\bigcirc Veröffentlichungsnummer: 0 087 073

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der Patentschrift : 07.08.85

(51) Int. Cl.4 : C 10 L 1/18

(21) Anmeldenummer: 83101271.1

(22) Anmeldetag: 10.02.83

(54) Verfahren zur Verbesserung von Kraftstoffen für Dieselmotoren.

(30) Priorität : 18.02.82 DE 3205732

Veröffentlichungstag der Anmeldung : 31.08.83 Patentblatt 83/35

(45) Bekanntmachung des Hinweises auf die Patenterteilung: 07.08.85 Patentblatt 85/32

(84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE

(56) Entgegenhaltungen:

DE-A- 2 930 220

FR-A- 2 245 756

FR-A- 2 359 199

US-A- 2913319

US-A- 4 067 699

US-A- 4 264 335

(73) Patentinhaber: Ruhrchemie Aktiengesellschaft Bruchstrasse 219 D-4200 Oberhausen 13 (DE)

Wenzel & Weidmann GmbH Mineraloelwerk Jülicher Strasse 82 D-5180 Eschweiler (DE)

(72) Erfinder: Wildersohn, Manfred, Dr.

Straisunder Strasse 7 D-5180 Eschweiler (DE)

Erfinder: DeWin, Werner, Dipl.-Chem.

Eickenhof 51

D-4220 Dinslaken (DE)

Erfinder: Tihanyi, Bela, Dr. Dipi.-Chem.

Arndtstrasse 87

D-4200 Oberhausen 1 (DE)

Erfinder: Weber, Jürgen, Dr. Dipi.-Chem.

Bunsenstrasse 17

D-4200 Oberhausen 13 (DE)

(74) Vertreter: Reicheit, Kari-Heinz, Dr.

m. Br. Ruhrchemie Aktiengesellschaft Abt. PLD Post-

fach 13 01 60

D-4200 Oberhausen 13 (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents im Europäischen Patentblatt kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Verbrennung von Kraftstoffen für Dieselmotoren durch Zusatz von Gemischen aus Salzen organischer Säuren der Lanthanoide und freier Carbonsäuren.

Dieselkraftstoffe neigen bei der Verbrennung in Motoren stärker zur Rußbildung als Ottokraftstoffe.

5 Der Ruß zeigt an, daß der Verbrennungsprozeß im Motor nur unvollständig abläuft, d. h. die Energiegewinnung aus dem Kraftstoff nicht voll genutzt wird. Abgesehen von der schlechten Ausnutzung des Kraftstoffes stellt Dieselqualm, der u. a. Kohlenwasserstoffe und Kohlenmonoxid enthält, eine starke Umweltbelastung dar. Aus diesem Grunde bemüht man sich schon seit langem, durch Zusatz von Additiven die Rußbildung bei der Verbrennung von Dieselkraftstoffen zu unterdrücken und eine möglichst vollständige Verbrennung sicherzustellen.

Es ist bereits bekannt, Cerseifen, in welchen ein Atom des dreiwertigen Cers im wesentlichen mit drei Molekülen einer Fettsäure verbunden ist, durch Einwirkung einer Carbonsäure mit mehr als 8 Kohlenstoffatomen auf Cerhydroxid herzustellen. Diese Verbindungen werden als Trockenstoffe auf dem Gebiet der Farben bzw. Lacke und Firnisse und darüber hinaus als Verbrennungshilfsmittel eingesetzt.

Nach der DE-A-27 29 365 verwendet man Cersalze von organischen Säuren, von Sulfonsäuren oder von Phosphorsäuren, die durch ein organisches Radikal substituiert sind, u. a. auch als Verbrennungshilfsmittel. Ihr Hauptanwendungsgebiet ist jedoch das der Trockenstoffe für Farben und Lacke.

