocks,
the resolution increased elevation data can be summed with
the same data whose resolution was increased using the
nearest neighbor approach. In other words, the nearest
neighbor approach can be used as a guide for the resolution
enhancement agent. Although the resolution enhancement
agent can utilize a nearest neighbors approach as discussed
above, a neural network approach can alternatively be
utilized.

In one embodiment, the discriminator of the resolution
enhancement agent can be a Markovian discriminator. For
example, the discriminator can be implemented as a Patch-
GAN. In training the resolution enhancement agent, resolu-
tion enhanced images can be labeled true or false, and the
perceptual distance between images can be measured.
Instead of classifying entire images as real or fake, Patch-
GAN considers regions of NxN pixels, where N can be
much smaller than the entire image size and still produce
high quality results. Additional information on PatchGAN
can be found in Isola et al., “Image-to-image translation with
conditional adversarial networks,” Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 1125-1134, 2017.

In one implementation, the resolution enhancement agent
can take four channels data as input and can output a
three-channel tensor. Table 3 below indicates details of
inputs to a resolution enhancement agent, according to one
embodiment. Table 4 below indicates details of output from
a resolution enhancement agent, according to one embodi-
ment.

TABLE 3
Data Data Data
Name (in model) Data Shape Range Channels Type
low_res_elevation (2, 1, 32, 32) [-1, 1] 1-elevation Float32
low_res_masks (?,2,32,32) [-1,1] 1-water; 2- Float32
bedrock
coverage (2, 1) -1, 1-coverage Float32
N_levels]
TABLE 4
Name (in
model) Data Shape Data Range Data Channels Data Type
Elevation ?,1,64,65)[-1,1] 1-elevation Float32
Masks (?,2,64,64) [-1,1] 1-water; 2- Float32
bedrock

The resolution enhancement agent can be trained using a
dataset of Houdini-generated tiles from different resolution
levels. In this way, the resolution enhancement agent can
increase resolution of regions of different sizes.

By using a multiscale training dataset, the resolution
enhancement agent can be applied to basemap regions of
different size. Also, by applying the agent multiple times, the
spatial resolution of a basemap can be increased many times,
such as from 32 m to 0.25 m. Each time the resolution
enhancement agent is applied, the resolution of a map (e.g.,
terrain map) can be doubled. By consecutively applying the
resolution enhancement agent, the resolution of a basemap
tile can be increased many times (e.g., 128 times), as noted
in Table 5 below.

20

30

35

40

45

50

30
TABLE 5
Initial Output Resolution
Resolution Resolution Increase

32m 16 m x2
16 m 8 m x2

8 m 4m x2

4m 2m x2

2m 1m x2

1m 05m x2
05m 0.25m x2

In one implementation, the resolution enhancement model
can be implemented in PyTorch, an open source machine
learning library based on the Torch library. After training the
resolution enhancement model, the model can be stored as
an agent using the .onnx file format.

Ground Coverage

Following resolution enhancement of select regions of a
basemap, further processing can be performed to populate
ground coverage. The processing, for example, can deter-
mine the location of objects used to populate a terrain,
together with their features. For example, in an effort to
mimic the natural terrain, such as a forest, the processing can
determine if trees should be present, where they should be
located, and what species and height each tree should take.

The Houdini software platform can be used to implement
a procedural landscape generation and population model. A
technical artist can generate terrain starting from a list of
features-defining rules (e.g., based on weather erosion, ani-
mal paths, etc.). By varying parameters of the features, a
large set (up to several thousands) of possible maps can be
computer generated. The generated maps can then be used to
train machine learning agents. Each time an agent is trained,
it normally learns some specific features of the generated
maps (such as the orographic features, or how trees are
distributed).

In game development, textures (e.g., ground textures), are
images which are applied to the surface of 2D or 3D objects.
By applying different textures, the same 2D or 3D object can
be rendered in different ways.

A ground texture agent can determine what covers the
ground of each specific region (e.g., tile) of the virtual game
world. As inputs, the ground texture agent can consider the
following attributes of a given tile:

1. Elevation values and masks generated by a resolution

enhancement agent.

2. Type and scale of the assets to be placed, as defined by

a population agent.

3. Resolution of the tile to be covered with texture.

The ground texture agent can return an eight-channel
splatmap, where each channel describes the probability that
the ground of the considered region is covered by the
corresponding texture material. Table 6 presents the infor-
mation stored in each channel of the splatmap, according to
one embodiment.

