087080525 A1 | 00 000 A0 O 0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO OO

International Bureau

(43) International Publication Date
10 July 2008 (10.07.2008)

(10) International Publication Number

WO 2008/080525 Al

(51) International Patent Classification:
GOGF 11/30 (2006.01) GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/EP2007/010882

(22) International Filing Date:
12 December 2007 (12.12.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/647,979 29 December 2006 (29.12.2006) US

(71) Applicant (for all designated States except US): SAP AG
[DE/DE]; Dietmar-Hopp-Allee 16, 69190 Walldorf (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BONEYV, Pavel
[BG/BG]; j.k. Svoboda bl4, ent.B, app.30, 1231 Sofia
(BG). STANEY, Georgi [BG/BG]; Kozylak Str. no.21,
ap.1, 1407 Sofia (BG). DROSHEYV, Mladen [BG/BG]J;
"Bulkston", bl.6, ent.4, ap.49, 1618 Sofia (BG).

(74) Agent: SCHIUMA, Daniele; Miiller-Boré & Partner,
Grafinger Str. 2, 81671 Miinchen (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(54) Title: GRAPHICAL USER INTERFACE SYSTEM AND METHOD FOR PRESENTING INFORMATION RELATED TO

SESSION AND CACHE OBJECTS

J2EE Engine 1110

Local Computer System 411

: : ,
i Objesgtstgt\I:vork (& E Object Graph Object E
: 1102] i i Metadata N Graph !
: Ses_swn/Cache Session > Interpreter Visualization !
; Object Graph and Cache H 406 408 !
i Cache Service Object i '
' 1004 i '
; Object Network Grzph i — :
E 1103 ! Associated ' Storage i
! E Data E 409 H

(57) Abstract: A system and method for visualizing information related to session and cache objects within an object network. For
& example, a computer-implemented method according to one embodiment comprises: analyzing relationships between session and/or
cache objects within a network of sessions and caches to determine an object network structure for the session and/or cache objects;
generating object graph data representing the object network structure; serializing the object graph data and transmitting the object
graph data over a network to a requesting computer; and interpreting the object graph data to render a view of the session and/or

cache object network structure in a graphical user interface.

WO 2008/080525 PCT/EP2007/010882

GRAPHICAL USER INTERFACE SYSTEM
AND METHOD FOR PRESENTING INFORMATION
RELATED TO SESSION AND CACHE OBJECTS

BACKGROUND

Field of the Invention

This invention relates generally to the field of data processing systems.
More particularly, the invention relates to a graphical user interface system and

method for presenting information related to session and cache object graphs.

Description of the Related Art

Multi-Tiered Enterprise Computing Systems

Traditional client-server systems employed a two-tiered architecture such
- as that illustrated in Figure 1a. Applications 102 executed on the client side 100
of the two-tiered architecture are comprised of a monolithic set of program code
including a graphical user interface component, presentation logic, business
logic and a network interface that enables the client 100 to communicate over a
network 103 with one or more servers 101. A database 104 maintained on the
server 101 provides non-volatile or “persistent” storage for the data accessed

and/or processed by the application 102.

The “business logic” component of the application represents the core
program code of the application, i.e., the rules governing the underlying business
process (or other functionality) provided by the application. The “presentation

logic” describes the specific manner in which the results of the business logic are

WO 2008/080525 PCT/EP2007/010882

formatted for display on the user interface. The “database” 104 includes data

access logic used by the business logic to store and retrieve data.

The limitations of the two-tiered architecture illustrated in Figure 1a
become apparent when employed within a large enterprise. For example,
installing and maintaining up-to-date client-side applications on a large number
of different clients is a difficult task, even with the aid of automated
administration tools. Moreover, a tight coupling of business logic, presentation
logic and the user interface logic makes the client-side code very brittle.
Changing the client-side user interface of such applications is extremely hard
without breaking the business logic, and vice versa. This problem is aggravated
by the fact that, in a dynamic enterprise environment, the business logic may be
changed frequently in response to changing business rules. Accordingly, the

two-tiered architecture is an inefficient solution for enterprise systems.

In response to limitations associated with the two-tiered client-server
architecture, a multi-tiered architecture has been developed, as illustrated in
Figure 1b. In the multi-tiered system, the presentation logic 121, business logic
122 and database 123 are logically separated from the user interface 120 of the
application. These layers are moved off of the client 125 to one or more |
dedicated servers on the network 103. For example, the presentation Iogic 121,
the business logic 122, and the database 123 may each be maintained on

separate servers, 126, 127 and 128, respectively.

WO 2008/080525 PCT/EP2007/010882

This separation of logical components and the user interface provides a
more flexible and scalable architecture compared to that provided by the two-tier
model. For example, the separation ensures that all clients 125 share a single
implementation of business logic 122. If business rules change, changing the
current implementation of business logic 122 to a new version may not require
updating any client-side program code. In addition, presentation logic 121 may
be provided which generates code for a variety of different user interfaces 120,
which may be standard browsers such as Internet Explorer® or Netscape

Navigator®.

The multi-tiered architecture illustrated in Figure 1b may be implemented
using a variety bf different application technologies at each of the layers of the
multi-tier architecture, including those based on the Java 2 Enterprise Edition™
(*J2EE”) standard, the Microsoft .NET standard and/or the Advanced Business
Application Programming (“ABAP”) standard developed by SAP AG. For
example, as described below, in a J2EE environment, the business layer 122,
which handles the core business logic of the application, is comprised of
Enterprise Java Bean (“EJB”) components with support for EJB containers.
Within a J2EE environment, the presentation layer 121 is responsible for
generating servlets and Java Server Pages (“JSP”) interpretable by different

types of browsers at the user interface layer 120.

WO 2008/080525 PCT/EP2007/010882

J2EE Application Server Architecture

Figure 2 illustrates a typical J2EE application server 200 in which the
presentation layer is implemented by a “Web container” 211 and the business
layer is implemented by an Enterprise Java Bean (“EJB”) container 201.
Containers are runtime environments which provide standard common services
219, 209 to runtime components. For example, the Java Naming and Directory
Interface (“JNDI”) is a seNice that provides application components with
methods for performing standard naming and directory services. Containers also
provide unified access to enterprise information systems 217 such as relational
databases through the Java Database Connectivity (“JDBC”) service, and legacy
computer systems through the J2EE Connector Architecture (“JCA”) service. In
addition, containers provide a declarative mechanism for configuring application

components at deployment time through the use of deployment descriptors.

As illustrated in Figure 2, each layer of the J2EE architecture includes
multiple containers. The Web container 211, for example, is itself comprised of
a servlet container 215 for processing servlets and a Java Server Pages (“JSP”)
container 216 for processing Java server pages. The EJB container 201
includgs three different containers for supporting three different types of
enterprise Java beans: a session bean container 205 for session beans, a entity
bean container 206 for entity beans, and a message driven bean container 207
for message driven beans. A more detailed description of J2EE containers and
J2EE services can be found in RAGAE GHALY AND KRISHNA KOTHAPALLI, SAMS

TEACH YOURSELF EJB IN 21 DAYS (2003) (see, e.g., pages 353-376).

WO 2008/080525 PCT/EP2007/010882

Object-Oriented Computer Systems

The computer systems described above consist of many smaller pieces of
program code referred to as “objects” which interact each other. For example in
a computer program for booking cars at least three objects are required for
storing the relevant information: 6ne for the person who makes the booking
(name, credit card number etc), one for the booked car (model, engine, class,

etc) and another for the booking itself (booking date, return date, etc).