Die vorgenannten Verbindungen erfüllen nicht alle Voraussetzungen, die man an ein gutes Verbrennungshilfsmittel für Dieselkraftstoffe stellt. Insbesondere ihre Löslichkeit im Dieselkraftstoffe befriedigt in keiner Weise. Daher ist es unmöglich, die für eine weitgehende Verbrennung des Kraftstoffes erforderliche katalytische Wirkung sicherzustellen, so daß schädliche Ablagerungen in wesentlichen Teilen des Motors, insbesondere im Verbrennungsraum, auftreten. Schwefel und phosphorhaltige Salze bilden darüber hinaus unerwünschte Verbrennungsprodukte, die zu Emissionsproblemen führen. Schließlich sind die bekannten Verbrennungshilfsmittel mit anderen, dem Kraftstoff zugefügten Additiven nicht oder nur in begrenztem Maße verträglich, so daß zusätzliche Ablagerungen begünstigt werden.

Es bestand daher die Aufgabe, für die Verbesserung der Verbrennung von Dieselkraftstoffen solche Zusätze zu entwickeln, die die aufgezeigten Nachteile nicht besitzen.

Die Erfindung besteht in einem Verfahren zur Verbesserung der Verbrennung von Kraftstoffen für Dieselmotoren mit Hilfe von Salzen organischer Säuren. Es ist dadurch gekennzeichnet, daß den Kraftstoffen ein Gemisch aus Neutralsalzen von Carbonsäuren und Metallen der Ordnungszahl 57 bis 71 und freien Carbonsäuren zugesetzt wird.

Es hat sich gezeigt, daß das erfindungsgemäße Verfahren, also der Zusatz von Neutralsalzen organischer Säuren bestimmter Metalle in Verbindung mit freien Carbonsäuren, zu einer einwandfreien Verbrennung der Dieselkraftstoffe führt, ohne daß Ablagerungen auftreten. Überdies wird die Rußzahl, die ein Maß für die Vollständigkeit der Verbrennung des Kraftstoffes ist, gegenüber Kraftstoffen, die nicht nach dem erfindungsgemäßen Verfahren behandelt wurden, deutlich reduziert. Von besonderer Bedeutung ist, daß die Kohlenmonoxidkonzentration und die Stickoxidkonzentration durch das erfindungsgemäße Verfahren erheblich herabgesetzt wird. Schließlich hat sich gezeigt, daß gegenüber Maßnahmen, die zur Verbesserung der Verbrennung von Dieselkraftstoffen nach dem Stand der Technik angewandt werden, das erfindungsgemäße Verfahren eine erhebliche Einsparung von Kraftstoff, je nach Geschwindigkeit, von mindestens 2 % bringt. Außerdem wird die Beschleunigungszeit im Vergleich zu nicht entsprechend der Erfindung mit Additiv versehenem Kraftstoff, im hohen Drehzahlbereich erniedrigt.

Eine Komponente des Gemisches, das entsprechend der Erfindung Dieselkraftstoffen zugesetzt wird, sind Neutralsalze von Carbonsäuren. Unter Neutralsalzen im Sinne der Erfindung werden solche Salze verstanden, in denen alle Valenzen des metalls durch Carbonsäurereste abgesättigt sind. Es ist möglich, Salze der verschiedensten Carbonsäuren einzusetzen. Geeignet sind sowohl aliphatische als auch aromatische Carbonsäuren. Bewährt haben sich Salze aliphatischer Monocarbonsäuren, insbesondere aliphatischer Monocarbonsäuren mit 4 bis 10 Kohlenstoffatomen. Diese Carbonsäuren können ein- oder mehrfach verzweigt sein, wobei neben Isooctansäure besonders den Carbonsäuren Bedeutung zukommt, die die Verzweigung in α-Stellung aufweisen, wie 2-Ethylbuttersäure und 2-Ethylhexansäure. Unter der vorstehend genannten Isooctansäure versteht man das vorwiegend isomere Dimethylhexansäure enthaltende C₈-Carbonsäuregemisch. Es wird durch Hydroformylierung eines technischen Heptengemisches und anschließende Oxidation des Hydroformylierungsproduktes erhalten. Bewährt haben sich auch solche Carbonsäuren, die durch Anlagerung von Kohlenmonoxid und Wasser an Olefine nach dem Kochverfahren erhalten werden. Hierzu gehören z. B. Pivalinsäure, 2,2-Dimethylvaleriansäure und Neohexansäure.