Inputs of the ground texture agent for one embodiment are
presented in detail in Table 7. Elevation values and masks
can be generated by the resolution enhancement agent. Type
and scale of the trees can be generated by the population
agent. As with the resolution enhancement agent, coverage
information is a number characterizing the level of the
considered region (e.g., tile).

Table 8 illustrates that the ground texture agent increases
resolution of the considered region (e.g., tile) by using a
nearest neighbor interpolation. When the input information
is 32x32 pixels, the output information in the splatmap is
64x64 pixels.

US 11,607,611 B2

TABLE 6
Channel
Number Label
0 Ferns
1 Grass
2 Leaves
3 Moss
4 Pebbles
5 Rocks
5 Roots
7 Soil
TABLE 7
Input Name
Type Shape Range Channels Data
Elevation (2,1, 32, 32) [-1,1] 1 - Elevation Float32
Masks (?,2,32,32) [-1,1] 1 - Waterbeds Float32
2 - Bedrock
Tree_labels_in (2,1, 32, 32) [-1,1] 1 - Asset types Float32
Tree_scale_in (2,1, 32, 32) [-1,1] 1 - Asset scale Float32
Coverage (2, 8) [0, 1] Hot encoded Float32
Information vector
TABLE 8
Data
Input Name Shape Range Channels Type
Splatmap (2, 8, 64, 64) [0, 1] 1-8-channel splatmap Float32

The ground texture agent can be trained using an adver-
sarial approach, and can have an architecture including a
generator and a discriminator.

The architecture of the generator can make use of a
resolution enhancement operation, a U-Net with skip con-
nections, and a softmax operation. Skip connections work
similarly to residual blocks, and similarly allows reinjection
of information that was already provided, thus limiting the
relevance of the intermediate operations. For additional
information, see (i) Ronneberger et al., “U-net: Convolu-
tional networks for biomedical image segmentation,” Inter-
national Conference on Medical image computing and com-
puter-assisted intervention, pages 234-241, Spring, 2015;
(i1) Multi-Class Neural Networks: Softmax; and (iii) Kuma,
“Skip connections and Residual blocks”.

The inputs can be separately provided to the generator of
the ground texture agent. Before feeding the input data to the
U-Net, the size can be increased using a nearest neighbor
interpolation. In one implementation, the enhance resolution
agent, the population agent and the ground texture agent can
be run concurrently to improve execution speed. Consider-
ing input data of size 32x32 pixels, a single resolution
enhancement agent can operate initially to return data of size
64x64 pixels. Since all agents are called only when a new
tile needs to be formed, a resolution enhancement agent can
be considered in the generator architecture of the ground
texture agent. The resulting data after the size increase can
be supplied to the U-net where a convolution operation
outputs an eight-channel image. As a last step, a SoftMax
operation is in place to ensure that for each pixel the sum of
the values stored in the different channels of the splatmap is
one. This is equivalent to checking that all possible materials
are chosen: given all the possible outcomes an event can
have; the sum of the relative probabilities is always one.

10

15

20

25

35

40

45

55

32

Similar to the resolution enhancement agent, the discrimi-
nator for the ground texture agent can use a Markovian/
PatchGAN approach. To compute the loss function of the
discriminator, a combination of the L1 loss function, the
standard GAN loss function, and the feature loss can be
used. For additional information, see Isola et al., “Image-
to-image translation with conditional adversarial networks,”
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1125-1134, 2017.

One of the inputs provided to the ground texture agent is
the coverage information, which characterizes the resolution
of the corresponding tile. The ground texture agent can be
used to place texture on map regions having different
resolutions. This can be achieved with the same ground
texture agent because the ground texture agent (e.g., the
generator thereof) was trained using a training dataset con-
sisting of textures with different resolutions. The training
dataset can make use of a database of splatmaps with
different resolutions. For example, in a course resolution one
pixel might correspond to 16.0 meters, in a first intermediate
resolution one pixel might correspond to 8.0 meters, in a
second intermediate resolution one pixel might correspond
to 4.0 meters, and in a fine resolution one pixel might
correspond to 2.0 meters.

In Unity, a plugin is an external library which provides
functionalities that are not included in the standard distri-
bution. Deadalus is a Unity plugin, developed by Playerun-
known Productions a studio from PUBG Corporation, to
circumvent some of Unity’s limitations and allow games to
run on it

In its standard implementation, Unity is designed to
execute all commands on the CPU main thread. When
complex environments need to be rendered, this is not
enough processing power. To satisty this requirement Unity
recently developed the multithreaded Data-Oriented Tech-
nology Stack (DOTS), which allows to run code on multiple
CPU threads. DOTS requires using a specific data structure,
which optimizes performance. DOTS uses a Burst Compiler
that is designed to enable faster processing. For additional
information, see (i) Unity Manual, Unity DOTS webpage,
and (i1) Unity Manual, Burst User Guide. DOTS can stream
data, but is not designed to handle data generated at runtime.
Daedalus allows data to be generated on-demand (e.g.,
runtime), and allows such data to be streamed continuously.