In most cases, objects reference other objects to form very complex
object networks. Sometimes information about the structure of an object
network is needed without knowledge about'the real data and semantics of the
objects in the network. By way of analogy, within a genealogic tree, to determine
structural data such as how many people are linked, how clustered the tree is,
etc, it is not necessary to know the details about each person — just the
properties of the network itself. For that purpose, a consistent, flexible way to

represent the object network structure would be desirable.

WO 2008/080525 PCT/EP2007/010882

SUMMARY

A system, method and computer program product (particularly embodied
in a machine-readable medium, as a signal and/or as a data stream) for
visualizing information related to session and cache objects within an object
network. For example, a cdmputer-implemented method according to one
embodiment comprises: analyzing relationships between session and/or cache
objects within a network of sessions and caches to determine an object network
structure for the session and/or cache objects; generating object graph data
representing the object network structure; serializing the object graph data and
transmitting the object graph data over a network to a requesting computer; and
interpreting the object graph data to render a view of the session and/or cache
object network structure in a graphical user interface. Accordingly, man-machine
interaction can be improved, particularly as the graphical user interface allows a
user to more readily understand or interpret thel session and/or cache object

network structure.

WO 2008/080525 PCT/EP2007/010882

BRIEF DESCRIPTION OF THE DRAWINGS
A better understanding of the present invention can be obtained from the

following detailed description in conjunction with the following drawings, in which:
FIG. 1a illustrates a traditional two-tier client-server architecture.
FIG. 1b illustrates a prior art multi-tier client-server architecture.

FIG. 2 illustrates a multi-tiered application server architecture according to

the Java 2 Enterprise Edition (“J2EE”") standard.
FIG. 3 illustrates an exemplary object graph structure.

FIG. 4 illustrates an architecture for processing object graph data

according to one embodiment of the invention.

FIG. 5 illustrates a graphical user interface according to one embodiment

of the invention.

FIG. 6 illustrates session data within a prior art J2EE application server

architecture.

FIG. 7 iliustrates a hierarchical session domain architecture according to

one embodiment of the invention.

FIG. 8 illustrates an exemplary set of session objects.

WO 2008/080525 PCT/EP2007/010882

FIG. 9a illustrates hierarchical session domains for the session object in

FIG. 8.

FIG. 9b illustrates session domains for an HTTP session context.

FIG. 10 illustrates data contained within one embodiment of a session

domain.

FIG. 11 illustrates a session/cache object graph service employed in one

embodiment of the invention.

FIGS. 12a-b illustrate a method for measuring differences in memory

consumption between object.

FIG. 13 illustrates an application server architecture accordihg to one

embodiment of the invention.

WO 2008/080525 PCT/EP2007/010882

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Described below is a system and method for processing object graphs.
Throughout the description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled in the art that the present
invention may be practiced without some of these specific details. In other
instances, well-known structures and devices are shown in block diagram form to

avoid obscuring the underlying principles of the present invention.

A. Svstem and Method for Processing Object Graphs

Figure 3 illustrates an exemplary network of objects 300-305 which will be
used to describe the various embodiments of the invention. Each of the objects
may contain different types of data and methods. In the illustrated example,
object 300 references objects 301 and 302. For example, object 300 points to
objects 301 and 302 (e.g., object 300 may include object 301, 302 instances as
its properties). The contained object state is part of the state of the object —
container. Similarly, object 302 references objects 301 and 304-305 and object

301 references objects 303-304.

As mentioned above, information about the structure of an object network
such as the one shown in Figure 3 may be needed without the need for the data
and semantics of the objects themselves. For example, information related to

how each of the objects reference one another may be needed rather than the

WO 2008/080525 PCT/EP2007/010882

underlying data contained within the objects. In these situations, it is inefficient
to transfer all of the data when all that is required is information related to the

relationships between the objects.

To address these needs, one embodiment of the invention analyzes
object oriented program code and generates a math graph structure to represent
the object network. The math graph structure may then be viewed within a
visualization tool and/or stored within a mass storage device (as described
below). The graph structure consists of one or many “nodes,” each of which
represents an object, and zero or many “arcs” (such as arcs 310) between the
nodes. In an embodiment which uses Java program code (or a similar type of
program code), an oriented graph is used because Java object “has a”
relationships are parent-child relationships (e.g., a car “has a” make, model,
year, and engine). In this embodiment, every object in computer memory is
represented by one graph node and every object-to-object relationship is

represented by one arc.

Figure 4 illustrates one embodiment of an architecture for performing the
foregoing operations. A local computer system 411 requests object graph
information related to object-oriented program code 402 executed on a remote
computer system 410. An object graph processing service 404 extracts
information from the object-oriented program code 402 to generate the object
graph and other types of data described herein. The object graph and other data

are then transmitted over a network to the requesting computer system 411.

10

WO 2008/080525 PCT/EP2007/010882

Object graph interpreter logic 406 on the requesting computer system 411
interprets the serialized object graph and other data to graphically display the
results within an object graph graphical user interface 408 sometimes referred to
herein as a “visualization tool” (such as the one described below). In addition,
the object graph and other data may be stored within a storage medium 409

such as a file system or database for later retrieval and viewing.

In one embodiment, the object graph processing logic 404 generates
and/or collects additional information about objects (nodes) and references
(arcs) and transmits the additional information with the object graph information.
For example, in one embodiment, the following additional information is
generated and/or collected:

1. The “memory size” of each object. This is the relative amount of
random access memory consumed by each object. In one embodiment, the
object graph processing logic 404 calculates the memory size in terms of a
weighted value rather than an absolute value. In one particular implementation,
a different weighted value is assigned to each of the generic types within the
object (e.g., based on the relative memory consumption of those types). For
example, an integer (INT) may be assigned a weight of 4 whereas a Boolean
type may be assigned a weight of 1. Various other weights may be assigned to
other generic types including, for example, char, float, double, byte, short, long
and string. In one embodiment, the following weights are assigned to each of
the generic types: boolean = 1 byte; byte = 1 byte; char = 2 bytes; short = 2

bytes; int = 4 bytes; long = 8 bytes; float = 4 bytes; double = 8 bytes.

11

WO 2008/080525 PCT/EP2007/010882

2. The name of the Java type (i.e., the class).

3. The object's unique identification code for the graph structure. In one
embodiment, the object graph processing logic 404 assigns each object an
integer value which uniquely identifies the object within the graph structure.

4. An indication as to whether the object is serializable in Java terms. As
it is known in the art, a “serializable” object may be converted to a bit stream and
transmitted over a network.

5. An indication as to whether the object is shareable. Certain computer
systems designed by the assignee of the present application allow objects to be
shared among multiple Java virtual machines (as described below). Thus,

objects in these systems may be designated “shareable” or “non-shareable.”

In addition, the following information is generated and/or collected for
each of the references:

1. The reference name (i.e., the class field name).

2. An indication as to whether the reference is a transient field in Java
terms. As is known in the art, a “transient” field is one which is neither serialized
or persisted.

3. The identity of two nodes initiating this relationship (i.e., the parent and
child nodes). In one embodiment, this is accomplished using the objects’ unique

identification codes mentioned above.

The graph structure and additional information related to the object

network are then serialized and transmitted as metadata to a requesting client.

12

WO 2008/080525 PCT/EP2007/010882

This is advantageous because the graph structure and additional information can
be observed as any other graph object using various different types of graph
visualization tools. It can also be transmitted over a network such as the Internet
(without sending the actual objects and data). It may also be saved on disk in a
specified file type (e.g., a text/ XML file) or as a Java serialized object file for later

observation.