Nach dem erfindungsgemäßen Verfahren können einheitliche Salze eingesetzt werden, d. h. Salze, die nur ein Kation enthalten. Es ist ferner möglich, Salze zu verwenden, die verschiedene Metalle enthalten, oder aber auch Gemische verschiedener Salze. Dazu gehören Gemische aus Salzen gleicher Metalle und verschiedener Säuren aus Salzen verschiedener Metalle und gleicher Säuren und aus Salzen verschiedener Metalle und verschiedener Säuren. Besonders zweckmäßig ist es, solche Salze zu verwenden, die sich von den natürlich vorkommenden Ceriterden ableiten. Ceriterden sind Mineralien, die die Elemente der Ordnungszahl 57 bis 71, d. h. Lanthan und die sogenannten Lanthanoiden in

wechselnden Mengen enthalten. Besonders bewährt haben sich Salze, die sich von dem Mineral Bastnäsit, das in großen Mengen zur Verfügung steht, ableiten.

Die Herstellung der Salze erfolgt in bekannter Weise. So kann man von den Lösungen der Nitrate der Metalle ausgehen, die mit der stöchiometrischen Menge der Natriumsalze der Carbonsäuren umgesetzt werden. Die Natriumsalze der Carbonsäuren gelangen zweckmäßig als Lösung in einem organischen Lösungsmittel zur Anwendung, in dem auch das Reaktionsprodukt, d. h. die Lanthanoidensalze, löslich ist. Sie werden aus der Lösung durch Abdestillieren des Lösungsmittels gewonnen, weitere Reinigungsoperationen entfallen. Die Nitrate der Metalle erhält man bei Einsatz von Mineralien als Ausgangsmaterial direkt durch Aufschluß mit Salpetersäure.

Als weiterer Bestandteil der dem Dieselkraftstoff zugesetzten Gemische verwendet man erfindungsgemäß freie Carbonsäuren. Grundsätzlich lassen sich alle Carbonsäuren einsetzen, die in dem Kraftstoff für Dieselmotoren löslich sind. Sehr bewährt hat es sich, als Carbonsäuren jene Säuren anzuwenden, die als Säurereste in den Salzen, die Bestandteil des Gemisches sind, vorkommen.

Bezogen auf ein Mol Salz enthält das Gemisch 0,1 bis 2 Mol und insbesondere 0,2 bis 1,5 Mol freie 15 Carbonsäuren. Ganz besonders zweckmäßig ist es, 0,5 bis 1,0 Mol freie Carbonsäure anzuwenden.

Als Kraftstoffe für Dieselmotoren, die nach dem erfindungsgemäßen Verfahren verbessert werden können, kommen nicht nur Mineralöl-Mitteldestillate in Betracht. Mit besonderem Erfolg kann das erfindungsgemäße Verfahren auch auf native Öle angewandt werden, die als Dieselkraftstoffe Verwendung finden. Hierunter werden Pflanzenöle verstanden, zu denen z. B. Olivenöl, Erdnußöl, Sesamöl, Sonnenblumenöl und Rapsöl gehören. Es ist besonders überraschend, daß die neue Arbeitsweise auch auf diese Öle angewendet werden kann, da sie sich in ihrer physikalischen Beschaffenheit und in ihrem chemischen Verhalten grundlegend von Mineralölen unterscheiden. Die Anwendung pflanzlicher Öle im Dieselmotor führt zu erheblichen Problemen, die ihre Ursache in der Lackbildung und in der gegenüber Mineralölen wesentlich höheren Rußbildung haben. Beide Erscheinungen sind darauf zurückzuführen, daß es sich bei den natürlichen Produkten um ungesättigte Verbindungen handelt. Es ist überraschend, daß die neue Arbeitsweise den Einsatz nativer Öle als Kraftstoff für Dieselmotoren erheblich erleichtert.

