PATENTTIJULKAISU
PATENTSKRIFT
FI 101394 B

Patentti myönnetty - Patent beviljats
15.06.98

Kv.1k.6 - Int.kl.6

C 08L 83/07, C 08G 77/20
// (C 08L 83/07, 83:05)

(21) Patenttihakemus - Patentansökning
902603

(22) Hakemispäivä - Ansökningsdag
24.05.90

(24) Alkupäivä - Löpdag
24.05.90

(41) Tullut julkaiseksi - Blivit offentlig
01.12.90

(32) (33) (31) Etusikeus - Prioritet
31.05.89 JP 138042 P

(73) Haltija - Innehavare

1. Dow Corning Toray Silicone Company, Ltd, 208 Nihonbashi Muromachi, Chuo-ku, Tokyo 103, Japan, (JP)

2. Sasaki, Sho, 6-25-10, Aobadai, Ichihara, Chiba, Japan, (JP)

(74) Asiamies - Ombud: Berggren Oy Ab, Jaakonkatu 3 A, 00100 Helsinki

(54) Keksinon nimitys - Uppfinningens benämning

Organopolysiloksanaamokouluu, kovetetun pinnoitteen muodostamiseksi
En organopolysiloxankomposition för bildning av en skalbar, hårdad beläggning

(56) Viitejulkaisut - Anförda publikationer

EP A 217333 (C 08G 77/20), EP A 219720 (C 09J 7/02)

(57) Tiivistelmä - Sammandrag

Tämä keksintö koskee organopolysiloksanaan-
koostumukseen tyyppiä, joka on tarkoitettu
kuorittavana, kovetetun pinnoitteen muodosta-
miseen suurella kovetsunpeudella matalassa
lämpötilassa ja liima-aineiden stabiillilla
irroetusominaisuudella. Kovetetulla pinnoit-
teuella on keskisuuri irroetusominaisuus tai
sopiva irroetusominaisuus, jota teknillinen
paperi, bitumin pakkauspaperi, teipit, etiket-
tit jne vaativat. Kovettua koostumus sisältä-
tää organopolysiloksanavia, joka sisältää
kaksi tai useampia karkeampia alkenyllyrhy-
mia, organovetypolysiloksanavia, joka sisältää
kaksi tai useampia pihin sitoutuneita vety-
atomeja, ja organopolysiloksanaanihartisia,
joka sisältää vähintään kaksi korkeampaa
alkenyyllyryhmää.

Denna uppfattning hänför sig till en typ av
organopolysiloxankomposition för bildning av
e en skalbar, hårdad beläggning med hög härd-
ningshastighet vid låg temperatur och stabil
lossningsegeneskap för limämnen. Den hårdade
beläggningen har en medelmåttlig lossnings-
egenskap, som fordras av tekniskt papper,
bitumenförpackningspapper, tejp och etiketter
mm. Den hårdbara kompositionen innehåller en
organopolysiloxan, som innefattar två eller
flera högre alkenylgrupper, en organovetypo-
lisiloxan, som innefattar två eller flera
kiselbundna väteatomer, och ett organopo-
lisiloxanharts, som innefattar minst två
högre alkenylgrupper.
Organopolysilokaanikoostumus kuorittavan, kovetetun pinnoitteen muodostamiseksi - En organopolysiloxankomposition för bildning av en skalbar, härداد beläggning

Menetelmä kuorittavan, kovetetun pinnoitteen muodostamiseksi erilaisten perus materiaalien, kuten paperin, synteeettisten hartsikalvojen, synteeettisten kuitukankaiden jne. pinnalle materiaalien saamiseksi, joilla on irrotusominaisuus paineherkän liinan tai muun liima-aineen suhteen, on tunnettu pitkän aikaa. Materiaaleit, joita käytetään kuorittavan, kovetetun pinnoitteen muodostamiseen, ovat tavallisesti organopolysilokaanikoostumukseja, kuten organopolysilokaanikoostumus, joka on tehty organopolysilokaanista, joka sisältää vinyyliryhmä, organovetypolysilokaanista ja platinaryhmän yhdisteestä, ja organopolysilokaanikoostumus, joka on tehty matalaviskoisisesta organopolysilokaanista, joka sisältää heksenyyliryhmä tai muita korkeampia alkenyyliryhmä, organovetypolysilokaanipolysilokaanista ja platinaryhmän yhdisteestä.

Kuitenkin koska edellisen organopolysilokaanikoostumuksen kvettumisnopeus on alhainen, tarvitaan lämpökasittely korkeassa, yli 140°C:n lämpötilassa sen kvettamiseksi lyhyessä ajassa. Tämän seurausena perusmateriaalista johtuen voi tapahtua lämpökutistumista tai vaahstoamista ja valmiin peilipinnaan kiilto huononee. Nämä ovat ongelmia.