The object graph processing logic 404 may format and store the object
graph data is a variety of ways while still complying with the underlying principles
of the invention. For example, both list structures and matrix structures may be
used, or a combination of both. List structures are often used for sparse graphs
as they have smaller memory requirements whereas matrix structures provide
faster access but may consume significant amounts of memory if the graph is

very large.

List structure types may include an incidence list structure or an adjacency
list structure. In an incidence list structure, the edges are represented by an
array containing pairs (ordered if directed) of nodes (that the edge connects) and
eventually weight and other data. In an adjacency list structure, each node (also
sometimes referred to as a “vertex”) has a list of which vertices it is adjacent to.
This causes redundancy in an undirected graph: for example, if vertices A and B
are adjacent, A's adjacency list contains B, while B's list contains A. Adjacency

queries are faster, at the cost of extra storage space.

13

WO 2008/080525 PCT/EP2007/010882

Matrix structures may include an incidence matrix structure in which the
graph is represented by a matrix of E (edges) by V (vertices), where [edge,
vertex] contains the edge's data and/or an adjacency matrix which is an N by N
matrix, where N is the number of vertices in the graph. If there is an edge from
some vertex X to some vertex Y, then the element M, is 1; otherwise it is 0. This
type of matrix makes it easier to locate subgraphs, and to reverse graphs if
needed. Other possible matrix types include a Laplacian matrix, Kirchhoff

matrix, admittance matrix and a distance matrix.

It should be noted that the underlying principles of the invention are not
limited to any particular format for the object gfaph data or to the specific
architecture shown in Figure 4. For example, the “remote” system and “local”
system do not necessarily need to be located in separate locations or on

separate machines.

B. A Graphical User Interface for Object Graphs

After retrieving the object graph and other data associated with objects on
the remote computer system, one embodiment of the invention employs a
unique graphical visualization tool to observe the object graph and data. One
embodiment of a visualization tool 408 is illustrated in Figure 5. In this
embodiment, in response to user-selection of a particular node 520 (e.g., via a
mouse or other cursor control device), the graph is drawn as a tree using the
selected node 520 as the root. In one embodiment, the visualization tool 408

renders each of the child nodes further up in the hierarchy before their children

14

WO 2008/080525 PCT/EP2007/010882

(i.e., it employs a breadth-first scan). However, the underlying principles of the
invention are not limited to the order in which the nodes are rendered. If a node
is referenced more than once the visualization tool 408 renders it each time as a
child node but does not traverse its sub-tree more than once. One reason for

this is that it avoids cyclic dependencies and potentially endless drawing.

As illustrated in Figur_e 5, in one embodiment of the visualization tool 408
employs different shapes, colors and graphics to indicate different types of
nodes and arcs. For example, inone embodiment, the visualization tool uses a
different filling color for nodes referenced once or many times. In Figure 5, an
orange filling color is used to identify nodes referenced mode than once, as
indicated by entry 503 in the legend window 500, and a yellow filling color is used

to identify nodes referenced only once.

In addition, as indicated in the legend window 500, a green filing color is
used to identify “dummy” nodes 507. Dummy nodes are used to improve system
performance when working with extremely large graphs. For example, a
particular object graph may be very large (e.g., over 1 Gbyte) and may include
hundreds of thousands of nodes. In this case, it may take a significant amount
of time to traverse and render the entire graph. As such, in one embodiment,
When a certain number of nodes have been traversed (e.g., 10,000), the object
graph processing logic 404 and/or the visualization tool 408 may stop rendering

and insert dummy nodes at the lowest level of the graph structure. The

15

WO 2008/080525 PCT/EP2007/010882

remainder of the graph structure may be drawn upon user request (e.g., by

selecting one or more of the dummy nodes).

In one embodiment, different shapes are used to distinguish between
nodes with and without children. In the specific example shown in Figure 5,
nodes without children are circular, as indicated by legend entry 501, and nodes

with children are square with curved corners, as indicated by legend entry 502.

In addition, in the illustrated embodiment, different shape contour colors
are used to mark nodes having different properties. For example, a light red
contour color is used for nodes which are not shareable, as indicated by legend
entry 504, and a dark red contour color is used for nodes which have children
which are non-shareable, as indicated by legend entry 505. Various different
contour colors may be used to identify different node properties (e.g., serializable
nodes may be assigned another contour color). Of course, the underlying

principles of the invention are not limited to any particular shapes and/or colors.

In addition, in the embodiment shown in Figure 5, the visualization tool
408 uses a graphic indicating multiple overlayed nodes for “compound” nodes.

As used herein, a compound node is an array of nodes of the same type (class).

In one embodiment, the visualization tool 408 appends a label on each
node. In the example shown in Figure 5, the label comprises the identification

code assigned to each node. However, various other and/or additional

16

WO 2008/080525 PCT/EP2007/010882

information may be displayed including, for example, the node weight and/or the

percentage of the node’s parent weight.

In one embodiment, the visualization tool 408 ‘generates the tree
dynamically, in response to user input. For example, the visualization tool 408
may expand/collapse the tree upon selection of a node. In addition, in one
embodiment, the visualization tool 408 skips certain nodes which do not meet a
user-specified criteria (e.g., displaying only nodes which are not shareable). In
one embodiment, the visualization tool 408 skips nodes from a given type (class)

(class fields with a given name, etc).

In one embodiment, the visualization tool 408 displays the additional data
collected for each node in response to user input. For example, in Figure 5, a
node information window 510 is generated when the user moves a cursor over a
particular node. The node information window 510 may include any of the
information described herein including, for example, the node ID, the type, the

relative weight (i.e., “Native Size”), and whether the node is shareable.

As mentioned above, in one embodiment, additional metadata related to
each of the object references is generated and/or collected such as the
reference name (i.e., the class field name); an indication as to whether the
reference is a transient field in Java terms; and the identity of two nodes initiating
this relationship. This information may then be visually displayed within the

visualization tool. For example, as indicated in Figure 5, lines representing

17

WO 2008/080525 PCT/EP2007/010882

transient references may be provided in a different color than those for standard
references. Various other other graphical features may be employed to convey
information about object relationships (e.g., such as a dotted line for unexplored

node references).

C. Session and Cache Object Networks

The assignee of the present application has developed advanced,
hierarchical architectures for managing session objects and cache objects. See,
e.g., Session Management Within a Multi-Tiered Enterprise Network, Serial No.
__, Filed December 28, 2004, for session object management and Distributed
Cache Architecture, Serial No. 11/025,714, Filed December 28, 2005, for cache
management. Each of these co-pending patent applications is assigned to the

assignee of the present application and is incorporated herein by reference.

The following discussion will focus on embodiments related to session
objects and data but the same general principles apply equally to cache objects
and data. An application server manages session data associated with each
client interaction. The session data defines the current conversational state
between the client and the application server. For example, if the user is
purchasing books from. an online bookstore, the session data may define the
current state of the user’s “shopping cart” (e.g., the books the user has selected

for purchase). Similarly, if the user is logged in to a particular Web portal (e.g.,

18

WO 2008/080525 PCT/EP2007/010882

“My Yahoo”), the session data may define the state of the Web pages opened in

the user's Web browser.

