(57) Abstract: The present invention is directed to pyranyl aryl methyl benzoquinazolinone compounds of formula (I) which are M1 receptor positive allosteric modulators and that are useful in the treatment of diseases in which the M1 receptor is involved, such as Alzheimer's disease, schizophrenia, pain or sleep disorders. The invention is also directed to pharmaceutical compositions comprising the compounds, and to the use of the compounds and compositions in the treatment of diseases mediated by the M1 receptor.
Published:

- with international search report (Art. 21(3))
FIELD OF THE INVENTION

The invention is directed to a class of pyranyl aryl methyl benzoquinazolinone compounds, their salts, pharmaceutical compositions comprising them and their use in therapy of the human body. In particular, the invention is directed to a class of pyranyl aryl methyl benzoquinazolinone compounds which are muscarinic M1 receptor positive allostERIC modulators, and hence are useful in the treatment of Alzheimer's Disease and other diseases mediated by the muscarinic M1 receptor.

BACKGROUND OF THE INVENTION

Alzheimer's Disease is a common neurodegenerative disease affecting the elderly, resulting in progressive memory impairment, loss of language and visuospatial skills, and behavior deficits. Characteristics of the disease include degeneration of cholinergic neurons in the cerebral cortex, hippocampus, basal forebrain, and other regions of the brain, neurofibrillary tangles, and accumulation of the amyloid β peptide (Aβ). Aβ is a 39-43 amino acid produced in the brain by processing of the beta-amyloid precursor protein (APP) by the beta-amyloid protein cleaving enzyme ("beta secretase" or "BACE") and gamma-secretase. The processing leads to accumulation of Aβ in the brain.

Cholinergic neurotransmission involves the binding of acetylcholine either to the nicotinic acetylcholine receptor (nAChR) or to the muscarinic acetylcholine receptor (mACKR). It has been hypothesized that cholinergic hypofunction contributes to the cognitive deficits of patients suffering from Alzheimer's Disease. Consequently, acetyl cholinesterase inhibitors, which inhibit acetylcholine hydrolysis, have been approved in the United States for use in the treatment of the cognitive impairments of Alzheimer's Disease patients. While acetyl cholinesterase inhibitors have provided some cognitive enhancement in Alzheimer's Disease patients, the therapy has not been shown to change the underlying disease pathology.

A second potential pharmacotherapeutic target to counteract cholinergic hypofunction is the activation of muscarinic receptors. Muscarinic receptors are prevalent throughout the body. Five distinct muscarinic receptors (M1-M5) have been identified in mammals. In the central nervous system, muscarinic receptors are involved in cognitive, behavior, sensory, motor and autonomic functions. The muscarinic M1 receptor, which is prevalent in the cerebral cortex, hippocampus and striatum, has been found to have a major role in cognitive processing and is believed to have a role in the pathophysiology of Alzheimer's Disease. See Egle et al, TRENDS in Pharmacological Sciences, 2001, 22:8, 409-414.
In addition, unlike acetyl cholinesterase inhibitors, which are known to provide only symptomatic treatment, M1 agonists also have the potential to treat the underlying disease mechanism of Alzheimer's Disease. The cholinergic hypothesis of Alzheimer's Disease is linked to both \(\beta \)-amyloid and hyperphosphorylated tau protein. Formation of \(\beta \)-amyloid may impair the coupling of the muscarinic receptor with G-proteins. Stimulation of the M1 muscarinic receptor has been shown to increase formation of the neuroprotective \(\alpha \)APPs fragment, thereby preventing the formation of the A\(\beta \) peptide. Thus, M1 agonists may alter APP processing and enhance \(\alpha \)APPs secretion. See Fisher, Jpn J Pharmacol, 2000, 84: 101-112.

However, M1 ligands which have been developed and studied for Alzheimer's Disease have produced side effects common to other muscarinic receptor ligands, such as sweating, nausea and diarrhea, e.g. Spalding et al, Mol Pharmacol, 2002, 61:6, 1297-1302.

The muscarinic receptors are known to contain one or more allosteric sites, which may alter the affinity with which muscarinic ligands bind to the primary binding or orthosteric sites. See, e.g., S. Lazareno et al, Mol Pharmacol, 2002, 62:6, 1491-1505; S. Lazareno et al, Mol Pharmacol, 2000, 58, 194-207. See also US61/199740, US61/329,690; 61/286,122; 61/253,629; 61/247,705; 61/238,457; 61/208,331; and 61/170,744.

Thus the compounds of the invention, which are muscarinic M1 receptor positive allosteric modulators, are believed to be useful in the treatment of Alzheimer's Disease and other diseases mediated by the muscarinic M1 receptor.

SUMMARY OF THE INVENTION

The present invention is directed to pyranyl aryl methyl benzoquinazolinone compounds of generic formula (I):
or a pharmaceutically acceptable salt thereof, which is useful as an M1 receptor positive allosteric modulator.

The invention is further directed to methods of treating a patient (preferably a human) for diseases or disorders in which the M1 receptor is involved, such as Alzheimer's disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders, by administering to the patient a therapeutically effective amount of a compound of general formula (I), or a pharmaceutically acceptable salt thereof. The invention is also directed to pharmaceutical compositions which include an effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, and the use of the compounds and pharmaceutical compositions of the invention in the treatment of such diseases.

DETAILED DESCRIPTION OF THE INVENTION

In one embodiment, the invention is directed to quinolinone-pyrazolone compounds of general formula (I)

(I)

and pharmaceutically acceptable salts thereof, wherein

X-Y is selected from the group consisting of

(1) -O-CRARB-
(2) -CRARB-O-,
(3) – CRARB–SRC–,
(4) –CRARB–NRC–, and
(5) -NRC-CRARB–;
wherein RA and RB are each independently selected from the group consisting of,
 (a) hydrogen, and
 (b) -Cj_6 alkyl, and
RC is selected from the group consisting of,
 (a) hydrogen,
 (b) -C(O)-C i_6 alkyl,
 (c) -C_1-6 alkyl,
 (d) -C(O)-CH_2-C6H_5,
 (e) -S(O) 2-C_1-6 alkyl;

R1 is selected from the group consisting of
 (1) hydrogen, and
 (2) hydroxy,
 provided that when X-Y is when -O-CRARB–, -CRARB-O– or -CRARB-SRC–, then R1 is hydroxy in the isomeric position:

R2 is selected from the group consisting of
 (1) -C6-10 aryl, or
 (2) -heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N-→O or S, at least one of which is O, N, N-→0 or S,
wherein the aryl or heteroaryl R2 group is optionally substituted with one or more
 (a) halogen,
 (b) hydroxy,
 (c) -NR_3R^4,
 (d) -C_1-6 alkyl,
(e) -O-C\(_{1-6}\) alkyl,
(f) -C\(_{2-8}\) alkenyl,
(g) -C(=O)-(0)\(_m\) -R\(^5\),
(h) -C(O)-NRS,
(i) -S(=O)\(_2\)-R\(^5\),
(j) -SR\(^5\),
(k) -CN;
(l) -Ce-IO\(_a\)iy\(_l\),
(m) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N\(\rightarrow\)O or S, at least one of which is O, N, N\(\rightarrow\)O or S,
(n) Si(R\(_6\))\(_3\),
(o) =S,
wherein the alkyl, alkenyl, aryl or heteroaryl moiety is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(c) -C\(_{1-6}\) alkyl,
(d) -S-R\(_6\),
(e) -N(R\(^8\))\(_9\),
(f) -O-C\(_{1-6}\) alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen;

R\(^3\) and R\(^4\), or R\(^8\) and R\(^9\), are independently selected from the group consisting of
(1) hydrogen, or
(2) -C\(_{1-6}\) alkyl,
wherein the alkyl is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(c) -O-C\(_{1-6}\) alkyl,
(d) -NR\(_1\) OR\(_1\),
(e) -C(=O)-(O)\(_n\) -C\(_{1-6}\) alkyl,
or R\(_3\) and R\(^4\), or R\(^8\) and R\(^9\), are linked together with the nitrogen to which they are attached to form a 4-6 membered carbocyclic ring, wherein one or two of the ring carbon atoms is optionally replaced by a nitrogen, oxygen or sulfur, and the ring is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(c) C\(_{1-6}\) alkyl,
(d) -O-C\(_{1-6}\) alkyl,
(e) -CC=O)-(O)\(_n\) -C\(_{1-6}\) alkyl;

R\(^5\) is selected from the group consisting of
(1) hydrogen,
(2) -C\(_{1-6}\) alkyl,
(3) -C\(_{3-8}\) cycloalkyl,
(4) -C\(_{2-8}\) alkenyl, or
(5) -C\(_{6-10}\) aryl,
wherein the alkyl, cycloalkyl, alkenyl or aryl is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(c) -C\(_{1-6}\) alkyl,
(d) -O-C\(_{1-6}\) alkyl,
(e) -C\(_{3-8}\) cycloalkyl, or
(f) -C\(_{6-10}\) aryl;

R\(^6\) is selected from the group consisting of
(1) hydrogen, or
(2) -C\(_{1-6}\) alkyl;

R\(^{10}\) and R\(^{11}\) are independently selected from the group consisting of
(1) hydrogen, or
(2) -C\(_{1-6}\) alkyl
wherein the alkyl is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(c) -O-C\(_{1-6}\) alkyl,
(d) -C(O)-(O)\(_n\) -Cl\(_{1-6}\) alkyl,
or R\(^{10}\) and R\(^{11}\) are linked together with the nitrogen to which they are attached to form a 4-6 membered carbocyclic ring, wherein one or two of the ring carbon atoms is optionally replaced by a nitrogen, oxygen or sulfur, and the ring is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(C) \(C_{1-6} \) alkyl
(d) \(-O-C_{1-6} \) alkyl,
(e) \(-C(K\ HO)\) \(n \) \(-C_{1-6} \) alkyl;

\[\text{m is 0 or 1;} \]
\[\text{n is 0, 1 or 2.} \]

In particular embodiments of the compounds of formula (I), \(R^1 \) is hydroxy. In particular embodiment, the \(R^1 \) hydroxy group is in the isomeric position:

![Structural diagram]

In particular embodiments of the compounds of formula (I), \(X-Y \) is \(-O-CRARB- \) of \(-CRARB-O-, \) wherein RA and RB are each hydrogen.

In other embodiments of the compounds of formula (I), \(X-Y \) is \(-CRARB-SRC, \) \(-CRARB-NRC-, \) or \(-NRC-CRARB-, \) wherein RA and RB are each hydrogen, and RC is selected from the group consisting of,

(a) hydrogen,
(b) \(-C(=O)-C_{1-6} \) alkyl,
(c) \(-C_{1-6} \) alkyl,
(d) \(-C(=O)-CH2-C6H5, \) and
(e) \(-S(=O)2- \) \(C_{1-6} \) alkyl,

In particular embodiments of the compounds of formula (I), \(R^2 \) is \(-C_6\)i o aryl (for example, phenyl), substituted as described above.

In particular embodiments of the compounds of formula (I), \(R^2 \) is heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N\(\rightarrow \)O or S, at least one of which is O, N, N\(\rightarrow \)O or S, substituted as described above.

One exemplary \(R^2 \) heteroaryl group is heteroaryls having five ring atoms, the ring atoms selected from C, N, N\(\rightarrow \)O and S, wherein one or two of the ring atoms is N, N\(\rightarrow \)O or S (for example, imidazolyl, pyrazolyl, thiazolyl).

Another exemplary \(R^2 \) heteroaryl group is heteroaryls having six ring atoms, the ring atoms selected from C, N and N\(\rightarrow \)O, wherein one or two of the ring atoms is N or N\(\rightarrow \)O (for example, pyridyl, pyridyl N-oxide, pyrimidinyl). For example, in certain embodiments \(R^2 \) is pyridyl.
Another exemplary R.2 heteroaryl group is fused heteroaryls having nine or ten ring
atoms, the ring atoms selected from C, O, N, N→O and S, wherein one, two or three of the ring
atoms is O, N, N→O or S (for example, quinoïne, benzothiazole, dioxolopyridine,
benzothiadiazole, imidazopyridine, pyrrolopyridine and dihydropyrrolopyridine).

In particular embodiments of the compounds of formula (i), when R2 is –C6.IOaryl, the
aryl is optionally substituted with one or more
(a) halogen,
(b) -NR3R4,
(c) -O-C1-6 alkyl, or
(d) -C1-6 alkyl,
(e) -C2-8 alkenyl,
(f) -C6-10 aryl,
(g) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring
atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is
O, N, N→O or S,
wherein the alkyl, alkenyl, aryl or heteroaryl group is optionally substituted with
one or more
(i) halogen,
(ii) -C1-6 alkyl,
(iii) -NR8R9,
(iv) -O-C1-6 alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (i), when R2 is a heteroaryl

}
(iv)-O-C$_{1-6}$ alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (I), when R_2 is a heteroaryl group having six ring atoms, the ring atoms selected from C, N and N-\rightarrowO, wherein one or two of the ring atoms is N or N-\rightarrowO, the heteroaryl is optionally substituted with one or more

(a) halogen,
(b) hydroxy,
(c) -NR$_3$R$_4$,
(d) -O-C$_{1-6}$ alkyl,
(e) -C$_{1-6}$ alkyl,
(f) -C$_2$-8 alkenyl,
(g) -C(=O)-(O)$_m$R$_5$,
(h) -C(=O)-NR$_5$,
(i) -S(=O)$_2$R$_5$,
(j) -SR$_5$,
(k) ~CN;
(l) -C$_{6-10}$ aryl,
(m) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N-\rightarrowO or S, at least one of which is O, N, N-\rightarrowO or S,
(n) Si(R6)$_3$, or
(o) =S,

wherein the alkyl, aryl or heteroaryl moiety is optionally substituted with one or more

(i) halogen,
(ii) hydroxyl
(iii) -C$_{1-6}$ alkyl
(iv) -S-R$_6$,
(v) -NR$_8$R$_9$,
(vi)-O-C$_{1-6}$ alkyl,

wherein the alkyl is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (I), when R_2 is heteroaryl group having nine or ten ring atoms, the ring atoms selected from C, O, N, N-\rightarrowO and S, wherein one, two or three of the ring atoms is N, N-\rightarrowO, O or S, the heteroaryl is optionally substituted with one or more

(a) halogen,
(b) -NR$_3$R$_4$,
(c) -O-C₁₋₆ alkyl,
(d) -Ci-₆ alkyl,
(e) -€6-10a yl»
(f) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,
wherein the alkyl, aryl or heteroaryl group is optionally substituted with one or more
(i) halogen,
(ii) -C₁₋₆ alkyl,
(iii) -NR⁸R⁹,
(W)-O-C₁₋₆ alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In one embodiment, the invention is directed to methods of treating a patient (preferably a human) for diseases in which the M1 receptor is involved, such as Alzheimer's Disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders, by administering to the patient a therapeutically effective amount of a compound of general formula (I).

The invention is also directed to the use of a compound of formula (I) for treating diseases or disorders in which the M1 receptor is involved, such as Alzheimer's disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders.

The invention is also directed to medicaments or pharmaceutical compositions for treating diseases or disorders in which the M1 receptor is involved, such as Alzheimer's disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders, which comprise a compound of formula (I), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The invention is further directed to a method for the manufacture of a medicament or a composition for treating diseases or disorders in which the M1 receptor is involved, such as Alzheimer's disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders, comprising combining a compound of formula (I) with one or more pharmaceutically acceptable carriers.

Within the genus of compounds of formula (I), there is a sub-genus of compounds of formula (II);
and pharmaceutically acceptable salts thereof, wherein X, Y and R₂ are as described above.

In particular embodiments of the compounds of formula (II), X-Y is -O-CR₂-{CR₃}₆₋₅, wherein RA and RB are each hydrogen.

In other embodiments of the compounds of formula (II), X-Y is -CR₂-NRC- or -NRC-CR₂-, wherein RA and RB are each hydrogen, and RC is selected from the group consisting of,

(a) hydrogen,
(b) ~C(=O)-C₁₋₆ alkyl,
(c) -C₁₋₆ alkyl,
(d) -C(=O)-CH₂-C₆H₅,
(e) -S(O)₂-C₁₋₆ alkyl.

In particular embodiments of the compounds of formula (II), R₂ is -C₆-10 aryl (for example, phenyl), substituted as described above.

In particular embodiments of the compounds of formula (II), R₂ is heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S, substituted as described above.

One exemplary R₂ heteroaryl group is heteroaryls having five ring atoms, the ring atoms selected from C, N₁, N→O and S, wherein one or two of the ring atoms is N, N→O or S (for example, imidazolyl, pyrazolyl, thiazolyl).
Another exemplary R.2 heteroaryl group is heteroaryls having six ring atoms, the ring atoms selected from C, N and N→O, wherein one or two of the ring atoms is N or N→O (for example, pyridyl, pyridyl N-oxide, pyriniidinyl). For example, in certain embodiments R2 is pyridyl.

Another exemplary R2 heteroaryl group is fused heteroaryls having nine or ten ring atoms, the ring atoms selected from C, O, N, N→O and S, wherein one, two or three of the ring atoms is N, N→O, O or S (for example, quinoline, benzothiazole and pyridinylpyrrole).