Tämän lisäksi kummatkin edellä mainituista koostumuksista muodostavat pinnoitteita, joilla on erittäin suuri irrotusominaisuus; tästä johtuen niitä ei voida käyttää tuotteiden valmistukseen, joilla on keskisuuri irrotusominaisuus, kuten teknilliseen paperiin, bitumin pakkauspaperiin, eri tavoin irtoavaan, kaksipintaiseen irrokepaperiin jne. samoin kuin teippeihin, etiketteihin jne., jotka vaativat sopivaa irrotusominaisuuden tasoa. Tällä tavoin niiden sovellutukset ovat melko rajoitetut.
Tämän keksinnön tarkoituksena on saada aikaan organopolysilokaanikoostumuksen tyypin kuorittavan, kovetetun pinnoitteen muodostamiseksi, jolle on luonteenomaista, että kovetumisnopeus on suuri matalassa, n. 90 °C:n lämpötilassa ja muodostuneella kovetetulla pinnoitteella on keskusuri irrotusominaisuus tai sopiva irrotusominaisuus, jota teknillinen paperi, bitumin pakkauspaperi, teipit, etiketit jne. vaativat.

Toisin sanoen tämä keksintö saa aikaan organopolysilokaanikoostumuksen tyypin kuorittavan, kovetetun pinnoitteen muodostamiseksi, jolle on tunnusomaista, että se sisältää seuraavia komponentteja:

(A) 100 paino-osaa organopolysilokaania, jonka keskimääräinen molekyyli sisältää kaksi tai useampia korkeampia alkenyliryymiä, joita edustaa kaava H₂C=CH(CH₂)ₐ-, jossa a:lla on arvo 2-8;

(B) 0,3-40 paino-osaa organovetypolysilokaanipolysilokaania, jonka keskimääräinen molekyyli sisältää kaksi tai useampia pihin sitoutuneita vetyatomeja;

(C) 2-200 paino-osaa organopolysilokaaniharkisia, joka on liukoinen organiseen liuottimeen ja koostuu R₃SiO₁₋₂-yksiköistä, R₂SiO₂₋₂-yksiköistä tai RSiO₃₋₂-yksiköistä ja SiO₄₋₂-yksiköistä, joissa R edustaa yksiarvoista hilibetyrzyhmää, jokaisen molekyylin sisältäessä vähintään kaksi alkenyliryhmää, joita edustaa kaava H₂C=CH-(CH₂)ₐ-, jossa a:n arvo on 2-8;

(D) 0,001-5 paino-osaa additioreaktion inhibiittoria;

(E) platinaryhmän yhdistettä määrän, joka on sopiva additioreaktion katalyyksiin; ja

(F) minkä tahansa määrän organista liuotinta.

Tämä keksintö voidaan selittää seuraavasti. Tämän keksinnön komponenttina (A) oleva organopolysilokaani on eräs tämän keksinnön koostumuksen pääkomponentteista. Se on organopolysilokaani, jonka jokainen molekyyli sisältää kaksi tai useampia korkeampia alkenyliryymiä, joita edustaa kaava H₂C=CH-(CH₂)ₐ-, jossa a on 2-8.

Esimerkkeihin mainitusta organopolysilokaanista kuuluu organopolysilokaani, jota edustaa keskimääräinen yksikkökaava RᵢᵢSiO(₄-b)/₂, joka sisältää kaksi tai
useampa alkenylliryymiä, joita edustaa kaava H₂C=CH-(CH₂)ₐ-, jossa a on 2-8. Tässä tapauksessa R' edustaa kaavassa yksiarvoisia hiilivetyryymiä, kuten alkyylliryymiä, kuten metyyli-, etyyli-, propyyli- ja butyylliryymiä; korkeampia alkenylliryymiä, joita edustaa kaava H₂C=CH-(CH₂)ₐ-, jossa a on 2-8; aryylliryymiä, kuten fenyyli-, tolyyli- ja ksylyylliryymiä; aralkyylliryymiä, kuten 2-fenylleetyyl- ja 2-fenylpropyylliryymiä; ja halogenoituja hiilivetyryymiä, kuten 3,3,3-trifluorpropyylliryhmän ja muita substituoituja tai substituoimattomia yksiarvoisia hiilivetyryymiä.

Irrotusominaisuuksien kannalta on edullista, että vähintään 70 mol-% ryhmistä R' on metyylliryymiä; b on luku 1,9-2,05. Organopolysilokaani voi sisältää pienen määrän hydroksyylliryymiä ja alkoksiryymiä.