In one embodiment, different types of session data are maintained at
each logical layer of the application server. For example, referring to Figure 6,
in response to a single client 630 request from a Web browser, an HTTP session
object 641 (e.g., an instance of javax.servlet.HttpSession) containing HTTP
session data is managed within the Web container 640 and (depending on the
type of application) multiple session beans 651-653 may be managed within the
EJB container 650. Additional HTTP session objects 642 and session beans
654-655 may be managed concurrently to define the conversational state with
additional clients 631 for the same application (e.g., the shopping cart
application) or other applications (e.g., a “search” application). Thus, the state of
any given set of applications such as the user’s shopping cart may be spread

across multiple containers.

One embodiment of the invention employs session management logic
employs a hierarchical structure for storing different types of related session data
within each enterprise application (e.g., HTTP sessions, session EJBs, etc). In
particular, as illustrated in Figure 7, one embodiment of the session
management layer groups reléted session objects within a logical hierarchy. At
the top of the hierarchy is a session context object 700. “Session domains” are
the base configurable objects within the sessién hierarchy and are positioned

beneath the session context 700. The session domains represent abstract

19

WO 2008/080525 PCT/EP2007/010882

storage units for sessions that have similar characteristics (e.g., similar life

cycles, applications, etc).

In the example shown in Figure 7, session objects 711 and 712 are
managed within session domain 710, and session objects 721 and 722 are
managed within session domain 720. Both session domains 710 and 720 are
positioned directly beneath the session context 700. In one embodiment, each
session domain 710 and 720 contains session objects related to different
applications. For example, session domain 710 may contain session objects
related to a “shopping cart” application and session domain 720 may contain

session objects related to a “calculator” application.

Two additional session domains 730 and 740 are logically positioned
beneath session domain 710 within the hierarchy. In one embodiment, these
session domains 730 and 740 include session objects 731, 732 and 741, 742,
respectively, from the same application associated with session domain 710.
Returning to the previous example, if session domain 710 is associated with a
shopping cart application, session domains 730 and 740 include session objects

related to the shopping cart application.

In one embodiment, a different-session context 700 and associated
hierarchy of session domains is maintained by session management logic for
each layer of the application server. This embodiment will be described using

the example illustrated in Figure 8 in which a plurality of session objects are

20

WO 2008/080525 PCT/EP2007/010882

managed for two different applications, identified as applications “A” and “B.”
The conversational state between client 830 and application A is maintained via
three session bean objects 801-803 within the EJB container 842; an HTTP
session object 811 within the Web container 840; and two portal session objects
820-821 within the enterprise portal container. Similarly, the conversational state
between client 831 and application A is maintained via two session bean objects
804, 806, one HTTP session object 812, and one portal session object 822.
Finally, the conversational state between client 832 and application B is
maintained via two session bean objects 807-808, one HTTP session object 813,

and one portal session object 823.

In the illustrated example, session bean objects 801 and 804 are
instances of a particular session bean, “EJB A,” and session bean objects 802
and 806 are instances of another session bean, “EJB B.” Session bean objects

803, 807 and 808 are instances of session beans C, D and E, respectively.

In one embodiment, the enterprise portal container 841 is built on top of
the Web container 840. As illustrated, a single HTTP session object 811 may be
related to multiple portal session objects 821, 821, which store user-specific
session data for a plurality of user-specific Web content (e.g., Web pages)
generated during the session. When a user iogs in to a Web server, for
example, multiple user-specific Web pages may be generated in response to
client requests and opened in different windows of the client’'s Web browser.

Thus, a single HTTP session object 811 is managed within the Web container

21

WO 2008/080525 PCT/EP2007/010882

840 and separate portal session data related for each individual window of the
user's browser is stored within the portal session objects 820-821. Said another
way, the HTTP session object 811 manages session data related to the entire
user session with the application server, whereas the portal session objects store
session data for specific pages generated during the session (e.g., “My Yahoo”

pages on the “Yahoo” Website).

As illustrated in Figures 9a-c, each different type of session object shown
in Figure 8 is managed within a session domain under a different context. For
example, as illustrated in Figure 9a, separate session domains 910 and 920, are
maintained for applications A and B, respectively, under session bean context
900. A separate EJB session domain is used to store and manage session
instances for each session bean of each application. For example, under the
application A session domain 910, session domain 930 associated with EJB A
stores session objects 501, 504 which are instances of session bean A; session
domain 940 associated with EJB B stores session objects 502, 506 which are
instances of session bean B; and session domain 950 associated with EJB C
stores session objects 503 which are instances of session bean C. Similarly,
under the application B session domain 920, session domain 960 associated
with EJB D stores session objects 507 which are instances of session bean D,
and session domain 970 associated with EJB E stores session objects 508
which are instances of session bean E. Thus, all session beans are managed

under the same session bean context 900 and grouped under application-

22

WO 2008/080525 PCT/EP2007/010882

specific and bean-specific session domains, thereby simplifying the management

and configuration of similar session objects.

As illustrated in Figure 9b, separate HTTP session domains 911 and 921
associated with applications A and B, respectively, are managed under an HTTP
session context 901. The HTTP session domains store session data associated
with each applications’ HTTP sessions. For example, HTTP session objects 511
and 512 are stored within the session domain 911 for application A, and HTTP

session object 513 is stored within the session domain 921 for application B.

In addition, in one embodiment, illustrated in Figure 9¢, separate portal
session domains 912 and 922 associated with applicaﬁons A and B,
respectively, are managed under an application portal session context 902. The
portal session domains store portal session objects containing portal data
associated with each application. Specifically, portal session objects 820-822
are stored under the portal session domain 912 for application A, and portal

session object 823 is stored under the session domain 922 for application B.

Figure 10 illustrates additional details related to the configuration of each
session domain 1000 according to one embodiment of the invention.
Specifically, each session domain 1000 includes a set of co‘nfiguration policy
objects 1003, a set of local storage attributes 1002 and a set of global storage

attributes 1001.

23

WO 2008/080525 PCT/EP2007/010882

The configuration policy objects 1003 define the behavior of each session
domain. In one embodiment, the configuration policies impleménted by the
policy objects include, but are not limited to, a “thresholds” policy for setting limits
on the number of sessions objects which are stored within each domain. For
example, one session object may be joined to one or more session requests
based on the thresholds policy. In addition, In one embodiment, a session
access policy is implemented which allows the application or other entity which
created the session domain (the “domain owner”) to restrict or otherwise
influence session access. For example, the domain owner may prevent
multithreaded session access via the session access policy. In one
embodiment, the configuration policy 1003 further includes a session invalidation
policy which defines the behavior of the session object in the case of session
invalidation. For example, as described in greater detail below, in one
embodiment, transparent session objects are employed under certain conditions.
Moreover, inactive sessions may be stored to persistent storage (e.g., the
database or file system) and reactivated at a later time in response to

subsequent requests.

In one embodiment, a persistence policy is also implementend within the
configuration policy objects 1003 to define whether persistent storage should be
used and, if so, the particular type of persistent storage that should be used.
Session persistence types may include, but are not limited to, in-memory session
persistence (i.e., session objects within the domain are stored within the memory

of a single process); in-memory replication persistence (i.e., session object state

24

WO 2008/080525 PCT/EP2007/010882

is stored within a server process memory and is replicated to other server
processes); database-based persistence (i.e., the session objects are stored in
the database and may be shared across server processes); file system
persistence (i.e., sessions are stored within a directory of the file system and can
be shared across processes); and cookie-based persistence (i.e., session data is
stored within the client in a cookie). It should be noted, however, that the
underlying principles of the invention are not limited to any particular set of

configuration properties.