Die nach dem erfindungsgemäßen Verfahren zur Verbesserung der Verbrennung verwendeten Gemische aus Salzen organischer Säuren der Lanthanoide und freien Carbonsäuren setzt man den Kraftstoffen für Dieselmotoren in solchen Mengen zu, daß ihre Konzentration 5 bis 200 mg Lanthanoidmetall bzw. -Metallgemisch je kg Kraftstoff beträgt. Besonders bewährt haben sich in Kraftstoffen auf Mineralölbasis Konzentrationen von 10 bis 50 und auf Basis nativer Öle Konzentrationen von 10 bis 100 mg Lanthanoidmetall bzw. -Metallgemisch je kg Kraftstoff.

Versuche

35

45

50

10

Der in den nachstehenden Versuchen eingesetzte Dieselkraftstoff enthält je kg 15 mg Ce als Ce(III)-2-ethylhexansäure-Gemisch.

Basis für die Untersuchungen ist der ECE-15 Fahrzyklus, der für die Abgasuntersuchungen gemäß den euroäischen Vorschriften und für Kraftstoffverbrauchsmessungen gemäß DIN 70 030 eingesetzt wird. Folgender Motor wird verwendet:

Motortyp:	VW Golf
Motorart:	Diesel
Zylinderzahl:	4
Hubraum:	1 588 cm ³
Verdichtung:	23
Kolbenhub:	86,4 mm
Getriebeübersetzung:	29,21

Kraftstoffverbrauchsmessungen werden bei 50 km/h, 90 km/h und 120 km/h vorgenommen, wobei jeweils 20 Messwerte gemittelt und die Standardabweichung berücksichtigt wird. Die Messreihe wird mit Dieselkraftstoff plus Additiv im Vergleich zu Dieselkraftstoff ohne Additiv durchgeführt. Beim Dieselkraftstoff mit Additiv wird ein Minderverbrauch von mindestens

55 50 km/h 90 km/h 120 km/h 0.3 % 0.71 % 2 %

erzielt. Die maximalwerte der Einsparung liegen deutlich über 2 %.

Der Einfluß der Additivierung auf die Beschleunigungszeit zeigt sich im höheren Drehzahlbereich als Abnahme der Beschleunigungszeiten, die bei voller Drossel, ausgehend von 1 000 Umdrehungen/Min. bis 4 500 Umdrehungen, gemessen werden. Hier wird ebenfalls aus 20 Messwerten gemittelt.

Bei den Abgasmessungen werden Kohlenmonoxid, Kohlendioxid, Kohlenwasserstoffe und Stickoxide in Abhängigkeit von der Drehzahl bestimmt. Die erhaltenen Werte sind auf Menge in der Zeiteinheit (g/h) und Menge je Leistung (g/kWh) berechnet. Sowohl bei Straßenvollast (Tabellen 1 und 2), als auch bei Straßenteillast (Tabellen 3 und 4), ist der Vorteil des inhibierten Dieselkraftstoffs zu erkennen.

<i>5</i>											
10		×£	LP 802	20,96	24,85	30,73	34,42	42,63	47,18	56,95	-
15		NO _X g/h	LP 801	27,4	30,5	37,0	45,4	52,4	60,5	74,0	
20		2 h	LP 802	0,639	0,967	0,847	1,124	1,418	2,15	2,81	
25		СН ₂ g/h	LP 801	1,0	1,52	1,46	1,53	1,60	2,362	3,236	
30	Tabelle 1		LP 802	6 408	9 362	11 496	13 163	14 930	15 666	18 287	 Straßenvollast
35	Ţ.	00 ²	LP 801	5 682	8 962	11 178	12 444	14 153	15 662	17 972	Straß
40 45			LP 802	11,05	28,2	30,41	27,0	28,1	27.9	40,0	_
50		4/b 00		14,1			27,39	30,28	34,72	30,51	
55			U/Min.	1003/1000	1252/1250	1500/1499	1749	2001	2249/2250	2500/2502	_
60											_