Tämän komponentin moolimassa voi olla missä tahansa alueella nesteestä, joka vaihtelee viskositeetiltään 100 mm²/s 25°C:ssä kumihartsiin, ts. raakakumimaiseen tyyppiin. Kuitenkin jotta saataisiin kuorittavan, kovetetun pinnoitteen erinomaiset ominaisuudet, kuten vetolujuus, venyvää, vetomurtolujuus, kulutuskesto jne. raaka-kumimainen organopolysilokaani, jolla on korkea polymeroitumisaste, on edullinen. Kun käytetään tällaista organopolysilokaania, plastisuuden, joka on määritelty japanilaisessa teollisuusstandardissa JISC 2123, tulisi tavallisesti olla yli 100.
Tässä keksinnössä komponenttina (B) käytetty organovetypolysilokaani on komponentin (A) silloitusaine. Toimiakseen silloitusaineena jokaisen molekyylin on sisältävää kaksi tai useampia vetyatomeja piiatomin sitomiseen. Esimerkkejä tämän tyypistä organovetypolysilokaansaista ovat dimetyylivetysiloksipäätteinen dimetyylisiloksanikopolymeri, trimetyylisiloksipäätteinen dimetyylisiloksan-metyylvetysiloksanikopolymeri, dimetyylifenyllisiloksipäätteinen dimetyylisiloksanikopolymeri, trimetyylifenyllisiloksipäätteinen metyylvetypolysilokaani, syklinen metyylvetypolysilokaani, vetypolysilkesvikokaani, dimetyylvetysiloksanikysiköstä ja SiO₂-yksiköistä valmistettu kopolymeri jne.

100 paino-osassa kohti komponenttia (A) käytetyn komponentin (B) määrä on 0,3-40 paino-osaa. Jos määrä on pienempi kuin 0,3 paino-osaa, kovetetun pinnoitteen muodostumisnopeus on pieni; toisaalta, jos määrä on yli 40 paino-osaa, kovetetun pinnoitteen irrotusominaisuus huononee.

Tämän keksinnön komponentti (C) on organopolysilokaanihartsi, jonka jokainen molekyyli sisältää vähintään kaksi alkenyllirymhaa, joita edustaa kaava CH₂=CH(CH₂)a⁻, jossa a on 2-8. Tässä komponenttissa R₃SiO₁/₂-yksiköt, R₂SiO₂/₂-yksiköt ja RSiO₃/₂-yksiköt toimivat parantavan yhteenopivuutta komponentin (A) kanssa; SiO₄/₂-yksiköt toimivat huonontaan irrotusominaisuutta. Tästä johtuen tulisi käyttää sopivaa tasapainoa moolisuhdeelle R₃SiO₁/₂-yksiköiden ja R₂SiO₂/₂-yksiköiden tai RSiO₃/₂-yksiköiden ja SiO₄/₂-yksiköiden välillä. Edullinen moolisuhte näiden kolmen yksikötyyppin kesken on 0,1-1,5:0,1-1,0:1,0. Sitä paitsi R₂SiO₂/₂-yksiköitä ja RSiO₃/₂-yksiköitä voidaan käyttää yhdessä.

Mainituissa yksiköissä R edustaa yksiarvoista hiilivetyryhmää, kuten metyyli-, etyyli-, propyyli- ja muita alkyylirymhiä; fenyyli- ja muita aryylirymhiä; vinyyli-, alkylyli-, butenyli-, pentenyli-, heksenyli-, heksenyli-, oktenyl- ja muita alkenyllirymhiä jne.

Esimerkkejä R₃SiO₁/₂-yksiköistä ovat (CH₃)₃SiO₁/₂-yksiköt, (CH₂=CH)(CH₃)₂SiO₁/₂-yksiköt, (CH₃)(C₆H₅)(CH₂=CH)SiO₁/₂-yksiköt, (CH₃)₂(C₆H₅)SiO₁/₂-yksiköt jne. Esimerkkejä R₂SiO₂/₂-yksiköistä ovat (CH₃)₂SiO₂/₂-yksiköt, CH₃(CH₂=CH)SiO₂/₂-yksiköt, CH₃(C₆H₅)SiO₂/₂-yksiköt, (C₆H₅)₂SiO₂/₂-yksiköt jne. Esimerkkejä RSiO₃/₂-yksiköistä ovat CH₃SiO₃/₂-yksiköt, CH₂=CH(CH₂SiO₃/₂-yksiköt, C₆H₅SiO₃/₂-yksiköt jne.
Tämä komponentti voidaan valmista silaanien kerahydrolyysillä, joita silaaneja esittävät kaavat R₃SiX ja R₂SiX₂ tai RSiX₃ ja SiX₄, joissa X edustaa kloori-, bromi- tai jotakin muuta halogeeniatomiata, tai CH₃O-, C₂H₂O- tai jotakin muuta alkoksiryhmää; se voidaan myös valmistaa reaktiolla silaanin, jota edustaa R₃SiX, R₂SiX₂ tai RSiX₃, joissa X tarkoittaa samaa kuin edellä, ja happaman, kolloidisen piidoksididispersion välillä vedessä. Tavallisesti siinä on useita painoprosentteja silanoliryhmiä tai alkoksiryhmiä.