Returning to Figure 10, the global storage attributes 1001 of each session
domain 1000 define attributes of the session domain which are shared across
different virtual machines (e.g., different instances of the session domain
implemented on different virtual machines). For example, the global session
attributes may specify that all sessions within the particular domain 1000 have
the same expiration time (e.g., become inactive/invalid after a period of non-
responsiveness from a client). By way of another example, EJB application
descriptors may be parsed once and shared between each of the EJB domains
located under the session bean context 900, and Web application descriptors
may be parsed only once and shared between each of the session objecté
located under the HTTP session context 901. In one embodiment, global l.
storage attributes are used only in a shared memory implementation (i.e., in
which virtual machines 321-325 share session objects via shared memory 340-
341 as described herein). In one embodiment, global attributes are identified in

shared memory using a unique global attribute name.

25

WO 2008/080525 PCT/EP2007/010882

The local storage attributes 1002 of the session domain define session
attributes which are specific to each individual virtual machine (i.e., they are
container-specific). For example, if a particular virtual machine relies on a socket
connection to a particular remote server, then this information may be provided
within fhelocal storage attributes. Local storage attributes may also include
specific references to files within the file system/database and specific
references to database connections. In an embodiment which does not employ
a shared memory implementation, all attributes of the session domain 1000 are

stored within the local storage attributes 1002.

The different containers can use the local storage attributes 1002 to keep
certain attributes banded to each concrete server process. For example the
HttpSession includes the method javax.servlet.ServletContext
getServletContext (). However, ServletContext can not be shared between
different virtual machines because it maintains references to different resources
that are local for the concrete server process. Thus, to enable the application to
retrieve the ServletContext from the HitpSession, the Web container binds the
ServletContext as a local attribute for the session domain. The
getServiletContext() method is implemented to provide a lookup of this attribute
from the SessionDomain. Using this technique, the getServietContext() will
return different objects based on the server process where the session is

activated.

26

WO 2008/080525 PCT/EP2007/010882

Sessions and caches are very important objects which may consume a
significant amount of memory. Thus, it is important to have the ability to observe
session and cache object networks without the semantics of the represented
data. Accordingly, one embodiment of the invention uses the object graph
processing techniques described herein for generating session and cache object
graphs and extracting associated data. For example, in one embodiment, object
graphs are generated to represent the hierarchical session domains described

above.

Figure 11 illustrates one embodiment of an architecture for performing
these operations. This embodiment includes a session/cache object graph
service 1004 for generating object graph data related to the session object
network 1102 and a cache object network 1103. In this embodiment, both the
session object network 1102 and the cache object network 1103 are executed
within a J2EE engine 1110. As in the prior embodiments (described above with
respect to Figure 4) a local computer system 411 requests object graph
information related to the session object network 1102 and/or the cache object
network 1103. The session/cache object graph service 1004 extracts
information from the session object network 1102 and the cache object network
1103 to generate an object graph representing the networks as well as the other
types of data described herein (e.g., memory size, type, each object’s
identification code, etc). The object graph and other data are then serialized and

transmitted over a network to the requesting computer system 411.

27

WO 2008/080525 PCT/EP2007/010882

Object graph interpreter logic 406 on the requesting computer system 411
interprets the serialized session/cache object graphs and other data to
graphically display the results within a the visualization tool 408. As in the prior
embodiments, the object graph and other data may be stored within a storage
medium 409 such as a file system or database for later retrieval and viewing.
The techniques described above are particularly useful when working with
session and cache object networks because these networks/objects may tend to

become very large and lead to undesirable memory consumption.

D. Using Object Graphs to Analyze Memory Consumption

Every object within an object-oriented computer program consumes a
different amount of a computer's memory. Even objects of the same type can
consume different amounts. For example, in a rental car reservation system, if
two different people book cars, the object for the person with the longest name
will consume more memory for its data presentation. Moreover, the fact that
objects may reference other objects makes the problem of measuring memory
Aconsumption more difficult. In the foregoing example, each “booking” object
holds references to the “person” and “car’ objects related to the bookings.
Consequently, one object (reservation) holds references to two other objects
(person and car). This gets even more complicated when two objects are

referencing each other. For example, in an implementation for managing human

28

WO 2008/080525 PCT/EP2007/010882

resources, each “manager’ object holds references for its “employer” objects and

every “employer” object holds references to its “manager” objects.

In one embodiment of the invention, to address the foregoing situations,
the “characteristic” data for each object is identified (which is not referenced
directly by other objects) and the memory difference between the “characteristic”
data is measured. In one embodiment, the objects and their references are

represented as math graph structures, generated as described above.

Figure 12a illustrates an example using the object relationships previously
illustrated in Figure 3. In this example, an attempt will be made to measure the
difference in mémory consumed between nodes 301 and 302. Node 302
references node 305 which is characteristic data for it, and node 301 references
node 303 that is not referenced directly from node 302. As a result, the memory
consumption difference between node 302 and node 301 is the difference
between node 305 and node 303 and the difference of the memory taken by

node 302 and node 301 themselves.

One embodiment of a method for measuring the memory consumption
difference between two nodes is illustrated in Figure 12¢c. At 1201 all incoming
references to both nodes are removed. This is indicated in Figure 12a by
arrows with dotted lines. At 1202, the resulting sub-graphs are built from both
nodes, as indicated in Figure 12b. At 1203, the sum of the memory consumed

by each node in the sub-graph is calculated for both sub-graphs. In one

29

WO 2008/080525 PCT/EP2007/010882

- embodiment, this is calculated by summing the weights of the node and it's
children. By way of example, the memory consumption of node 301 is equal to
the combined memory consumption of nodes 301, 303 and 304. Similarly, the
memory consumption of node 302 is the is equal to the combined memory
consumption of nodes 302, 304 and 304. At 1204, the difference between the
sums of the memory consumption for nodes 301 and 302 is calculated by
subtracting the sums. In other words delta (301,302) = nativeSize(301)
+nativeSize(303) + nativeSize(304) — nativeSize(302) — nativeSize(304) —
nativeSize(305), or delta (301,302) = nativeSize(301) +nativeSize(303)—
nativeSize(302) — nativeSize(305). As mentioned above, in one embodiment,
the following weights of the generic types of the nodes are used: boolean = 1
byte; byte = 1 byte; char = 2 bytes; short = 2 bytes; int = 4 bytes; long = 8 bytes;

float = 4 bytes; and double = 8 bytes.

Using the foregoing techniques, the difference between the memory
consumed by two objects may be determined and, more specifically, the
difference between "unique” parts of memory consumed by these objects. In
. many cases, the object graph is so complex that each node references directly
or indirectly (e.g., through a child) any other node. In these cases, while it is not
possible to say in general which node takes less memory, the “delta® measure

between the two nodes may still be used.

By way of example, in Figure 3, node 302 holds memory of node 303

because it has a reference to 302 which has reference to 303. It also holds a

30

WO 2008/080525 PCT/EP2007/010882

reference to node 305. The delta between these two objects 301 and 302
depends more on the size of object 303 minus the size of object 305. This, if
301 is bigger using the delta function we will examine its graph and determine
that it is because of node 303. Consequently, optimizing its memory (for node

303) will lead to optimizing the memory taken by 301 and 302.