65

LP 801 Dieselkraftstoff LP 802 Dieselkraftstoff plus Additiv

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

Tabelle 2

)	00	ၓ	ر (CH	CH ₂	X	NO x
	E/1	g/Kwh	8/I	g/KWh	R/K	(Wh	1/8	ζWh
1/Min.	LP 801	LP 802	LP 801	LP 802	LP 801	LP 802	LP 80i	LP 802
							· ·	
1002/1000	1,92	1,549	796,2	868	0,136	0,0895	5,71	2,937
1252/1250	3,28	2,564	814,7	839	0,136	0,0879	5,709	2,259
1500/1499	2,4	2,188	804,1	818	0,104	6090,0	2,63	2,211
1749	1,73	1,65	785,9	806	0,094	0,071	2,782	2,174
2001	1,67	1,51	781,2	801	980,0	0,0782	2,812	2,353
2249/2250	1,738	1,40	784,4	785	0,108	0,1182	3,031	2,362
2500/2502	2,225	1,74	791,6	794	0,1425	0,122	3,213	2,507
					_	_		

Straßenvollast

LP 801 Dieselkraftstoff LP 802 Dieselkraftstoff plus Additiv

50 55		CC 8/h	/Min. 1.P 801	1043 5,4		10,5	20,2	37,7	79,7	161,4	217,4	264,8	519,6	
45			LP 802	4,5	9,9	9,1	17,1	29,5	53,2	8,66	178,4	246,8	286	310
<i>35</i> <i>40</i>	Tat))	.LP 801	2.977	4.057	5.428	7.266	9.379	11.732	15.051	18.757	21.752	29.079	33.567
30	Tabelle 3	င _် ၉/h	LP 802	3.016	4.302	5.575	7.455	9.547	12.178	15.552	19.375	23.105	30.250	33.931
25			LP 801	69,0	6,93	1,38	1,86	2,82	5,1	12,7	26,81	41,25	44,56	65,99
20		CH ₂ g/h	LP 802	6,66	0,95	1,36	1,74	2,76	6,1	16,99	. 56,26	36,6	55,32	54,32
10 15		z 60	LP 801	52,1	30,8	38,1	58,8	77,6	100,1	148,5	208,9	204,9	204	205,3
5		NO X E/b	LP 802	26	33,4	38,2	54,5	70,1	96,1	146,2	189,6	216.8	212,6	210,3

LP 801 Dieselkraftstoff LP 802 Dieselkraftstoff plus Additiv

Straßenteillast

65

5														
10		. NO _× g/KWh	LP 802	11.87	9,32	7,91	7,96	7,69	7,82	9,1	9,19	8,36	6,54	6,16
15		N .	LP 801	14,43	9,22	7,9	8,58	8,37	8,15	9,23	10,25	7,87	6,34	5,96
20		2 Wh	LP 802	0,281	0,266	0,282	0,256	0,302	0,416	0,789	1,273	1,412	1,384	1,591
25		CH ₂ g/KWh	LP 801	0,303	0,279	0,286	0,271	0,304			1,315	1,584	1,702	1,829
30 .	Tabelle 4	СО ₂ g/кwii	LP 802	1.379	1.202	1.152	1.095	1.047	166	896	939	891	931	994
35		00 6/k	LP 801	1.337	1.215	1.125	1.061	1.012	926	936	920	835	903	975
40		CO KWII	LP 802	2,03	1,98	1,88	2,49 .	3,18	4,33	6,2	8,75	9,52	8,88	80'6
45		C0 9/KW	LP 801	2.47	2,04	2,17	2,97	4,14	6,49	10,05	10,53	10,17	9,83	9,71
50 55			/Min.	1 04 3	385/1387	1733	2080	2426	2772/2773	3123/3120	3447	3813	4160/4162	4506/4507
)	<u> </u>		_	2	2	2	3	m	<u> </u>	4	4