In particular embodiments of the compounds of formula (II), when R2 is -C6-10 aryl, the aryl is optionally substituted with one or more

(a) halogen,
(b) -NR₃R₄⁻,
(c) -O-C₁₋₆ alkyl, or
(d) -C₁₋₆ alkyl,
(e) -C₂-8 alkenyl,
(f) -C₆-lo aryl,
(g) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S, wherein the alkyl, alkenyl, aryl or heteroaryl moiety is optionally substituted with one or more

(i) halogen,
(ii) -Cl-6 alkyl,
(iii) -NR₈R₉⁻,
(iv) -O-C₁₋₆ alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (II), when R2 is a heteroaryl group having five ring atoms, the ring atoms selected from C, N, N→O and S, wherein one or two of the ring atoms is N, N→O or S, the heteroaryl is optionally substituted with one or more

(a) halogen,
(b) -O-C₁₋₆ alkyl,
(c) -C¹₋₆ alkyl,
(d) -C₆-10 aryl,
(e) heteroaryl which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,
wherein the alkyl, aryl or heteroaryl moiety is optionally substituted with one or more
(i) halogen,
(ii) -C\textsubscript{1-6} alkyl,
(iii) -NR\textsubscript{8}R\textsubscript{9},
(iv) -O-C\textsubscript{1-6} alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (II), when R\textsubscript{2} is a heteroaryl group having six ring atoms, the ring atoms selected from C, N and N\textrightarrow{}O, wherein one or two of the ring atoms is N or N\textrightarrow{}0, the heteroaryl is optionally substituted with one or more
(a) halogen,
(b) hydroxy,
(c) -NR\textsubscript{3}R\textsubscript{4},
(d) -O-C\textsubscript{1-6} alkyl,
(e) -C\textsubscript{1-6} alkyl,
(f) -C2-8 alkenyl,
(g) -C(=O)-(O)m-R5,
(h) -C(=O)-NR5,
(i) -S(=O)2-R5,
(j) -SRS,
(k) -CN :
(l) -C6-10 aryl,
(m) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N\textrightarrow{}O or S, at least one of which is O, N, N\textrightarrow{}0 or S,
(n) Si(R\textsubscript{6})

wherein the alkyl, aryl or heteroaryl moiety is optionally substituted with one or more
(i) halogen,
(ii) hydroxy,
(iii) -C\textsubscript{1-6} alkyl,
(iv) -S-R5,
(v) -NR8R9,
(vi) -O-C\textsubscript{1-6} alkyl,
wherein the alkyl is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (II), when R\textsubscript{2} is a heteroaryl group having nine or ten ring atoms, the ring atoms selected from C, O, N, N\textrightarrow{}0 and S, wherein one, two or three of the ring atoms is N, N\textrightarrow{}0, O or S, the heteroaryl is optionally substituted with one or more
Within the genus of compounds of formula (I), there is a sub-genus of compounds of formula (III):

![Chemical Structure](image)

and pharmaceutically acceptable salts thereof, wherein X and Y are as described above, and R7 is selected from the group consisting of
(1) halogen,
(2) hydroxy,
(3) -NR₃R₄,
(4) -Cl-6 alkyl,
(5) -O-C₁₆ alkyl,
(6) -C₂-₈ alkenyl,
(7) -C(OH)ₒₘ-R₅,
(8) -C(O)-N R₅,
(9) -S(O)₂-R₅,
(10) -SR₅,
(11) -CN;
(12) -C₆-l θaryl,
(13) Si(R₆)₃,
(14) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms,
the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,
(15) Si(R₆)₃,
(16) =S, or
(17) hydrogen,
wherein the alkyl, alkenyl, aryl or heteroaryl moiety is optionally substituted with one or more
(a) halogen,
(b) -Cₑ₋₆ alkyl,
(c) -S-R₆,
(d) -NR₈R₉,
(e) -OC₁₋₆ alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiment of compounds of formula (III), R₇ is selected from the group
consisting of
(1) halogen,
(2) hydroxy,
(3) -NR₃R₄,
(4) -C₇₋₆ alkyl,
(5) -O-C₁₋₆ alkyl,
(6) -S(=O)₂-R₅, or
(7) -SR₅.
In one embodiment, the compounds of formula (I) are compounds of formula (IV)

wherein R2 is as described above.

In particular embodiments of the compounds of formula (IV), R2 is \(-C6-10\) aryl (for example, phenyl), substituted as described above.

In particular embodiments of the compounds of formula (IV), R2 is heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N\(\rightarrow\)O or S, at least one of which is O, N, N\(\rightarrow\)O or S, substituted as described above.

One exemplary R2 heteroaryl group is heteroaryls having five ring atoms, the ring atoms selected from C, N, N\(\rightarrow\)O and S, wherein one or two of the ring atoms is N, N\(\rightarrow\)O or S (for example, imidazolyl, pyrazolyl, thiazolyl).

Another exemplary R2 heteroaryl group is heteroaryls having six ring atoms, the ring atoms selected from C, N and N\(\rightarrow\)O, wherein one or two of the ring atoms is N or N\(\rightarrow\)O (for example, pyridyl, pyridyl N-oxide, pyrimidinyl). For example, in certain embodiments R2 is pyridyl.

Another exemplary R2 heteroaryl group is fused heteroaryls having nine or ten ring atoms, the ring atoms selected from C, O, N, N\(\rightarrow\)O and S, wherein one, two or three of the ring atoms is N, N\(\rightarrow\)O, O or S (for example, quinoline, benzothiazole, dioxolopyridine, benzothiadiazole, imidazopyridine, pyrrolopyridine and dihydropyrrolopyridine).

In particular embodiments of the compounds of formula (IV), when R2 is \(-C6-10\) arYl, the aryl is optionally substituted with one or more
(a) halogen,
(b) - N R₃ R⁴,
(c) -O-C₁-₆ alkyl, or
(d) -C₁₋₆ alkyl
(e) -C₂-₈ alkenyl,
(f) -C₆-₁₀ aryl,
(g) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,

wherein the alkyl, alkenyl, aryl or heteroaryl group is optionally substituted with one or more
(i) halogen,
(U)-C₁-₆ alkyl,
(iii) - N R₈ R⁹,
(iv) -O-C₁-₆ alkyl,

wherein the alkyl is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (IV), when R₂ is a heteroaryl group having five ring atoms, the ring atoms selected from C, N, N→O and S, wherein one or two of the ring atoms is N, N→O or S, the heteroaryl is optionally substituted with one or more

(a) halogen,
(b) -O-C₁-₆ alkyl,
(c) -C₁-₆ alkyl,
(d) -C₆-₁₀ aryl,
(e) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,

wherein the alkyl, aryl or heteroaryl moiety is optionally substituted with one or more

(i) halogen,
(H)-C₁-₆ alkyl,
(iii) - N R₈ R⁹,
(iv) -O-C₁-₆ alkyl,

wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (IV), when R₂ is a heteroaryl group having six ring atoms, the ring atoms selected from C, N and N→O, wherein one or two of the ring atoms is N or N→O, the heteroaryl is optionally substituted with one or more

(a) halogen,
(b) hydroxy,
(c) --NR₃R₄,
(d) -O-C₁₋₆ alkyl,
(e) -C₁₋₆ alkyl,
(f) -C₂₋₈ alkenyl,
(g) -C(-0)-(0)ₘ-R₅,
(h) -C(=O)-NR₅,
(i) -S(=O)₂-R₅,
(j) -O-SRS,
(k) -CN;
(l) -C₆₋₁₀ aryl,
(m) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,
(n) Si(R⁶)₃, or
(o) HS,
wherein the alkyl, aryl or heteroaryl moiety is optionally substituted with one or more
(iii) halogen,
(iv) hydroxyl
(v) -C₁₋₆ alkyl,
(vi) -S-R₅,
(b) -NR₈R₉,
(vii) -O-C₁₋₆ alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

In particular embodiments of the compounds of formula (II), when R₂ is a heteroaryl group having nine or ten ring atoms, the ring atoms selected from C, O, N, N→O and S, wherein one, two or three of the ring atoms is N, N→O, O or S, the heteroaryl is optionally substituted with one or more

(a) halogen,
(b) -NR₃R₄,
(C) -O-Cl -₆ alkyl,
(d) -C₁₋₆ alkyl,
(e) -C₆₋₁₀ aryl,
(f) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,
wherein the alkyl, aryl or heteroaryl group is optionally substituted with one or more

(i) halogen,

(ii) C₁₋₆ alkyl,

(iii) -NR⁸R⁹,

(iv) O-C₁₋₆ alkyl,

wherein the alkyl moiety is optionally substituted with one or more halogen.

Specific embodiments of formula (I) are described herein as Examples 1-163, including

1-37, as set forth below:

6-[(6-Chloropyridin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyranyl-4-yl]benzo[h]quinazolin-4(3H)-one;
3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyranyl-4-yl]methyl] benzo[h]quinazolin-4(3H)-one;
3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyranyl-4-yl]methyl] benzo[h]quinazolin-4(3H)-one;
3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyranyl-4-yl]methyl] benzo[h]quinazolin-4(3H)-one;

3-[(J'R, Y5)-3-Hydroxytetrahydro-2 H-pyran-4-yl]-6- [(6-(1,3-thiazol-4-yl)pyridine-3-yl)methyl]benzo[iz]quinazolin-4(3H)-one;
6-[(6-Chloro-1-oxidopyridin-3-yl)methyl]-3-[(5i?, ^S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 H)-one;
6-[(2-Chloropyridin-4-yl)methyl]-3-[(5i?, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 H)-one;
3-[(5i?, 4S)-3-Hydroxytetrahydro-2 H-pyran-4-yl]-6-[(6-(methylsulfonyl)pyridine-3-yl)methyl]benzo[iz]quinazolin-4(3 H)-one;
5-([(J'R, Y5)-3-Hydroxytetrahydro-2 H-pyran-4-yl]4-oxo-3,4-dihydrobenzo [iz]quinazolin-6-yl]methylpyridine-2-carboxylic acid;
5-([(3R, 4S)-3-Hydroxytetrahydro-2 H-pyran-4-yl]4-oxo-3,4-dihydrobenzo [iz]quinazolin-6-yl)methy lJ-YJV-dimethylpyridine-2-carboxamide;
34(5i ?, ^S-Hydroxytetrahydro-2 H-pyran-4-yl)O-IEo-Cl-methoxy-1-methylthiopyridine-S-yl)methyl benzo [iz]quinazolin-4(3 H)-one;
6- [(6-(Hydroxymethyl)pyridine-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 H)-one;
6-[(2-Fluoropyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 H)-one;
6-[(2-Fluoropyridin-4-yl)methyl] -3-[(3S, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 H)-one;
3-[(J'R, Y5)-3-Hydroxytetrahydro-2 H-pyran-4-yl]benzo [iz]quinazolin-4(3 J H)-one;
6- [(6-(Difluoromethyl) pyridine-3-y1)methyl] -3-[(3R, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo [iz]quinazolin-4(3 S H)-one;
6-[(2-Chloro-1-oxidopyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 i) H)-one;
25 6-[(2-Fluoropyridin-4-yl)methyl] -3-[(3S, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[iz]quinazolin-4(3 J H)-one;
3- [(3R, 4S)-3-Hydroxytetrahydro-2 H-pyran-4-yl]methylbenzo [iz]quinazo lin-4(3 f)-one;
6-[(6-Thioxopyridin-3-yl)methyl]-3-[(Jf s ^S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo [iz]quinazolin-4(3 i) H)-one;
6-[(6-Hydroxy pyridin-3-yl)methyl]-3-[(3i? Y5)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo [iz]quinazolin-4(3 i) H)-one;
6-[(6-(Difluoromethoxy)pyridine-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quinazolin-4(3H)-one;
6-[(2-(Difluoromethoxy)pyridine-4-yl)methyl]-3-[(3S, 4R)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quinazolin-4(3H)-one;
6-[(3-Bromo-1-methyl-7H-pyrrolo[2,3-b]pyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quinazolin-4(3H)-one;
6-[(1-Ethyl-7H-pyrrolo[2,3-b]pyridin-4-yl)methyl]-3-[(3S, 4R)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quinazolin-4(3H)-one;
6-[(6-Chloropyridin-3-yl)methyl]-3-[(3S, 4R)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[z]quinazolin-4(3H)-one;
3-[(3S', 4S)-4-Hydroxytetrahydro-2H-pyran-3-yl]-6-[(6'-methyl-2'H-pyrrolo[2,3-b]pyridin-5-yl)methyl]benzo/[z]quinazolin-4(3H)-one;
rac-β-[(6-CMorpholin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxypiperidin-4-yl]benzo/[h]quinazolin-4(3H)-one;
rac-β-[(6-Clmorpholin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxypiperidin-4-yl]benzo/[h]quinazolin-4(3H)-one;
and pharmaceutically acceptable salts thereof.

The invention is also directed to methods of treating a patient (preferably a human) for diseases or disorders in which the M1 receptor is involved, such as Alzheimer's Disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders, by administering to the patient a therapeutically effective amount of a compound of formulae (II) to (IV), or a pharmaceutically acceptable salt thereof.

The invention is also directed to the use of a compound of formulae (II) to (IV), for treating a disease or disorder in which the M1 receptor is involved, such as Alzheimer's Disease, cognitive impairment, schizophrenia, pain disorders and sleep disorders, by administering to the patient a compound of formulae (II) to (IV), or a pharmaceutically acceptable salt thereof.

The invention is also directed to medicaments or pharmaceutical compositions for the treatment of diseases or disorders in a patient (preferably a human) in which the M1 receptor is involved, such as Alzheimer's Disease, cognitive impairment, schizophrenia, pain disorders, and sleep disorders, which comprise a compound of formulae (II) to (IV), or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The invention is also directed to a method for the manufacture of a medicament or a pharmaceutical composition for treating diseases in which M1 receptor is involved, such as
Alzheimer's Disease, cognitive impairment, schizophrenia, pain disorders, and sleep disorders, comprising combining a compound of formulae (II) to (IV), or a pharmaceutically acceptable salt thereof, with a pharmaceutically acceptable carrier.

Where a variable occurs more than once in any of formulae (II) to (IV), or in a substituent thereof, the individual occurrences of that variable are independent of each other, unless otherwise specified.

As used herein, the term "alkyl," by itself or as part of another substituent, means a saturated straight or branched chain hydrocarbon radical having the number of carbon atoms designated (e.g., C\(\text{\textbackslash Q}\) alkyl means an alkyl group having from one to ten carbon atoms).

Preferred alkyl groups for use in the invention are C\(\text{\textbackslash Q}\) alkyl groups, having from one to six atoms. Exemplary alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, pentyl, hexyl, and the like. Co alkyl means a bond.

As used herein, the term "alkenyl," by itself or as part of another substituent, means a straight or branched chain hydrocarbon radical having a single carbon-carbon double bond and the number of carbon atoms designated (e.g., C2-10 alkenyl means an alkenyl group having from two to ten carbon atoms). Preferred alkenyl groups for use in the invention are C2-6 alkenyl groups, having from two to six carbon atoms. Exemplary alkenyl groups include ethenyl and propenyl.

As used herein, the term "cycloalkyl," by itself or as part of another substituent, means a saturated cyclic hydrocarbon radical having the number of carbon atoms designated (e.g., C3.42 cycloalkyl means a cycloalkyl group having from three to twelve carbon atoms). The term cycloalkyl as used herein includes mono-, bi- and tricyclic saturated carbocycles, spirocycles, and bridged and fused ring carbocycles.

Preferred cycloalkyl groups for use in the invention are monocyclic C\(3\text{_g}\) cycloalkyl groups, having from three to eight carbon atoms. Exemplary monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. Exemplary bridged cycloalkyl groups include adamantyl and norbornyl. Exemplary fused cycloalkyl groups include decahydronaphthalene.

As used herein, the term "aryl," by itself or as part of another substituent, means an aromatic cyclic hydrocarbon radical. Preferred aryl groups have from six to ten carbons atoms. The term "aryl" includes multiple ring systems as well as single ring systems. Preferred aryl groups for use in the invention include phenyl and naphthyl.

The term "aryl" also includes fused cyclic hydrocarbon rings which are partially aromatic (i.e., one of the fused rings is aromatic and the other is non-aromatic). An exemplary aryl group which is partially aromatic is indanyl.

As used herein, the term "heteroaryl," by itself or as part of another substituent, means a cyclic or polycyclic group having from five to twelve ring atoms selected from C, N, N→O, O
and S, wherein at least one ring heteroatom is O, N, N→O or S, and wherein at least one of the constituent rings is aromatic. Exemplary heteroaryl groups for use in the invention include carbazolyl, carbolinyll, chromenyl, cinnolinyll, ruranyll, benzofuranyl, benzofurazanyll, isobenzofuranyl, imidazolyl, benzimidazolyl, benzimidazolonyll, indazolyl, indolyl, isoindolyl, indolinyll, indolazinyl, indinyl, oxadiazolyl, oxazolyl, benzoxazolyl, isoxazolyl, pyranyll, pyrazolyl, pyrazolinyll, pyridazinyll, pyridyl, pyrimidinyll, pyrrolyll, quinolyl, isoquinolinyll, tetrazolyl, thiazolyl, thiothiazolyl, thiadiazolyl, thienyl, benzothioenyl, benzothiazolyl, quinoxalinyl, triazinyl and triazolyl, and IV-oxides thereof.

One subgroup of heteroaryl groups have five ring atoms, the ring atoms selected from C, N, N→O or S, wherein one or two of the ring atoms is N, N→O or S. Exemplary heteroaryl groups in this embodiment are imidazolyl, pyrazolyl and thiazolyl.

Another subgroup of heteroaryl groups have six ring atoms, the ring atoms selected from C, N and N→O, wherein one or two of the ring atoms is N or N→O. Exemplary heteroaryl groups in this embodiment are pyridyl, pyridyl-N-oxide and pyrimidinyll.

