PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F 17/27, 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/29817

9 July 1998 (09.07.98)

(21) International Application Number: PCT/IL97/00418

(22) International Filing Date: 22 December 1997 (22.12.97)

(30) Priority Data:

119914 25 December 1996 (25.12.96) IL

(71) Applicant (for all designated States except US): EMULTEK
LTD. [IL/IL]; Beit Rabin, Teradion Industrial Park, 20179
Misgav (IL).

(72) Inventor; and
(75) Inventor/Applicant (for US only): ROTBART, Frederick, C.
[IL/IL]; 142 Yuvalim Street, 20142 Misgav (IL).

(74) Agents: COLB, Sanford, T. et al.; Sanford T. Colb & Co., P.O.
Box 2273, 76122 Rehovot (IL).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK
(Utility model), SL, TJ, T™M, TR, TT, UA, UG, US, UZ,
VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD,
SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ,
MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DEVICE FOR IMPLEMENTING HIERARCHICAL STATE CHARTS AND METHODS AND APPARATUS USEFUL

THEREFOR

(57) Abstract

An apparatus allows users to implement
hierarchical state charts. The apparatus includes
a state machine engine (SME) (20) operative to
carry out repertoires of behaviors of a system, a
state chart encoder (10) operative to replicate, in
computer code form, a user—defined hierarchical
state chart describing a repertoire of behaviors of
the system, the encoder being operative to preserve
the state chart’s hierarchical structure intact in a
first data structure, an event list generator operative
to generate, for each individual event from among
a plurality of events within the repertoire, a list
of at least one transition between states of the
state chart which are associated with the individual
event, the event list generator being operative to
preserve the list in a second data structure, and
a behavior implementer operative to activate the
system to carry out each of the behaviors in its
repertoire.

STATE MACHINE
ENGINE

10
I
INITIAL DATA
NOTIFICATION OF
DATA CHANGES AUTOMATICALLY

GENERATED CODE

COMMANDS TO
PERFORM LOGICAL ACTIVITIES

[
COMMANDS T0
HARDWARE

INTERFACE TO
HARDWARE

)

30

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
sSD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

St
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

[
<

WO 98/29817 PCT/IL97/00418

DEVICE FOR IMPLEMENTING HIERARCHICAL STATE CHARTS AND METHODS
AND APPARATUS USEFUL THEREFOR

FIELD OF THE INVENTION
The present invention relates to computer code and to apparatus and methods for

computer code generation.

BACKGROUND OF THE INVENTION
Hierarchical state charts are described in "Statecharts, a visual approach to
complex systems", David Harel, Science of Computer Programming, 1987.
The disclosures of all publications mentioned in the specification and of the

publications cited therein are hereby incorporated by reference.

SUMMARY OF THE INVENTION

The present invention seeks to provide improved computer code and improved
apparatus and methods for computer code generation,

There is thus provided in accordance with a preferred embodiment of the present
invention apparatus implementing hierarchical state charts and including a state machine engine
(SME) operative to carry out repertoires of behaviors of a system, a state chart encoder
operative to replicate, in computer code form, a user-defined hierarchical state chart describing
a repertoire of behaviors of the system, the encoder being operative to preserve the state
chart's hierarchical structure intact in a first data structure, an event list generator operative to
generate, for each individual event from among a plurality of events within the repertoire, a list
of at least one transition between states of the state chart which are associated with the
individual event, the event list generator being operative to preserve the list in a second data
structure, and a behavior implementer operative to activate the system to carry out each of the
behaviors in its repertoire,

Further in accordance with a preferred embodiment of the present invention the

system includes at least one of bardware and sofiware.

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

2

Still further in accordance with a preferred embodiment of the present invention
the first data structure’s size increases linearly in direct proportion to the number of branches
in the hierarchical structure.

Additionally in accordance with a preferred embodiment of the present invention
the second data structure’s size increases linearly in direct proportion to the number of
transitions in the list of at least one transition.

Moreover in accordance with a preferred embodiment of the present invention the
order of the at least one transition of each of the lists corresponds to the order of evaluation of
the transitions as defined by the hierarchical state chart.

Further in accordance with a preferred embodiment of the present invention the
plurality of events for which the event list generator generates lists includes at least one
external input event.

Still further in accordance with a preferred embodiment of the present invention
the plurality of events for which the event list generator generates lists includes at least one
internal data value change event, the apparatus also including a data value change event
notifier operative to generate a notification to the state machine engine of each data value
change event.

There is additionally provided in accordance with a preferred embodiment of the
present invention a method implementing hierarchical state charts, the method including
providing a state machine engine (SME) operative to carry out repertoires of behaviors of a
system replicating, in computer code form, a user-defined hierarchical state chart describing a
repertoire of behaviors of the system, the replicating step being operative to preserve the state
chart's hierarchical structure intact, generating, for each individual event from among a
plurality of events within the repertoire, a list of at least one transition between states of the
state chart which are associated with the individual event, and activating the system to carry
out each of the behaviors in its repertoire.

There is additionally provided in accordance with a preferred embodiment of the
present invention an automatic code generation method including automatically generating
code which forms, in memory, a replica of a hierarchical state chart which preserves the chart's
hierarchical structure, automatically generating code which forms, for each of a first plurality

of input events, a list of transitions affected by that input event, automatically generating code

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

3

which forms, for each of a second plurality of internal data variables, a list of transitions
affected by changes in that internal data variable, automatically generating code which notifies
the state machine engine of changes in internal data variables, and automatically generating
code which evaluates conditions and implements actions and activities.

Further in accordance with a preferred embodiment of the present invention the
method includes the step of providing a state machine engine operative, upon receipt of
notification regarding occurrence of an event, to evaluate a list of transitions affected by the
event so as to select transitions to be performed, and to perform the transitions.

There is additionally provided in accordance with a preferred embodiment of the
present invention a method for computing a state for a hierarchical state machine, the method
including providing a state machine engine operative to receive notification regarding
occurrence of at least one event, providing a hierarchical state chart describing a repertoire of
behaviors of a system, providing a list of at least one transition between states of the state chart
for each of the events with which the at least one transition is associated, evaluating the list of
at least one transition so as to select a transition to be performed in response to the at least one
event, and evaluating the hierarchical state chart to compute the state that corresponds to the

selected transition.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated from the following
detailed description, taken in conjunction with the drawings in which:

Fig. 1 is a simplified block diagram of a software system constructed and operative
in accordance with a preferred embodiment of the present invention which includes
automatically generated code which interfaces with a state machine engine (SME);

Fig. 2 is a simplified flowchart illustration of a preferred method of operation for
the state machine engine of Fig. 1;

Fig. 3 is a simplified flowchart illustration of a preferred method for generating
high level computer code from hierarchical state charts;

Fig. 4 is a pictorial illustration of a computer screen generated in the course of

automatically generating computer code from hierarchical state charts in a particular example;

10

15

20

25

WO 98/29817 PCT/1L97/00418

4

Fig. 5 is a pictorial illustration of a computer screen, generated in the course of
processing the example of Fig. 4, which shows all modes making up the state chart of the
example;

Fig. 6 is a pictorial illustration of a computer screen, generated in the course of
processing the example of Fig. 4, which shows an alternative presentation of the state chart of
Fig. 5; and

Fig. 7 is a simplified flowchart illustration of an automatic code generation

technique operative in accordance with a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference is now made to Fig. 1 which is a simplified block diagram of a software
system constructed and operative in accordance with a preferred embodiment of the present
invention which includes automatically generated code 10 which interfaces with a state
machine engine (SME) 20. An optional interface 30 to underlying hardware (not shown) is also
provided.