Deadalus is configured to handle both large environments
and large amounts of objects or structures. The solution
implemented is based on data streaming, which allows for
portions of a virtual world to be built at runtime using
machine learning agents. This is fundamentally different
from the classical approach, where a virtual game world is
handcrafted by designers. Instead, according to one embodi-
ment, a virtual game world by configuring machine learning
agents whom then produce the virtual game world. From a
programmer’s perspective, Daedalus can be implemented in
anative C++ library (dll) optimized for speed and is this able
to produce the virtual game world at runtime.

Unity does not natively support streaming data generated
“on demand” by agents. In other words, in standard Unity
the world is unique, static and it never changes. In one
embodiment, using Daedalus, at every frame, data flows
between the game world, where the game takes place, and
the streaming world, where agents produce content.

FIG. 12 is a schematic diagram of how Daedalus, a unity
plugin, can connects two Unity worlds: a game world and a
streaming world, according to one embodiment. The game
world is where the game takes place. The streaming world
is where raw data is converted into Unity-specific data types.

US 11,607,611 B2

33

Whenever a new object needs to be generated, the game
world triggers Daedalus, which consists of a set of data-
generating functions. Daedalus is the environment where the
tiles are created and merged, and where the data for each tile
is generated. The streaming world then pulls the generated
data from Daedalus, and the game world pulls the data from
the streaming world.

As illustrated in FIG. 12, the two worlds and Daedalus can
interact as follows:

1. Character movement in the game world trigger Daed-

alus

2. Daedalus generates data

3. The streaming world pulls data from Daedalus

4. In the streaming world, Daedalus-produced data is

converted into Unity-specific data types

5. Streaming world data is pulled by the game world
The steps listed above are normally repeated at every frame,
to provide the player a smooth game experience.

Using Daedalus, a feedback loop can be established
between the two worlds: the actions of a player are passed
as input to Daedalus, which determines what content needs
to be generated. After generating data using the relevant
agents, Daedalus passes the data to the streaming world,
where the new information can be rendered in Unity. Lastly,
data can be pushed from the streaming world to the game
world, where it is visualized in the next frame.

FIG. 13 illustrates a flow diagram of a streaming process
according to one embodiment. In the scheme as shown in
FIG. 13, in state 1, the portion of the game world containing
the player is considered. In state 2, the user provides an
input, which is then passed to the Daedalus plugin (state 3).
Using the appropriate machine learning agents, Daedalus
generates the content necessary to take into account the
input from the player and give the player a coherent game
experience. For example, if the player changes her position
on the terrain, Daedalus can determine which tiles need to be
merged and which ones need to be split, and generates
content for the new tiles. Data is then passed to the streaming
world (state 4). At state 4, raw data can be imported into
Unity. Lastly, the new game scene is ported from the
streaming world to the game world, such that the active part
of the game world dynamically updates.

Deadalus can be implemented in C++ instead that in C#,
the default scripting language of Unity. It is more advanta-
geous to use C++ code because it can be processed by a
Burst Compiler. Additionally, C++ code has full control over
how memory is managed, and can use external libraries for
heavy lifting tasks. C++ code also makes Daedalus easily
portable to another engine (e.g., such as Unreal).

In computer graphics, real-time rendering is the field
studying how images are produced and displayed on a
screen in real-time. Images are produced taking into account
input or feedback from a user (e.g., player). For instance, an
image appears on a screen, the user views or reacts, and this
action can determine or influence what is generated next.
The cycle of reaction and rendering happens fast enough that
the viewer feels immersed in a dynamic process.

The main two parameters characterizing the quality of
real-time rendering are the number of frames generated per
second and the temporal delay at which images are shown.
The rate at which images can be displayed is measured in
frames per second (fps) or Hertz (Hz). The user starts to have
a sense of interactivity at 6 fps and for fps>15 can be
considered as display in real-time. New images should be
generated and displayed with not more than 15 milliseconds
of delay if player experience is not hindered.