Another subgroup of heteroaryl groups have nine or ten ring atoms, the ring atoms selected from C, N, N→O and S, wherein one or two of the ring atoms is N, N→O or S. Exemplary heteroaryl groups in this embodiment are quinoline, benzothiazole, dioxolopyridine, benzothiadiazole, imidazopyridine, pyrrolopyridine and dihydropyrrolopyridiiie.

The term "heteroaryl" also includes fused cyclic heterocyclic rings which are partially aromatic (i.e., one of the fused rings is aromatic and the other is non-aromatic). An exemplary heteroaryl group which is partially aromatic is benzodioxol.

When a heteroaryl group as defined herein is substituted, the substituent may be bonded to a ring carbon atom of the heteroaryl group, or on a ring heteroatom (i.e., a nitrogen, oxygen or sulfur), which has a valence which permits substitution. Preferably, the substituent is bonded to a ring carbon atom. Similarly, when a heteroaryl group is defined as a substituent herein, the point of attachment may be at a ring carbon atom of the heteroaryl group, or on a ring heteroatom (i.e., a nitrogen, oxygen or sulfur), which has a valence which permits attachment. Preferably, the attachment is at a ring carbon atom.

As used herein, the term "halo" or "halogen" includes fluoro, chloro, bromo and iodo.

The compounds of the invention may have one or more asymmetric centers. Compounds with asymmetric centers give rise to enantiomers (optical isomers), diastereomers (configurational isomers) or both, and it is intended that all of the possible enantiomers and diastereomers in mixtures and as pure or partially purified compounds are included within the scope of this invention. The present invention is meant to encompass all such isomeric forms of the compounds of formulae (I) to (IV).
Formulae (I) to (IV) are shown above without a definite stereochemistry. The present invention includes all stereoisomers of formulae (I) to (IV), and pharmaceutically acceptable salts thereof.

The independent syntheses of the enantiomerically or diastereomerically enriched compounds, or their chromatographic separations, may be achieved as known in the art by appropriate modification of the methodology disclosed herein. Their absolute stereochemistry may be determined by the x-ray crystallography of crystalline products or crystalline intermediates that are derivatized, if necessary, with a reagent containing an asymmetric center of known absolute configuration.

If desired, racemic mixtures of the compounds may be separated so that the individual enantiomers or diastereomers are isolated. The separation can be carried out by methods well known in the art, such as the coupling of a racemic mixture of compounds to an enantiomerically pure compound to form a diastereomeric mixture, followed by separation of the individual diastereomers by standard methods, such as fractional crystallization or chromatography. The coupling reaction is often the formation of salts using an enantiomerically pure acid or base. The diastereomeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue. The racemic mixture of the compounds can also be separated directly by chromatographic methods using chiral stationary phases, which methods are well known in the art.

Alternatively, any enantiomer or diastereomer of a compound may be obtained by stereoselective synthesis using optically pure starting materials or reagents of known configuration by methods well known in the art.

In the compounds of Formula I, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of generic Formula I. For example, different isotopic forms of hydrogen (H) include protium (iH) and deuterium (2H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.

Isotopically-enriched compounds within generic Formula I can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
The compounds of the invention may be prepared according to the following reaction Schemes, in which variables are as defined before or are derived, using readily available starting materials, from reagents and conventional synthetic procedures. It is also possible to use variants which are themselves known to those of ordinary skill in organic synthesis art, but are not mentioned in greater detail.

The present invention also provides a method for the synthesis of compounds useful as intermediates in the preparation of compounds of the invention.

Scheme 1.

A general synthesis is shown in Scheme 1. Treatment of 2-tnethyI-1-nitronaphthalene 1 with Bredereck’s reagent affords compound 2. Oxidation of 2 with a reagent like potassium permanganate followed by esterification using anhydrous methanol saturated with HCl affords ester 3. Reduction of the nitro group via a catalyst such as palladium on carbon under an atmosphere of hydrogen is followed by bromination with bromine to afford 4. Hydrolysis of 4 using a base such as sodium hydroxide affords acid 5. Amide bond formation with (3J,4S)-4-aminethydro-2H-pyran-3-ol using a coupling reagent such as BOP (Benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate) affords 6. Cyclization of 6 to benzoquinazolinone 7 is mediated by dimethylformamide dimethylacetal. Finally, Negishi cross coupling of 7 with the appropriate
zinc reagent using a catalyst such as palladium tetrakis triphenylphosphine in a solvent like THF affords Example 1.

Scheme 2

As shown in Scheme 2, Example 1 may be transformed into a number of other examples. Displacement of the chloride with a nucleophile such as sodium thiomethoxide in a solvent like DMSO or DMF at elevated temperature affords Example 2. Transition metal mediated cross-coupling of Example 1 with an organometal such as methylzinc chloride using a catalyst such as palladium in a suitable solvent like THF affords Example 3. A number of other organometals such as boronic acids, boronate esters, potassium fluoroborate salts, and tin reagents may also be employed.

Scheme 3

In Scheme 3, intermediate 7 may be converted to boronate ester 8 with pinacol diboron ester using a catalyst such as palladium, a base like potassium acetate in a solvent such as DMSO. Cross-coupling of 8 with bromide 10 using a catalyst like palladium, a base such as cesium carbonate in a
solvent like THF affords Example 15. Bromide 10 may be produced from alcohol 9 using a reagent such as thionyl bromide in a solvent like dichloromethane.

Scheme 4

In addition, products may be converted further into other examples. As shown in Scheme 4, oxidation of Example 2 with an oxidant such as meta-chloroperoxybenzoic acids affords Example 16.

Scheme 5

In Scheme 5, bromide 4 may be treated with dimethylformamide dimethylacetal to afford 11. Heating 11 with an ammonia source such as ammonium acetate in acetic acid affords benzoquinazolinone 12. Reaction of 12 with epoxide 14 in the presence of a base such as
potassium carbonate and a solvent like DMF affords 1 as a mixture of regioisomers which can be separated. Cross-coupling as described in Example 1 affords 16. Removal of the tert-butoxycarbonyl group can be mediated using an acid such as HCl in a solvent like dioxane to afford Example 35.

Scheme 6

Example 35 can be further functionalized through chemistry off the piperidine ring. For example, acylation can be carried out using a reagent such as acetic anhydride in the presence of a base like triethylamine in a solvent like dichloromethane to afford Example 36.

During any of the above synthetic sequences it may be necessary or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOraie, Plenum Press, 1973, and T.W. Greene & P/G.M. Wuts, Protective Groups in Organic Synthesis\ John Wiley & Sons, 1999. The protecting groups may be removed at a convenient sequent stage using methods known from the art.

The term "substantially pure" means that the isolated material is at least 90% pure, and preferably 95% pure, and even more preferably 99% pure as assayed by analytical techniques known in the art.

As used herein, the term "muscarinic M1 receptor" refers to one of the five subtypes of the muscarinic acetylcholine receptor, which is from the superfamily of G-protein coupled receptors. The family of muscarinic receptors is described, for example, in Pharmacol Ther, 1993, 58:319-379; Eur J Pharmacol, 1996, 295:93-102, and Mol Pharmacol, 2002, 61:1297-1302. The muscarinic receptors are known to contain one or more allosteric sites, which may alter the affinity with which muscarinic ligands bind to the primary binding or orthosteric sites. See, e.g., S. Lazareno et al, Mol Pharmacol, 2002, 62:6, 1491-1505.

As used herein, the terms "positive allosteric modulator" and "allosteric potentiator" are used interchangeably, and refer to a ligand which interacts with an allosteric site of a receptor to activate the primary binding site. The compounds of the invention are positive
allosteric modulators of the muscarinic M1 receptor. For example, a modulator or potentiator may directly or indirectly augment the response produced by the endogenous ligand (such as acetylcholine or xanomeline) at the orthosteric site of the muscarinic M1 receptor in an animal, in particular, a human.

The actions of Hgands at allosteric receptor sites may also be understood according to the "allosteric ternary complex model," as known by those skilled in the art. The allosteric ternary complex model is described with respect to the family of muscarinic receptors in Birdshall et al., Life Sciences, 2001, 68:2517-2524. For a general description of the role of allosteric binding sites, see Christopoulos, Nature Reviews: Drug Discovery, 2002, 1:198-210.

It is believed that the compounds of the invention bind to an allosteric binding site that is distinct from the orthosteric acetylcholine site of the muscarinic M1 receptor, thereby augmenting the response produced by the endogenous ligand acetylcholine at the orthosteric site of the M1 receptor. It is also believed that the compounds of the invention bind to an allosteric site which is distinct from the xanomeline site of the muscarinic M1 receptor, thereby augmenting the response produced by the endogenous ligand xanomeline at the orthosteric site of the M1 receptor.

The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. The compounds of the invention may be mono, di or tris salts, depending on the number of acid functionalities present in the free base form of the compound. Free bases and salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like.

Salts in the solid form may exist in more than one crystal structure, and may also be in the form of hydrates. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, \(\Lambda^iV\)-dibenzylethylene-diamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, \(iV\)-ethylymorpholine, \(iV\)-ethyypiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.

When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, trifluoroacetic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic,
mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, phenylpantothenic acid, and the like.

The present invention is directed to the use of the compounds of formulae (I) to (III) disclosed herein as M1 allosteric modulators in a patient or subject such as a mammal in need of such activity, comprising the administration of an effective amount of the compound. In addition to humans, a variety of other mammals can be treated according to the method of the present invention.

The compounds of the present invention have utility in treating or ameliorating Alzheimer's disease. The compounds may also be useful in treating or ameliorating other diseases mediated by the muscarinic M1 receptor, such as schizophrenia, sleep disorders, pain disorders (including acute pain, inflammatory pain and neuropathic pain) and cognitive disorders (including mild cognitive impairment). Other conditions that may be treated by the compounds of the invention include Parkinson's Disease, pulmonary hypertension, chronic obstructive pulmonary disease (COPD), asthma, urinary incontinence, glaucoma, schizophrenia, Trisomy 21 (Down Syndrome), cerebral amyloid angiopathy, degenerative dementia, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type (HCHWA-D), Creutzfeld-Jakob disease, prion disorders, amyotrophic lateral sclerosis, progressive supranuclear palsy, head trauma, stroke, pancreatitis, inclusion body myositis, other peripheral amyloidoses, diabetes, autism and atherosclerosis.

In preferred embodiments, the compounds of the invention are useful in treating Alzheimer's Disease, cognitive disorders, schizophrenia, pain disorders and sleep disorders. For example, the compounds may be useful for the prevention of dementia of the Alzheimer's type, as well as for the treatment of early stage, intermediate stage or late stage dementia of the Alzheimer's type.

Potential schizophrenia conditions or disorders for which the compounds of the invention may be useful include one or more of the following conditions or diseases: schizophrenia or psychosis including schizophrenia (paranoid, disorganized, catatonic or undifferentiated), schizophreniform disorder, schizoaffective disorder, delusional disorder, brief psychotic disorder, shared psychotic disorder, psychotic disorder due to a general medical condition and substance-induced or drug-induced (phencyclidine, ketamine and other dissociative anaesthetics, amphetamine and other psychostimulants and cocaine) psychosis or psychotic disorder, psychosis associated with affective disorders, brief reactive psychosis, schizoaffective psychosis, "schizophrenia-spectrum" disorders such as schizoid or schizotypal personality disorders, or illness associated with psychosis (such as major depression, manic depressive (bipolar) disorder, Alzheimer's disease and post-traumatic stress syndrome), including both the positive and the negative symptoms of schizophrenia and other psychoses; cognitive disorders including dementia (associated with Alzheimer's disease, ischemia, multi-infarct dementia, trauma, vascular
problems or stroke, HIV disease, Parkinson's disease, Huntingdon's disease, Pick's disease, Creutzfeldt-Jacob disease, perinatal hypoxia, other general medical conditions or substance abuse); delirium, amnestic disorders or age related cognitive decline.

In another specific embodiment, the present invention provides a method for treating schizophrenia or psychosis comprising administering to a patient in need thereof an effective amount of a compound of the present invention. Particular schizophrenia or psychosis pathologies are paranoid, disorganized, catatonic or undifferentiated schizophrenia and substance-induced psychotic disorder. At present, the text revision of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) (2000, American Psychiatric Association, Washington DC) provides a diagnostic tool that includes paranoid, disorganized, catatonic or undifferentiated schizophrenia and substance-induced psychotic disorder. As used herein, the term "schizophrenia or psychosis" includes treatment of those mental disorders as described in DSM-IV-TR. The skilled artisan will recognize that there are alternative nomenclatures, nosologies and classification systems for mental disorders, and that these systems evolve with medical and scientific progress. Thus the term "schizophrenia or psychosis" is intended to include like disorders that are described in other diagnostic sources.

Examples of combinations of the compounds include combinations with agents for the treatment of schizophrenia, for example in combination with sedatives, hypnotics, anxiolytics, antipsychotics, antianxiety agents, cyclopyrrolones, imidazopyridines, pyrazolopyrimidines, minor tranquilizers, melatonin agonists and antagonists, melatonergic agents, benzodiazepines, barbiturates, 5HT-2 antagonists, and the like, such as: adinazolam, allobarbital, alonimid, aiprazolam, amisulpride, amitriptyline, amobarbital, amoxapine, aripiprazole, bentazepam, benzocitamine, brotizolam, buspiron, buspar, butabarbital, butalbital, capuride, carbocloral, chloral betaine, chloral hydrate, clomipramine, clonazepam, clocoperidine, clorazepate, chlordiazepoxide, clorethate, chlorpromazine, clozapine, cyprazepam, desipramine, dexamol, diazepam, dichloralphenazine, divalproex, diphenhydramine, doxepin, estazolam, ethchlorvynol, etomidate, fenobam, flunitrazepam, flupentixol, fiuphenazine, flurazepam, fluvoxamine, fluoxetine, fosazepam, glutethimide, halazepam, haloperidol, hydroxyzine, imipramine, lithium, lorazepam, lormetazepam, maprotiline, mephalalolone, melatonin, mephobarbital, meprobamate, methaqualone, midaflur, midazolam, nefazodone, nisobamate, nitrazepam, nortriptyline, olanzapine, oxazepam, paraldehyde, paroxetine, pentobarbital, perlapine, perphenazine, phenelzine, phenobarbital, prazepam, promethazine, propofol, protriptyline, quazepam, quetiapine, reclazepam, risperidone, roletamide, secobarbital, sertraline, suproelone, temazepam, thioridazine, thiothixene, tracazolate, tranylcypromine, trazodone, triazolam, trepimam, tricetamide, triclofos, trifluoperazine, trimetozone, trimipramine, uldazepam, venlafaxine, zaleplon, ziprasidone, zolazepam, Zolpidem, and salts thereof, and combinations thereof, and the
like, or the subject compound may be administered in conjunction with the use of physical methods such as with light therapy or electrical stimulation.

In another embodiment, the subject compound may be employed in combination with levodopa (with or without a selective extracerebral decarboxylase inhibitor such as carbidopa or benserazide), anticholinergics such as biperiden (optionally as its hydrochloride or lactate salt) and trihexyphenidyl (benzhexol) hydrochloride, COMT inhibitors such as entacapone, MOA-B inhibitors, antioxidants, A2a adenosine receptor antagonists, cholinergic agonists, NMDA receptor antagonists, serotonin receptor antagonists and dopamine receptor agonists such as alentemol, bromocriptine, fenoldopam, lisuride, naxagolide, pergolide and pramipexole. It will be appreciated that the dopamine agonist may be in the form of a pharmaceutically acceptable salt, for example, alentemol hydrobromide, bromocriptine mesylate, fenoldopam mesylate, naxagolide hydrochloride and pergolide mesylate.

In another embodiment, the subject compound may be employed in combination with a compound from the phenothiazine, thioxanthene, heterocyclic dibenzazepine, butyrophenone, diphenylbutylpiperidine and indolone classes of neuroleptic agent. Suitable examples of phenothiazines include chlorpromazine, mesoridazine, thioridazine, acetophenazine, fluphenazine, perphenazine and trifluoperazine. Suitable examples of thioxanthenes include chlorprothixene and thiothixene. An example of a dibenzazepine is clozapine. An example of a butyrophenone is haloperidol. An example of a diphenylbutylpiperidine is pimozide. An example of an indolone is molindolone. Other neuroleptic agents include loxapine, sulpiride and risperidone. It will be appreciated that the neuroleptic agents when used in combination with the subject compound may be in the form of a pharmaceutically acceptable salt, for example, chlorpromazine hydrochloride, mesoridazine besylate, thioridazine hydrochloride, acetophenazine maleate, fluphenazine hydrochloride, flurphenazine enathate, fluphenazine decanoate, trifluoperazine hydrochloride, thiothixene hydrochloride, haloperidol decanoate, loxapine succinate and molindone hydrochloride. Perphenazine, chlorprothixene, clozapine, haloperidol, pimozide and risperidone are commonly used in a non-salt form. Thus, the subject compound may be employed in combination with acetophenazine, alentemol, aripiprazole, amisulpride, benzhexol, bromocriptine, biperiden, clorpromazine, chlorprothixene, clozapine, diazepam, fenoldopam, fluphenazine, haloperidol, levodopa, levodopa with benserazide, levodopa with carbidopa, lisuride, loxapine, mesoridazine, molindolone, naxagolide, olanzapine, pergolide, perphenazine, pimozide, pramipexole, quetiapine, risperidone, sulpiride, tetrabenazine, trihexyphenidyl, thioridazine, thiothixene, trifluoperazine or ziprasidone.