The state machine engine 20 is a pre-built object code module that is linked, either
dynamically or statically, to the automatically generated code and the interface library.

The state machine engine implements the behavior of the software system
preferably as defined solely by the automatically generated code that is linked with it. That
being the case, the state machine engine code is typically provided only once in object code
form, and does not need to be changed per sofiware system.

The state machine implements this behavior by converting input events and
changes of data values into transitions within the hierarchical state chart, and then
implementing these transitions. It does this by computing the new state associated with this
transition, deactivates the relevant parts of the old state and finally activates the relevant parts
of the new state.

A preferred method of operation for the state machine engine (SME) 20 is
described by the flow chart of Fig. 2.

The SME begins operation by building initial data structures based on data
provided by the automatically generated code 30. These data structures typically include:

o a data structure that is a one to one representation of the hierarchical state chart,

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

5
o a data structure that couples together any input events with the transitions that are
triggered by these input events,
. a data structure that couples together any data variables in the application with

transitions that are triggered by changes in the value or state of these data variables, and with
any expressions that must be evaluated when these data variables change, and
. a pointer to all logic and activity functions within the automatically generated code.

The SME then enters its normal operating state, which is to wait for any input
events or any changes in data values. It is appreciated that input events may originate from a
hardware device, such as a lamp as described in greater detail hereinbelow with reference to
Fig. 4, or from a software process, such as an interprocess message.

When an input event notification arrives or a data change notification arrives from
the automatically generated code, SME 20 checks if the event or data structure that triggered
the notification has a list of transitions or logic expressions associated with it. If not it discards
the notification and returns to its normal operating state.

If the source of the notification does have such a list associated with it, the SME
then checks each entry in the list and selects those entries that belong to a state that is currently
active. All other entries are ignored.

The SME then iterates over the selected list and checks each entry.

If an entry is a transition, and the source state of that transition is still active, the
SME performs the transition by computing the new state associated with the transition,
deactivating those parts of the current state that will no longer be active in the new state, and
then activating all those elements in the new state that were not active in the current state. The
new state then becomes the current state.

If the entry is a logic expression, rather than a transition, the SME evaluates this
expression by calling the corresponding functions in the generated code.

Once the SME has processed all entries in the list, it returns to its normal operating
mode to await the next notification.

Referring back to Fig. 1, the automatically generated code 10 is a translation of a
hierarchical state chart description of a system, in addition to all data elements in the system,
which, when compiled and run together with the SME and the interface library, implements the

behavior of the original system.

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

6

The automatically generated code 10 typically comprises some or all of the
following components:
. code to generate in memory, on a one to one basis, a replica of the original state chart,
including the transitions and activities as defined,
o code to generate the lists that link sources of input events with the transitions to be
evaluated when notification of these events are received by the SME,
. code to generate the lists that link data variables with the transitions and the logical

expressions to be evaluated when notification of changes to these data variables are

recetved by the SME,
o code to generate the notifications to the SME whenever a data variable changes,
o code to evaluate the conditions and to implement actions and activities that describe the

behavior of the system described by the original state chart, including code to activate
elements of hardware or sofiware as specified by the state chart,
o code to deliver to the SME any of the above as is needed by it.

The object code interface library 30 to the underlying hardware is optional pre-
built object code that allows one or both of the state machine and the automatically generated
code to interact with the hardware on which these elements operate.

This object code interface library is specific to the hardware on which the system is
to be run.

Conventional technology for generating high level code from state charts has
entailed generating a static representation of all the possible transitions and states as described
by the state chart, as well as generating code for the state machine that activates these various
states. In general, the state and the state machine are inseparable in such generated code.

The two main techniques available for accomplishing this have been: state
machines built of nested branch statements and state machines built around state transition
tables.

In the first technique, code generation using branch statements, the state chart
formalism is converted into a large number of typically deeply nested branch statements, where
each branch statement represents one of the possible transitions. The depth of nesting is at least
as deep as the deepest hierarchy in the state chart and increases non-linearly as a function of

the depth of all branches in the state chart, the width of the branches and the number of

10

15

20

25

30

WO 98/29817 PCT/I1.97/00418

possible input events.

Branch statements are statements of the type “if-else” or “switch-case”.

For simple programs this may be adequate, but in general, because of the large
amount of code needed to code the nested branch statements, this technique produces overly
large programs.

Every possible input event is typically represented by some sort of flag. When an
input event occurs, the corresponding flag is set to indicate this. The state machine mechanism
involves continuously cycling through all the branch statements in the search for any branches
that involve flags which may have been set before the current cycle as well as any condition
statements that may have become true due to a variable changing value. This has the inevitable
result that such code is very slow, especially since every cycle has to go through the deeply
nested branch points that make up the code. This makes this type of code big and too slow for
any application that requires a fast response time or modest memory requirements.

In the second technique, code generation using state transition tables, a procedure
or function is generated for every possible transition and state, together with a state transition
table that is used by the generated state machine for choosing which procedure to call for every
possible external input. This state transition table is, in effect, a two-dimensional array whose
indices are “input event” and “current state” and whose value is the new state.

The state here is not a hierarchical state, but rather a state in a norn:al linear state
diagram, which is derived from the state chart by “flattening out” the original state chart.

When an input event arrives at the state machine, the state machine uses it,
together with the current state to look up the next state. This use of tables results in much
better response times than the nested branch statements to input. On the other hand, condition
statements must still be evaluated by cycling through all such statements in search of any that
evaluates to “true.” This, of course, is still very slow.

In addition, because of the need to “flatten out” or linearize the original state chart,
the size of the table explodes exponentially as a function of the number of possible input
events, of depth of the state chart and the width of each branch. Hence, programs generated
this way are normally so large as to make the generated code impractical for commercial
products.

In contrast, the code generation technique of the present invention preferably has

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

some or all of the following features:

It does not try to reproduce the hierarchical state machine in the generated code, but
rather generates code that, after compilation and linkage, is run by a pre-built, optimized
state machine engine.

It does not generate a static representation of all possible states and the transitions in the
state chart, but rather generates code that reproduces the actual hierarchical state
structure of the original state chart. The pre-built state machine engine then dynamically
computes the required new state in response to every input event, or change in
conditions.

It is completely event driven, even in the case of conditions. Every source of events and
every variable can have a list of logic associated with it. This list points to any statement
that must be evaluated if and when that event is triggered or that variable changes value.
In general, the statements in the list represent transitions, and the order of the statements
expresses the order of evaluation of these transitions. As soon as an input event arrives,
or a variable changes value, the transition dependent upon it is immediately identified and
evaluated.

The size of the generated code is linear in the number of branches and the number of
transitions between the branches. The size is independent of the width of the branches
and the number of possible input events.

The code generation technique of the present invention and the code structure of

the present invention preferably has some or all of the following advantages:

The resultant generated code, together with the pre-built state machine engine, is very
small, and has memory requirements which are comparable to equivalent code developed
manually by programmers.

Whereas response time of the generated code to input events is as good as conventional
automatically generated code, the response time to changes in variables is better than
that for automatically generaied code, and in fact, is similar to that for input events.