10

40

45

55

34

The core component of real-time rendering is a graphics
rendering pipeline. The main function of the graphics ren-
dering pipeline is to generate (or render) a two-dimensional
image given a virtual camera, three-dimensional objects,
light sources, shading equations, texture, etc. In 2018, Unity
introduced the High Definition Rendering Pipeline (HDRP),
a scriptable high-fidelity rendering pipeline. See “High
Definition Render Pipeline overview,” High Definition RP,
version 7.1.6, Manual, www.unity3d.com. Once data is
generated by Daedalus, the relative scene can be rendered
using Unity’s HDRP.

Daedalus can be used to populate the game world with
agent-generated content. As guidelines, Daedalus has the
following support requirements based on consumer hard-
ware: Full HD resolution (1920x1080 pixels); Rendering
frame rate: 60 Hz; Maximum character speed: 3 m/s; Aver-
age number of new tiles per second: four (one split); and
Peak number of splits: one per frame, which corresponds to
four new tiles.

To provide a frame rate of 60 fps, the processing should
be sufficient to meet performance targets, such as, new
frames should be generated in less than 16 ms and the
system should be able to handle one tile split per frame.

Daedalus is designed to provide a smooth game experi-
ence to the player. Based on the user’s hardware, a profiling
software can determine an optimal configuration for running
Daedalus. The profiling software can consider various prop-
erties as shown in Table 9 below.

TABLE 9
Variable Range Description
Render From 1280 x 768 Resolution can be improved in
resolution pixels to 4K post processing (upscaling, etc.)
Quadtree tile Max. amount of Environment is more pleasant
budget tiles: 512-2048 with more tiles
Render From 30 to 120 —
frequency Hz
Splitting From 0.25 to 40 If texels occupy this amount of
criterium pixels on screen, then the relative
quad will be split
Asset LoD — Higher LoD count allows
count smoother transitions but requires
more VRAM.
System with less VRAM can use
less levels, such as by skipping
levels
Asset LoD — Future version can switch to
ranges more detailed representations
Filtering — Any frame buffer post

processing, such as anti-aliasing

From 50 to 100
degrees

Field of view

These various properties can determine the performance
of Daedalus on the user side. With this approach, Daedalus
can provide better performances as hardware specifications
improve. These various properties can be explained as
follows:

Render resolution, is the screen resolution used to visu-
alize the rendered images. For example, the screen
resolution can range between 1280x786 pixels and 4K
(3840x2160) pixels.

Quadtree tile budget, is the maximum number of tiles the
game world can be split into. The quadtree tile budget
can go from 512 to 2048. The advantage of using more
tiles is that the environment becomes more pleasant to
look at.

Render frequency, is the number of frames per second
shown on the screen. For example, the render fre-
quency can range from 30 Hz to 120 Hz.

US 11,607,611 B2

35

Splitting criterium, determines which quads will be split
or merged. For each quad, it can be a number of pixels
per texel (see FIGS. 14-15).

Asset LoD count, is the number of versions of a 3D
object, to be rendered at a different Level of Detail
(LoD), that is, the number of levels at which an object
is rendered.

Asset LoD ranges, is the LoD value range for each asset.

Filtering, can be used to indicate any operation to improve
the appearance of a previously rendered object. Tech-
nically, these post-processing operations can be per-
formed using framebuffers. A typical post-processing
operation is to apply anti-aliasing techniques, to avoid
having clear pixel formations at edges.

Field of view, is the extent of the observable game world
that is seen on a display at any given moment. It is
usually measured as an angle.

FIG. 14 illustrates an undulated terrain with a texture
divided into texels, according to one embodiment. In com-
puter graphics, a texel is a fundamental unit of a texture map.
The number of pixels per texel determines the splitting
criterium, which can be used to determine which quad to
split or merge.

FIG. 15 is a diagram illustrating of the tile “splitting and
merging” procedure, according to one embodiment. Accord-
ing to this procedure, at every frame, Daedalus can deter-
mine which quads need to be split and which to be merged.
To do so, it considers the splitting criterium: given a
parameter such as the split distance factor K, it calculates its
value for all quads and rearranges them accordingly. For
example, as depicted in FIG. 15, in the image quad Bis
already split, while A is not. In a subsequent frame, if
KA>Ks, A is split in four while the tiles in Bare merged, to
preserve the total number of available tiles (quadtree tile
budget).

On initialization, Dedalus can perform a series of one-
time-only operations to interface with the user hardware.
The operations include: heap memory allocation, scratch
memory allocation, set static parameters, acquire access to
GPU, initialize libraries, build shaders, and allocate GPU
buffer. At shutdown, Daedalus releases the GPU, frees all
memory and discards the libraries.