Potential sleep conditions or disorders for which the compounds of the invention may be useful include enhancing sleep quality; improving sleep quality; augmenting sleep maintenance; increasing the value which is calculated from the time that a subject sleeps divided by the time that a subject is attempting to sleep; decreasing sleep latency or onset (the time it takes to fall
asleep); decreasing difficulties in falling asleep; increasing sleep continuity; decreasing the number of awakenings during sleep; decreasing nocturnal arousals; decreasing the time spent awake following the initial onset of sleep; increasing the total amount of sleep; reducing the fragmentation of sleep; altering the timing, frequency or duration of REM sleep bouts; altering the timing, frequency or duration of slow wave (i.e. stages 3 or 4) sleep bouts; increasing the amount and percentage of stage 2 sleep; promoting slow wave sleep; enhancing EEG-delta activity during sleep; increasing daytime alertness; reducing daytime drowsiness; treating or reducing excessive daytime sleepiness; insomnia; hypersomnia; narcolepsy; interrupted sleep; sleep apnea; wakefulness; nocturnal myoclonus; REM sleep interruptions; jet-lag; shift workers' sleep disturbances; dyssomnias; night terror; insomnias associated with depression, emotional/mood disorders, as well as sleep walking and enuresis, and sleep disorders which accompany aging; Alzheimer's sundowning; conditions associated with circadian rhythmicity as well as mental and physical disorders associated with travel across time zones and with rotating shift-work schedules; conditions due to drugs which cause reductions in REM sleep as a side effect; syndromes which are manifested by non-restorative sleep and muscle pain or sleep apnea which is associated with respiratory disturbances during sleep; and conditions which result from a diminished quality of sleep.

Pain disorders for which the compounds of the invention may be useful include neuropathic pain (such as postherpetic neuralgia, nerve injury, the "dynias", e.g., vulvodynia, phantom limb pain, root avulsions, painful diabetic neuropathy, painful traumatic mononeuropathy, painful polyneuropathy); central pain syndromes (potentially caused by virtually any lesion at any level of the nervous system); postsurgical pain syndromes (e.g., postmastectomy syndrome, postthoracotomy syndrome, stump pain); bone and joint pain (osteoarthritis), repetitive motion pain, dental pain, cancer pain, myofascial pain (muscular injury, fibromyalgia); perioperative pain (general surgery, gynecological), chronic pain, dysmenorrhea, as well as pain associated with angina, and inflammatory pain of varied origins (e.g. osteoarthritis, rheumatoid arthritis, rheumatic disease, teno- synovitis and gout), headache, migraine and cluster headache, headache, primary hyperalgesia, secondary hyperalgesia, primary allodynia, secondary allodynia, or other pain caused by central sensitization.

Compounds of the invention may also be used to treat or prevent dyskinesias. Furthermore, compounds of the invention may be used to decrease tolerance and/or dependence to opioid treatment of pain, and for treatment of withdrawal syndrome of e.g., alcohol, opioids, and cocaine.

The subject or patient to whom the compounds of the present invention is administered is generally a human being, male or female, in whom M1 allosteric modulation is desired, but may also encompass other mammals, such as dogs, cats, mice, rats, cattle, horses, sheep, rabbits,
monkeys, chimpanzees or other apes or primates, for which treatment of the above noted disorders is desired.

The compounds of the present invention may be used in combination with one or more other drugs in the treatment of diseases or conditions for which the compounds of the present invention have utility, where the combination of the drugs together are safer or more effective than either drug alone. Additionally, the compounds of the present invention may be used in combination with one or more other drugs that treat, prevent, control, ameliorate, or reduce the risk of side effects or toxicity of the compounds of the present invention. Such other drugs may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with the compounds of the present invention. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to the compounds of the present invention. The combinations may be administered as part of a unit dosage form combination product, or as a kit or treatment protocol wherein one or more additional drugs are administered in separate dosage forms as part of a treatment regimen.

Examples of combinations of the compounds of the present invention include combinations with anti-Alzheimer's Disease agents, for example beta-secretase inhibitors; alpha 7 nicotinic agonists; ADAM 10 ligands or activators; gamma-secretase inhibitors; gamma secretase modulators; tau phosphorylation inhibitors; glycine transport inhibitors; LXR β agonists; ApoE4 conformational modulators; NR2B antagonists; androgen receptor modulators; blockers of Aβ oligomer formation; 5-HT4 agonists; 5-HT6 antagonists; 5-HT1a antagonists, such as lecsozotan; p25/CDK5 inhibitors; NK1/NK3 receptor antagonists; COX-2 inhibitors; HMG-CoA reductase inhibitors; NSAIDs including ibuprofen; vitamin E; anti-amyloid antibodies (including anti-amyloid humanized monoclonal antibodies), such as bapineuzumab; anti-inflammatory compounds such as (R)-flurbiprofen, nitrofuribuprofen; PPAR gamma agonists, such as pioglitazone and rosiglitazone; CB-I receptor antagonists or CB-I receptor inverse agonists; antibiotics such as doxycycline and rifampin; N-methyl-D-aspartate (NMDA) receptor antagonists, such as memantine and naramexane; cholinesterase inhibitors such as galantamine, rivastigmine, donepezil, tacrine, phenserine and ladostigil; growth hormone secretagogues such as ibutamoren, ibutamoren mesylate, and capromorelin; histamine H3 receptor antagonists; AMPA agonists or AMPA modulators; PDE IV inhibitors; PDEIOA inhibitors; GABAA inverse agonists; GSK3β inhibitors; neuronal nicotinic agonists; selective M1 agonists; HDAC inhibitors; and microtubule affinity regulating kinase (MARK) ligands; or other drugs that affect receptors or enzymes that either increase the efficacy, safety, convenience, or reduce unwanted side effects or toxicity of the compounds of the present invention.

Examples of combinations of the compounds include combinations with agents for the treatment of pain, for example non-steroidal anti-inflammatory agents, such as aspirin,
diclofenac, dufunisal, fenoprofen, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, naproxen, oxaprozin, piroxicam, sulindac and tolmetin; COX-2 inhibitors, such as celecoxib, rofecoxib and valdecoxib; CB-2 agonists; VR-I antagonists; bradykinin B1 receptor antagonists; sodium channel blockers and antagonists; nitric oxide synthase (NOS) inhibitors (including iNOS and nNOS inhibitors); glycine site antagonists, including lacosamide; neuronal nicotinic agonists; NMDA antagonists; potassium channel openers; AMPA/kainate receptor antagonists; calcium channel blockers, such as ziconotide; GABA-A receptor IO modulators (e.g., a GABA-A receptor agonist); matrix metalloprotease (MMP) inhibitors; thrombolytic agents; opioid analgesics such as codeine, fentanyl, hydromorphone, levorphanol, meperidine, methadone, morphine, oxycodone, oxymorphone, pentazocine, propoxyphene; neutrophil inhibitory factor (NIF); pramipexole, ropinirole; anticholinergics; amantadine; monoamine oxidase B15 (“MAOB”) inhibitors; 5HT receptor agonists or antagonists; niGluS antagonists; alpha agonists; neuronal nicotinic agonists; NMDA receptor agonists or antagonists; NKI antagonists; selective serotonin reuptake inhibitors (“SSRI”) and/or selective serotonin and norepinephrine reuptake inhibitors (“SSNRI”), such as duloxetine; tricyclic antidepressant drugs, norepinephrine modulators; lithium; valproate; gabapentin; pregabalin; rizatriptan; zolmitriptan; naratriptan and sumatriptan. The compounds of the present invention may be administered in combination with compounds useful for enhancing sleep quality and preventing and treating sleep disorders and sleep disturbances, including e.g., sedatives, hypnotics, anxiolytics, antipsychotics, antianxiety agents, antihistamines, benzodiazepines, barbiturates, cyclopyrrolones, orexin antagonists, alpha-1 antagonists, GABA agonists, 5HT-2 antagonists including 5HT-2A antagonists and 5HT-2A/2C antagonists, histamine antagonists including histamine H3 antagonists, histamine H3 inverse agonists, imidazopyridines, minor tranquilizers, melatonin agonists and antagonists, melatonergic agents, other orexin antagonists, orexin agonists, prokineticin agonists and antagonists, pyrazolopyrimidines, T-type calcium channel antagonists, triazolopyridines, and the like, such as: adinazolam, alobarbital, alonimid, alprazolam, amitriptyline, amobarbital, amoxapine, armodafinil, APD-125, bentezapam, benzoctamine, brotizolam, bupropion, buspripone, butabarbital, butalbital, capromorelin, capuride, carbocloral, chloral betaine, chloral hydrate, chlor Diazepoxide, clonipramine., clonazepam, cloperidone, clorazepate, clorethate, clozapine, conazepam, cyprazepam, desipramine, dexclamol, diazepam, dichloralphenazone, divalproex, diphenhydramine, doxepin, EMD-281014, eplivanserin, estazolam, eszopiclone, ethchlorynol, etomidate, fenobam, flunitrazepam, flurazepam, fluvoxamine, fluoxetine, fosazepam, gaboxadol, glutethimide, halazepam, hydroxyzine, ibutamoren, imipramine, indiplon, lithium, lorazepam, lormetazepam, LY-156735, maprotiline, MDL-100907, mecloqualone, melatonin, mepobarbital, meprobamate, methaqualone, methyprylon, midaflur, midazolam, modafinil, nefazodone, NGD-2-73, nisobamate, nitrazepam, nortriptyline, oxazepam, paraldehyde, paroxetine, pentobarbital, perlapine, perphenazine, phenterline, phenobarbital,
prazepam, promethazine, propofol, protriptyline, quazepam, ramelteon, reclazepam, roletamide, secoobarbital, sertraline, suproclone, TAK-375, temazepara, thioridazine, tiagabine, trazadone, tricyclics, trazodone, triazolam, trepipam, tricetamide, triclofos, trifluoperazine, trimetozine, trimipramine, tricetamide, trihexyphenidyl, hydrochloride, COMT inhibitors such as entacapone, MOA-B inhibitors, antioxidants, A2a adenosine receptor antagonists, cholinergic agonists and dopamine receptor agonists such as alentemol, bromocriptine, fenoldopam, lisuride, naxagolide, pergolide and praraipexole.

The term "composition" as used herein is intended to encompass a product comprising specified ingredients in predetermined amounts or proportions, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. This term in relation to pharmaceutical compositions is intended to encompass a product comprising one or more active ingredients, and an optional carrier comprising inert ingredients, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.

In general, pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. In the pharmaceutical composition the active compound, which is a compound of formulae (I) to (VIII), is included in an amount sufficient to produce the desired effect upon the process or condition of diseases. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.

The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). Thus, the pharmaceutical compositions of the present invention can be presented as discrete units suitable for oral administration such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient. Further, the compositions can be presented as a powder, as granules, as a solution, as a suspension in an aqueous liquid, as a non-aqueous liquid, as an oil-
in-water emulsion or as a water-in-oil liquid emulsion. In addition to the common dosage forms set out above, the compounds of the invention, or pharmaceutically acceptable salts thereof, may also be administered by controlled release means and/or delivery devices.

Pharmaceutical compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.

A tablet containing the composition of this invention may be prepared by compression or molding, optionally with one or more accessory ingredients or adjuvants. Compressed tablets may be prepared by compressing, in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. Each tablet preferably contains from about 0.1 mg to about 500 mg of the active ingredient and each cachet or capsule preferably containing from about 0.1 mg to about 500 mg of the active ingredient.

Compositions for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

Other pharmaceutical compositions include aqueous suspensions, which contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. In addition, oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. Oily suspensions may also contain various excipients. The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions, which may also contain excipients such as sweetening and flavoring agents.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension, or in the form of sterile powders for the extemporaneous preparation of
such sterile injectable solutions or dispersions. In all cases, the final injectable form must be sterile and must be effectively fluid for easy syringability. The pharmaceutical compositions must be stable under the conditions of manufacture and storage; thus, preferably should be preserved against the contaminating action of microorganisms such as bacteria and fungi.

Pharmaceutical compositions of the present invention can be in a form suitable for topical use such as, for example, an aerosol, cream, ointment, lotion, dusting powder, or the like. Further, the compositions can be in a form suitable for use in transdermal devices. These formulations may be prepared via conventional processing methods. As an example, a cream or ointment is prepared by mixing hydrophilic material and water, together with about 5 wt% to about 10 wt% of the compound, to produce a cream or ointment having a desired consistency.

Pharmaceutical compositions of this invention can also be in a form suitable for rectal administration wherein the carrier is a solid. It is preferable that the mixture forms unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art.

By "pharmacetically acceptable" it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

The terms "administration of" or "administering a" compound should be understood to mean providing a compound of the invention to the individual in need of treatment in a form that can be introduced into that individual's body in a therapeutically useful form and therapeutically useful amount, including, but not limited to: oral dosage forms, such as tablets, capsules, syrups, suspensions, and the like; injectable dosage forms, such as PV, IM, or IP, and the like; transdermal dosage forms, including creams, jellies, powders, or patches; buccal dosage forms; inhalation powders, sprays, suspensions, and the like; and rectal suppositories.

The terms "effective amount" or "therapeutically effective amount" means the amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.

As used herein, the term "treatment" or "treating" means any administration of a compound of the present invention and includes (1) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or (2) ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).

The compositions containing compounds of the present invention may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. The term "unit dosage form" is taken to mean a single dose wherein all active and
inactive ingredients are combined in a suitable system, such that the patient or person administering the drug to the patient can open a single container or package with the entire dose contained therein, and does not have to mix any components together from two or more containers or packages. Typical examples of unit dosage forms are tablets or capsules for oral administration, single dose vials for injection, or suppositories for rectal administration. This list of unit dosage forms is not intended to be limiting in any way, but merely to represent typical examples of unit dosage forms.

The compositions containing compounds of the present invention may conveniently be presented as a kit, whereby two or more components, which may be active or inactive ingredients, carriers, diluents, and the like, are provided with instructions for preparation of the actual dosage form by the patient or person administering the drug to the patient. Such kits may be provided with all necessary materials and ingredients contained therein, or they may contain instructions for using or making materials or components that must be obtained independently by the patient or person administering the drug to the patient.

When treating or ameliorating a disorder or disease for which compounds of the present invention are indicated, generally satisfactory results are obtained when the compounds of the present invention are administered at a daily dosage of from about 0.1 mg to about 100 mg per kg of animal body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form. The total daily dosage is from about 1.0 mg to about 2000 mg, preferably from about 0.1 mg to about 20 mg per kg of body weight, in the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 1,400 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for the oral administration to humans may conveniently contain from about 0.005 mg to about 2.5 g of active agent, compounded with an appropriate and convenient amount of carrier material. Unit dosage forms will generally contain between from about 0.005 mg to about 1000 mg of the active ingredient, typically 0.005, 0.01 mg, 0.05 mg, 0.25 mg, 1 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 800 mg or 1000 mg, administered once, twice or three times a day.

It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate
of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.

Several methods for preparing the compounds of this invention are illustrated in the schemes and examples herein. Starting materials are made according to procedures known in the art or as illustrated herein. The following examples are provided so that the invention might be more fully understood.

EXAMPLE 1

6-([(6-Chloropyridin-3-yl)methyl]-3-[(3R, 4S)-Z-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one

A solution of 2-methyl-1-nitronaphthalene (5.00 g, 26.7 mmol) and tert-butoxybis(dimethylamino)methane (Bredereck's reagent, 8.27 g, 40,1 mmol) in 10 mL of toluene was refluxed at 120 °C for 15 h. Additional tert-butoxybis(dimethylamino)methane (3.76 g, 13.4
mmol) was added and the reaction was refluxed at 120 °C for another 24 h. The mixture was cooled to rt and 50 mL of hexanes was added. After vigorously stirring for 30 min, a brick red solid was collected, washed with additional hexanes, and dried to provide (E)-iV,iV-dimethyl-2-(l-nitro-2-naphthyl)ethylenamine that gave proton NMR spectra consistent with theory.

To a solution of the above compound (10.0 g, 41.3 mmol) and potassium carbonate (13.7 g, 99.0 mmol) in 300 mL of 1:1 t-BuOH:H₂O was added potassium permanganate (15.7 g, 99.0 mmol) slowly over 30 min. The reaction mixture was stirred at rt for 17 h, and a black precipitate was filtered and washed twice with 100 mL of water. The filtrate was concentrated to 200 mL in volume, and acidified with 6 N HCl to pH ~2. A beige precipitate was collected, washed twice with 100 mL of water, and dried to provide 1-nitro-2-naphthoic acid that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 218.1 for [M+H]⁺.

A solution of the above compound (32.5 g, 150 mmol) in 150 mL of MeOH was cooled to 0 °C and saturated with gaseous HCl. The solution was warmed to rt and then refluxed at 90 °C for 22 h. The solution was again saturated with HCl(g), refluxed at 90 °C for 20 h, then cooled to rt. The beige precipitate was collected, washed with water and MeOH, and dried to provide methyl 1-nitro-2-naphthoate that gave proton NMR spectra consistent with theory.

To a solution of the above compound (10.0 g, 43.3 mmol) in 250 mL of MeOH and 3 mL of THF was added palladium on carbon (0.100 g, 0.940 mmol). The reaction was placed under an atmosphere of hydrogen (1 atm) for 14 h. The mixture was filtered, the solids were washed with additional MeOH and the filtrate was concentrated in vacuo. The residue was concentrated twice with toluene and dried in vacuo to provide methyl 1-amino-2-naphthoate that gave a mass ion (ES+) of 202.1 for [M+H]⁺.