The code generated is guaranteed to reflect the state chart from which it was derived,
rather than being a transformed version of it. As a result, the generated code behaves as
described by the original state chart. In addition, because of the clarity of the state chart

formalism itself, the generated code is more likely to behave as required, compared to the

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

equivalent manually developed code.

EXAMPLE: Fig. 3 illustrates incorporation of a system for generating the code
shown and described herein into the Rapid S/W tool, commercially available from Emultek
Ltd., Misgav 20179, Israel.

The steps of Fig. 3 are now described:

Build Interface Library: The interface library is used by the automatically
generated code to interact with the hardware on which the system to be developed runs. For
example, the library code may be used to request memory allocation from the operating
system, or, if the hardware controls a device such as a lamp, the library might contain the code
to switch the lamp on and off, e.g., by accessing certain addresses on the hardware. The
library can be written in any convenient language and is preferably pre-tested before
development with Rapid begins.

Map Components to Simulation Objects: In Rapid, applications are built by
assembling simulations of the hardware and/or software components on the screen and building
logical expressions from functions supplied with the object simulations. These supplied
functions animate the behavior of the object simulations. For example in the case of a Lamp
object, the function “switchOn” would cause the simulated lamp on the screen to change to the
“on” color. In order for the logical expressions be able to interact with the actual components,
a mapping between the supplied functions and interface library is provided. This mapping may
be hard coded into the simulated objects code. Alternatively, an external textual mapping file
may be used.

Open a New Rapid Application: This is the first step in building Rapid
applications, providing a “clean slate” on which to build the application.

Build Simulation of the System: The simulation is built by dragging objects from a
tool palette in the Layout Editor and positioning them as required on the graphic
representation of the device being simulated. Each object can be graphically customized and, to
some extent, functionally customized.

Rapid State Charts: The logic in a Rapid application is described by a state chart.
State charts in Rapid are built from units called “modes”. A mode is a functional state of the
system and any mode can be hierarchically nested within any other mode. Therefore, the modes

describe a hierarchical tree. Modes come in two “flavors”: exclusive and concurrent. For

WO 98/29817 PCT/IL97/00418

10

15

20

25

30

10

exclusive modes, only one sibling can be in the active state at any given time, while for
concurrent modes all siblings must be active together. When a particular mode is active, this
implies that all its ancestors are active. If the mode’s children are exclusive modes, this also
implies that at least one of its children are active, while if the mode’s children are concurrent
modes, this implies that all of the children are active. A state in a state chart is the list of all
currently active modes. A mode can have lists of activities and transitions. Activities describe
what the system does when it is a particular state. Activities can be entry activities, exit
activities or mode activities. Entry activities are activities that are performed when the mode
that contains them becomes activate. Exit activities are activities that are performed when the
mode that contains them becomes inactive. Mode activities are activities that are performed
when the mode becomes active and that, as long as the mode is still active, are automatically
re-evaluated whenever data variables that describe them change value. Transitions define how
the system evolves from one state to another. Transitions typically have a destination mode.
Transitions must also have a list of input events, or a condition expression or both. Transitions
may also have a list of actions. If notification of one of the input events held by a transition is
received, and that transition belongs to a currently active mode, and the condition expression,
if any evaluates to true, then the mode belonging to the transition is deactivated (together with
its children and any relevant ancestors) and the destination mode of the transition is activated
(together with its children etc.). Between the deactivation of the original mode and the
activation of the destination mode, any actions in the transition ar: performed.

Build the State Chart: The simulation is typically built using two tools in Rapid:
the Mode Tree Editor and the Logic Editor. The Mode Tree Editor allows the user to define
and add modes to the hierarchical tree of modes by selecting the parent of the new mode,
specifying the type of the new mode, and giving a name to the new mode. During this process,
the transitions and activities can be added and edited using the Logic Editor. As each logic
expression is added to the state chart it is compiled into byte codes for a virtual machine that is
used to run a simulation of the system.

Run Simulation: At any time during the development process, the simulation of
the system under development can preferably be run. This allows incremental development of
the system and verification that the system behaves as desired.

Generate Code: Once the developer is satisfied with the system, Rapid

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

11

automatically generates C++ code for that system having the characteristics described above.
It is appreciated that programming languages other than C++ may be used for the
automatically generated code.

Compile the Generated Code: The automatically generated code can be compiled
to produce object code.

Link with State Machine and Interface Library: The object code produced by
compiling the automatically generated code is then linked with the SME object code and the
interface library to produce executable code for the target system.

This executable code can be downloaded and run on the target system.

Sample Application:

The following is a sample application in Rapid and the code automatically
generated for it:

Fig. 4 is a screen capture of the application in the Layout Editor, showing the
object layout.

As can be seen the application contains five lamps, and five push buttons:

Objects

RAPID APPLICATION: TRANSITN 12/12/96 16:09:08
OBJECT DATA REPORT

Parameters:
Scope: Subtree.
Order: Hierarchy.

Content: Active objects, Nongraphic objects, Object parameters, Object properties.

1. OBJECT: transitn
Parent: none Type: Root Object

Parameters:

Position (px1): '0 @ 0" Size (pxl): '393 @ 403' Dynamic: 'false’

10

15

20

25

30

WO 98/29817

12

Drag 'n Drop: 'false’'

2. OBJECT: LampH

Parent: transitn

Parameters:

Type: Round Lamp

PCT/IL97/00418

Center (pxl): '300 @ 139' Radius (pxl): '15 @ 15' Dynamic: 'false'

Drag 'n Drop: 'false’

Properties:

2.1. Name: blinkPeriod Type: Data

Parameters:

Value: 500

3. OBJECT: LampG

Parent: transitn

Parameters:

Type: Round Lamp

Center (pxl): 243 @ 139' Radius (pxl): '15 @ 15' Dynamic: 'false'

Drag 'n Drop: 'false’

Properties:

3.1. Name: blinkPeriod Type: Data

Parameters:

Value: 500

4. OBJECT: LampA

Parent: transitn

Type: Round Lamp

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

13

Parameters:
Center (pxl): '72 @ 140' Radius (pxl): '15 @ 15' Dynamic: 'false'
Drag 'n Drop: 'false'

Properties:
4.1. Name: blinkPeriod Type: Data
Parameters:

Value: 500

5. OBJECT: LampE

Parent: transitn ~ Type: Round Lamp

Parameters:
Center (pxl): '129 @ 139' Radius (pxl): '15 @ 15' Dynamic: 'false'
Drag 'n Drop: 'false'

Properties:
5.1. Name: blinkPeriod Type: Data
Parameters:

Value: 500
6. OBJECT: LampF
Parent: transitn ~ Type: Round Lamp
Parameters:
Center (pxl): '186 @ 139' Radius (pxl): '15 @ 15' Dynamic: 'false’

rag 'n Drop: 'false’

Properties:

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

14

6.1. Name: blinkPeriod Type: Data
Parameters:

Value: 500

7. OBJECT: BToA
Parent: transitn ~ Type: Flat Pushbutton

Parameters:
Position (pxl): '57 @ 199" Size (pxl): '40 @ 40' Dynamic: 'false'
Drag 'n Drop: 'false’ Momentary: 'true’ Autorepeat: 'false'