In one embodiment, such as in Daedalus, the game world
is generated and updated using the so-called data pipeline.
This includes all the data generation and transformation
tasks, like making the basemap, increasing resolution of'tiles
using the quadtree splitting system, generating the terrain
and so on. In one implementation, at the core of the data
pipeline is Daedalus, which is integrated with both the
machine learning agents and with the data they generate.
Different agents are applied to generate different layers of
content, namely the elevation layer, the population layer and
the ground texture layer. The following outlines how agents
can be integrated in Daedalus to generate data for each layer.

The agents can be stored as .onnx files, which can be
executed in Daedalus using TensorRT. In the current version,
data is exchanged between Unity and Daedalus using the
heap memory API. The data transfer logic is as follows:

1. Every time Unity sends a trigger signal, data is gener-

ated by Daedalus.

2. Daedalus communicates to Unity the size of the gen-
erated data.

3. Unity allocates the required memory size.

4. Daedalus stores data in the allocated memory. A copy
of the generated data can remain on the Daedalus side,
available for later use.

10

15

20

25

30

35

40

45

50

55

60

65

36

These steps require exchanging data between the CPU and
the GPU memory. To optimize the communication speed,
data can be exchanged data using the PCI bus.

The elevation layer is processed by a machine learning
agent, the elevation agent. After the basemap has been
generated, the basemap can be converted into a triangle
mesh. Once the mesh is generated, the basemap can be
rendered in Unity. As a first step to make a basemap
playable, colliders, which are invisible objects that define
how physical interactions work, can be created. Every tile
can have its own collider, so that at every quadtree split the
density of colliders can also increases. Once generated, the
basemap can remain on the GPU.

The population layer can be processed by the population
agent. A given tile may or may not include population data.
If the tile contains population data, this is provided as a grid
covering the quad region. Once the population agent gen-
erates the data, post processing operations are applied to
encode all properties in the minimum number of bits.

The ground texture layer can be processed by the ground
texture agent. The ground texture layer is used by Unity to
cover the surface of the basemap. In one implementation, the
ground texture layer generated by the ground texture agent
can store weights using eight (8) channels, each relative to
a different type of texture. For each channel, the data can be
stored as a single float value (8 bits). Each value character-
izes the weight that a given texture type has for the consid-
ered region. For example, given a region covered at 25% by
rocks and at 75% by trees, the weights can be represented by
Table 10.

TABLE 10

Channel Relative Weight

[N R R T S

FIG. 16 is a block diagram of an exemplary gaming
system 1600 according to one embodiment. The gaming
system 1600 is one system that can provide support online
games for players, including those games covering a large
area or terrain. The gaming system 1600 can include a game
networking system 1602 that hosts one or more online
games for one or more players. The gaming system 100 can
also include a network 1604 which facilitates interaction
with player gaming devices 1606, 1612, 1618 and 1624. The
player gaming device 1606 can be operated by player 1610
and can be coupled to the network 1604 via a network link
1608. The player gaming device 1612 can be operated by
player 1616 and can be coupled to the network 1604 via a
network link 1614. The player gaming device 1618 can be
operated by player 1622 and can be coupled to the network
1604 via a network link 1620. The player gaming device
1624 can be operated by player 1628 and can be coupled to
the network 1604 via a network link 1626.

The components of the gaming system 1600 can be
connected to each other in any suitable configuration, using
any suitable type of connection. The components may be
connected directly or over a network 1604, which may be
any suitable network. For example, one or more portions of
the network 1604 may be an ad hoc network, an intranet, an

US 11,607,611 B2

37

extra net, a virtual private network (VPN), a local area
network LAN), a wireless LAN (WLAN), a short range
wireless network (e.g., Bluetooth network), a wide area
network WAN), a wireless WAN (WWAN), a metropolitan
area network (MAN), a portion of the Internet, a portion of
the Public Switched Telephone Network (PSTN), a cellular
telephone network, another type of network, or a combina-
tion of two or more such networks.

The game networking system 1602 is a network-address-
able computing system that can host one or more online
games. The game networking system 1602 can generate,
store, receive, and transmit game-related data, such as, for
example, game account data, game input, game state data,
and game displays. The game networking system 1602 can
be accessed by the other components of the gaming system
1600 either directly or via the network 1604. Although FIG.
16 illustrates a particular number of players, game network-
ing systems, player gaming devices (e.g., client systems),
and networks, one skilled in the art should recognize that
any suitable number of players, game networking systems,
client systems, and networks can be utilized.