To a solution of the above compound (8.70 g, 43.2 mmol) in a 200 mL mixture of 1:1 dioxane : CCl₄ at 0 °C was added a solution of bromine (2.23 mL, 43.2 mmol) in 40 mL of 1:1 dioxane : CCl₄ dropwise. The mixture was stirred at 0 °C for 2 h, filtered and washed with Et₂O, and dried to provide methyl 1-amino-4-bromo-2-naphthoate hydrobromide that gave proton NMR spectra consistent with theory.

To a solution of methyl 1-amino-4-bromo-2-naphthoate hydrobromide (2.00 g, 5.54 mmol) in 20 mL of THF was added sodium hydroxide (11.1 mL, 20% aqueous, 55.4 mmol). The mixture was stirred at 50 °C for 20 h, then heated at 90 °C for 2 h. The solvent was removed in vacuo and hydrochloric acid (1 N aqueous) was added until pH ~2. The beige solid was collected via
filtration, washed twice with water, and dried to provide L-amino-4-bromo-2-naphthoic acid that gave a mass ion (ES+) of 266.0 (79Br) for [M+H]+.

Synthesis of (3R, 4S)-4-Aminotetrahydro-2H-pyran-3-ol

A jacketed flask equipped with an overhead stirrer and a thermocouple was charged with 23.0 L of MeOH, and cooled to 5 \textdegree C. Potassium hydroxide (1.574 kg, 28.05 mol) was added to the flask, and the resulting solution was aged until homogeneous and recooled to 5 \textdegree C. Tetrahydro-4H2pyran-4-one (1.00 kg, 10.0 mol) was then added at a steady rate over 20 min, and the resulting solution was aged for 20-30 min. A solution of iodine (2.778 kg, 10.95 mol) in 18.5 L of MeOH was then added via mechanical pump at a steady rate over 90-100 minutes. After an additional 30 min, the solution was warmed to rt and toluene (42.0 L) was added. The resulting slurry was concentrated \textit{in vacuo} to a volume of -8.4 L. Additional toluene (8.4 L) was added and the resulting solution was concentrated to a volume of 8.4 L 2\texttimes. The resulting slurry was then filtered, and the filter cake was rinsed 2x with toluene (4.0 L). The combined toluene streams were concentrated to \textasciitilde 6 L, and the product is extracted 2x with water (3.0 L) to provide 4,4-dimethoxytetrahydro-2H-pyran-3 -ol.

To a solution of the above compound (1.00 kg, 6.17 mol) in 5 L of water was added acetic acid to pH 5.2-5.4. The mixture was diluted with acetonitrile (4.0 L) and ruthenium trichloride hydrate (6.4 g, 0.028 mol) was added and rinsed in with additional acetonitrile (1.0 L). The flask was placed in a rt water bath and a solution of sodium bromate (650 g, 4.31 mol) in water (1.95 L) was added slowly over \textasciitilde 30 min, keeping the temperature below 30 \textdegree C. After 2 h, potassium bicarbonate (430 g, 4.30 mol), sodium thiosulfate (1.07 kg, 4.31 mol), potassium chloride (500 g, 6.71 mol) and acetonitrile (5 L) were added sequentially. The layers were separated and the aqueous layer was extracted 3x with acetonitrile (10 L). The combined organic extracts were concentrated to \textasciitilde 4 L. Toluene (5 L) was then added and the mixture recombined to 4 L 4\texttimes. The mixture was diluted with toluene (7 L) and filtered to remove solids. The filtercake was washed 3x with toluene (2 L) and the combined filtrate and washes were concentrated to a total volume of 3 L to provide an organic solution of 4,4-dimethoxydihydro-2H-pyran-3(4S)-one.
To a 3L 3-neck RB flask with overhead stirring, thermocouple and heating mantle was added sodium dihydrogenphosphate (96.0 g, 800 mmol) in 1.6 L of water. Sodium hydroxide (29 mL, 50 wt%) was added to pH 7.13, followed by hydrochloric acid (5 mL, 6 N) to pH 7.02.

The above organic solution of 4,4-dimethoxydihydro-2H-pyran-3(4H)-one was extracted 3x with phosphate buffered water (0.55 L). To the combined aqueous extracts was added D-glucose (180 g, 100 mmol), and the solution was heated to 30 °C. When the solution exceeded 27 °C upon heating B-NADP+ (1.60 g, 499 mmol), GDH-103 (1.60 g, 499 mmol), and KRED-130 (1.60 g, 499 mmol) were added and the mixture was stirred for 17 h at 30 °C. Potassium chloride (200 g, 2.68 mol) and acetonitrile (1.3 L) were added. After 30 min, the reaction mixture was transferred to 6 L sep funnel and additional MeCN (0.67 L) and toluene (0.87 L) were added. The aqueous layer was back extracted 1x with a mixture of acetonitrile (1.95 L) and toluene (0.65 L), and 1x with acetonitrile (1.5 L). The combined organic extracts were concentrated in vacuo to provide (35)-4,4-dimethoxytetrahydro-2H-pyran-3-ol.

To a 2L RB flask with overhead stirring, thermocouple, heating mantle and N₂ inlet was added a solution of the above compound (72.0 g, 0.444 mol) in 750 mL of THF. After 15 h, sodium tert-butoxide (48.3 g, 492 mmol) was added in one portion, and the mixture was heated to 35 °C for 1 h, and aged at 22 °C for 1 hr. Tetrabutylammonium iodide (8.19 g, 22.2 mmol) and benzyl bromide (56.5 ml, 466 mmol) were added, and the mixture was heated to 50 °C for 2 h. The solution was cooled to 25 °C, and water (750 mL) and MtBE (2.25 L) were added. The organic layer was separated from the aqueous and concentrated in vacuo. The resultant brown oil was purified via silica gel chromatography, eluting with 0-15% ethyl acetate in hexanes to provide (5S)-3-(benzyloxy)-4,4-dimethoxytetrahydro-2H-pyran.

To a solution of the above compound (61.1 g, 225 mmol) in 300 mL of THF was added 2 TVHCl (300 mL, 0.600 mol). After 1.5 h, saturated aqueous potassium carbonate (60 mL) was added via addition funnel to pH 7.4. The aqueous layer was extracted 3x with MtBE (300 mL) and the combined organic extracts were concentrated in vacuo to provide crude (5S)-3-(benzyloxy)tetrahydro-4H-pyran-4-one.

To a solution of L-Alanine (200 g, 2.24 mol), sodium formate (76.0 g, 1.12 mmol), and sodium phosphate dibasic (28.7 g, 202 mmol) in 2.25 L of water adjusted to pH 7.5 was added NAD (2.2 g, 3.21 mmol), pyridoxal-5'-phosphate (2.2 g, 8.90 mmol), LDH (0.45 g, 0.22 mol), FDH (4.5 g, 0.20 mol), and TA P1G5 (4.5 g, 0.22 mol). After all the components were completely dissolved, (3S)-3-(benzyloxy)tetrahydro-3H-pyran-4-one (45 g, 0.22 mol) was added and the pH was
adjusted to pH 7.25 with 6 TVHCl and aged at 30 °C. After 15 h, potassium carbonate (700 g, 5.06 mol) was added slowly, followed by ethyl acetate (2.2 L). The mixture was filtered through a bed of Solka Floe and the cake was washed with ethyl acetate (250 mL). The combined filtrates were separated and the aqueous layer was extracted a second time with ethyl acetate (2 L). The combined organic extracts were concentrated in vacuo to provide crude (3R, 4S)-3-(benzyloxy)tetrahydro-2H-pyran-4-amine.

To a solution of the above compound (38.8 g, 0.187 mol) in 730 mL of methanol was added concentrated hydrochloric acid (233 mL). The solution was subjected to hydrogenation at 40 psi H₂, 25 °C over 5.8 g of 10% Pd/C (5.8 g). After 15 h, the mixture was filtered through solka floe and the filtercake was washed 5x with methanol (100 mL). The combined filtrate and washes were concentrated in vacuo to provide (3R, 4S)-4-Aminotetrahydro-2H-pyran-3-ol that gave proton NMR spectra consistent with theory.

To a solution of 1-amino-4-bromo-2-naphthoic acid (0.644 g, 2.42 mmol) in 10 mL of acetonitrile cooled to 0 °C was added (1H-1,2,3-benzotriazolyl-1-yloxy)[tris(dimethylamino)]phosphonium hexafluorophosphate (1.82 g, 4.12 mmol), G-(7-azabenzotriazol-1-yl)-TV,jV,TV,TV-tetramethyluronium hexafluorophosphate (0.921 g, 2.42 mmol), (Ji? , 4S)-3-hydroxytetrahydro-2H-pyran-4-aminium chloride (0.310 g, 2.02 mmol), and triethylamine (0.84 mL, 6.1 mmol). The reaction was warmed to it and stirred for 4 h. The mixture was diluted with ethyl acetate, washed with dilute aqueous sodium bicarbonate, dried over sodium sulfate, filtered, and concentrated in vacuo to provide crude 1-amino-4-bromo-N-[(3i?, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-2-naphthamide that gave a mass ion (ES+) of 366.9 (81Br) for [M+H]⁺.

A solution of the above compound (0.737 g, 2.02 mmol) in TV,jV-dimethylformamide dimethylacetal (2.70 mL, 20.2 mmol) was heated at 85 °C for 3 h. The reaction was cooled to rt, concentrated in vacuo, and dried to provide 6-bromo-3-[(3i?, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[?]quinazolin-4(3 H)-one that gave a mass ion (ES+) of 376.8 (81Br) for [M+H]⁺.

To a round bottom flask containing a solution of the above compound (3.65 g, 9.73 mmol) in 20 mL of THF at 0 °C under an atmosphere of nitrogen was added (2-chloro-5-pyridyl)methylzinc chloride (24.3 mL, 0.5 M in THF, 12.2 mmol) and bis(tri-terr-butylphosphine)palladium(0) (3 mol%). The reaction was warmed to rt, stirred for 15 min, then recooled to 0 °C and quenched with water (50 mL). The mixture was diluted with dichloromethane and water, and a beige solid was removed via filtration. The filtrate was extracted 2x with dichloromethane and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was triturated with dichloromethane, and the resultant white solid was collected via
filtration, washed with dichloromethane, and dried to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 422.1265 for [M+H]+ [Calc'd for C_{23}H_{26}C\text{I}N_{3}O_{2}, [M+H]^{+} = 422.1266]: 1H NMR (400 MHz, CDCl$_3$) δ 8.96-8.94 (m, 1H), 8.30 (s, 2H), 7.89 (s, IH), 7.79 (d, J = 7.4 Hz, IH), 7.67-7.60 (m, 2H), 7.32 (dd, J = 2.6 Hz, 8.2 Hz, IH), 7.13 (d, J = 8.2 Hz, IH), 4.86-4.80 (m, IH), 4.34 (s, 2H), 4.24-4.07 (m, 3H), 3.59-3.53 (m, IH), 3.34-3.29 (m, IH), 2.92-2.82 (m, IH), 2.31-2.22 (m, IH), 2.02-1.98 (m, IH).

EXAMPLE 2

3-[(3R, 4f5)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methylthio)pyridin-3-yl)methyl]benzo[ft]quinazolin-4(3/i)-one

To a solution of 6-[(6-chloropyridin-3-yl)methyl]-3-[(3i?, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[z]quinazolin-4(1 H)-one (Example 1, 0.065 g, 0.15 mmol) in 2 mL of MeOH was added sodium thiomethoxide (21.6 mg, 0.308 mmol) and 1 mL of DMF. The mixture was heated in a sealed tube at 100 °C for 24 h. Additional sodium thiomethoxide (0.100 g, 1.43 mmol) was added and the reaction was heated in a sealed tube at 140 °C for 8 hours, cooled to rt, and diluted with dichloromethane and water. The aqueous layer was extracted 3x with dichloromethane and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane, to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 434.1529 for [M+H]+ [Calc'd for C_{24}H_{24}N_{3}O_{3}S, [M+H]^{+} = 434.1533]: 1H NMR (400 MHz, CDCl$_3$) δ 8.76 (d, J = 8.1 Hz, IH), 8.25 (s, IH), 8.22 (s, IH), 7.80-7.75 (m, IH), 7.65-7.55 (m, IH), 7.45-7.35 (m, IH), 7.30-7.20 (m, IH), 4.90-4.80 (m, IH), 4.30-4.20 (m, 2H), 3.80-3.70 (m, IH), 3.50-3.40 (m, IH), 3.00-2.90 (m, IH), 2.30-2.20 (m, IH), 2.00-1.90 (m, IH), 1.80-1.70 (m, IH), 1.30-1.20 (m, IH), 1.00-0.90 (m, IH).
EXAMPLE 3

3-[(3R, 4S)-3-Hydroxytetrahydro^ H-pyran^yl] -6-[(6-methylpyridin- 3-yl)methyl]benzo[h]quinazolin-4(5 H)-one

To a solution of 6-[(6-chloropyridin-3-yl)methyl]-3-[(3i?, 4S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo/[h]quinazolin-4(3 H)-one (Example 1, 0.040 g, 0.095 mmol) in 1 mL of THF under an atmosphere of nitrogen was added methyl zinc chloride (0.095 mL, 2 M in THF, 1.90 mmol) and [1,r-bis(diphenylphosphino)ferrocene]dichloropalladium(II), 1:1 complex with DCM (3 mol%). The reaction was heated at 50 °C for 18 h, cooled to rt, and quenched with water (2 mL). The mixture was filtered through celite and the aqueous layer was extracted 2x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 10-60% ethyl acetate in hexanes, to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 401.46 for [M+H]^+: 1H NMR (400 MHz, CDCl_3) δ 8.92 (d, J = 7.5 Hz, IH), 8.38 (s, IH), 8.29 (s, IH), 7.83 (d, J = 13 Hz, IH), 7.79 (s, IH), 7.66-7.59 (m, 2H), 7.15 (d, J = 8.1 Hz, IH), 6.90 (d, J = 7.9 Hz, IH), 4.87-4.78 (m, IH), 4.26-4.19 (m, 4H), 4.12-4.08 (m, IH), 3.81 (br s, IH), 3.61-3.54 (m, IH), 3.44-3.37 (m, IH), 2.43 (s, 3H), 2.33-2.23 (m, IH), 2.03-1.99 (m, IH).

EXAMPLE 4
3-{{(3R, ¥S)-3-Hydroxytetrahydro-2\textsubscript{H}-pyran-4-yl}-6-{{6-(1-methyl-1//-pyrazol-4-yl)pyridine-3-yl}methyl}benzo[\textsubscript{1}]quinazolin-4(5\textsubscript{H})-one

To a solution of 6-[(6-chloropyridin-3-yl)methyl]-3-[(3R, ¥S)-3-hydroxytetrahydro-2\textsubscript{H}-pyran-4-yl]benzo[\textsubscript{2}]quinazolin-4(3\textsubscript{H})-one (Example 1, 0.040 g, 0.095 mmol) in 1 mL of THF under an atmosphere of nitrogen was added cesium carbonate (0.19 mL, 1 N aqueous, 0.19 mmol), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (0.040 g, 0.19 mmol), and bis(tri-tert-butylphosphine)palladium(0) (10 mol%). The reaction was heated at 85 °C for 20 h, and additional 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (0.040 g, 0.19 mmol), and bis(tri-fert-butylphosphine)palladium(0) (10 mol%) were added. After 24 h, the reaction was cooled to rt, diluted with ethyl acetate, and washed with saturated aqueous sodium bicarbonate and brine. The solution was dried over sodium sulfate, filtered, and concentrated \textit{in vacuo}. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane, to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 467.53 for [M+H]+: 1H NMR (400 MHz, CD\textsubscript{3}OD) δ 8.87 (d, J = 7.9 Hz, IH), 8.35 (s, IH), 8.23 (s, IH), 7.80-7.78 (m, 2H), 7.72 (s, 2H), 7.66-7.55 (m, 2H), 7.22-7.19 (m, IH), 7.08 (d, J = 8.2 Hz, IH), 4.80-4.73 (m, IH), 4.28-4.15 (m, IH), 4.08-4.04 (m, IH), 3.85 (s, 3H), 3.61-3.51 (m, IH), 3.34-3.29 (m, IH), 2.28-2.18 (m, IH), 1.99-1.95 (m, IH).