LP 801 Dieselkraftstoff LP 802 Dieselkraftstoff plus Additiv

Straßenteillast

60

Patentansprüche

- 1. Verfahren zur Verbesserung der Verbrennung von Kraftstoffen für Dieselmotoren mit Hilfe von Salzen organischer Säuren, dadurch gekennzeichnet, daß den Kraftstoffen ein Gemisch aus Neuralsalzen von Carbonsäuren und Metallen der Ordnungszahl 57 bis 71 und freien Carbonsäuren zugesetzt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Salze sich von aliphatischen Monocarbonsäuren ableiten.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die aliphatischen Monocarbonsäuren 4 bis 10 Kohlenstoffatome enthalten.
- 4. Verfahren nach Anspruch 2 und 3, dadurch gekennzeichnet, daß die aliphatischen Monocarbonsäuren ein- oder mehrfach verzweigt sind.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die aliphatischen Monocarbonsäuren in α -Stellung verzweigt sind.
- 6. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die aliphatischen Monocarbonsäuren 2-Ethylbuttersäure, 2-Ethylhexansäure oder Isooctansäure ist.
- 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Salze die Metalle einzeln oder in Form von Gemischen untereinander enthalten.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß sich die Salzgemische von den natürlich vorkommenden Ceriterden ableiten.
- 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß sich die Salzgemische von dem Mineral Bastnäsit ableiten.
- 10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß als freie Carbonsäuren die den Salzen zugrundeliegenden Carbonsäuren eingesetzt werden.
- 11. Verfahren nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß je Mol Salz 0,1 bis 1 Mol freie Carbonsäuren eingesetzt wird.
- 12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß je Mol Salz 0,2 bis 0,4 Mol freie Carbonsäuren eingesetzt wird.
 - 13. Verfahren nach Anspruch 1 bis 12, dadurch gekennzeichnet, daß der Kraftstoff ein natives Öl ist.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß das native Öl Sonnenblumenöl und/oder Rapsöl ist.
- 15. Verfahren nach Anspruch 1 bis 14, dadurch gekennzeichnet, daß der Kraftstoff ein Gemisch aus Mineralöl und nativem Öl ist.
- 16. Verfahren nach Anspruch 1 bis 15, dadurch gekennzeichnet, daß je kg Kraftstoff 5 bis 200 mg Lanthanoid-metall bzw. -Metallgemisch zugesetzt werden.
- 17. Verfahren nach Anspruch 1 bis 16, dadurch gekennzeichnet, daß je kg Kraftstoff auf Mineralölbasis 10 bis 50 mg Lanthanoidmetall bzw. -Metallgemisch zugesetzt werden.
- 18. Verfahren nach anspruch 1 bis 16, dadurch gekennzeichnet, daß je kg Kraftstoff auf Basis nativer Öle 10 bis 100 mg Lanthanoidmetall bzw. -Metallgemisch zugesetzt werden.

40 Claims

35

- 1. Process for improving the combustion of diesel engine fuels by means of salts of organic acids, characterised in that a mixture of neutral salts of carboxylic acids and metals of the atomic Nos. 57 to 71 and free carboxylic acids is added to the fuels.
- 2. Process according to claim 1, characterised in that the salts are derived from aliphatic monocarboxylic acids.
- 3. Process according to claim 2, characterised in that the aliphatic monocarboxylic acids contain 4 to 10 carbon atoms.
- 4. Process according to claims 2 and 3, characterised in that the aliphatic monocarboxylic acids are singly or multiply branched.
 - 5. Process according to claim 4, characterised in that the aliphatic monocarboxylic acids are branched in the α -position.
- 6. Process according to claims 1 to 4, characterised in that the aliphatic monocarboxylic acids are 2-55 ethylbutyric acid, 2-ethylhexanoic acid or isooctanoic acid.
 - 7. Process according to claims 1 to 6, characterised in that the salts contain the metals individually or in the form of mixtures thereof.
 - 8. Process according to claim 7, characterised in that the salt mixtures are derived from the naturally occurring cerite earths.
- 9. Process according to claim 8, characterised in that the salt mixtures are derived from the mineral bastnasite.
 - 10. Process according to claims 1 to 9, characterised in that the carboxylic acids on which the salts are based are used as free carboxylic acids.
- 11. Process according to claims 1 to 10, characterised in that 0.1 to 1 mole of free carboxylic acids is used per mole of salt.

