(57) Abrégé/Abstract:
The invention refers to a device for heat transfer, particularly in fluidized bed equipment. Here, several layers of heat exchanger tubes are provided, with radial arms mounted in between to mix and loosen the product. In addition, the invention refers to a
(57) Abrégé(suite)/Abstract(continued):
process for heat transfer in high-temperature processes for bulk material, particularly granulates or powders, in fluidized bed units, where the heat is transferred to and absorbed by the fluidised bed on several levels, and by the fluidised bulk material being activated mechanically between these levels. This allows transfer of high energy densities without the risk of bridging or local overheating.
Summary

The invention refers to a device for heat transfer, particularly in fluidized bed equipment. Here, several layers of heat exchanger tubes are provided, with radial arms mounted in between to mix and loosen the product. In addition, the invention refers to a process for heat transfer in high-temperature processes for bulk material, particularly granulates or powders, in fluidized bed units, where the heat is transferred to and absorbed by the fluidised bed on several levels, and by the fluidised bulk material being activated mechanically between these levels. This allows transfer of high energy densities without the risk of bridging or local overheating.

(Fig. 1)
The invention relates to a device for heat transfer, particularly in fluidized bed equipment, as well as a process for heat transfer in high-temperature processes for bulk material, particularly granulates or powders, in fluidized bed equipment.

In many high-temperature processes, heat must be supplied or discharged in order to control the reaction. This includes calcination of limestone to obtain quick lime and dehydration of gypsum to obtain plaster of Paris or anhydrite plaster, as examples of endothermic reactions, and roasting of such ores as molybdenite MoS$_2$ and pyrite FeS$_2$ to obtain their oxides, as examples of exothermic reactions.

The kinetics of the reaction require a controlled temperature progression in order to prevent incomplete or too fast reactions. Particularly in continuous exothermic reactions, there may be undesirable incipient fusion, sintering and by-products, or the equipment may even be destroyed.

The state of the art knows of various approaches towards solving this problem complex.

In DE 25 11 944, a cylindrical fluidized bed reaction is proposed for combustion of coal granulate. The heat is discharged through heat exchanger ducts with air flowing through, arranged horizontally on top of one another. The ducts are curved into an involute shape, and connect the centrally located air feed duct to the concentric collector on the outer wall. By unwinding the involute in a circle, high and even packing is obtained, as well as low-stress deformation due to heat expansion. Due to the high packing density, this process cannot be used for fine-grain powders because bridging and clogging occurs between the heat-exchanger tubes. WO 97/070703 suggests using cylindrical vessels for endothermic dehydration of gypsum, with a concentric tube coil in the vessel wall that is heated by means of flue gases. A helical ribbon mixer to loosen up the gypsum is provided in the remaining space available in
the inner chamber. This improves heat transfer, and improved economic efficiency compared to conventional processes should be achieved if the vessels are placed in a multi-stage arrangement. Nevertheless, the heat exchanger surface to be placed at the edge of the vessel is small and the improvement that can be achieved is marginal.

A conventional multi-stage hearth furnace [Ullmann] is still used to roast MoS₂, where its single rack generates a temperature profile that can only be controlled rather inadequately by means of the combustion air and water injection. In order to improve the exchange between gas and solids and to convey the powder, a central agitator with arms is provided on each rack. Nevertheless, sintering and incomplete oxidation still occur.

The aim of the invention is to create a process and a device for bulk material, particularly granulates or powders, that guarantees good controllability of heat transition and prevent possible caking.

The invention is thus characterised by several layers of heat exchanger tubes being provided, with radial arms mounted in between to mix and loosen the product, where the heat exchanger tubes can extend largely over the entire cross-section.

Advantageously, the radial arms are designed as rotating agitator arms. In this way, fluidisation of the bulk material is facilitated effectively and even heat treatment is thus achieved. This results in high packing density, without bridging or clogging between the tubes.

A further development of the invention is characterised by the heat exchanger pipes having a rotating design, where the rotary axle can be split into preferably two chambers into which the heat exchanger tubes open. Since the heat exchanger tubes rotate, there is some movement in relation to possible stationary arms that then act as flow breakers. This prevents blocking and caking of the product in the heat exchanger.
A favourable embodiment of this variant is characterised by rotation transmitters being provided at the end of the rotary axle to lead the heat-transfer medium in and out.

If several units are combined in a cascade arrangement, it is then possible to draw off intermediate products and also to set different reaction conditions, e.g. to produce specific product properties.

The invention also refers to a process for heat transfer in high-temperature processes for bulk material, particularly granulates or powders, that is characterised by the heat being transferred to and absorbed by the fluidised bed on several levels, and by the fluidised bulk material being activated mechanically between these levels. In this way, it is possible to use different heat-transfer media, for example with different temperatures.

A favourable further development of the invention is characterised by heat transfer taking place largely over the entire cross-section of the fluidised bed. This results in a high energy density, which makes it possible to use compact units.

A further embodiment of the invention is characterised by the heat-transfer medium being a gas. In this way, the process can be controlled easily over a very large temperature range.

A favourable further development of the invention is characterised by the process including several stages. As a result, specific intermediate products of the reaction can be produced and drawn off from the process for further use.

The process according to the invention combines the advantages of the processes mentioned above without also bearing their disadvantages:
- high volume-specific heat exchanger surface permits high heat transfer performance density and operating efficiency,

- an agitator or rotating heat-exchanger pipes prevent bridging and enable application for fine-grain powders,

- fluidisation provides a homogenous reaction product and prevents local overheating/undercooling,

- use of gas as heat-transfer medium allows the temperature to be controlled over a very wide range.