The player gaming devices 1610, 1616, 1622 and 1628
can be used to access, send data to, and receive data from the
game networking system 1602, via the network 1604 or via
a third-party system. As an example, and not by way of
limitation, the player gaming devices 1606, 1612, 1618 and
1624 can be any suitable computing device, such as a
personal computer, laptop, gaming console, cellular phone,
smartphone, computing tablet, and the like.

The components of gaming system 1600 may be con-
nected to each other using any suitable connections. For
example, suitable connections include wireline (such as, for
example, Digital Subscriber Line (DSL) or Data Over Cable
Service Interface Specification (DOCSIS)), wireless (such
as, for example, Wi-Fi, Bluetooth or Worldwide Interoper-
ability for Microwave Access (WiMAX)) or optical (such as,
for example, Synchronous Optical Network (SONET) or
Synchronous Digital Hierarchy (SDH)) connections. In par-
ticular embodiments, one or more connections each include
an ad hoc network, an intranet, an extranet, a VPN, a LAN,
a WLAN, a WAN, a WWAN, a MAN, a portion of the
Internet, a portion of the PSTN;, a cellular telephone net-
work, or another type of connection, or a combination of two
or more such connections. Further, the connections need not
necessarily be the same throughout system. One or more first
connections may differ in one or more respects from one or
more second connections. Although FIG. 16 illustrates par-
ticular connections between players 1610, 1616, 1622, 1628,
the game networking system 1602, the player gaming
devices 1606, 1612, 1619 and 1624, and the network 1604,
this disclosure contemplates any suitable connections ther-
ebetween.

Particular embodiments may operate in a wide area net-
work environment, such as the Internet, including multiple
network addressable systems. FIG. 16 illustrates an example
network environment, in which various example embodi-
ments may operate. The network 1604 generally represents
one or more interconnected networks, over which the sys-
tems and hosts described herein can communicate. The
network 1604 may include packet-based wide area networks
(such as the Internet), private networks, wireless networks,
satellite networks, cellular networks, paging networks, and
the like.

FIG. 17 illustrates a network environment 1700 suitable
for carrying out one or more embodiments. The network
environment 1700 comprises one or more networking sys-
tems, such as social networking system, game networking

5

10

15

20

25

30

35

40

45

50

55

60

65

38

system, and one or more other networking systems. Player
gaming devices are operably connected to the network
environment 1700 via a network service provider, a wireless
carrier, or any other suitable means.

The networking environment 1700 can be a network
addressable system that, in various example embodiments,
comprises one or more physical servers/computers and data
stores. As shown in FIG. 17, the networking environment
1700 can include one or more game server computers 1706
that are operably connected to a network via, by way of
example, a network interface 1702. In an example embodi-
ment, the functionality hosted by the one or more game
server computers 1706 may include web or HTTP servers,
FTP servers, or other servers. The networking environment
1700 can also include one or more data stores 1708. The one
or more game server computers 1706, the one or more data
stores 1708, and the network interface 1702 can each
connect to a local network or data bus 1704.

The one or more game server computers 1706 can host
functionality for game play by one or more players which
via player gaming devices can interact with the one or more
game server computers 1706 over the network (e.g., via the
network interface 1702). The one or more data stores 1708
can provide data storage. For example, the one or more data
stores can be or include mass storage devices (e.g., hard
drive) or databases. The one or more data stores 1708 can
store data relating to and/or enabling operation of network-
ing environment 1700. The data stored to the one or more
data stores 1708 can include digital data objects or content
objects. A data object, in particular embodiments, can per-
tain to an item of digital information typically stored or
embodied in a data file, database, or record. A content object
can take many forms, including: text (e.g., ASCII, SGML,
HTML), images (e.g., jpeg, tit and git), graphics (vector-
based or bitmap), audio, video (e.g. mpeg), or other multi-
media, and combinations thereof. The data stored to the one
or more data stores 1708 can also include executable code
objects (e.g., games executable within a browser window or
frame), podcasts, and the like. Logically, the one or more
data stores 1708 can correspond to one or more of a variety
of separate and integrated databases, such as relational
databases and object-oriented databases, that maintain infor-
mation as an integrated collection of logically related
records or files stored on one or more physical systems.

The one or more data stores 1708 can generally include
one or more of a large class of data storage and management
systems. In particular embodiments, the one or more data
stores 1708 can be implemented by any suitable physical
system(s) including components, such as one or more data
base servers, mass storage media, media library systems,
storage area networks, data storage clouds, and the like. In
one example embodiment, the one or more data stores 1708
can include one or more servers, databases (e.g., MySQL),
and/or data warehouses.