Autorepeat period: 500

8. OBJECT: Default

Parent: transitn Type: Flat Pushbutton

Parameters:
Position (pxl): '131 @ 199" Size (pxl): '40 @ 40' Dynamic: 'false'
Drag 'n Drop: 'false' Momentary: 'true' Autorepeat: 'false’

Autorepeat period: 500

9. OBJECT: History
Parent: transitn ~ Type: Flat Pushbutton

Parameters:
Posttion (pxl): 206 @ 199" Size (pxl): '40 @ 40' Dynamic: 'false'
Drag 'n Drop: 'false’ Momentary: 'true' Autorepeat: ‘false’

Autorepeat period: 500

10. OBJECT: DeepHistory

Parent: transitn ~ Type: Flat Pushbutton

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

15

Parameters:
Position (pxl): 276 @ 199" Size (pxl): '40 @ 40' Dynamic: 'false'
Drag 'n Drop: 'false' Momentary: 'true' Autorepeat: 'false'

Autorepeat period: 500

11. OBJECT: History

Parent: transitn ~ Type: Label

Parameters:
Position (pxl): '198 @ 244" Size (pxl): '58 @ 15' Dynamic: 'false'
Drag 'n Drop: 'false’ Text: 'History' Orientation: 'Horizontal'

Font: Fixedsys' Line width: 1

12. OBJECT: Next
Parent: transitn =~ Type: Flat Pushbutton

Parameters:
Position (pxl): '167 @ 282" Size (pxl): '40 @ 40' Dynamic: 'false'
Drag 'n Drop: 'false'’ Momentary: 'true’ Autorepeat: 'false’

Autorepeat period: 500

Fig. S is a screen capture of the Mode Tree Editor showing all the modes that
make up the state chart of this sample application. As can be seen there are nine modes in this
application.

An alternative view of the state chart can be seen in the screen capture of the Logic
Chart tool shown in Fig. 6. Fig. 6 shows each mode as a rectangle and each transition as an
arc. The hierarchical nature of the state is clearly seen.

Reference is now made to Fig. 7 which is a simplified flowchart illustration of a

automatic code generation technique operative in accordance with a preferred embodiment of

10

15

20

25

3¢

WO 98/29817 PCT/IL97/00418

16

the present invention. The resulting code is useful in conjunction with a state machine engine
which performs the following functions, inter alia:

a. Upon receipt of notification that an input event has occurred, the SME accesses
the list formed for that input event and evaluates each transition on that list to determine,
depending on the current state, which transitions are to be performed.

b. Upon receipt of notification that an internal data variable has been changed, the
SME accesses the list formed for that internal data variable and evaluates each transition on
that list to determine, depending on the current state, which transitions are to be performed.

To perform a transition, the SME computes the new state associated with the
transition by going to the destination of the transition and looking up and activating all
ancestors. All children are also looked up and activated as appropriate, e.g. in accordance with
predefined defaults. Those portions of the current state that are no longer active in the new
state are deactivated. Elements in the new state that were not active in the current state are
activated. The new state then becomes the current state and is stored in the SME.

Alternatively, one or both of the above lists may not be provided. For example, the
system may poll periodically for internal events rather than being driven thereby. Alternatively
or in addition, the system may poll periodically for external events rather than being driven

thereby.

Logic in State Chart

RAPID APPLICATION: TRANSITN 12/12/96 16:07:32
MODE DATA REPORT

Parameters:
Scope: Subtree.
Order: Hierarchy.

Includes: User Functions, Activities, Transitions, Triggers, Actions.

USER FUNCTIONS

10

15

20

25

30

WO 98/29817

17

. MODE: transitn

Parent: none Type: root

Note:

. MODE: A

Parent: transitn Type: exclusive

Entry Activities:

a. LampA on

Exit Activities:
a. LampA off

Transitions:
a. Destination: B Entry type: Default
al. Trigger: Defaultin &
b. Destination: B Entry type: History
bl. Trigger: Hlstoryin &
c. Destination: B Entry type: Deep history
cl. Trigger: DeepHistory in &

. MODE: B

Parent: transitn Type: exclusive

Transitions:
a. Destination: A Entry type: Default
al. Trigger: BToA in &

. MODE: C

Parent: B Type: exclusive

PCT/IL97/00418

10

15

20

25

30

WO 98/29817

5.

8.

18

MODE: E

Parent: C Type: exclusive

Entry Activities:

a. LampE on

Exit Activities:

a. LampE off

Transitions:
a. Destination: F Entry type: Default
al. Trigger: Nextin &

. MODE: F

Parent: C Type: exclusive

Entry Activities:

a. LampF on

Exit Activities:

a. LampF off

Transitions:
a. Destination: G Entry type: Default
al. Trigger: Nextin &

. MODE: D

Parent: B Type: exclusive

MODE: G

Parent: D Type: exclusive

PCT/IL97/00418

WO 98/29817 PCT/IL97/00418

19

Entry Activities:
a. LampG on

5 Exit Activities:
a. LampG off

Transitions:
a. Destination: H Entry type: Default
10 al. Trigger: Nextin &

9. MODE: H

Parent: D Type: exclusive

15 Entry Activities:
a. LampH on

Exit Activities:
a. LampH off
20
Transitions:
a. Destination: E Entry type: Default
al. Trigger: Nextin &

Generated Code

25 Header File

#ifndef __include_transitn

#define __include_transitn

#include "applic.h"

30 #include "task.h"

WO 98/29817 PCT/IL97/00418
20

#include "object.h"

#include "mode.h"

class Application;

5 class myApplication;

typedef bool (myApplication:: *MyApplicationMethod)() ;

#define cNumberDependencies 8
10 #define cNumberDependencyIndices 6
#define cNumberChildren 18
#define cNumberObjects 20
#define cNumberTriggers 5
#define cNumberTransitions 8
15 #define cNumberModes 9

#define cNumberActivities 10

class myApplication: public Application
{
20 private:
// Objects
enum objectID
{
cOB_RootObject =0,
25 //PushButtons
cOB_Default, //1
cOB_History, //2
cOB_DeepHistory, //3
cOB BToA, i'4
36 cOB_Next, 15
/[Lamps

10

15

20

25

30

WO 98/29817

cOB_LampA,
cOB_LampE,
cOB_LampF,
cOB_LampG,
cOB_LampH,
//Modes
cOB_RootMode,
cOB_ModeA,
cOB_ModeB,
cOB_ModeC,
cOB_ ModeD,
cOB ModeE,
cOB_ModeF,
cOB_ModeG,
cOB_ModeH

3

enum modelD

{

/16
I
/18
119
/110

/N1
/12
/113
1114
/115
1116
11
//18
/19

cMO_RootMode =0,

cMO_ModeA,
c¢cMO_ModeB,
cMO_ModeC,
cMO ModeD,
cMO_ModeE,
cMO_ModeF,
cMO ModeG,
cMO_ ModeH,