Sittä paitsi sitä voidaan käsitellä triorganosilylointiaineella silanoliryhmien vähentämiseksi tai poistamiseksi haluttaessa. Tämä komponentti on tavallisesti pakson nesteen, pulverin tai kiinteän aineen muodossa.

Tässä keksinnössä käytetty komponentti (D) on additioreaktioinhibiittori, jota tarvitaan tämän koostumuksen varastostabiilisuuden saavuttamiseen huoneenlämpötilassa. Esimerkkejä tästä komponentista ovat 3-metyyli-1-butyymi-3-oli, 3,5-dimetyyli-1-heksyymi-3-oli, 3-metyyli-1-penteeni-3-oli, fenylbutynoli ja muut alkynyylialkoholit; 3-metyyli-3-penteeni-1-yyni, 3,5-dimetyyli-1-heksyymi-3-yyni, tetrametyylvinyylisiloksanin syklinen yhdiste ja bentsotriatsoli.

Tämän komponentin reaktiota inhibitoiva vaikutus riippuu molekyylin konfiguraatiosta. Sen lisäyn määrän suhteen ei ole mitään erityistä rajoitusta sikäli kuin sopiva käyttöikä käytännön sovellutuksiin voidaan toteuttaa. Tavallisesti 100 paino-osaa kohti komponenttia (A) sen määrän tulisi olla 0,001-5 paino-osaa ja edullisesti 0,05-1 paino-osaa.

Tässä keksinnössä käytetty komponentti (E) on platinaryhmän yhdiste, jota käytetään katalyyttinä tämän keksinnön koostumuksen silloittamiseen ja kovettamiseen additioreaktion, ts. hydrosilylointreaktorin avulla. Esimerkkejä ovat platinan mikrohiukkaset adsorboituna hiilipulverikantoaineelle, klooriplatinahappo, alkoholimodifiit klooriplatinahappo, klooriplatinahapon olefiinikompleksi, klooriplatinahapo-
hapon ja vinyylisiloksaanin koordinaatioyhdiste, platinamusta, palladium, rodiumkatalyytti jne.

Käytetty määrä riippuu katalyytin tyypistä eikä sitä voida yleisesti määritellä. Kuitenkin kovetetun pinnoitteen muodostamiseksi lämmittämällä tämän keksinnön koostumus alle 90 °C:een määrä on tavallisesti 1-1000 ppm komponenttien (A)-(C) kokonaismäärästä.

Tässä keksinnössä käytetty komponentti (F) on organaatin liuotin, joka on välttämätön tämän keksinnön koostumuksen varastostabiilisuuden parantamiseksi ja pinnoitusominaisuuuden parantamiseksi eri perusmateriaaleille haluttaessa. Voidaan käyttää organaisia liuottimia, jotka kykenevät homogeenisesti liuottamaan tämän keksinnön koostumuksen, kuten bentseeniä, tolueenia, ksyleeniä ja muita aromaattisia hiilivetyjä; heptaania, heksaania, pentaania ja muita alifaattisia hiilivetyjä; trikloorietylieniä, perkloorietylieniä ja muita halogenoituja hiilivetyjä; etyyliaestataattia, metyylityylietonia jne.

Tämän keksinnön koostumuksissa käytetyn liuotinmäärän määrää haluttu ohennuksesta ja stabiiloinnin määrä ja se voi vaihdella nollasta ylöspäin.

Tämän keksinnön koostumus voidaan valmistaa yksinkertainesti sekoittamalla mainitut komponentit (A)-(F) homogeenisesti seokseksi. Edullinen sekoituskaavio on liuottaa ensin komponentti (A) homogeenisesti komponenttiin (F) ja sekoittaa sitten saatu liuos komponentteihin (B)-(E).