A system architecture on which embodiments of the invention may be
implemented is illustrated in Figure 13. The architecture includes a plurality of
application server “instances” 1301 and 1302. The application server instances
1301 and 1302 each include a group of worker nodes 1312-1314 and 1315-
1316 (also sometimes referred to herein as “server nodes”), respectively, and a
dispatcher 1311 and 1312, respectively. The application server instances 1301,
1302 communicate through a central services instance 1300 using message
passing. In one embodiment, the central services instance 1300 includes a
locking service and a messaging service (described below). The combination of
all of the application server instances 1301 and 1302 and the central services
instance 1300 is referred to herein as a “cluster.” Although the following
description will focus solely on instance 1301 for the purpose of explanation, the

same principles apply to other instances within the cluster.

The worker/server nodes 1312-1314 within instance 1301 provide the
business and presentation logic for the network applications supported by the
system including, for example, the Web container 211 and the EJB container

201 functionality described herein. Each of the worker nodes 1012-1014 within a

31

WO 2008/080525 PCT/EP2007/010882

particular instance may be configured with a redundant set of programming logic
and associated data, represented as virtual machines 1321-1323 in Figure 13.
In one embodiment, the dispatcher 1311 distributes service requests from clients
to one or more of the worker nodes 1312-1314 based on the load on each of the
servers. For example, in one embodiment, the dispatcher maintains separate
queues for each of the worker nodes 1312-1314 in a shared memory 1340. The
dispatcher 1311 fills the queues with client requests and the worker nodes 1312-
1314 consume the requests from each of their respective queues. The client
requests may be from external clients (e.g., browser requests) or from other

components/objects within the instance 1301 or cluster.

In one embodiment, the worker nodes 1312-1314 may be Java 2
Enterprise Edition ("J2EE”) worker nodes which support Enterprise Java Bean
(“EJB”) components and EJB containers (at the business layer) and Servlets and
Java Server Pages (“JSP”) (at the presentation layer). In this embodiment, the
virtual machines 1321-1325 implement the J2EE standard (as well as the
additional non-standard features described herein). It should be noted, however,
that certain high-level features described herein may be implemented in the
context of different software platforms including, by way of example, Microsoft
.NET platforms and/or the Advanced Business Application Programming
(“ABAP”) platforms developed by SAP AG, the assignee of the present

application.

32

WO 2008/080525 PCT/EP2007/010882

As indicated in Figure 13, a object graph processing service 1330 such
as the one described above may be executed across each of the instances
1301, 1302. In one embodiment, the object graph processing service 1330

implements the various object graph processing techniques described herein.

In one embodiment, communication and synchronization between each of
the instances 1301, 1302 is enabled via the central services instance 1300. As
mentioned above, the central services instance 1300 includes a messaging
service and a locking service. The message service allows each of the servers
within each of the instances to communicate with one another via a message
passing protocol. For example, messages from one server may be broadcast to
all other servers within the cluster via the messaging service (e.g., such as the
cache configuration messages described below). Alternatively, messages may
be addressed directly to specific servers within fhe cluster (i.e., rather than being
broadcast to all servers). In one embodiment, the locking service disables
access to (i.e., locks) certain specified portions of configuration data and/or
program code stored within a central database 1345. The locking service locks
data on behalf of various system components which need to synchronize access
to specific types of data and program code. In one embodiment, the central
services instance 1300 is the same central services instance as implemented
within the Web Application Server version 6.3 and/or 6.4 developed by SAP AG.
However, the underlying principles of the invention are not limited to any

particular type of central services instance.

33

WO 2008/080525 PCT/EP2007/010882

In addition, unlike prior systems, one embodiment of the invention shares
objects across virtual machines 1321-1325. Specifically, in one embodiment,
objects such as session objects which are identified as “shareable” are stored
within a shared memory region 1340, 1341 and are made accessible to multiple
virtual machines 1321-1325. Creating new object instances from scratch in
response to client requests can be a costly process, consuming processing
power and network bandwidth. As such, sharing objects between virtuaj
machines as described herein improves the overall response time of the system

and reduces server load.

In a shared memory implementation, a shared memory area 1340, 1341
or “heap” is used to store data objects that can be accessed by multiple virtual
machines 1321-1325. The data objects in a shared memory heap should
generally not have any pointers or references into any private heap (e.g., the
private memory regions/heaps of the individual virtual machines). This is
because if an object in the shared memory heap had a member variable with a
reference to a private object in one particular virtual machine, that reference

would be invalid for all the other virtual machines that use that shared object.

More formally, this restriction can be thought of as follows: For every
shared object, the transitive closure of the objects referenced by the initial object
should only contain shared objects at all times. Accordingly, in one
implementation of the invention, objects are not put into the shared memory

heap by themselves — rather, objects (such as the scheduling analysis module

34

WO 2008/080525 PCT/EP2007/010882

402 and scheduling file 404 described above) are put into the shared memory
heap in groups known as “shared closures.” A shared closure is an initial object

plus the transitive closure of all the objects referenced by the initial object.

Embodiments of the invention may include various steps as set forth
above. The steps may be embodied in machine-executable instructions which
cause a general-purpose or special-purpose processor to perform certain steps.
Alternatively, these steps may be performed by specific hardware components
that contain hardwired logic for performing the steps, or by any combination of

programmed computer components and custom hardware components.

Elements of the present invention may also be provided as a machine-
readable medium for storing the machine-executable instructions. The machine-
readable medium may include, but is not limited to, flash memory, optical disks,
CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMSs, magnetic or optical cards,
propagation media or other type of machine-readable media suitable for storing
electronic instructions. For example, the present invention may be downloaded
as a computer program which may be transferred from a remote computer (e.g.,
a server) to a requesting computer (e.g., a client) by way of data signals
embodied in a carrier wave or other propagation medium via a communicationv

link (e.g., a modem or network connection).

Throughout the foregoing description, for the purposes of explanation,
numerous specific details were set forth in order to provide a thorough

understanding of the invention. It will be apparent, however, to one skilled in the

35

WO 2008/080525 PCT/EP2007/010882

art that the invention may be practiced without some of these specific details.
For example, although many of the embodiments set forth above relate to a Java
or J2EE implementation, the underlying principles of the invention may be
implemented in virtually any enterprise networking environment. Moreover,
although some of the embodiments set forth above are implemented within a
shared memory environment, the underlying principles of the invention are

equally applicable to a non-shared memory environment.

Accordingly, the scope and spirit of the invention should be judged in

terms of the claims which follow.

36

WO 2008/080525 PCT/EP2007/010882

CLAIMS

What is claimed is:

1. A computer-implemented method comprising:

analyzing relationships between session and/or cache objects within a
network of sessions and caches to determine an object network structure for the
session and/or cache objects;

generating object graph data representing the object network structure;

serializing the object graph data and transmitting the object graph data
over a network to a requesting computer; and

interpreting the object graph data to render a view of the session and/or

cache object network structure in a graphical user interface.

2. The computer-implemented method as in claim 1 further comprising:
collecting object data related to each session and/or cache object in the

network of objects; and
serializing the object data and transmitting the object data over the

network to the requesting computer along with the object network data.

3. The computer implemented method as in any one of the preceding
claims further comprising:

displaying the object data related to a session and/or cache object in
response to selection of a graphic representing the object on the requesting

computer.

37

WO 2008/080525 PCT/EP2007/010882

4. The computer-implemented method as in any one of the preceding

claims wherein the object graph data comprises a list structure.

5. The computer-implemented method as in any one of the preceding

claims wherein the object graph data comprises a matrix structure.

6. The computer-implemented method as in any one of the preceding
claims in combination with claim 2 wherein the object data comprises a value

representing memory consumed by each object.