IR

!
2
/13
4
115
116
"1
118

enum ActivityIndices

21

PCT/IL97/00418

10

15

20

25

30

WO 98/29817

{
cAC_ModeA_entry,

cAC_ModeA exit,
cAC_ModeE entry,
cAC_ModeE exit,
cAC_ModeF_entry,
cAC _ModeF _exit,
cAC_ModeG_entry,
cAC_ModeG _exit,
cAC_ModeH _entry,
cAC_ModeH_exit,

b

enum Concretelndices

{

cConcretel =0,
cConcrete2,
cConcrete3,
cConcreted,
cConcrete5,
cConcrete6,
cConcrete7,
cConcrete8,
cConcrete9,

cConcretel0,

¥

public:

void it (RapidTask *t),

22

PCT/IL97/00418

10

15

20

25

30

WO 98/29817
/] Objects:
RootObject rootObject;
PushButton pbDefault;
PushButton pbHistory;
PushButton pbDeepHistory;
PushButton pbNext;
PushButton pbBTOA,;
RapidLamp LampA;
RapidLamp LampE,;
RapidLamp LampF;
RapidLamp LampG;
RapidLamp LampH;
// Modes:
RootMode rootMode;
XMode ModeA,;
XMode ModeB;
XMode ModeC;
XMode ModeD;
XMode ModeE;
XMode ModeF;
XMode ModeG;
XMode ModeH;
/l Logic Methods:
bool ModeA_entry();
bool ModeA_exit();
bool ModeE _entry();
bool ModeE _exit(),
bool ModeF _entry();
bool ModeF _exit();

23

PCT/IL97/00418

10

15

20

25

30

WO 98/29817 PCT/IL97/00418

24
bool ModeG_entry();
bool ModeG_exit();
bool ModeH_entry();
bool ModeH_exit();

// Dynamic State Machine Data:
RapidObject *FrameTable[cNumberObjects];

ModeP buffer1[cNumberModes];
ModeP buffer2[cNumberModes];
ModeP buffer3[cNumberModes];

unsigned char _ModeFlags[3*cNumberModes][1];

// Static State Machine Data:

// Each object has a list of dependency records, sorted
// by property and event, and referencing pairs of
// (modes, activity/condition, index), or a transition index

static DependencyRecord dependencies{cNumberDependencies];

// For each object/property pair, there is a dependency index record
// that includes the first & last dependency record pertaining to the
/I object/property pair.

static DependencylndexRecord dependencylIndicies[cNumberDependencylIndices];

// Each transition has an index and an associated record that includes
// the indices of the source and destination, type, condition, and action

static TransitionRecord transitionRecords[cNumberTransitions];

// Each transition has an index and an associated record that includes

// the indices of the source and destination, type, condition, and action

10

15

20

25

30

WO 98/29817

25

static TriggerRecord triggerRecords[cNumberTriggers];

/1 Activity methods are indexed through the following array
// subroutine methods are NOT indexed here.

static MyApplicationMethod activityRecords[cNumberActivities];

// Each mode record includes entry and exit activities, if any,
/1 and the start index and length of the mode activities. Can the mode activities
//'be merged? Also, the number of transitions, to facilitate flag allocation.

static ModeRecord modeRecords[cNumberModes];

// Each object record includes

static ObjectRecord objectRecords[cNumberObjects];

/' Array to hold all of the children for the objects
static int childrenArray[cNumberChildren];

/I General Data on this APplication
static ApplicationRecord applicationRecord,

|

class myTask : public RapidTask

{
public:

myTask();
~myTask()
{

removeContext(& mainApp);

1.
b

private:

PCT/IL97/00418

10

15

20

25

30

WO 98/29817

myApplication _mainApp;
b
#endif

Body File
/*
Rapid Application:

Objects:
Transitn
|-->BToA (Square Pushbutton)
|-->Default (Square Pushbutton)
|-->History (Square Pushbutton)
|-->DeepHistory (Square Pushbutton)
|-->Next (Square Pushbutton)
|-->LampA (Round Lamp)
|-->LampE (Round Lamp)
|-->LampF (Round Lamp)
|-->LampG (Round Lamp)
|-->LampH (Round Lamp)

Modes:

Transitn

-->A (D)

!

|---B
-->C(D)
I -->E(D)
|
| |-F
|

26

PCT/IL97/00418

10

15

20

25

30

WO 98/29817

27

|---D
|-->G(D)
I
|---H
Logic:
1. MODE: Transitn
Parent: none Type: root

Note:

2. MODE: A

Parent: Transitn Type: exclusive

Entry Activities:

a. LampA on

Exit Activities:

a. LampA off

Transitions:
a. Destination: B Entry type: Default
al. Trigger: Defaultin &
b. Destination: B Entry type: History
bl. Trigger: History in &
c. Destination: B Entry type: Deep History
cl. Trigger: DeepHistory in &

3. MODE: B

Parent: Transitn Type: exclusive

Transitions:

a. Destination: A Entry type: Default

PCT/IL97/00418

10

15

20

25

30

WO 98/29817

28

al. Trigger: BToA in &

4. MODE: C

Parent: B Type: exclusive

5. MODE: D

Parent: B Type: exclusive

6. MODE: E

Parent: C Type: exclusive

Entry Activities:

a. LampE on

Exit Activities:

a. LampE off

Transitions:
a. Destination: F Entry type: Default
al. Trigger: Nextin &

6. MODE: F

Parent: C Type: exclusive

Entry Activities:

a. LampF on

Exit Activities;

a. LampF off

PCT/IL97/00418

10

15

20

25

30

WO 98/29817
29

Transitions:
a. Destination: G Entry type: Default
al. Trigger: Nextin &

6. MODE: G

Parent: D Type: exclusive

Entry Activities:

a. LampG on

Exit Activities:
a. LampG off

Transitions:
a. Destination: H Entry type: Default
al. Trigger: Nextin &

6. MODE: H

Parent: D Type: exclusive

Entry Activities:

a. LampH on

Exit Activities:
a. LampH off

Transitions:
a. Destination: E Entry type: Default

al. Trigger: Nextin &

Generated Code:

PCT/IL97/00418

10

15

20

25

30

WO 98/29817 PCT/IL97/00418
30

*/

#include "transitn.h"

#include "emtrace.h"

#include "ekernel .h"

/*
struct DependencyRecord
{
DependencyClass dependencyClass; // event, condition, mode activity
int mode; // Frame Table index
int eventID; /l eventlID, if any
int index; // Index of transition or mode Activity
3
*/

DependencyRecord myApplication::dependencies[cNumberDependencies] =

{

{cEvent, cOB_ModeA, cPushButtonln, 0}, // 0 A->B on Default in
{cEvent, cOB_ModeA, cPushButtonln, 1}, // 1 A->B on History in
{cEvent, cOB_ModeA, cPushButtonln, 2}, /2 A->B on DeepHistory in
{cEvent, cOB_ModeB, cPushButtonln, 0}, // 3 B->A on BToA in
{cEvent, c¢OB_ModeE, cPushButtonIn, 0}, // 4 E->F on Next in
{cEvent, cOB_ModeF, cPushButtonIn, 0}, // 5 F->G on Next in
{cEvent, cOB_ModeG, cPushButtonIn, 0}, // 6 G->H on Next in
{cEvent, c¢OB_ModeH, cPushButtonIn, 0}, / 7 H->E on Next in

};

/*

5

10

15

20

25

30

WO 98/29817

PCT/IL97/00418

31

struct DependencyIndexRecord{

PropertyEntry _propertyld;
int flags = O;
unsigned int _firstElement;
3
*/

DependencyIndexRecord myApplication::dependencylndicies[cNumberDependencyIndices] =