- 12. Process according to claim 10, characterised in that 0.2 to 0.4 mole of free carboxylic acid is used per mole of salt.
 - 13. Process according to claims 1 to 12, characterised in that the fuel is a natural oil.
- 14. Process according to claim 13, characterised in that the natural oil is sunflower oil and/or 5 rapeseed oil.
 - 15. Process according to claims 1 to 14, characterised in that the fuel is a mixture of mineral oil and natural oil.
 - 16. Process according to claims 1 to 15, characterised in that 5 to 200 mg of lanthanoid metal or lanthanoid metal mixture is added per kg of fuel.
 - 17. Process according to claims 1 to 16, characterised in that 10 to 50 mg lanthanoid metal or metal mixture is added per kg of mineral oil-based fuel.
 - 18. Process according to claims 1 to 16, characterised in that 10 to 100 mg lanthanoid metal or metal mixture is added per kg of natural oil-based fuel.

15

Revendications

- 1. Procédé pour l'amélioration de la combustion de carburants pour moteurs Diesel à l'aide de sels d'acides organiques, caractérisé en ce que l'on ajoute aux carburants un mélange de sels neutres d'acides carboxyliques et de métaux de numéro atomique 57 à 71 et d'acides carboxyliques libres.
 - 2. Procédé selon la revendication 1, caractérisé en ce que les sels dérivent d'acides monocarboxyliques aliphatiques.
 - 3. Procédé selon la revendication 2, caractérisé en ce que les acides monocarboxyliques aliphatiques contiennent 4 à 10 atomes de carbone.
 - 4. Procédé selon les revendications 2 et 3, caractérisé en ce que les acides monocarboxyliques aliphatiques sont ramifiés une ou plusieurs fois.
 - 5. Procédé selon la revendication 4, caractérisé en ce que les acides monocarboxyliques aliphatiques sont ramifiés en position α .
 - 6. Procédé selon les revendications 1 à 4, caractérisé en ce que les acides monocarboxyliques aliphatiques sont l'acide 2-éthylbetyrique, l'acide 2-éthylbetyrique ou l'acide isooctanoïque.
 - 7. Procédé selon les revendications 1 à 6, caractérisé en ce que les sels contiennent les métaux individuellement ou sous forme de mélanges entre eux.
 - 8. Procédé selon la revendication 7, caractérisé en ce que les mélanges de sels dérivent des terres de cérite naturelles.
 - 9. Procédé selon la revendication 8, caractérisé en ce que les mélanges de sels dérivent du minéral bastnésite.
 - 10. Procédé selon les revendications 1 à 9, caractérisé en ce que l'on utilise comme acides carboxyliques libres les acides carboxyliques qui sont à la base des sels.
- 11. Procédé selon les revendications 1 à 10, caractérisé en ce que l'on utilise 0,1 à 1 mole d'acides 40 carboxyliques libres par mole de sel.
 - 12. Procédé selon la revendication 10, caractérisé en ce que l'on utilise 0,2 à 0,4 mole d'acide carboxylique libre par mole de sel.
 - 13. Procédé selon les revendications 1 à 12, caractérisé en ce que le carburant est une huile native.
- 14. Procédé selon la revendication 13, caractérisé en ce que l'huile native est l'huile de tournesol 45 et/ou l'huile de colza.
 - 15. Procédé selon les revendications 1 à 14, caractérisé en ce que le carburant est un mélange d'huile minérale et d'huile native.
 - 16. Procédé selon les revendications 1 à 15, caractérisé en ce que l'on ajoute 5 à 200 mg de métal ou mélange de métaux lanthanides par kg de carburant.
 - 17. Procédé selon la revendication 1 à 16, caractérisé en ce que l'on ajoute 10 à 50 mg de métal ou mélange de métaux lanthanides par kg de carburant à base d'huile minérale.
 - 18. Procédé selon la revendication 1 à 16, caractérisé en ce que l'on utilise 10 à 100 mg de métal ou mélange de métaux lanthanides par kg de carburant à base d'huiles natives.

55

50

35

60