The player gaming devices that connect to the network
environment 1700 are generally a computer or computing
device including functionality for communicating (e.g.,
remotely) over a computer network. The player gaming
devices can, for example, be a desktop computer, laptop
computer, personal digital assistant (PDA), smart phone or
other cellular or mobile phone, or mobile gaming device,
among other suitable computing devices. The player gaming
device can execute one or more client applications. Alter-
natively, the player gaming device can interact with remote
server computer, such as via an application program or a
web browser (e.g., Microsoft Internet Explorer, Mozilla

US 11,607,611 B2

39

Firefox, Apple Safari, Google Chrome, or Opera), to play
games and/or access and view data over a computer net-
work.

FIG. 18 is a block diagram of an example computing
device 1800. The computing device 1800 can be a compute
platform, server or computing device used to carry out the
various embodiments disclosed herein. The computing
device 1800 can include a processor 1802 that pertains to a
microprocessor or controller for controlling the overall
operation of the computing device 1800. The computing
device 1800 can store any type of data and information as
discussed above in a file system 1804 and a cache 1806. The
file system 1804 is, typically, a storage disk or a plurality of
disks, and/or solid-state Flash drive. The file system 1804
typically provides high capacity storage capability for the
computing device 1800. However, since the access time to
the file system 1804 is relatively slow, the computing device
1800 can also include a cache 1806. The cache 1806 is, for
example, Random-Access Memory (RAM) provided by
semiconductor memory. The relative access time to the
cache 1806 is substantially shorter than for the file system
1804. However, the cache 1806 does not have the large
storage capacity of the file system 1804. Further, the file
system 1804, when active, consumes more power than does
the cache 1806. The computing device 1800 also includes a
RAM 1820 and a Read-Only Memory (ROM) 1822. The
ROM 1822 can store programs, utilities or processes to be
executed in a non-volatile manner. The RAM 1820 provides
volatile data storage, such as for the cache 1806.

The computing system 1800 also includes a user input
device 1808 that allows a user of the computing system 1800
to interact with the computing system 1800. For example,
the user input device 1808 can take a variety of forms, such
as a button, keypad, touch screen, dial, and the like. Still
further, the computing system 1800 includes a display 1810
(screen display) that can be controlled by the processor 1802
to display information to the user. A data bus 1811 can
facilitate data transfer between at least the file system 1804,
the cache 1806, the processor 1802, and the CODEC 1812.

The computing system 1800 can also include a network/
bus interface 1816 that couples to a data link 1818. The data
link 1818 allows the computing system 1800 to couple to a
host computer or data network, such as the Internet. The data
link 1818 can be provided over a wired connection or a
wireless connection. In the case of a wireless connection, the
network/bus interface 1816 can include a wireless trans-
ceiver.

The various aspects, features, embodiments or implemen-
tations of the invention described above can be used alone
or in various combinations. The invention can be used with
any network, including a local, wide-area, and/or global
network. The invention can also be used on a stand-alone
computing device without any network connection or with
only infrequent connection to a network.

The invention can be implemented in software, hardware
or a combination of hardware and software. The invention
can also be embodied as computer readable code on a
computer readable medium. The computer readable medium
is any data storage device that can store data which can
thereafter be read by a computer system. Examples of the
computer readable medium include read-only memory, ran-
dom-access memory, CD-ROMs, magnetic tape, optical data
storage devices, and carrier waves. The computer readable
medium can also be distributed over a network coupled
computer systems so that the computer readable code is
stored and executed in a distributed fashion.

10

15

20

25

30

35

40

45

50

55

60

65

40

The many features and advantages of the present inven-
tion are apparent from the written description and, thus, it is
intended by the appended claims to cover all such features
and advantages of the invention. Further, since numerous
modifications and changes will readily occur to those skilled
in the art, it is not desired to limit the invention to the exact
construction and operation as illustrated and described.
Hence, all suitable modifications and equivalents may be
resorted to as falling within the scope of the invention.

What is claimed is:

1. A method for producing a graphical environment for a
computer game played by at least one player, the method
comprising:

retrieving a player position relative to a basemap, the

basemap being a reduced resolution representation of
the graphical environment;

partitioning the basemap into a plurality of distinct

regions using a partitioning algorithm;

identifying a subset of the basemap that is proximate to

the player position relative to the basemap, wherein the
subset of the basemap includes one or more of the
plurality of distinct regions but less than half of the
plurality of distinct regions;

increasing resolution of the subset of the basemap using

a previously trained machine learning agent to produce
an enhanced basemap, the enhanced basemap being an
enhanced resolution representation of the graphical
environment; and

rendering the enhanced basemap to produce at least a

portion of the graphical environment for the computer
game;

wherein each of the plurality of distinct regions includes

at least one tile.