The invention will now be described in examples and referring to the drawings, where

Fig. 1 shows a diagram of a process according to the invention,

Fig. 2 shows a sectional view of the device according to the invention,

Fig. 3 contains a top view of a heat exchanger tube according to the invention,

Fig. 4 shows a sectional view of an alternative design according to the invention, and

Fig. 5 contains a top view of an alternative embodiment of a heat exchanger tube according to the invention.

Figure 1 contains a diagram of the process according to the invention. This process largely comprises a fluidised bed unit 1, with heat exchanger tubes 2 running through it horizontally in several layers. Gas 8 (air, flue gas, superheated steam, etc.) flows through the tubes in order to transfer heat to or absorb heat from bulk material fed in through and fluidising round the pipes 2. Gas is particularly suitable as heat-transfer medium
because it is not subject to temperature or pressure restrictions like thermal oil or saturated steam/condensate.

Furthermore, a distribution device is provided for the fluidising gas 10, e.g. in the form of a distributor plate 3, as well as a free space 4 above it, where particles carried along can still separate from the gas flow before it enters the dusting/cleaning plant 5.

The fluidised state causes an intensive exchange of heat and material, with the result that the product does not become inhomogenous. If the temperature of the heat-transfer medium is controlled accordingly, the temperature in the unit can be controlled very accurately so that there is no undercooling, overheating or uncontrolled reaction.

The bulk material is fed to the unit 1 through the pipe 9 and reacts in accordance with the reaction conditions to become the final product, largely according to the principles of a so-called continuously operated stirred-tank reactor because of the good blending effect. By arranging several units 1 in series to form a cascade, the final state can also be achieved in several stages. As a result, intermediate products can be drawn off or different reaction conditions set in order to obtain specific product properties.

The final product leaves the unit 1 through a discharge gate 7 in the base or through an overflow outlet 6, preferably above the heat exchanger area.

During thermal treatment of, for example, very fine-grained, strongly heterogeneous and very light bulk materials, inhomogenous fluidising can occur at the heat exchanger, culminating in coating and blocking between the heat exchanger tubes. This problem can be solved with the process devices according to the invention.

In the first embodiment of a device according to the invention (Fig. 2) the heat exchanger 23 has a rigid mounting. In the centre it has a vertical
axle 21 on which the radial agitating arms 22 are mounted and which extend to the edge of the vessel 20. The arms are arranged on several levels, between two layers of tubes in the heat exchanger 23 in each case, such that the entire heat exchanger area is covered. There are preferably several arms 22 on each level. The axle 21 has a drive 24, and fluidisation of the bulk material is assisted mechanically by the movement transferred to the arms 22 so that no caking or blocking can occur. The heat-transfer gas 8 is led in and out via collectors 25 outside on the wall of the vessel 20 into which the individual heat exchanger tubes open (Fig. 3).

A second embodiment of the invention is shown in Fig. 4. Here the heat exchanger 31 rotates together with the vertical shaft 32, which also serves to supply and carry off 37 the heat-transfer gas. From the outside wall 20 of the vessel, radial arms 33 extend radially into the inside of the heat exchanger. They are mounted on several levels at different heights so that each one rests between two layers of tubes 34 and the entire heat exchanger area is covered. Similarly, several arms could be provided on each level and distributed round the circumference. Thus, relative movement is generated when the heat exchanger 31 rotates, the arms 33 act as flow breakers, thus assisting fluidisation mechanically and preventing blocking of the heat exchanger with the product. The heat-transfer gas is distributed to the individual tubes by the hollow rotating axle 32, divided into two chambers 35, 36, of the heat exchanger 31, into which the tubes open alternately (see also Fig. 5). The gas collected is led in and out respectively with the aid of rotation transmitters 37 on the axle journals.

The invention is not limited to the examples shown. In addition, both the heat exchanger tubes and the agitating arms could rotate, and it is important to ensure here that there is relative movement. In principle, the device could also be operated with other heat transfer media (saturated steam, hot water, thermal oil ...).
The arrangement and shape of the heat exchanger tubes can also differ from that shown, for example as conventional heating coils meandering at regular intervals.
Patent Claims

1. Device for heat transfer, particularly in fluidized bed equipment, characterised by several layers of heat exchanger tubes being provided, with radial arms mounted in between to mix and loosen the product.

2. Device according to Claim 1, characterised by the heat exchanger tubes extending largely over the entire cross-section.

3. Device according to Claim 1 or 2, characterised by the radial arms being designed as rotating agitator arms.

4. Device according to one of Claims 1 to 3, characterised by the heat exchanger pipes having a rotating design.

5. Device according to Claim 4, characterised by the rotary axle being split into preferably two chambers into which the heat exchanger tubes open.

6. Device according to Claim 4 or 5, characterised by rotation transmitters being provided at the end of the rotary axle to lead the heat-transfer medium in and out.

7. Device according to one of Claims 1 to 6, characterised by several units being combined in a cascade arrangement.

8. Process for heat transfer in high-temperature processes for bulk material, particularly granulates or powders, characterised by the heat being transferred to and absorbed by the fluidised bed on several levels, and by the fluidised bulk material being activated mechanically between the levels.

9. Process according to Claim 8, characterised by heat transfer taking place largely over the entire cross-section of the fluidised bed.
10. Process according to Claim 8 or 9, characterised by the heat-transfer medium being a gas.

11. Process according to one of Claims 8 to 10, characterised by the process including several stages.