EXAMPLE 5
To a solution of 6-[(6-chloropyridin-3-yl)methyl]-3-[(3 R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[H]quinazolin-4(5H)-one (Example 1, 0.080 g, 0.19 mmol) and pyrazole (0.052 g, 0.15 mmol) in 2 mL of DMSO under an atmosphere of nitrogen was added potassium carbonate (0.57 mL, 1 equiv aqueous, 0.57 mmol), trans-N,N-dimethylcyclohexane-1,2-diamme (21.6 mg, 0.152 mmol), and copper(I) iodide (0.014 g, 0.076 mmol). The mixture was heated at 120 °C for 20 h, cooled to rt, and additional /row-A^-dimethylcyclohexane-1,2-diamine (21.6 mg, 0.152 mmol) and copper(I) iodide (0.014 g, 0.076 mmol) were added. The reaction was heated at 150 °C for 24 h, cooled to rt, and diluted with ethyl acetate and water. The aqueous layer was extracted 3x with ethyl acetate, and the combined organic fractions were washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane, to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 453.51 for [M+H]+:

1H NMR (400 MHz, CD$_3$OD) δ 8.93 (d, $J = 7.3$ Hz, IH), 8.46 (s, IH), 8.30 (s, IH), 8.26 (s, IH), 7.90 (s, IH), 7.86 (d, $J = 9.2$ Hz, IH), 7.79 (d, $J = 8.5$ Hz, IH), 7.66-7.57 (m, 2H), 7.50 (d, $J = 8.5$ Hz, IH), 6.39 (s, IH), 6.30 (s, IH), 4.86-4.84 (m, IH), 4.36 (s, 2H), 4.23-4.13 (m, 2H), 4.12-4.04 (m, IH), 3.56-3.50 (m, IH), 3.30-3.20 (m, IH), 3.20-3.10 (m, IH), 3.10-3.00 (m, IH), 2.90-2.80 (m, IH), 2.80-2.70 (m, IH), 2.70-2.60 (m, IH), 2.60-2.50 (m, IH), 2.50-2.40 (m, IH), 2.40-2.30 (m, IH), 2.30-2.20 (m, IH), 2.20-2.10 (m, IH), 2.10-2.00 (m, IH), 2.00-1.97 (m, IH).
3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-(pyridine-3-ylmethyl)benzo[j]quinazolin-4(3H)-one

To a solution of 6-[(6-chloropyridin-3-yl)methyl]-5,6-dihydro-2H-pyran-3(2H)-one (Example 1, 0.050 g, 0.12 ramol) in 1 mL of methanol and 1 mL of dichloromethane was added palladium on carbon (10 mg, 0.094 mmol). The mixture was placed under an atmosphere of hydrogen (1 atm) for 8 h and was then filtered through a pad of Celite, which was washed with MeOH. The filtrate was concentrated in vacuo to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 388.1657 for [M+H]+ [Calc’d for C_{25}H_{22}N_{3}O_{3}, [M+H]+ = 388.1656]: 1H NMR (400 MHz, d_{6}-DMSO) δ 9.96 (d, J = 7.5 Hz, IH), 8.79 (s, IH), 8.68 (s, IH), 8.63 (d, J = 4.8 Hz, IH), 8.15-8.02 (m, 2H), 8.02 (s, IH), 7.77-7.70 (m, 3H), 4.68 (s, 2H), 4.68 (br s, IH), 4.13-4.00 (m, IH), 3.98-3.89 (m, 2H), 3.44-3.38 (m, IH), 3.13-3.07 (m, 2H), 2.22-2.19 (m, IH), 1.86-1.83 (m, IH).

EXAMPLE 7
3-[(3S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methoxypyridin-3-yl)methyl]benzo[j]quinazolin-4(3H)-one
To a solution of 5-(chloromethyl)-2-methoxy pyridine (0.158 g, 0.999 mmol) in 0.5 mL of THF under an atmosphere of nitrogen was added Rieke Zn (1.3 mL, 1.0 mmol, 0.76 M in THF). The mixture was heated to reflux for 18 h, then cooled to 0°C. A solution of 6-bromo-3-[(3i,S,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(5H)-one (see Example 1, 0.125 g, 0.333 mmol) in 0.5 mL of THF was added, followed by bis(tri-rer-butylphosphine)palladium(0) (5.1 mg, 0.010 mmol). The mixture was warmed to rt. After 2 h, the reaction was diluted with dichloromethane and water, and the aqueous layer was extracted with additional dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-3% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 418.0 for [3VMf]+. 1H NMR (400 MHz, CDCl3) δ 8.94-8.92 (m, 1H), 8.27 (s, 1H), 8.03 (s, 1H), 7.91-7.87 (m, 2H), 7.65-7.61 (m, 2H), 7.29 (dd, J = 2.4 Hz, 8.5 Hz, 1H), 6.58 (d, J = 8.5 Hz, 1H), 4.86-4.79 (m, 1H), 4.28 (s, 2H), 4.23-4.06 (m, 3H), 3.85 (s, 3H), 3.58-3.53 (m, 1H), 3.31 (t, J = 10.3 Hz, 1H), 2.96 (d, J = 6.7 Hz, 1H), 2.30-2.20 (m, 1H), 2.01-1.97 (m, 1H).

EXAMPLE 8

5-(3-[(3i,S,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-4-oxo-3,4-dihydrobenzo[h]quinazolin-6-yl)methyl)pyridine-2-carbonitrile

- 50 -
To a solution of 6-[(6-chloropyridin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2\(H\)-pyran-4-yl]benzo[\(H\)]quinazolin-4(1\(H\))-one (0.100 g, 0.237 mmol) in 1 mL of DMF under an atmosphere of nitrogen was added zinc cyanide (Example 1, 0.084 g, 0.71 mmol) and tetrakis(triphenylphosphine)palladium(0) (13.7 mg, 0.012 mmol). The mixture was heated to 100 °C for 8 h, then at 140 °C for another 15 h. The reaction was cooled to rt, diluted with ethyl acetate, washed 3x with brine, dried over sodium sulfate, filtered, and concentrated \textit{in vacuo}.

The residue was purified via preparative reverse phase HPLC to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 413.1603 for [M+H]\(^+\) [Calc’d for C\(_{24}\)H\(_{21}\)N\(_4\)O\(_3\), [M+H]\(^+\) = 413.1608]: \(\text{1H NMR (400 MHz, CDCl}_3\)} \delta 8.96-8.94 (m, 1H), 8.56 (s, 1H), 8.29 (s, 1H), 7.98 (s, 1H), 7.78-7.75 (m, 1H), 7.64-7.59 (m, 2H), 7.50 (s, 2H), 4.72-4.69 (m, 1H), 4.49 (s, 2H), 4.11-4.05 (m, 2H), 4.04-3.98 (m, 1H), 3.50-3.47 (m, 1H), 3.29-3.20 (m, 2H), 2.17-2.13 (m, 1H), 2.00-1.95 (m, 1H).

EXAMPLE 9

6-[(6-Ethylpyridin-3-yl)methyl]-3-[(3\(R\), 4\(S\))-3-hydroxytetrahydro-2\(H\)-pyran-4-yl]benzo[\(H\)]quinazolin-4(1\(H\))-one
3-[(3R, 4S)-3-Hydroxytetrahydro-2-H-pyran-4-yl]-6-[(6-vinylpyridin-3-y1)methyl]benzo[l]quinazolin-4(3/i)-one was prepared by the procedure described for the synthesis of 3-[(3R, 4S)-3-Hydroxytetrahydro-2-H-pyran-4-yl]-6-{[6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl]methyl}benzo/[z]quinazolin-4(5H)-one in Example 4, substituting potassium vinyltrifluoroborate for 1-methyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl-1H-pyrazole.

To a solution of 3-[(3R, 4S)-3-Hydroxytetrahydro-2-H-pyran-4-yl]-6-[(6-vinylpyridin-3-y1)methyl]benzo/[A]quinazolin-4(5H)-one (0.040 g, 0.097 mmol) in 2 mL of methanol was added palladium on carbon (8.0 mg, 0.075 mmol). The mixture was placed under an atmosphere of hydrogen (1 atm) for 15 h and was then filtered through a pad of Celite, which was washed with MeOH. The filtrate was concentrated in vacuo to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 416.1960 for [M+H]+ [Calc’d for C_{25}H_{26}N_{3}O_{3}, [M+H]^+ = 416.1969]: 1H NMR (400 MHz, CDCl$_3$) δ 8.82 (d, J = 7.9 Hz, IH), 8.44 (s, IH), 8.34 (s, IH), 7.65 (d, J = 7.6 Hz, IH), 7.60-7.52 (m, 3H), 737 (d, J = 7.7 Hz, IH), 7.04 (d, J = 8.0 Hz, IH), 4.78-4.71 (m, IH), 4.29-4.25 (m, 3H), 4.23 (s, 2H), 4.06-3.99 (m, IH), 3.55 (t, J = 11.2 Hz, IH), 3.38-3.31 (m, IH), 2.83 (q, J = 7.4 Hz, 2H), 2.26-2.19 (m, IH), 1.97-1.94 (m, IH), 1.24 (t, J = 7.4 Hz, 3H).

EXAMPLE 10

6-[(6-Acetylpyridin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2-H-pyran-4-yl]benzo/[h]quinazolin-4(3/i)-one
3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-isopropenylpyridin-3-yl)methyl]benzo[h]quinazolin-4(5H)-one was prepared by the procedure described for the synthesis of 3-[(3R, 5S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-(1-methyl-7H-pyrazol-4-yl)pyridine-3-yl)methyl]benzo[h]quinazolin-4(3H)-one in Example 4, substituting isopropenylboronic acid pinacol ester for 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole.

To a solution of 3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-isopropenylpyridin-3-yl)methyl]benzo[h]quinazolin-4(5H)-one (0.042 g, 0.098 mmol) in a mixture of 1 mL of acetone, 1 mL of THF, and 1 mL of water was added ruthenium(II) chloride hydrate (5.5 mg, 0.025 mmol) and sodium periodate (0.084 g, 0.39 mmol). After 1.5 h, the mixture was diluted with water and extracted 3x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 460.1763 for [M+H]+ [Calc'd for C_{25}H_{24}N_{3}O_{4}, [MR-H]^{+} = 430.1761]: ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, J = 8.1 Hz, 1H), 8.52 (s, 1H), 8.28 (s, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.78 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.65-7.56 (m, 2H), 7.47-7.45 (in, 1H), 4.84-4.78 (m, 1H), 4.33 (s, 2H), 4.26-4.09 (m, 2H), 4.07-4.05 (ra, 1H), 3.70 (br s, 1H), 3.57 (t, J = 11.0 Hz, 1H), 3.34 (t, J = 10.0 Hz, 1H), 2.64 (s, 3H), 2.25-2.20 (m, 1H), 2.01-1.97 (ra, 1H).

EXAMPLE 11

6-[(6-Hydroxy-1-methylethyl)pyridine-3-yl]methoxyS-tyliquinazolin-4(5H)-one
To a solution of 6-[(6-acetyl pyridin-3-yl)methyl]-3-[(5i?, ¥5)-3-hydroxytetrahydro-2-pyranyl]benzo[h]quinazolin-4(5H)-one (Example 10, 0.018 g, 0.042 mmol) in 1 mL of THF at 0 °C was added methylmagnesium bromide (0.035 mL, 3.0 M diethyl ether solution, 0.10 mmol). After 30 min, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 446.2067 for [M+H]+ [Calc’d for C_{26}H_{28}N_{3}O_{4}, [M+Hf = 446.2074]: 1H NMR (400 MHz, CDCl$_3$) δ 8.95-8.93 (m, 1H), 8.40 (s, 1H), 8.29 (s, 1H), 7.85-7.81 (m, 2H), 7.67-7.60 (m, 2H), 7.39 (d, J = 8.2 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H), 4.89-4.80 (m, 2H), 4.33 (s, 2H), 4.25-4.04 (m, 3H), 3.60-3.57 (m, 1H), 3.36-3.28 (m, 1H), 2.30-2.15 (m, 1H), 2.02-1.98 (m, 1H), 1.47 (s, 6H).

EXAMPLE 12

3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-(4-morpholin-4-ybenzyl)benzo[h]quinazolin-4(3H)-one

- 54 -
6-(4-Chlorobenzyl)-3-[(5S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(\beta\)]quinazolin-4(5H)-one was prepared by the procedure described for the synthesis of 6-[(6-chloropyridm-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(\beta\)]quinazolin-4(3H)-one in Example 1, substituting 4-chlorobenzylzinc chloride for (2-chloro-5-pyridyl)methylzinc chloride.

To a solution of 6-(4-chlorobenzyl)-3-[(5S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(\beta\)]quinazolin-4(3H)-one (0.100 g, 0.238 mmol) in 2 mL of DMF under an atmosphere of nitrogen was added morpholine (0.083 g, 0.95 mmol), bis(tbutylphosphine)palladium(O) (0.012 g, 0.024 mmol), cesium carbonate (0.232 g, 0.713 mmol), and 0.2 mL of water. The mixture was warmed to 65 °C for 5 min, flushed with nitrogen, and irradiated in a microwave reactor at 130 °C for 25 min. The reaction was cooled to it and diluted with water and dichloromethane. The aqueous layer was reextracted with dichloromethane and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-4% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 471.9 for [M+H]+: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.01 (s, IH), 8.30 (s, IH), 8.01-7.98 (m, 2H), 7.65-7.59 (m, 2H), 7.07 (d, \(J = 8.7\) Hz, 2H), 7.77 (d, \(J = 8.7\) Hz, 2H), 4.89-4.82 (m, IH), 4.35 (s, 2H), 4.22-4.18 (m, IH), 4.13-4.08 (m, 2H), 3.79 (t, \(J = 4.8\) Hz, 4H), 3.59-3.52 (m, IH), 3.34-3.28 (m, IH), 3.06 (t, \(J = 4.8\) Hz, 4H), 2.66 (br s, IH), 2.32-2.22 (m, IH), 2.03-1.99 (m, IH).
EXAMPLE 13

3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[[6-(1,3-thiazol-4-yl)pyridine-3-yi]methyl]benzo/[z]quinazolin-4(3H)-one

To a solution of 6-[(6-chloropyridin-3-yi)methyl]-3-[5J, ¥5]-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[z]quinazolin-4(3H)-one (Example 1, 0.100 g, 0.237 mmol) in 1 mL of DMF under an atmosphere of nitrogen was added 4-(tributylstannyl)-1,3-thiazole (0.111 g, 0.296 mmol), tetrakis(triphenylphosphine)palladium(0) (0.055 g, 0.047 mmol), and copper(I) iodide (0.018 g, 0.095 mmol). The reaction was heated at 50°C for 15 h, and then at 140°C for an additional 6 h. The mixture was cooled to rt, diluted with ethyl acetate, and washed with brine and water. The solution was dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via preparative reverse phase HPLC to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 471.1478 for [M+H]+ [Calc’d for C26H23N4O3S, [M+H]+ = 471.1485]: 1H NMR (400 MHz, CD3OD) δ 9.18 (s, 1H), 9.01 (d, J = 8.1 Hz, IHX 8.62 (s, IH), 8.58 (s, IH), 8.54 (s, IH), 8.39 (d, J = 8.4 Hz, IH), 8.32-8.30 (m, IH), 8.08 (d, J = 8.1 Hz, IH), 7.98 (s, IH), 7.76-7.68 (m, 2H), 4.72 (s, 2H), 4.72-4.66 (m, IH), 4.36-4.24 (m, IH), 4.09-3.99 (m, 2H), 3.53 (t, J = 10.1 Hz, IH), 3.23 (t, J = 10.2 Hz, IH), 2.36-2.34 (m, IH), 2.00-1.95 (m, IH).

EXAMPLE 14
6-[(6-Chloro-1-oxidopyridin-3-yl)methyl]-3-[(3S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one

To a solution of -[(6-chloropyridin-3-yl)methyl]-3-[(5i, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one (Example 1, 0.100 g, 0.237 mmol) in 2 mL of dichloromethane was added w-chloroperbenzoic acid (0.205 g, 1.18 mmol). After 14 days, the mixture was concentrated in vacuo. The residue was purified via preparative reverse phase HPLC to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 438.1220 for [M+H]+ [Calc'd for C_{23}H_{21}ClN_{3}O_{4}, [M+H]^+ = 438.1215]:

\[\text{H NMR (400 MHz, CDCl}_3) \theta : 8.79-8.75 (m, 1H), 8.16 (s, 1H), 7.96 (s, 1H), 7.66-7.63 (m, 1H), 7.49-7.43 (m, 2H), 7.24-7.22 (m, 1H), 6.99 (dd, J = 1.5 Hz, 8.5 Hz, 1H), 4.49-4.44 (m, 1H), 4.23 (s, 1H), 4.01-3.95 (m, 1H), 3.91-3.87 (m, 1H), 3.84-3.36 (m, 1H), 3.36-3.30 (m, 1H), 3.07-3.02 (m, 1H), 2.08-1.98 (m, 1H), 1.82-1.78 (m, 1H).

EXAMPLE 15

6-[(2-Chloropyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one
Synthesis of 4-(bromomethyl)-2-chloropyridine.

To a solution of 2-chloropyridine-4-methanol (1.02 g, 7.10 mmol) in 15 mL of dichloromethane was added thionyl bromide (1.77 g, 8.53 mmol) dropwise. After 15 min, the reaction was quenched with saturated aqueous ammonium chloride. The organic solution was washed 2x with water, dried over sodium sulfate, filtered, and concentrated in vacuo to provide 4-(bromomethyl)-2-chloropyridine that gave a mass ion (ES+) of 208.0 for [M-HH]+.