Seuraavassa tätä keksintöä selostetaan viitaten sovellutusesimerkkeihin. Näissä sovellutusesimerkkeissä "osat" tarkoittavat "paino-osia" ja viskositeetti on mitattu 25 °C:ssa.

Sovellutusesimerkkien eri tulokset mitattiin käyttäen seuraavia menetelmiä.

Käyttöikä - 450 ml organopolysilokaanikoostumusta lisättiin 600 ml:n lasipulloon, joka oli varustettu jäädytysputkella. Koostumusta hämmennettiin 25 °C:ssa ja sen viskositeetti mitattiin määräyn välialoin.

Kuorimisvastus - Määräty määrä organopolysilokaanikoostumusta levitettiin kalvon tai levyn muodossa olevan perusmateriaalin pinnalle. Näytettä pidettiin sitten määrätyssä lämpötilassa kiertoilmatyypissä lämpökaapissa aika kovetetun pinnoitteen muodostamiseksi. Kovetetun pinnoitteen pinnalle levitettiin sitten akryyliliinuotintyyppistä liimaa (Oribain BPS 5127, valmistaja Toyo Ink Co., Ltd) ja sitä lämpökäsiteltiin 100°C:ssa 2 min ajan. Pala laminointipaperia, jonka neliöpaine oli 55 g/m², laminoitiin sitten mainitulle käsitellylle pinnalle 0,2 N/cm²:n kuormalla 25 °C:ssa määräty vanhennusaika näytteen muodostamiseksi mittauta varten. Näyte leikattiin 5 cm:iin leveiksi koekappaleiksi. Vetokonetta käyttäen laminointipaperin vedettiin irti 180 °:n kulmassa 0,3 m/min vetonopeudella. Irti vetämiseen vaadittu voima (N) mitattiin.

Jäännoškiinnitysaste - Samalla tavoin kuin kuorimisvastuksen tapauksessa muodostettiin organopolysilokaanikoostumukseensa kovetettu pinnoite arkkimuotoisen perusmateriaalin pinnalle. Polyesteriteippi (Polyester Tape 31B, yhtiön Nitto Electric Industrial Co., Ltd, tuote) laminoitiin sen pinnalle 0,2 N/cm²:n kuormalla ja sitä käsiteltiin 70 °C:ssa 20 tuntia. Teippi vedettiin sitten irti ja kiinnitetettiin ruostumattomaan teräslevyyyn. Teippi vedettiin sitten irti 180 °:n kulmassa ja 0,3 m/min nopeudella. Irrottamiseen vaadittu voima (N) mitattiin. Tämä voima prosentteina standardi käsittelemättömän teipin vaatimasta voimasta ilmoitettiin jäännoškiinnitysimisasteena.
Esimerkki 1

100 osaan metyylheksenylysiloksaani-dimetyylipolysiloksaanikopolymeriraaka-
kumia, jossa molekyyliketjun päät oli suljettu trimetyylsiloksiryhimillä (heksenylyli- 5
ryhmäsisältö: 2,0 mol-%); 4 osaa metyylivetypolysiloksaania, jonka viskositeetti oli
5 mPa.s ja molekyyliketjun päät oli suljettu trimetyylsiloksiryhimillä; 10 osaa
organiseen liuottimeen liukenevaa pulverimaista organopolysiloksaanihartia, joka
oli valmistettu moolisuhteessa 0,4:0,35:1,0 {H₂C=CH-(CH₂)₄}(CH₃)₂SiO₁/₂-
yksiköistä, CH₃SiO₃/₂-yksiköistä ja SiO₄/₂-yksiköistä; ja 0,9 osaa 3,5-dimetyylili-3-
hekseeni-1-yyniä liuotettiin 1800 osaan toluenin. Organopolysiloksaanin kokonais-
painosta 130 ppm (platinaekvivalentti) klooriplatinahappo-divinylitetrametyyl-
siloksaanikompleksia lisättiin sitten organopolysiloksaanikoostumukseen valmiste-
lemiseksi kuorittavan pinnoitteen muodostusta varten. Koostumusta levitettiin sitten
0,7 g/cm²:n pinnoitemäärä polyetteenilaminoidun voimapaperin kappaleen peiliviin-
meistellylle pinnalle, mitä seurasi 20 s lämpökäsittely 90 °C:ssa. Saatu kovettettua
pinnoitetta käytiin sitten kuorimisvastuksen ja jäännöskiinnittymisasteen mittaa-
miseen.