7. The computer-implemented method as in any one of the preceding
claims further comprising:

assigning each object within the network a unique identification code; and

serializing the identification codes and transmitting the identification codes

over the network to the requesting computer system.

8. An apparatus having a memory for storing program code and a
processor for processing the program code to perform the operations of:

analyzing relationships between session and/or cache objects within a
network of sessions and caches to determine an object network structure for the
session and/or cache objects;

generating object graph data representing the object network structure;

“serializing the object graph data and transmitting the object graph data

over a network to a requesting computer; and ‘

interpreting the object graph data to render a view of the session and/or

cache object network structure in a graphical user interface.

38

WO 2008/080525 PCT/EP2007/010882

9. The apparatus as in claim 8 comprising additional program code
which, when executed by the processor, performs the operations of:

collecting object data related to each session and/or cache object in the
network of objects; and

serializing the object data and transmitting the object data over the

network to the requesting computer along with the object network data.

10. The computer implemented method as in claim 8 or 9 comprising
additional program code which, when executed by the processor, performs the
operations of:

displaying the object data related to a session and/or cache object in
response to selection of a graphic representing the object on the requesting

computer.

11. The apparatus as in any one of the preceding claims 8 to 10 wherein

the object graph data comprises a list structure.

12. The apparatus as in any one of the preceding claims 8 to 11 wherein

the object graph data comprises a matrix structure.

13. The apparatus as in any one of the preceding claims in combination
with claim 9 wherein the object data comprises a value representing memory

consumed by each object.

14. The apparatus as in any one of the preceding claims 8 to 13
comprising additional program code which, when executed by the processor,

performs the operations of:

39

WO 2008/080525 PCT/EP2007/010882

assigning each object within the network a unique identification code; and
serializing the identification codes and transmitting the identification codes

over the network to the requesting computer system.

15. A machine-readable medium having program code stored thereon
which, when executed by a machine, causes the machine to perform the
operations of:

analyzing relationships between session and/or cache objects within a
network of sessions and caches to determine an object network structure for the
session and/or cache obijects;

generating object graph data representing the object network structure;

serializing the object graph data and transmitting the object graph data
over a network to a requesting computer; and

interpreting the object graph data to render a view of the session and/or

cache object network structure in a graphical user interface.

16. The machine-readable medium as in claim 15 comprising additional
program code which, when executed by the machine, causes the machine to
perform the operations of:

collecting object data related to each session and/or cache object in the
network of objects; and

serializing the object data and transmitting the object data over the

network to the requesting computer along with the object network data.

17. The machine-readable medium as in claim 15 or 16 comprising
additional program code which, when executed by the processor, performs the

operations of:

40

WO 2008/080525 PCT/EP2007/010882

displaying the object data related to a session and/or cache object in
response to selection of a graphic representing the object on the requesting

computer.

18. The machine-readable medium as in any one of the preceding claims

15 to 17 wherein the object graph data comprises a list structure.

19. The machine-readable medium as in any one of the preceding claims

15 to 18 wherein the object graph data comprises a matrix structure.

20. The machine-readable medium as in any one of the preceding claims
in combination with claim 16 wherein the object data comprises a value

representing memory consumed by each object.

21. The machine-readable medium as in any one of the preceding claims
15 to 20 comprising additional program code which, when executed by the
machine, causes the machine to perform the operations of:

assigning each object within the network a unique identification code; and

serializing the identification codes and transmitting the identification codes

over the network to the requesting computer system.
22. A computer program product comprising computer-readable

instructions which, when loaded and executed on a suitable system perform the

steps of a method according to any of the preceding claims 1 to 7.

41

PCT/EP2007/010882

WO 2008/080525

01/16

€0l
SiomjaN

(1e aond)

eL ‘b4

LOL Jonies

ol
aseqeleq

colL
uoneo|ddy

001 121D

’

a1nja3yoIYy
paial]-om|

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

02/16

aseqejeq

yx4"
slonias

Jake ssauisng

uonejuasald

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

:14%
sioneg \./.\

9zl \.,\
SIOAIDG

(1e aoud)

qL ‘b4

1243
aseqeleq

r44 %
Jake1 ssauisng

Lzi

ozl
aoeyaU| Jasn

174 R U)

alnjoayyoly
paisiL-ninA

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

(1e qoud)

Z 'bi4

03/16

WO 2008/080525

SUBSTITUTE SHEET (RULE 26)

! 602 612 m
i S80IAIDS s90INMBS !
‘ A A i
C ~ -~ ~
Ll o o5 O G
! <|< ||| 2 <i<|a|le|2|%E i
P 18 E| O = @lE|C = !
. |8]|5]9|2|3|3|3|3 8|15(9|3|3|3|32E |
| o o '

Lz “ !

swayshg | ¢) - L 0zz
UolEWLIO| g - i 17| ueiD g

' gan g3 '
m Lol J8uiejuod 4r3 LLC 1SUIEJUOD gOAA m

sI3 m 21601 ssauisng 21607 uonejuasaly m
1]
1]

002 Jantag uoneodlddy 33zr

PCT/EP2007/010882

WO 2008/080525

04/16

¢ ‘bi4

sog voe
10890 193la0

L0¢
108[q0

oLe
soly

00¢£
19lq0

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

05/16

y b1y

60t p
ebelo)g |
80P
uoneziensip | _Bmmmwmuc_
ydei ydeus 108lq0
walao

LY WasAg Joindwos |eso

——— algo buissasold

141)72 cov ‘
apon weibolid m

A

pajusuQ-108(qo

ydeso 309(q0

oL¥ (1onias ‘B-9) walsAs syoway

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

06/16

G ‘b4

w3 1: SMaEIA YIRS : afieu Sy.anes : a4 sy anes’ : ‘a4 wio)y peo

L0S

[

90S

/

S0S
v0S

[

€05
c0S

Z

LOS

/[

4

/_,

oo:o_&om ‘OpON: uoho_e.,w::

\ERYy eI A P

+ 89113 iajariuaistisl
T

“aoUd189Y
‘dpou Aiuwng
‘apou; _.Ezon:_ou

Cepps

n:v_ w-nmw_m:m :o: w&_._ 0—52

. rapoil‘ajies ieysiuon
}
| spii posuaisiai Apeasiy

T GSiBiid uum BoN

VAR UB1piup Jiioyitia‘apoN

-

i‘lll

,;, N

@@

0LS
MOPUIA
UONBWIOJU|
apoN

ﬂ..ﬂ@@,@ooa

R o W, R T

azon L

— sl [oL]iut >m=5c_

s

025 SPON

\

00S

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

07/16

vs9
gr3

:

059 1sulejuod gr3

9 b1y

FA4:]
uoissag

dllH

L€9
IeLlle)

[34¢]
uoISSaS e
dllH

0v9 JOUIEJUOD GO9M

A 4

0¢9
oD

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

08/16

. ‘b4

..... N

Ot . ulewo(Q uoissag

..... (492 1L
oS oS

J

0€. ulewoq uoissag

|

|

B ZzL 1zL
7| os 0S

o BIE

02Z ulewoq uolissag

J

01Z UleWOQ UOISSaS

00L
Xajuo)