{

{cSelf, 0, 0} , // pbDefault self

{cSelf, 0, 1}, // pbHistory self

{cSelf, 0, 2} , // pbDeepHistor self

{cSelf, 0, 3}, // pbBToA self

{cSelf, 0, 4}, // pbNext self

{cNone, 0, cNumberDependencies} // Sentinel for last index record
3

// children listed grouped by common parent

int myApplication::childrenArray[cNumberChildren] =

{
cOB_Default, //0

cOB_History, //1

cOB_DeepHistory, /2

cOB_BToA,
cOB_Next, 14
/[Lamps
cOB_LampA, /'S
cOB_LampE, 116
c¢OB_LampF, 17
cOB_LampG, /18
cOB_LampH, 119

/13

10

15

20

25

30

WO 98/29817

/*

//Modes

cOB_ModeA,
cOB_ModeB,
cOB_ModeC,
cOB_ModeD,
cOB_ModeE,
cOB_ModeF,
cOB_ModeG,
cOB_ModeH

struct ObjectRecord

{

/110
/111
/112
/113
// 14
/115
/116
17

Objectldentifier name;

int parent;

32

PCT/IL97/00418

int id; // Id within type...e,g, modes are numbered 1-n, concretes are numbered 1-m

int numChildren;

int firstChild;

int firstDependentIndex;

int numDependentIndex;

5
*/

ObjectRecord myApplication::objectRecords[cNumberObjects]=

{

cOB_RootObject,

1},

cNone, 10,

cConcretel,

0

3

cMNone,

10

15

20

25

30

WO 98/29817

0},

03

cOB: RootObject,
1},

1},
cOB_RootObject,

1},

cOB_RootObject,

0},

0},

0},

0},

0},

33

cConcrete2,

cConcrete3,

cConcrete5,

cConcreted,

0

cConcrete6,

cConcrete7,

cConcrete8,

cConcrete9,

>

cConcretel0,

c¢cMO_RootMode,

cMO_ ModeA,

cMO_ModeB,

cMO_ModeC,

cMO_ModeD,

c¢cMO_ModeE,

2

2

0

3

2

b

PCT/IL97/00418

cNone,

cNone,

cNone,

cNone,

cNone,

cNone,

cNone,

cNone,

cNone,

11

cNone,

14
16

3

cNone,

10

15

20

25

30

WO 98/29817

34

c¢cMO_ModeF, 0,

03},

cMO ModeG, O,
03},

cMO ModeH, O,
0}

ApplicationRecord myApplication::applicationRecord=
{
cNumberModes,

cNumberActivities

3

/*
struct TriggerRecord
{
int objectID;
int propertyID;
int eventID;
5
*/

/' NOTE: Could get sophisticated, and reuse trigger records...
TriggerRecord myApplication::triggerRecords[cNumberTriggers] =
{
{cOB_Default, cSelf, cPushButtonln}, /0
{cOB_History, cSelf, cPushButtonIn}, // 1
{cOB_DeepHistory, cSelf, cPushButtonIn}, // 2
{cOB_BTo0A, cSelf, cPushButtonIn}, /13
{cOB_Next, cSelf, cPushButtonIn}, /14

PCT/IL97/00418
cNone, 0,
cNone, 0,
cNone 0

2

10

15

20

25

WO 98/29817

35

X

/*

struct TransitionRecord
{
int triggerStart, // index of first trigger record
int triggerLength; // number of trigger records
int sourceMode; // object index of source mode
int destinationMode; // object index of destination mode
int condition; // index of condition method
int action, // index of action method
unsigned int type:3;
unsigned int IsConditionOnly:1;
unsigned int toAncestor:1;
unsigned int toDescendant:1;
unsigned int sourceEqualsDestination:1,
3
*/

TransitionRecord myApplication::transitionRecords[cNumberTransitions]=

{

{0, 1, cOB_ModeA, cOB_ModeB, cNone, cNone, cDefaultTransition,
false},// A->B #1

{1, 1, cOB_ModeA, cOB_ModeB, cNone, cNone, cHistoryTransition,
false},// A->B #2

PCT/IL97/00418

false, false, false,

false, false, false,

{2, 1, cOB_ModeA, cOB_ModeB, cNone, cNone, cDeepHistoryTransition, false, false, faise,

false},// A->B #3

{3, 1, cOB_ModeB, cOB_ModeA, cNone, cNone, cDefaultTransition,
false},// B->A #1

{4, 1, cOB_ModeE, cOB_ModeF, cNone, cNone, cDefaultTransition,
false},// E->F #1

false, false, false,

false, false, false,

WO 98/29817 PCT/IL97/00418

36

{4, 1, cOB_ModeF, cOB_ModeG, cNone, cNone, cDefaultTransition, false, false, false,
false},// F->G #1 |

{4, 1, cOB_ModeG, cOB_ModeH, cNone, cNone, cDefaultTransition, false, false, false,
false},// G->H #1

{4, 1, cOB_ModeH, cOB_ModeE, cNone, cNone, cDefaultTransition, false, false, false,
false},// H->E #1

3

/*
struct ModeRecord
{
Objectldentifier name;
int defaultChildID; //0ObjectID of default child, cNone if none
// For parents of AndModes, first child
int entry;
int exit;
int modeActivityStart;
int numModeActivities; // N/A, condition index, activity index
int transitionStart; // First transition record pertaining to this mode
int numTransitions; // Number of transitions
I8
*/

ModeRecord myApplication::modeRecords[cNumberModes]=

//def child entry exit modeStart numMode transSart
numTrans
{"RootMode", cOB_ModeA, cNone, cNone, cNone, 0, cNone, 0},
0, 0,
3}
{"ModeB", c¢OB ModeC, cNone, cNone, cNone, 0, 3, 1},

{"ModeC", cOB_ModeE, cNone, cNone, cNone, O, cNore, 0},

10

15

20

25

30

WO 98/29817

{"ModeD",
13,
1},
13,
1}
3

PCT/IL97/00418

37

cOB_ModeG, cNone, cNone, cNone, O, cNone, 0},
cAC_ModeE _entry, cAC_ModeE _exit, cNone, 0, 4,

cAC ModeF entry, cAC_ModeF _exit, cNone, 0, 5,

cAC_ModeG entry, cAC_ModeG _exit, cNone, 0, 6,

cAC_ModeH_entry, cAC_ModeH_exit, cNone, 0, 7,

MyApplicationMethod myApplication::activityRecords{cNumberActivities] =

{

&myApplication::ModeA_entry,

&myApplication::ModeA _exit,

&myApplication::ModeE _entry,

&myApplication::ModeE _exit,

&myApplication::ModeF _entry,

&myApplication::ModeF _exit,

&myApplication::ModeG _entry,

&myApplication::ModeG _exit,

&myApplication::ModeH_entry,

&myApplication::ModeH_exit,

35

bool myApplication::ModeA_entry()

{

LampA.turn_on(); // LampA on

return false;

)
]

10

15

20

25

30

WO 98/29817

bool myApplication::ModeA _exit()

{
LampA turn_ofK(); // LampA off

return false;

}

bool myApplication::ModeE_entry()

{
LampE.turn_on(); //LampA on

return false;

}

bool myApplication::ModeE _exit()

{
LampE.turn_off(); // LampA off

return false;

}

bool myApplication::ModeF _entry()

{
LampF.turn_on(); // LampA on

return false;

}

bool myApplication::ModeF_exit()

{
LampF.turn_off{); // LampA off

return false;

}

bool myApplication::ModeG_entry()