Tulokset on lueteltu taulukossa I. Kuorimisvastuksen mittauksessa käytetty liima oli
akryyliliuotintyyppinen liima (Oribain BPS5127, yhtiön Toyo Ink Co., Ltd tuote).
Lisäksi vertailun vuoksi valmistettiin organopolysiloksaanikoostumus samalla
tavoin kuin edellä paitsi, että organopolysiloksaanihartia ei käytetty. Saadusta or-
ganopolysiloksaanikoostumuksesta mitattiin kovettumisominaisuus, kuorimisvastus
ja jäännöskiinnittymisaste samalla tavoin kuin edellä. Mittastulokset on lueteltu
taulukossa I.

Taulukko I

<table>
<thead>
<tr>
<th>Työppi</th>
<th>Kovettumisominaisuus (s)</th>
<th>Kuorimisvastus (N)</th>
<th>Jäännöskiinnittymisaste, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tämä keksintö</td>
<td>90 °C</td>
<td>1 pv</td>
<td>10 pv</td>
</tr>
<tr>
<td>Vertailuesimerkki</td>
<td></td>
<td></td>
<td>0,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,23</td>
</tr>
</tbody>
</table>
Esimerkki 2

100 osaa dimetyylisilokaani-metyylisolenyylisiloksaanikopolymeeriraakakumia, jossa molekyylitetetrahtiaa suljettu trimetyylisiloksiryhmillä (heptenyylisiloksaniyksiöitä: 1,8 mol-%, plastisuus: 1,45); 20 osaa orgaaniseen liuottimeen liukenevaan pullomaista organopolysilokaanihartia, joka sisälsi muolisuhteen 0,4:0,4:1,0 \(\text{H}_2\text{C} = \text{CH}(\text{CH}_2)_3\text{SiO}_1\text{SiO}_2\text{SiO}_3 \) yksiöitä, \(\text{CH}_3\text{SiO}_1\text{SiO}_2\text{SiO}_3 \) yksiöitä ja \(\text{SiO}_4\text{SiO}_3 \) yksiöitä; osaa metyylivetypolysilokiaania, jonka viskositeetti oli 20 mPa.s ja jonka molekyylitetetrahtiaa suljettu trimetyylisiloksiryhmillä; ja 0,9 osaa 3,5-dimetyylil-3-hekseni-1-yyniä, liuotettiin 1800 osaan tolueneina. Tämän jälkeen 130 ppm (plutinaekvivalentti) klooriplatinahappo-divinyltetrameretyylisiloksaanikomplexias lisättiin organopolysilokaanikoostumukseen muodostamiseksi koordinattavun, kovetettun pinnoitteen muodostamista varten. Koostumukseen ominaisuuksut mitattiin siten samalla tavoin kuin sovellutesimerkkissä I. Tulokset luetellaan taulukossa II.

Tietty määrä \(0,4 \text{ g/cm}^2 \text{-n ekvivalentti kiintoainemäärä} \) edellä saatua organopolysilokaanikoostumusta levitettiin polypropeenikalvon koronapurakauskäsitellylle painnalle. Kuvettumisominaisuus, kuorimisvastus ja jäähnökiinnittymisaste mitattiin samalla tavoin kuin sovellutus esimerkissä I. Mittautulokset on lueteltu taulukossa II.

Vertailun vuoksi valmistettiin organopolysilokaanikoostumus koordinnattavun, kovetetun pinnoitteen muodostamiseksi samalla tavoin kuin edellä paitsi, että tässä tapauksessa pullomaisen organopolysilokaanihartian sisälsi muolisuhteessa 0,4:0,4:1,0 \(\text{H}_2\text{C} = \text{CH}((\text{CH}_3)_2\text{SiO})_2\text{SiO}_3 \) yksiöitä, \(\text{CH}_3\text{SiO}_1\text{SiO}_2\text{SiO}_3 \) yksiöitä ja \(\text{SiO}_4\text{SiO}_3 \) yksiöitä. Tästä koostumuksesta mitattiin kovettumisominaisuus, kuorimisvastus ja jäähnöskiinnittymisaste samalla tavoin kuin sovellutusesimerkissä I. Tulokset on lueteltu taulukossa II.