2. A method as recited in claim 1, wherein the method
further comprises subdividing each of the at least one tile of
each of the plurality of distinct regions into multiple tiles if
a separation distance between the player position and the at
least one tile is less than a predetermined threshold amount.

3. A method as recited in claim 2, wherein the increasing
resolution of the subset of the basemap operates to increase
resolution for a given one of the tiles to a resolution level
that is dependent on a separation distance from the position
of the given tile to the player position.

4. A method as recited in claim 2, wherein the increasing
resolution of the subset of the basemap operates to increase
resolution to multiple levels of increasing resolution, depen-
dent on a distance between the player position and a tile
position of the corresponding tile.

5. A method as recited in claim 2, wherein a number of
tiles that each of the at least one tile is subdivided into is
dependent on the separation distance.

6. A method as recited in claim 5, wherein the number of
tiles is determined by a subdivision algorithm.

7. A method as recited in claim 2, wherein partitioning the
basemap into a plurality of distinct regions and subdividing
each of' the at least one tile of each of the plurality of distinct
regions operates to split the basemap into tiles of different
dimensions.

8. A method as recited in claim 2, wherein the increasing
resolution of the subset of the basemap operates to increase
resolution on a tile-by-tile basis using different, separately
trained machine learning agents.

9. A method as recited in claim 8, wherein the separately
trained machine learning agents include a resolution
enhancement agent, a population agent, and a ground cov-
erage agent.

US 11,607,611 B2

41

10. A method as recited in claim 1, wherein the increasing
resolution of the subset of the basemap operates to increase
resolution on a tile-by-tile basis depending on whether the
position of the given tile is less than a separation distance
from the player position.

11. A method as recited in claim 1,

wherein the basemap has a base resolution, and

wherein the increasing resolution of the subset of the

basemap operates to increase resolution of a first por-
tion of the subset of the basemap to a first increased
resolution greater than the base resolution, and to
increase resolution of a second portion of the subset of
the basemap to a second increased resolution greater
than the base resolution and the first increased resolu-
tion.

12. A method as recited in claim 1, wherein the previously
trained machine learning agent was trained using a training
dataset that is generated procedurally following a set of
artist-defined rules.

13. A method as recited in claim 12, wherein the training
dataset includes a plurality of automatically generated maps,
and wherein the training allows specific features of the
generated maps to be automatically learned.

14. A method as recited in claim 12, wherein the set of
artist-defined rules include rules for procedural landscape
generation and population model.

15. A method as recited in claim 12,

wherein the basemap pertains to a terrain for the graphical

environment, and

wherein the training dataset includes training maps stor-

ing information on ground elevation and on what
covers the ground.

16. A method as recited in claim 15, wherein at least one
of' the training maps includes data on location of streams and
water bodies within the terrain.

17. A method as recited in claim 15, wherein at least one
of the training maps includes data concerning how different
textures are combined.

18. A method as recited in claim 12, wherein the training
dataset is custom for a specific terrain.

10

15

20

25

30

35

42

19. A method as recited in claim 1,

wherein the previously trained machine learning agent

was trained using a training dataset, and

wherein the training of the previously trained machine

learning agent includes:

receiving elevation data, ground coverage masks, and

resolution information that are applicable to a map
region; and

outputting an increased-resolution version of the map

region characterized by elevation data and masks.

20. A method as recited in claim 1, wherein the partition-
ing includes quadtree partitioning.

21. A method as recited in claim 1, wherein each of the
plurality of distinct regions has a different resolution.

22. A non-transitory computer readable medium including
at least computer program code tangibly stored thereon and
executable by an electronic device to produce a graphical
environment for a computer game played by at least one
player, the computer readable medium comprising:

computer program code for retrieving a player position

relative to a map, the map being a reduced resolution
representation of the graphical environment;

computer program code for partitioning the map into a

plurality of distinct regions using a partitioning algo-
rithm;

computer program code for identifying a subset of the

map that is proximate to the player position relative to
the map, wherein the subset of the map includes one or
more of the plurality of distinct regions but less than
half of the plurality of distinct regions;

computer program code for increasing resolution of the

subset of the map using a previously trained machine
learning agent to produce an enhanced map, the
enhanced map being an enhanced resolution represen-
tation of the graphical environment; and

computer program code for rendering the enhanced map

to produce at least a portion of the graphical environ-
ment for the computer game;

wherein each of the plurality of distinct regions includes

at least one tile.