38

PCT/IL97/00418

WO 98/29817

10

15

20

25

30

{

PCT/IL97/00418

39

LampG.turn_on(); // LampA on

return false;

}

bool myApplication:: ModeG_exit()

{

LampG.turn_off(); // LampA off

return false;

}

bool myAppli
{

cation::ModeH_entry()

LampH.turn_on(); //LampA on

return false;

}

bool myApplication:: ModeH_exit()

{

LampH.turn_off(); // LampA off

return false;

}

void myApplication::init (RapidTask *t)

{
setTask(t);

Application
Application
Application
Application

Application

::dependencies = dependencies;
::dependencylndicies = dependencylndicies;
::transitionRecords = transitionRecords;
:triggerRecords = triggerRecords;,

::activityRecords = (ApplicationMethod *)activityRecords;

10

15

20

25

30

WO 98/29817

40

Application::objectRecords = objectRecords;
Application::modeRecords = modeRecords;

Application::objects = FrameTable;

Application::applicationRecord = &applicationRecord;

Application::children = childrenArray;

rootObject.init(cOB_RootObject, this);

pbDefault.init(cOB_Default,this);
pbHistory.init(cOB_History,this);
pbDeepHistory.init(cOB_DeepHistory, this);
pbBToA.init(cOB_BToA, this);
pbNext.init(cOB_Next,this);
LampA.init(cOB_LampA, this);
LampE.init(cOB_LampE, this);
LampF.init(cOB_LampF,this),
LampG.init(cOB_LampG,this);
LampH.init(cOB_LampH, this);

rootMode.init(cOB_RootMode, this,
_ModeFlags[(3*cMO_RootMode)],
_ModeFlags[(3*cMO_RootMode)+1],
_ModeFlags[(3*cMO_RootMode)+2]);

ModeA.init (cOB_ModeA, this,
_ModeFlags[(3*cMO_ModeA)],
_ModeFlags[(3*cMO_ModeA)+1],
_ModeFlags[(3*cMO_ModeA)+2]);

ModeB.init (cOB_ModeB, this,
_ModeFlags[(3*cMO_ModeB)],
_ModeFlags[(3*cMO_ModeB)+1],
_ModeFlags[(3*cMO_ModeB)+2]);

PCT/IL97/00418

10

15

20

25

30

WO 98/29817

41

ModeC.init (cOB_ModeC, this,
_ModeFlags[(3*cMO_ModeC)],
_ModeFlags[(3*cMO_ModeC)+1],
ModeFlags[(3*cMO ModeC)+2]);

ModeD.init (cOB_ModeD, this,
_ModeFlags[(3*cMO_ModeD)],
_ModeFlags[(3*cMO_ModeD)+1],
_ModeFlags[(3*¢cMO_ModeD)+2]);

ModeE.init (cOB_ModeE, this,
_ModeFlags[(3*cMO_ModeE)],
_ModeFlags[(3*cMO_ModeE)+1],
_ModeFlags[(3*cMO_ModeE)+2]);

ModeF.init (cOB_ModeF, this,
_ModeFlags[(3*cMO_ModeF)],
_ModeFlags[(3*cMO_ModeF)+1],
_ModeFlags[(3*cMO_ModeF)+2));

ModeG.init (cOB_ModegG, this,
_ModeFlags[(3*cMO_MaodeG)],
_ModeFlags[(3*cMO_ModeG)+1],
_ModeFlags[(3*cMO_ModeG)+2]);

ModeH.init (cOB_ModeH, this,
_ModeFlags[(3*cMO_ModeH)],
_ModeFlags[(3*cMO_ModeH)+1],
_ModeFlags[(3*cMO_ModeH)+2));

rootMode.initActiveChild(),
ModeA initActiveChild();
ModeB.initActiveChild();
ModeC.initActiveChild();
ModeD.initActiveChild();
ModeE initActiveChild();

PCT/IL97/00418

10

15

20

25

WO 98/29817 PCT/IL97/00418
42

ModeF initActiveChild();
ModeG.initActiveChild();
ModeH.initActiveChild();
_currentState.init(buffer1,cNumberModes);
_nextState.init(buffer2,cNumberModes);
_tempState.init(buffer3,cNumberModes);
Application::rootMode = &rootMode;
Application::rootObject = &rootObject;

}

myTask::myTask()
{
_mainApp.init(this);
setMainApplication(& mainApp);
setupKernelTask (this);
3

/! declare one task

myTask GlobalTask;

It is appreciated that the software components of the present invention may, if
desired, be implemented in ROM (read-only memory) form. The software components may,
generally, be implemented in hardware, if desired, using conventional techniques.

It is appreciated that various features of the invention which are, for clarity,
described in the contexts of separate embodiments may also be provided in combination in a
single embodiment. Conversely, various features of the invention which are, for brevity,
described in the context of a single embodiment may also be provided separately or in any

suitable subcombination.

WO 98/29817 PCT/IL97/00418
43

It will be appreciated by persons skilled in the art that the present invention is not
limited to what has been particularly shown and described hereinabove. Rather, the scope of

the present invention is defined only by the claims that follow:

10

15

20

25

30

WO 98/29817 PCT/1L97/00418

44
CLAIMS
We claim;
1. Apparatus implementing hierarchical state charts and comprising:

a state machine engine (SME) operative to carry out repertoires of behaviors of a
system;

a state chart encoder operative to replicate, in computer code form, a user-defined
hierarchical state chart describing a repertoire of behaviors of said system, said encoder being
operative to preserve said state chart's hierarchical structure intact in a first data structure;

an event list generator operative to generate, for each individual event from among
a plurality of events within the repertoire, a list of at least one transition between states of said
state chart which are associated with said individual event, said event list generator being
operative to preserve said list in a second data structure; and

a behavior implementer operative to activate said system to carry out each of the

behaviors in its repertoire.

2. Apparatus according to claim 1 wherein said system comprises at least one of

hardware and software.

3. Apparatus according to claim 1 wherein said first data structure’s size increases

linearly in direct proportion to the number of branches in said hierarchical structure.

4. Apparatus according to claim 1 wherein said second data structure’s size increases

linearly in direct proportion to the number of transitions in said list of at least one transition.

5. Apparatus according to claim 1 wherein the order of said at least one transition of
each of said lists corresponds to the order of evaluation of said transitions as defined by said

hierarchical state chart.

6. Apparatus according to claim ! wheremn said plurality of events for which said

event list generator generates lists comprises at least one external input event.

10

15

20

25

36

WO 98/29817 PCT/IL97/00418

45

7. Apparatus according to claim 1 wherein said plurality of events for which said
evert list generator generates lists comprises at least one internal data value change event, the
apparatus also including a data value change event notifier operative to generate a notification

to the state machine engine of each data value change event.

8. A method implementing hierarchical state charts, the method comprising:

providing a state machine engine (SME) operative to carry out repertoires of
behaviors of a system,

replicating, in computer code form, a user-defined hierarchical state chart de-
scribing a repertoire of behaviors of said system, said replicating step being operative to
preserve said state chart's hierarchical structure intact;

generating, for each individual event from among a plurality of events within the
repertoire, a list of at least one transition between states of said state chart which are
associated with said individual event; and

activating said system to carry out each of the behaviors in its repertoire.