Taulukko II

<table>
<thead>
<tr>
<th>Tyyppi</th>
<th>Kovettumisominaisuus, (s) 90 °C</th>
<th>Kuorimisvastus, (N) 1 pv kuluttua</th>
<th>Kuorimisvastus, (N) 10 pv kuluttua</th>
<th>Jäähnöskiinnittymisaste, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tämä keksintö</td>
<td>16</td>
<td>0,73</td>
<td>0,72</td>
<td>97</td>
</tr>
<tr>
<td>Vertailusesimerkki</td>
<td>19</td>
<td>0,69</td>
<td>0,99</td>
<td>73</td>
</tr>
</tbody>
</table>
Esimerkki 3

100 osaa dimetyylisiloksaani-metyylioktenylsiloksaanikopolymeeriraakakumia, jonka molekyylitjun pääät oli suljettu dimetyyliontenylsiloksiyhrmillä (oktenylysiloksaaniyksiköitä: 2,1 mol-%, viskositeetti: 500 mm²/s), 4 osaa metyyliveletypolysiloksaania, jonka viskositeetti oli 5 mPa.s ja molekyylitjun pääät oli suljettu trimetyylisilosirhymillä, 10 osaa organopolysiloksaaniin liukenevaa pulverimaista organopolysiloksaanihartsia, joka sisälsi moolisuhteessa 0,25:0,4:1,0 {H₂C=CH(CH₂)₅}(CH₃)₂SiΟ₁/₂-yksiköitä, CH₃SiO₃/₂-yksiköitä ja SiO₄/₂-yksiköitä, 0,9 osaa 3,5-dimetyylili-hekkeeni-1-yyniä ja 120 ppm (platinaekvivalentti) klooriplatinahappo-divinylylitetrametyylidisiloksaanikompleksia sekoitettiin keskenään organopolysiloksaanikoostumukseen muodostamiseksi kuorittavan, kovetetun pinnoitteen muodostamista varten.

Saadusta koostumuksesta mitattiin kovettumisominaisuus, kuorimisvastus ja jäänmäärä. Sama olosuhteissa kuin sovellutusesimerkissä 1. Tulokset on luettu taulukossa III.

Vertailun vuoksi valmistettiin organopolysiloksaanikoostumus kuorittavan pinnoitteen muodostamiseksi samalla tavoin kuin edellä paiti, että organopolysiloksaanihartsia ei lisätty tässä tapauksessa. Koostumuksen ominaisuudet mitattiin samalla tavoin kuin sovellutusesimerkissä 1. Tulokset on luettu taulukossa III.

Taulukko III

<table>
<thead>
<tr>
<th>Tyyppi</th>
<th>Kovettumisominaisuus (s) 90 °C</th>
<th>Kuorimisvastus (N) 1 pv kuluttua</th>
<th>Kuorimisvastus (N) 10 pv kuluttua</th>
<th>Jäänmäärä (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tämä keksintö</td>
<td>21</td>
<td>0,42</td>
<td>0,44</td>
<td>97</td>
</tr>
<tr>
<td>Vertailuesimerkki</td>
<td>20</td>
<td>0,19</td>
<td>0,20</td>
<td>96</td>
</tr>
</tbody>
</table>

Tämän keksinnön kuorittavan, kovetetun pinnoitteen muodostamiseen tarkoitettu organopolysiloksaanikoostumus, koska se sisältää komponentteja (A)-(F) ja erityisesti komponenttia (C) ja (D), on suuri kovettumisnopeus suhteellisen matalassa lämpötilassa (n. 90 °C:ssa); muodostuneella, kovetetulla pinnoitteella on keskisuuri kuorimisominaisuus tai sopiva kuorimisominaisuus, joka soveltuu tekniliselle paperille, bitumipaperille, teipeille, etiketeille jne.
Patenttivaatimuksset

1. Kuorittavan, kovetetun pinnoitteen muodostukseen tarkoitettu organopolysilokaanikoostumus, tunnettu siitä, että se sisältää seuraavia komponentteja:

(A) 100 paino-osaa organopolysilokaania, jonka keskimääräinen molekyyli sisältää kaksi tai useampia korkeampia alkenyliryymiä, joita edustaa kaava

\[
H_2C=CH-(CH_2)_a-\,, \text{jossa } a:lla \text{ on arvo } 2-8;
\]

(B) 0,3-40 paino-osaa organovetypolysilokaanipopolysilokaania, jonka keskimääräinen molekyyli sisältää kaksi tai useampia piihin sitoutuneita vetyatomeja;

(C) 2-200 paino-osaa organopolysilokaanihartisia, joka on liukoinen organiseen liuottimeen ja koostuu R_3SiO_{1/2}-yksiköistä, R_2SiO_{2/2}-yksiköistä tai RSiO_{3/2}-yksiköistä ja SiO_{4/2}-yksiköistä, joissa R edustaa yksiarvoista hiilivetyryhmää ja kussakin molekyyllisessä on vähintään kaksi alkenyliryhmää, joita edustaa kaava

\[
H_2C=CH-(CH_2)_a-\,, \text{jossa } a:lla \text{ on arvo } 2-8;
\]

(D) 0,001-5 paino-osaa additioreaktioinhibiittoria;

(E) platinaryhmän yhdistettä sopivan määrän additioreaktion katalyyysiin; ja

(F) minkä tahansa määrän organista liuotinta.