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

09/16

g
uoieolddy

v
uoneoyddy

A%}
Jusio

L£8
ualo

A 4

8 ‘b4
A=
808
(3)ar3 /
t18
- €28
uoIssas <
208 e dLLH tepiod
(@ ar3
N
R s Mt SEEEEEE e Ee e PRES RRERPERRER R,
/1 908
() ar3 /
Zi8
zz8
uoissag <
08] dLLH lenod
(v)ar3
£08
(0)arg
AN 2=
LLe Jeded
208 I uoIssag
() ar3 dLLH
\ 028
108 [elod
\J (v)ar3
~ 2]
Zvg Jouleu0) gr Jauiejuo) |euod

08 JSUIEJUOD Q3

\ 4

0¢8
uslo

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

10/16

805 [208
| ar3 ar3

0.6 096
urewoq 3 ar4 utewoq g dr3

026
urewoq g uones)ddy

eg ‘b1

| cog [908 208
0| ar3 ar3 ar3

J

056 o6
ulewoqg D ara ulewoq g ar3

[vos 105
ara ar3

J

0g6
ulewoq v ar3

| |

016
ulewoq v uonedlddy

006
1Xajuo)
ueag uolssag

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

11/16

1Z6
ulewoq ucisses g uonestddy

q6 "b14

4% LS
..... dllH dlilH

LL6
ulewoQ uoIssag v uonediddy

106
1X8Juo)

uoISsaS d.LLH

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

12/16

oL ‘bi4

€001
$8101]04 uoieINBYUo)

J/

aInquuY |eqoo

0001} ulewoq uoisseg

—\
Z001

abeloig

aINquRY (2907
Sadaided
otoLelqo) (oo)
uoIsSSag abelo)s

N—

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

13/16

LL B4

ll

60y | ! E1eq

sbeioyg [! pajeIoossy

‘ R

m ydero

! 1alqo

uoneziensip | 18)81didju| — loissag

ydelg B ejepeldiN !)
2la0 ydess 100fqo “ m@N

t

L LY weisAg 1eyndwo?) |eoo

€oLl

]

v001
ERITVET
ydeuo yo3lqo
ayoen/uoIssag

YIomieN 108[a0
ayoe)

Z0LL
yomgaN 108[q0

uoIsseg

oitL subug 3321

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

14716

S0¢
109[q0

qzL ‘bi4

zo¢
109[00

ez} ‘b4

00€
1°[q0

£0¢
18[00

SUBSTITUTE SHEET (RULE 26)

WO 2008/080525 PCT/EP2007/010882

15/16

' START I

A 4

Remove All Incoming
References to Nodes
1201

A 4

Build Resulting Sub-
Graphs for Nodes
1202

A 4

Calculate the Sums of the Memory
Consumed by the Nodes of Each Sub-Graph
1203

A 4

Subtract the Sums
1204

END

Fig. 12¢

SUBSTITUTE SHEET (RULE 26)

PCT/EP2007/010882

WO 2008/080525

16/16

gL ‘b4

1447

ga |enus

Z0g| douBlsu|

III

! P ovel "
_ el b |
' P Aowsp i
] a N 1 |
" OUISIN PRIEUS v paieys “
H A A A Co Y !
m ocel Lo ocel !
" CLIINETS m “ asInes "
: ypless 309[q0 to Ldeio) 103[q0 i
m Y o Y Y m
m y m w L !
m SZTEL WA -epeo-- yZeL WA Lo £2¢L WA zzel WA LZEL WA m
m 91.€} SPON J83I0M SLEL SPONJSNIOM | 1 | PLEL OPON JSHOM €161 SPON JaxJoM ZLEL SPON JOYIOM | |
| ZLEL HY b > LLEL HY “_

LOE L SOUEjsu|

H sjsanbay
d
0051 3y

2oUB)SU| SIDIAIBS jRIJUBD

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

| PCT/£P2007/010882

A. CLASSIFICATION OF SUBJECT MATTER ,
INV. GO6F11/30 GO6F9/44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Systems - PhD Thesis"

XP002477233

page 15 - page 40

page 41 - page 60

figure 2.1

page 7 - page 9

figures 3.1,3.2,3.5,3.17

June 2005 (2005-06), DREXEL UNIVERSITY,

X MAHER M. SALAH: "An Environment for ‘ ‘ 1-22
Comprehending the Behavior of Software :

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance :

"E* earlier document but published on or after the international
filing date

"L* document which may thrﬁw doubts on priotity claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but -
later than the priority date claimed

T tater document published after the international filing date
or priotity date and not in conflict with the appiication but
cited 1o undetstand the principle or theory underlying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
meﬂts, such combination being obvious to a person skilled
in the art. ‘

*&" document member of the same patent family

Date of the actual completion of the international search

21 April 2008

Date of mailing of the intemnational search report

07/05/2008

Name and mailing address of the ISA/ ’ -

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo 1,
Fax: (+31-70) 340-3016

Authorized officer

Schafer, Andreas

Form PCT/ISA/210 {second sheet) (April 2005)

‘page'1 of 3

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/010882

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the refevant passages

Relevant to claim No.

X

DE PAUW W ET AL: "Visualizing the
execution of Java programs"

SOFTWARE VISUALIZATION. INTERNATIONAL
SEMINAR. REVISED PAPERS (LECTURE NOTES IN
COMPUTER SCIENCE VOL.2269) SPRINGER~VERLAG
BERLIN, GERMANY, 2002, pages 151-162,
XP002477230

ISBN: 3-540-43323-6

Section 1

Section 2

Section 3

figure 2

DE PAUW W ET AL: "Web Services Navigator:
visualizing the execution of Web services"
IBM SYSTEMS JOURNAL IBM USA,

vol. 44, no. 4, 2005, pages 821-845,
XP002477231

ISSN: 0018-8670

Section: The Visualization Tool

Section Data Collection

SMITH M P ET AL: "Identifying structural
features of Java programs by analysing the
interaction of classes at runtime”

2005 3RD IEEE INTERNATIONAL WORKSHOP ON
VISUALIZING SOFTWARE FOR UNDERSTANDING AND
ANALYSIS (IEEE CAT. NO. 05EX1225) IEEE
PISCATAWAY, NJ, USA, 2005, pages 108-113,
XP002477232

ISBN: 0~7803-9540-9

Section 2

table 1

figures 1,4

SMITH M P ET AL: "Providing a user
customisable tool for software
visualisation at runtime"

FOURTH IASTED INTERNATIONAL CONFERENCE ON
VISUALIZATION, IMAGING, AND IMAGE
PROCESSING ACTA PRESS ANAHEIM, CA, USA,
2004, pages 135-140, XP002477257

ISBN: 0-88986-454-3

table 1

figures 1-4

1-22

1-22

1-22

1-22

Form PCT/ISA/210 (continuation of second shest) (April 2005)

page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No -

PCT/EP2007/010882

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

1A

SMITH M P ET AL: "Runtime visualisation
of object oriented software”

PROCEEDINGS FIRST INTERNATIONAL WORKSHOP
ON VISUALIZING SOFTWARE FOR UNDERSTANDING
AND ANALYSIS IEEE COMPUT. SOC LOS ’
ALAMITOS, CA, USA, 2002, pages 81-89,
XP002477258

ISBN: 0-7695-1662-9

figure 6

Section 3.2.2

GILBERG R.F., FOROUZAN A.A.: "Data .
Structures: A Pseudocode Approach with C"
31 May 2006 (2006-05~31), THOMSON COURSE
TECHNOLOGY 310340 , XP002477259

page 488 - page 491

1-22

4,5,11,
12,18,19 -

Form PCT/ISA/210 (continuation of second shest) (April 2005)

page 3 of 3

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - wo-search-report
	Page 60 - wo-search-report
	Page 61 - wo-search-report