9. An automatic code generation method comprising:

automatically generating code which forms, in memory, a replica of a hierarchical
state chart which preserves said chart's hierarchical structure;

automatically generating code which forms, for each of a first plurality of input
events, a list of transitions affected by that input event;

automatically generating code which forms, for each of a second plurality of
internal data variables, a list of transitions affected by changes in that internal data variable;

automatically generating code which notifies the state machine engine of changes
in internal data variables; and

automatically generating code which evaluates conditions and implements actions

and activities.

10. A method according to claim 9 and comprising the siep of providing a state

machine engine operative, upen receipt of notification regarding occurrence of an event, to

10

15

WO 98/29817 PCT/IL97/00418

46

evaluate a list of transitions affected by said event so as to select transitions to be performed,

and to perform said transitions.

11. A method for computing a state for a hierarchical state machine, the method
comprising:

providing a state machine engine operative to receive notification regarding
occurrence of at least one event;

providing a hierarchical state chart describing a repertoire of behaviors of a system;

providing a list of at least one transition between states of said state chart for each
of said events with which said at least one transition is associated;

evaluating said list of at least one transition so as to select a transition to be
performed in response to said at least one event; and

evaluating said hierarchical state chart to compute the state that corresponds to

said selected transition.

WO 98/29817

1/7

FIG. 1

STATE MACHINE
ENGINE

PCT/IL97/00418

< INITIAL DATA

NOTIFICATION OF
DATA CHANGES

COMMANDS TO
PERFORM LOGICAL ACTIVITIES

AUTOMATICALL"
GENERATED CODE

L
COMMANDS TO
HARDWARE

N

INTERFACE TO
HARDWARE

AY

J

30

WO 98/29817

{

INITIALIZE DATA STRUCTURES

PCT/IL97/00418

WAIT FOR EVENT OR DATA CHANGE

EVENT OR DATA CHANGE OCCURRED

EVENT OR DATA
HAS LIST OF LOGIC TO
EVA%UATE

YES
GET LIST

YES

FIG. 2

LIST EMPTY
2

NO

SELECT ENTRIES THET
BELONG TO ACTIVE STATE

YES

LIST EMPTY
2

NO
GET NEXT ELEMENT FROM UIST

ENTRY IS

NO

TRANSITION FROM
ACTIVE STATE

YES
CALCULATE NEW STATE |
— 1
[DEACTIVATE OLD STATE |

i
ACTIVATE NEW STATE |
I

%

ENTRY IS LOGIC
IN ACTIVE STATE
V

YES
[PERFORM LOGIC
l

WO 98/29817 PCT/IL97/00418

(iEiEEfj) 3/7

\
BUILD INTERFACE TO COMPONENTS AS
A LIBRARY OF OBJECTS

MAP COMPONENT INTERFACE TO SIMULATION FIG. 3
OBJECTS IN RAPID

1
OPEN NEW RAPID APPLICATION

!
BUILD SIMULATION OF SYSTEM BY ADDING
OBJECTS IN THE RAPID LAYOUT EDITOR

!
DEFINE THE HIERARCHICAL STATE CHART
USING THE MODE TREE EDITOR
AND THE LOGIC EDITOR

RUN SIMULATION

NO

EHAVIOR CORRECT
o

\
EDIT STATE CHART

GENERATE HIGH LEVEL SOURCE CODE

COMPILE GENERATED SOURC CODE
INTO APPLICATION OBJECT CODE

!

LINK THE APPLICTION OBJECT CODE TO THE STATE
MACHINE ENGINE CODE AND THE
HARDWARE INTEFACE CODE

DOWNLOAD LINKED CODE TO TARGET SYSTEM AND RUN

WO 98/29817 PCT/IL97/00418

477

FIG. 4

[Object Layout: TRANSITN =[]

O O O OO0
n & F G H

B->n Default History Deep

NextMode

WO 98/29817 PCT/IL97/00418

5/7
FIG. 5
[Mode Tree: TRANSITN O]
TRANSITN
tA
B
F
g

H

WO 98/29817 PCT/IL97/00418

6/7

FIG. ©

[Logic Chart: TRANSITN COX|

@Nsxm \

/////// 2SS

, g N
P
e N (D ™
e
Ny D2 /
N J

WO 98/29817 PCT/IL97/00418

7/7

FIG. 7

GENERATE CODE WHICH FORMS, IN MEMORY, A REPLICA OF A
HIERARCHICAL STATE CHART WHICH PRESERVES [TS HIERARCHICAL STRUCTURE

]

GENERATE CODE WHICH FORMS, FOR EACH OF A FIRST PLURALITY OF INPUT
EVENTS, A LIST OF TRANSITIONS AFFECTED BY THAT INPUT EVENT

1
GENERATE CODE WHICH FORMS, FOR EACH OF A SECOND PLURALITY OF

PARTICIPATING INTERNAL DATA VARIABLES, A LIST OF TRANSITIONS
AFFECTED BY CHANGES IN THAT INTERNAL DATA VARIABLE

1]

GENERATE CODE WHICH NOTIFIES SME OF CHANGES
IN INTERNAL DATA VARIABLES

GENERATE CODE WHICH EVALUATES CONDITIONS AND IMPLEMENTS
ACTIONS AND ACTIVITIES

|

GENERATE CODE TO DELIVER ANY OF THE ABOVE
CODE TO THE SME AS NECESSARY

INTERNATIONAL SEARCH REPORT

International application No.
PCT/1L97/00418

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 17/27, 17/30
US CL :Please Soce Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

us. :

Minimum documentation searched (classification system followed by classification symbols)

395/500, 676, 680, 682, 685, 701; 364/468.24, 474.24; 707/100, 101, 104

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

APS, IEEE TRANSACTIONS/JOURNALS, COMPUTERS

Electronic data base consulted during the intemational search (namo of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, whore appropriate, of the relevant passages Relevant to claim No.
Y US 5,485,600 A (JOSEPH ET AL.) 16 JANUARY 1996, col. 11, 1-11
col. 12, col. 13, line 26 to col. 14, line 10, col. 18.
Y US 5,257,363 A (SHAPIRO ET AL.) 26 October 1993, cols. 9-19. | 1-11
Y US 5,163,016 A (HAR'EL ET AL.) 10 November 1992, entire| 1-11
document.
Y US 5,493,680 A (DANFORTH) 20 February 1996, cols. 8-27. 1-11

D Further documents are listed in the continuation of Box C.

D See patent family annex.

. Special categories of cited documents:

A" document defining the general state of the art which is not considered
to be of particular reievance

B carlier document published on or sfter the internationat filing date

*L" document which may throw doubts on priority claim(s) or which is
cited to blish the publi date of ther citation or other
special reason (as specified)

"o document referring o an oral disclosure, use, exhibition or other
means

"p* document published prior to the intemnational filing date but later than

the priority date claimed

T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X* document of particular relovance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the intemational search

03 APRIL 1998

Date of mailing of the intemational search report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

fthorized officer
%THAI PHAN

T

(703) 305-3900

/) 0 1 JUN 1308
!

elephone No.

Form PCT/ISA/210 (second sheet)(July 1992)«

v

INTERNATIONAL SEARCH REPORT

Intornational application No.
PCT/IL97/00418

A. CLASSIFICATION OF SUBJECT MATTER:
UsCL :

395/500, 676, 680, 682, 685, 701; 364/468.24, 474.24; 707/100, 101, 104

Form PCT/ISA/210 (extra sheet)(July 1992)»

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