2. Patenttivaatimuksen 1 mukainen koostumus, tunnettu siitä, että komponentilla (A) on keskimääräinen yksikkökaava R'_bSiO_{(4-b)/2}, jossa jokainen R' edustaa yksiarvoista hiilivety- tai halogenoituia hiilivetyryhmää, joista ainakin kaksi on korkeampia alkenyliryymiä, joita edustaa kaava H_2C=CH-(CH_2)_a-, jossa a:lla on arvo 2-8; vähintään 70 mol-% ryhmistä R' on metyyliryhmä; ja b on luku 1,9-2,05.

3. Patenttivaatimuksen 1 mukainen koostumus, tunnettu siitä, että komponentti (A) on raakakumimainen materiaali, jonka normissa JISC 2123 määritelty plastisuus on yli 100.
4. Patenttivaatimuksen 1 mukainen koostumus, tunnettu siitä, että komponenttisessa (C) R₃SiO₁/₂-yksiköiden moolisuhte R₂SiO₂/₂-yksiköihin ja tai RSiO₃/₂-yksiköihin ja SiO₄/₂-yksiköihin on 0,1-1,5:0,1-1,0:1,0.

5. Patenttivaatimuksen 4 mukainen koostumus, tunnettu siitä, että komponentti (C) koostuu (H₂C=CH(CH₂)ₐ)(CH₃)₂SiO₁/₂-yksiköstä, CH₃SiO₃/₂-yksiköstä ja SiO₄/₂-yksiköstä.

6. Patenttivaatimuksen 1 mukainen koostumus, tunnettu siitä, että komponenttia (C) on käsitelty triorganosilylointiaineella sen silanoliryhmäpitoisuuden pienentämiseksi.

Patentkrav

1. Organopolysiloxansammansättning för att bilda en avskalbar, härdad beläggning, kännetecknad av att den innehåller följande komponenter:

(A) 100 viktprocent organopolysiloxan, vars medelmolekyl innehåller två eller flera högre alkenylgrupper som uttrycks med formeln

H₂C=CH-(CH₂)ₐ⁻, i vilken a har ett värde 2-8;

(B) 0,3-40 viktprocent organovätepolysiloxanpolysiloxan, vars medelmolekyl innehåller två eller flera kiselbundna väteatomer;

(C) 2-200 viktprocent organopolysiloxanharts, som är lösligt i ett organiskt lösningsmedel och består av R₃SiO₁/₂-enheter, R₂SiO₂/₂-enheter eller RSiO₃/₂-enheter och SiO₄/₂-enheter, i vilka R företräder en monovalent kolvåtegrupp och varje molekyl har minst två alkenylgrupper, vilka uttrycks med formeln

H₂C=CH-(CH₂)ₐ⁻, i vilken a har ett värde 2-8;

(D) 0,001-5 viktprocent additionsreaktionsinhibitor;

(E) en lämplig mängd av en förening i platinagruppen för katalys av additionsreaktionen; och

(F) vilken som helst mängd av ett organiskt lösningsmedel.
2. Sammansättning enligt patentkrav 1, kännetecknad av att komponent (A) har den genomsnittliga enhetsformeln R'_bSiO_{(4-b)/2}, i vilken varje R' företräder en monovalent kolväte- eller halogenerad kolvätegrupp, av vilka åtminstone två är högre alkenylgrupper, vilka uttrycks med formeln H_2C=CH-(CH_2)_a^-, i vilken a har ett värde 2-8; minst 70 mol-% av grupperna R' är metylgrupper; och b är ett tal 1,9-2,05.

3. Sammansättning enligt patentkrav 1, kännetecknad av att komponent (A) är ett rågummimaterial med en plasticitet över 100 enligt normen JISC 2123.

4. Sammansättning enligt patentkrav 1, kännetecknad av att i komponent (C) är R_3SiO_{1/2}-enheternas molförhållande till R_2SiO_{2/2}-enheterna och/eller RSiO_{3/2}-enheterna och SiO_{4/2}-enheterna 0,1-1,5;0,1-1,0;1,0.

5. Sammansättning enligt patentkrav 4, kännetecknad av att komponent (C) består av \(\{H_2C=CH(CH_2)_a\}_2SiO_{1/2}-enhetern, _3SiO_{3/2}-enhetern och SiO_{4/2}-enhetern.

6. Sammansättning enligt patentkrav 1, kännetecknad av att komponent (C) behandlats med triorganosilyleringsmedel för att minska dess silanolgruppshalt.