To a solution of L-amino-4-bromo-L-[5R, 4S]-3-hydroxytetrahydro-2H-pyran-4-yl]-2-naphthamide (0.800 g, 2.13 mmol) in 10 mL of DMSO under an atmosphere of nitrogen was added potassium acetate (0.628 g, 6.40 mmol), bis(pinacolato)diboron (0.596 g, 2.34 mmol), and [L,r-bis(diphenylphosphino)ferrocene]dichloro-palladium(I) 1:1 complex with dichloromethane (0.174 g, 0.213 mmol). The mixture was heated at 50 °C for 16 h, cooled to rt, and diluted with water and ethyl acetate. The organic solution was washed 3x with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-3% methanol in dichloromethane to provide 3-[(3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[2]quinazolin-4(1H)-one that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.604 g, 1.43 mmol) in 7 mL of THF under an atmosphere of nitrogen was added 4-(bromomethyl)-2-chloropyridine (0.443 g, 2.14 mmol), aqueous cesium carbonate (2 M, 2.14 mL, 4.29 mmol), and [L,r-bis(diphenylphosphino)ferrocene]dichloro-palladium(II), 1:1 complex with dichloromethane (0.117 g, 0.143 mmol). The mixture was...
heated at 140 °C for 1 h, cooled to it, and diluted with dichloromethane. The organic solution
was washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The
resultant slurry was filtered and washed with dichloromethane to provide the title compound that
gave proton NMR spectra consistent with theory and a mass ion (ES+) of 422.1264 for [M+H]+
[Calc’d for C23H21ClN3O3, [M+H]+ = 422.1266]: 1H NMR (400 MHz, CDCl3) δ 9.07-9.04 (m,
IH), 8.25 (d, J = 5.0 Hz, IH), 8.08 (s, IH), 7.82-7.79 (m, IH), 7.73-7.66 (m, 2H),
7.13 (s, IH), 7.04 (d, J = 5.3 Hz, IH), 4.93-4.87 (m, IH), 4.45 (s, 2H), 4.26-4.12 (m, 3H), 3.60 (t,
J = 9.8 Hz, IH), 3.35 (d, J = 10.3 Hz, IH), 2.34 (d, J = 4.5 Hz, IH), 2.32-2.28 (m, IH), 2.09-2.04
(m, IH).

EXAMPLE 16

3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methylsulfonyl)pyridine-3-yl]methyl]benzo[h]quinazolin-4(5H)-one

To a solution of 3-[(3R,45)-3-hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methylthio)pyridin-3-yl]methyl]benzo[A]quinazolin-4(3H)-one (Example 2, 0.025 g, 0.058 mmol) in 1 mL of
dichloromethane was added m-chloroperbenzoic acid (0.030 g, 0.12 mmol). After 15 h, the
mixture was washed 3x with 10% aqueous sodium carbonate, dried over sodium sulfate, filtered,
and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with
0-5% methanol in dichloromethane to provide the title compound that gave proton NMR spectra
consistent with theory and a mass ion (ES+) of 466.1446 for [M+H]+ [Calc’d for C24H24N3O5S,
[M+H]+ = 466.1431]: 1H NMR (400 MHz, CDCl3) δ 8.86 (d, J = 8.2 Hz, IH), 8.57 (s, IH), 8.27
7.87 (d, 8.2 Hz, IH), 7.66-7.54 (m, 5H), 4.81-4.46 (m, IH), 4.31 (d, J = 3.7 Hz, 2H),
4.27-4.16 (m, 2H), 4.08-4.02 (m, IH), 3.78 (d, J = 6.0 Hz, IH), 3.59-3.52 (m, IH), 3.35-3.30 (m,
IH), 3.16 (s, 3H), 2.24-2.13 (m, IH), 1.99-1.94 (m, IH).

EXAMPLE 17
3-[(3R, ^-S-Hydroxytetrahydro^ H-pyran-4-yl]-6-ffe-CmethylsulfomyOpyridine-S-yl]methyl]benzo[h]quinazolin-4(3if)-one

To a solution of 3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methylthio)pyridin-3-yl]methyl]benzo[A]quinazolin-4(3f)-one (Example 2, 0.025 g, 0.058 mmol) in 1 mL of
dichloromethane was added m-chloroperbenzoic acid (0.014 g, 0.058 mmol). After 2 h, the
mixture was washed 3x with 10% aqueous sodium carbonate, dried over sodium sulfate, filtered,
and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with
0-3% methanol in dichloromethane to provide the title compound that gave proton NMR spectra
consistent with theory and a mass ion (ES+) of 450.1495 for [M+H]+ [Calc’d for C_{24}H_{24}N_{3}O_{4}S,
[M+H]+ = 450.1482]: 1H NMR (400 MHz, CDCl_{3}) δ 8.88 (d, J = 8.2 Hz, IH), 8.42 (s, IH), 8.28
(s, IH), 7.77 (d, J = 8.2 Hz, IH), 7.72 (d, J = 4.9 Hz, IH), 7.72-7.54 (m, 4H), 4.80-4.76 (m, IH),
4.28 (s, 2H), 4.24-4.17 (m, 2H), 4.08-4.04 (m, IH), 3.90-3.79 (m, IH), 3.59-3.52 (m, IH), 3.35-
3.30 (m, IH), 2.75-2.74 (m, 3H), 2.21-2.16 (m, IH), 2.00-1.95 (ra, IH).

EXAMPLE 18
Methyl 5-((3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-4-oxo-3,4-dihydrobenzo[h]quinazolin-6-yl]methyl)pyridine-2-carboxylate was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(5i?, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one in Example 15, substituting methyl 5-(bromomethyl)pyridine-2-carboxylate for 4-(bromomethyl)-2-chloropyridine.

To a solution of methyl 5-((3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-4-oxo-3,4-dihydrobenzo[h]quinazolin-6-yl]methyl)pyridine-2-carboxylate (0.150 g, 0.337 mmol) in 2 mL of water and 2 mL of THF was added lithium hydroxide (0.016 g, 0.67 mmol). The mixture was heated to 50 °C for 2 h, cooled to rt, and quenched with saturated aqueous potassium phosphate to pH 5. The aqueous solution was extracted 3x with ethyl acetate and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+):

\[
\text{M}^+ = 432.1560 \quad \text{for} \quad [\text{C}_24\text{H}_{22}\text{N}_3\text{O}_5]^+ = 432.1554
\]

\[\text{^1}H\text{ NMR (400 MHz, CDCl}_3\]) \delta 8.96-8.94 (m, 1H), 8.70 (s, 1H), 8.67 (s, 1H), 8.13-8.10 (m, 1H), 7.98 (s, 1H), 8.89 (d, \text{J} = 8.2 \text{ Hz}, 1H), 7.78-7.67 (m, 3H), 5.26 (d, \text{J} = 5.3 \text{ Hz}, 1H), 4.63 (s, 2H), 4.14-4.03 (m, 1H), 3.94-3.88 (m, 2H), 3.41 (t, \text{J} = 11.0 \text{ Hz}, 1H), 3.27 (br s, 1H), 3.12-3.08 (m, 2H), 2.28-2.19 (m, 1H), 1.87-1.83 (m, 1H).\]
EXAMPLE 19
5-((3-(3R,4S)-3-Hydroxytetrahydro-2H-pyran-4-yl)-4-oxo-3,4-dihydrobenzo[h]quinazolin-6-yl)methyl)-N,N-dimethylpyridine-2-carboxamide.

To a solution of 5-((3-(JR, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl)4-oxo-3,4-dihydrobenzo[h]quinazolin-6-yl)methyl)pyridine-2-carboxylic acid (Example 18, 0.030 g, 0.070 mmol) in 1 mL of DMF was added dimethylamine (0.087 mL, 0.17 mmol), triethylamine (0.019 mL, 0.14 mmol), and benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (0.046 g, 0.10 mmol). After 1 h, additional dimethylamine (0.17 mL, 0.35 mmol) was added. After 2 h, the mixture was diluted with water and dichloromethane, and the organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 459.2039 for [M+H]+ [Calc’d for C_{26}H_{27}N_{4}O_{4}, [M+H]^+ = 459.2027]: ^1HNMR (400 MHz, CDCl₃) δ 8.89-8.87 (m, 1H), 8.41 (s, 1H), 8.28 (s, 1H), 7.76 (s, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.63-7.54 (m, 2H), 7.41 (s, 2H), 4.82-4.75 (m, 1H), 4.34 (br s, 1H), 4.27 (s, 2H), 4.23-4.18 (m, 2H), 4.03 (s, 1H), 3.58-3.51 (m, 1H), 3.34-3.28 (m, 1H), 3.09 (s, 3H), 2.99 (s, 3H), 2.23-2.12 (m, 1H), 2.00-1.91 (m, 1H).

EXAMPLE 20
3-[(3R, 4S)-3-Hydroxytetrahydro-2'H-pyran-4-yl]-6-[(6-(1-methoxy-1-methylethyl)pyridine-3-yl)methyl]benzo[h]quinazolin-4(3H)-one

Methyl 5-{[(3R, 4S)-3-Hydroxytetrahydro-2'H-pyran-4-yl]μ-4-oxo-3,4-dihydrobenzo[A]quinazolin-6-yl}methyl)pyridine-2-carboxylate was prepared by the procedure described for the synthesis of 6-{[(2-chloropyridin-4-yl)methyl]-3-[(i/ξ, 4S)-3-hydroxytetrahydro-2'H-pyran-4-yl]benzo[A]quinazolin-4(5H)-one in Example 15, substituting methyl 5-(bromomethyl)pyridine-2-carboxylate for 4-(bromomethyl)-2-chloropyridine.

To a solution of methyl 5-{[(3R, 8S)-3-Hydroxytetrahydro-27'H-pyran-4-yl]-4-oxo-3,4-dihydrobenzo/f]quinazolin-6-yl}methyl)pyridine-2-carboxylate (0.255 g, 0.572 mmol) in 6 mL of dichloromethane was added triethylamine (0.087 g, 0.86 mmol) and tert-butydimethylsilyl trifluoromethanesulfonate (0.166 g, 0.630 mmol). After 2 h, the reaction was quenched with
saturated aqueous ammonium chloride, and extracted 2x with dichloromethane. The combined organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo to provide methyl 5-\{3-((3R, 4S)-3-\{(\text{tert}-butyl(dimethyl)silyl)oxy\}tetrahydro-2H-pyran-4-yl)-4-oxo-3,4-dihydrobenzo[\(z\)]quinazolin-6-yl\}methyl\}pyridine-2-carboxylate title compound that gave a mass ion (ES+) of 560.0 for [M+H]+.

To a solution of the above compound (0.050 g, 0.089 mmol) in 1 mL of THF at 0 °C under an atmosphere of nitrogen was added methylmagnesium bromide (0.089 mL, 3.0 M diethyl ether solution, 0.27 mmol). After 1 h, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with diethyl ether. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo to provide 3-\{3-((3R, 4S)-3-\{(\text{tert}-butyl(dimethyl)silyl)oxy\}tetrahydro-2H-pyran-4-yl)-6-\{6-(1-hydroxy-1-methylethyl)pyridine-3-yl\}methyl\}benzo[A]quinazolin-4(3\(H\))\>-one that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.050 g, 0.089 mmol) in 1 mL of THF was added sodium hydride (0.0071 g, 0.18 mmol). After 20 min, iodomethane (0.056 mL, 0.89 mmol) was added. After 15 h, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with diethyl ether. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo to provide 3-\{3-((3R, 4S)-3-\{(\text{tert}-butyl(dimethyl)silyl)oxy\}tetrahydro-2H-pyran-4-yl)-6-\{6-(1-methoxy-1-methylethyl)pyridine-3-yl\}methyl\}benzo[H]quinazolin-4(3\(H\))\>-one a mass ion (ES+) of 574.0 for [M+H]+.

To a solution of the above compound (0.051 g, 0.089 mmol) in 1 mL of THF was added tetrabutylammonium fluoride (0.223 mL, 0.223 mmol). After 1 h, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with diethyl ether. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-4% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 460.2246 for [M+H]+ [Calc'd for \(\text{C}_{27}\text{H}_{30}\text{N}_{3}\text{O}_{4}\). [M+H]+ = 460.2231]: \(^1\text{H} \text{NMR} \ (400 \text{ MHz, CDCl}_3) \ \delta \ 8.90-8.88 \ (\text{m, IH}), \ 8.44 \ (\text{s, IH}), \ 8.27 \ (\text{s, IH}), \ 7.81-7.79 \ (\text{m, 2H}), \ 7.64-7.56 \ (\text{m, 2H}), \ 7.33 \ (\text{s, 2H}), \ 4.85-4.78 \ (\text{m, IH}), \ 4.26 \ (\text{s, 2H}), \ 4.24-4.06 \ (\text{m, 4H}), \ 3.58-3.53 \ (\text{m, IH}), \ 3.32 \ (\text{t, J = 10.1 Hz, IH}), \ 3.07 \ (\text{s, 3H}), \ 2.27-2.16 \ (\text{m, IH}), \ 2.00-1.96 \ (\text{m, IH}), \ 1.48 \ (\text{s, 6H}).

EXAMPLE 21

6-\{6-(Hydroxymethyl) pyridine-3-yl\}methyl\}-3-\{(3i?, ^S\)-3-hydroxytetrahydro-2 \(H\)-pyran-4-yl\}benzo[H]quinazolin-4(3 \(H\))\>-one
To a solution of methyl 5-\{3-((3R,4S)-3-\{tert-butyl(dimethyl)silyl\}oxy}tetrahydro-2//-pyran-4-yl\}-4-oxo-3,4-dihydrobenzo[\(h\)]quinazolin-6-yl)methyl\}pyridine-2-carboxylate (see Example 20, 0.250 g, 0.447 mmol) in 5 mL of ethanol was added sodium borohydride (0.034 g, 0.89 mmol). After 15 h, additional sodium borohydride (0.050 g, 1.32 mmol) was added. After 24 h, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. To a solution of the residue in 3 mL of chloroform was added 2,3-dichloro-5,6-dicyanobenzoquinone (0.101 g, 0.447 mmol). After 15 min, the mixture was concentrated in vacuo and the residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide 3-((3R, 4S)-3-\{tert-butyl(dimethyl)silyl\}oxy \)tetrahydro-2//-pyran-4-yl\})-6-\{6-(hydroxymethyl)pyridine-3-yl\}methyl\}benzo[\(l\)]quinazolm-4(3//)-one that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 532.0 for [M+H]+.

To a solution of the above compound (0.015 g, 0.028 mmol) in 1 mL of THF was added tetrabutylammonium fluoride (0.070 mL, 0.071 mmol). After 1 h, the mixture concentrated in vacuo and the residue was purified via silica gel chromatography, eluting with 0-5% methanol in...
dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 460.2246 for [M+H]+ [Calc’d for C_{27}H_{30}N_{3}O_{4}, [M+H]+ = 460.2231]: \^1H NMR (400 MHz, CDCl\textsubscript{3}) \delta 8.91-8.89 (m, 1H), 8.40 (s, IH), 8.27 (s, IH), 7.79-7.74 (m, 2H), 7.64-7.57 (m, 2H), 7.31-7.29 (m, IH), 7.04 (d, J = 8.0 Hz, 1H), 4.81-4.75 (m, IH), 4.64 (s, 2H), 4.25 (s, 2H), 4.23-4.16 (m, 2H), 4.09-4.05 (m, IH), 3.58-3.52 (m, IH), 3.34-3.29 (m, IH), 2.87 (br s, IH), 2.29-2.22 (m, IH), 2.00-1.95 (m, IH).

EXAMPLE 22

6-[[6-(Fluoromethyl)pyridine-3-yl]methyl]-3-(\(\^3\S\))-3-hydroxytetrahydro-2\(\H\)-pyran-4-yl]benzo[h]quinazolin-4(3/\textsubscript{i})-one

To a solution of 3-\((3\text{R}, 4\text{y})\)-3-\{[tert-butyldimethylsilyl]oxy\}tetrahydro-2\(\H\)-pyran-4-yl]-6-\{[6-(hydroxymethyl)pyridine-3-yl]methyl\}benzo[\textit{h}]quinazolin-4(3\textit{i})-one (Example 21, 0.035 g, 0.066 mmol) in 1 mL of dichloromethane at -78 °C was added [bis(2-methoxyethyl)amino]sulfur trifluoride (0.015 mL, 0.079 mmol). The reaction was warmed to rt, and after 3 h, the solution was purified via silica gel chromatography, eluting with 0-3% methanol in dichloromethane to provide 3-\((5\text{i}, 4\text{S})\)-3-\{[tert-butyldimethylsilyl]oxy\}tetrahydro-2\(\H\)-pyran-4-yl]-6-\{[6-(fluoromethyl)pyridine-3-yl]methyl\}benzo[\textit{h}]quinazolin-4(3\textit{i})-one that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 534.0 for [M+H]+.

To a solution of the above compound (0.019 g, 0.035 mmol) in 1 mL of THF was added tetrabutylammonium fluoride (0.089 mL, 0.089 mmol). After 1 h, the mixture was concentrated
in vacuo and the residue was purified via silica gel chromatography, eluting with 0-5\% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES⁺) of 420.1736 for [M+H⁺] [Calc’d for C_{24}H_{23}N_{3}O_{3}, [M+H]⁺ = 420.1718]: ³¹H NMR (400 MHz, CDCl₃) δ 9.02-9.00 (m, 1H), 8.51 (s, 1H), 8.30 (s, 1H), 8.01 (s, 1H), 7.98-7.90 (m, 1H), 7.67-7.64 (m, 2H), 7.49-7.46 (m, 1H), 7.30-7.28 (m, 1H), 5.41 (d, J = 47.0 Hz, 2H), 4.89-4.82 (m, 1H), 4.46 (s, 2H), 4.22-4.18 (m, 1H), 4.13-3.88 (m, 2H), 3.56 (t, J = 11.1 Hz, 1H), 3.31 (t, J = 10.4 Hz, 1H), 2.43-2.34 (m, 1H), 2.33-2.24 (m, 1H), 2.04-2.00 (m, 1H).

EXAMPLE 23

6-[[6-(Difluoromethyl)pyridine-3-yl]methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2/-J-pyran-4-yl]benzo[h]quinazolin-4(5 H)-one
To a solution of dimethylsulfoxide (0.040 mL, 0.56 mmol) in 2 mL of dichloromethane at -78 °C was added oxalyl chloride (0.025 mL, 0.28 mmol). After 30 min, a solution of 3-((3R, 4S)-3-[(tert-butyl(dimethyl)silyl)oxy]tetrahydro-2H-pyran-4-yl)-6-[(6-(hydroxymethyl)pyridine-3-yl)methyl]benzo/[z]quinazolin-4(3H)-one (Example 21, 0.075 g, 0.14 mmol) in 1 mL of dichloromethane. After 30 min, triethylamine (0.157 mL, 1.13 mmol) was added, and the reaction was warmed to rt. After 30 min, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with diethyl ether. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo to provide 5-[[3-((i?i?, 4S)-3-[(tert-butyl(dimethyl)silyl)oxy]tetrahydro-2H-pyran-4-yl)-4-oxo-3,4-dihydrobenz[θ]quinazolin-6-yl]methyl]pyridine-2-carbaldehyde that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.050 g, 0.094 mmol) in 1 mL of dichloromethane at -78 °C was added [bis(2-methoxyethyl)amino]sulfur trifluoride (0.052 mL, 0.28 mmol). The reaction was warmed to rt, and after 4 h, the solution was treated with water and extracted 2x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo to provide 3-((3R, 4S)-3-[(tert-butyl(dimethyl)silyl)oxy]tetrahydro-2H-pyran-4-yl)-6-[(6-(difluoromethyl)pyridine-3-yl)methyl]benzo/[2]quinazolin-4(5H)-one that gave a mass ion (ES+) of 552.0 for [M+H]⁺.

To a solution of the above compound (0.052 g, 0.094 mmol) in 1 mL of THF was added tetrabutylammonium fluoride (0.235 mL, 0.235 mmol). After 1 h, the mixture was treated with saturated aqueous ammonium chloride and extracted 2x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 438.1642 for [M+H]⁺ [Calc’d for C₂₄H₂₂F₂N₃O₃, [M+H]⁺ = 438.1624]: ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 8.1 Hz, IH), 8.52 (s, IH), 8.26 (s, IH), 7.71 (s, IH), 7.67 (d, J = 8.1 Hz, IH), 7.64-7.54 (m, 2H), 7.23-6.69 (m, 2H), 6.55 (t, J = 55.5 Hz, IH), 4.83-4.76 (m, IH), 4.28 (s, 2H), 4.25-4.16 (m, 2H), 4.09-4.05 (m, IH), 3.75 (br s, IH), 3.59-3.53 (m, IH), 3.33 (t, J = 10.1 Hz, IH), 2.24-2.16 (m, IH), 1.99-1.95 (m, IH).

EXAMPLE 24

6-[(2-Chloro-1-oxidopyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[z]quinazolin-4(5i)T-one
To a solution of 6-[(2-chloropyridin-4-yl)methyl]-3-[(3i, #S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(5H)-one (Example 15, 54.5 mg, 0.129 mmol) in 2 mL of dichloromethane was added urea hydrogen peroxide (60.8 mg, 0.646 mmol), triethylamine (0.090 mL, 0.65 mmol), and trifluoroacetic anhydride (0.036 mL, 0.26 mmol). After 30 min, additional urea hydrogen peroxide (36.5 mg, 0.388 mmol), and triethylamine (0.18 mL, 1.3 mmol), and trifluoroacetic anhydride (0.146 mL, 1.03 mmol) were added. After 3 h, the reaction was cooled to -78 °C, treated with 10% aqueous sodium carbonate, and extracted 3x with dichloromethane. The combined organic solutions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was suspended in methanol, and the slurry was filtered and washed with additional methanol to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 438.1214 for [M+H]+ [Calc'd for C23H21ClN3O4, [M+H]+ = 438.1215]: 1H NMR (400 MHz, d6-DMSO) δ 9.01 (d, J = 1.1 Hz, IH), 8.73 (s, IH), 8.32 (d, J = 6.8 Hz, IH), 8.14 (d, J = 7.7 Hz, IH), 8.06 (s, IH), 7.82-7.74 (m, 3H), 7.22-7.25 (m, IH), 5.31 (d, J = 5.5 Hz, IH), 4.67 (br s, IH), 4.56 (s, 2H), 4.18 (br s, IH), 4.00-3.93 (m, 2H), 3.46 (t, J = 11.0 Hz, IH), 3.15 (t, J = 10.5 Hz, IH), 2.24 (br s, IH), 1.92-1.90 (m, IH).

EXAMPLE 25

6-[(2-Fmorphridin-4-yl)methyl]-3-[(5i, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(5H)-one
To a solution of 2-fluoro-4-methylpyridine (0.510 g, 4.59 mmol) in 20 mL of carbon tetrachloride was added 4-bromosuccinimide (0.899 g, 5.05 mmol) and benzoyl peroxide (0.148 g, 0.459 mmol). The mixture was heated to 90 °C for 1 h, and then additional benzoyl peroxide (0.074 g, 0.23 mmol) was added. After 20 h, the reaction was diluted with dichloromethane, washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-10% ethyl acetate in hexanes to provide the 4-(bromomethyl)-2-fluoropyridine that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 191.9 (\(^{81} \)Br) for [M+H]+.

The title compound was prepared by the procedure described for the synthesis of 6-\{[(R)\, 4S]-3-hydroxytetrahydro-2\(i\)-pyran-4-yl\}benzo[\(i\)]quinazolin-4(3H)-one in Example 15, substituting 4-(bromomethyl)-2-fluoropyridine for 4-(bromomethyl)-2-chloropyridine. The resultant orange solid gave proton NMR spectra consistent with theory and a mass ion (ES+) of 405.9 for [M+H]+: \(^1\)H NMR (400 MHz, d\(_6\)-DMSO) \(\delta \) 9.02-8.99 (m, IH), 8.73 (s, IH), 8.11 (d, \(J = 5.6 \) Hz, 2H), 8.07 (s, IH), 7.88-7.74 (m, 2H), 7.19 (s, IH), 7.08 (s, IH), 5.31 (d, \(J = 5.5 \) Hz, IH), 4.65 (s, 2H), 4.18-4.16 (m, IH), 4.09-3.94 (m, 2H), 3.46 (t, \(J = 11.0 \) Hz, IH), 3.22-3.13 (m, IH), 2.26-2.24 (m, IH), 1.91-1.87 (m, IH).

EXAMPLE 26

3-\{[(3R, 4S)-3-Hydroxytetrahydro-2\(i\)-pyran-4-yl\}-6-\{[(2-methoxy.pyridin-4-yl)methyl]benzo[\(i\)]quinazolin-4(5H)-one
Synthesis of (2-methoxy pyridin-4-yl)methanol.

To a solution of 2-hydroxyisonicotinic acid (1.05 g, 7.55 mmol) and potassium carbonate (3.23 g, 23.4 mmol) in 7 mL of DMF at 0°C under an atmosphere of nitrogen was added iodosmethane (0.991 mL, 15.8 mmol). The mixture was warmed to rt, and after 14 h, warmed to 40 °C. After 3 b, additional iodosmethane (0.28 mL, 4.5 mmol) was added. After 20 h, the reaction was diluted with dichloromethane, washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo to provide methyl 2-methoxyisomcotinate that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 168.1 for [M+H]+.

To a solution of the above compound (0.425 g, 2.54 mmol) in 2 mL of THF at 0 °C under an atmosphere of nitrogen was added lithium borohydride (0.089 g, 4.1 mmol). The mixture was warmed to rt, and after 20 h, filtered and washed with dichloromethane. The organic filtrate was concentrated in vacuo and the residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide (2-methoxypyridin-4-yl)methanol that gave proton NMR spectra consistent with theory.

The title compound was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(3R, ^S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[~z~]quinazolin-4(3H)-one in Example 15, substituting (2-methoxypyridin-4-yl)methanol for 2-chloropyridine-4-
methanol. The resultant orange solid gave proton NMR spectra consistent with theory and a mass ion (ES+) of 418.1779 for [M+H]+ [Calc'd for C_{24}H_{24}N_{3}O_{4}, [M+H]+ = 418.1761]:

\[
\text{H NMR (400 MHz, d}_{6}-\text{DMSO)} \delta 9.01 (d, J = 7.7 \text{ Hz, IH), 8.71 (s, IH), 8.11 (d, J = 8.0 \text{ Hz, IH), 8.05 (s, IH), 7.81-7.74 (m, 2H), 7.56-7.54 (m, IH), 5.32 (d, J = 5.5 \text{ Hz, IH), 4.64 (br s, IH), 437 (s, 2H), 4.17 (br s, IH), 4.18-3.97 (m, 2H), 3.51-3.43 (m, IH), 3.34 (s, 3H), 3.15 (t, J = 10.3 \text{ Hz, IH), 2.25 (br s, IH), 1.91 (d, J = 12.0 \text{ Hz, IH).}}
\]

EXAMPLE 27

6-[(6-Ethoxyypyridin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-y]benzo[h]quinazolin-4(5H)-one

6-[(6-Fluoropyridin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(5H)-one was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[A]quinazolin-4(5H)-one in Example 15, substituting 5-(bromomethyl)-2-fuoro pyridine for 4-(bromomethyl)-2-chloropyridine.

To a solution of sodium hydride (0.012 g, 0.31 mmol) in 1 mL of DMSO was added ethanol (0.022 mL, 0.37 mmol). After 5 min, 6-[(6-Fluoropyridin-3-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[z]quinazolin-4(3H)-one (0.050 g, 0.12 mmol) was added. After 4 h, the reaction was diluted with ethyl acetate, washed with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 25-75% ethyl acetate in hexanes to provide the title compound that
gave proton NMR spectra consistent with theory and a mass ion (ES+) of 432.1916 for [M+H]+.

[Calc’d for C_{25}H_{26}N_{3}O_{4}; [M+H]^{+} = 432.1918]: ^{1}H NMR (400 MHz, CDCl_{3}) \delta 8.92-8.89 (m, IH), 8.26 (s, IH), 8.00 (s, IH), 7.89-7.86 (m, IH), 7.84 (s, IH), 7.65-7.58 (m, 2H), 7.29 (s, IH), 6.55 (s, IH), 4.86-4.79 (m, IH), 4.29-4.06 (m, 7H), 3.59-3.52 (m, IH), 3.33-3.29 (m, IH), 3.16-3.02 (d, J = 6.5 Hz, IH), 2.29-2.19 (m, IH), 2.01-1.97 (m, IH), 1.30-1.27 (m, IH).

EXAMPLE 28

6-[(6-Hydroxypyridin-3-yl)methyl]-3-[(3i?, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quazolin-4(3H)-one

A solution of 6-[(6-fluoropyridin-3-yl)methyl]-3-[(5i?, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[z]quinazolin-4(3H)-one (0.100 g, 0.247 mmol) in 2 mL of hydrochloric acid was heated to 100 °C for 4 h. Additional hydrochloric acid (1.5 mL) was added, and after 2h, the reaction was concentrated in vacuo to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 404.1604 for [M+H]+.

[Calc’d for C_{25}H_{26}N_{3}O_{4}; [M+Hf]^{+} = 404.1605]: ^{1}H NMR (400 MHz, d_{6}-DMSO) \delta 8.94 (d, J = 8.0 Hz, IH), 8.66 (s, IH), 8.57 (s, IH), 8.25 (s, IH), 7.98-7.89 (m, 2H), 7.80-7.70 (m, 2H), 7.60-7.44 (m, 2H), 7.20-7.10 (m, 1H), 4.98-4.89 (m, 1H), 4.80-4.70 (m, 1H), 4.75-4.65 (m, 1H), 4.65-4.55 (m, 1H), 3.60-3.45 (m, 1H), 2.60-2.50 (m, 1H), 2.49-2.39 (m, 1H), 2.25-2.15 (m, 1H), 2.15-2.05 (m, 1H), 2.05-1.95 (m, 1H), 1.95-1.85 (m, 1H), 1.85-1.75 (m, 1H), 1.75-1.65 (m, 1H), 1.65-1.15 (m, 1H).
EXAMPLE 29

6-[(6-(Difluoromethoxy)pyridine-3-yl)methyl]-3-[(3R, 4S)-Z-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one

To a solution of 6-[(6-hydroxypyridin-3-yl)methyl]-3-[(3R, 4S)-Z-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one (Example 29, 0.025 g, 0.062 mmol) in 1 mL of acetonitrile was added sodium chlorodifluoroacetate (0.010 g, 0.068 mmol). The reaction was heated to reflux under an atmosphere of nitrogen for 4 h, and then DMF (0.3 10 mL) was added. The mixture was heated to 100 °C for 1 h, cooled to it, and diluted with ethyl acetate. The organic solution was washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-5% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 454.1573 for [M+H]+ [Calc’s for C_{24}H_{22}F_{2}N_{3}O_{4}, [M+Hf = 454.1573]: ^{1}H NMR (400 MHz, CDCl₃) 6 8.90-8.88 (m, IH), 8.26 (s, IH), 8.03 (s, IH), 7.77-7.75 (m, 2H), 7.65-7.59 (m, 2H), 7.43-7.40 (m, IH), 7.37 (t, J = 73.2 Hz, IH), 6.73 (d, J = 8.4 Hz, IH), 4.84-4.77 (m, IH), 4.25 (s, 2H), 4.22-4.06 (m, 3H), 3.59-3.53 (m, IH), 3.45 (br s, IH), 3.35-3.30 (m, IH), 2.21-1.96 (m, IH), 2.00-1.96 (m, IH).
6-[(2-(Difluoromethoxy) pyridine-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one

Synthesis of [2-(difluoromethoxy)pyridine-4-yl]methanol.

To a solution of 2-hydroxyisonicotinaldehyde (1.00 g, 8.12 mmol) in 25 mL of acetontitrile was added sodium chlorodifluoroacetate (1.86 g, 12.2 mmol). The reaction was heated to reflux for 20 h, cooled to rt, and diluted with ethyl acetate. The organic solution was washed with brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was redissolved in 20 mL of methanol and placed under an atmosphere of nitrogen. Sodium borohydride (0.307 g, 3.12 mmol) was added in 3 portions, and after 2 h, the reaction was treated with brine and diluted extracted 2x with dichloromethane. The combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo to provide 2-(difluoromethoxy)pyridine-4-ylmethanol that gave a mass ion (ES+) of 176.1 for [M+H]+.

The title compound was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(5S, 4R)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[A]quinazolin-4(5H)-one in Example 15, substituting [2-(difluoromethoxy)pyridine-4-yl] methanol for 2-chloropyridine-4-methanol. The resultant white solid gave proton NMR spectra consistent with theory and a mass ion (ES+) of 454, 1587 for [M+H]+ [Calc'd for C24H22F2N3O4, [M+H]+ =
EXAMPLE 3

6-t(3-Bromo-1-methyl-1H-pyrrolo[2,3-β]pyridine-4-yl)methyl]-3-[(3S,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[H]quinazolin-4(3H)-one

Synthesis of 3-bromo-4-(bromomethyl)-1-methyl-1H-pyrrolo[2,3-β]pyridine.

To a solution of 1H-pyrrolo[2,3-β]pyridine-4-carbaldehyde (0.252 g, 1.72 mmol) in 1 mL of DMF under an atmosphere of nitrogen was added sodium hydride (45.5 mg, 1.90 mmol). After 5 min, iodomethane (0.13 mL, 2.1 mmol) was added. After 30 min, the reaction was treated with saturated aqueous ammonium chloride, diluted with water, and extracted 2x with...
dichloromethane. The combined organic solution was washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-40% ethyl acetate in hexanes to provide 1-methyl-1H-pyrrolo[2,3-β]pyridine-4-carbaldehyde that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 161.2.

To a solution of the above compound (0.136 g, 0.849 mmol) in 5 mL of methanol was added sodium borohydride (9.6 mg, 0.26 mmol). After 2 h, the reaction was treated with saturated aqueous ammonium chloride, diluted with water, and extracted 2x with dichloromethane. The combined organic fractions were washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-40% ethyl acetate in hexanes to provide (I-methyl-7H-pyrrolo[2,3-β]pyridine-4-yl)methanol that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 163.2.

To a solution of the above compound (0.131 g, 0.808 mmol) in 5 mL of dichloromethane at 0 °C was added thionyl bromide (0.336 g, 1.62 mmol) dropwise. After 30 min, the reaction was warmed to rt and quenched with saturated aqueous sodium carbonate. The organic solution was washed 2x with water, dried over sodium sulfate, filtered, and concentrated in vacuo to provide 3-bromo-4-(bromomethyl)-1-methyl-7H-pyrrolo[2,3-β]pyridine that a mass ion (ES+) of 304.9 for [M+H]+.

The title compound was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[A]quinazolin-4(3H)-one in Example 15, substituting 3-bromo-4-(bromomethyl)-1-methyl-7H-pyrrolo[2,3-β]pyridine for 4-(bromomethyl)-2-chloropyridine. The resultant yellow solid gave proton NMR spectra consistent with theory and a mass ion (ES+) of 520.9 ([M+H]+) for [M+H]+. 1H NMR (400 MHz, d6-DMSO) δ 9.03-9.00 (m, IH), 8.69 (s, IH), 8.22-8.19 (m, 2H), 7.84-7.78 (m, 3H), 7.61 (s, IH), 6.79 (d, J = 4.8 Hz, IH), 5.28 (d, J = 5.5 Hz, IH), 5.07 (s, 2H), 4.56 (br s, IH), 4.14 (br s, IH), 3.97-3.90 (m, 2H), 3.85 (s, 3H), 3.44-3.38 (m, IH), 3.11 (t, J = 10.5 Hz, IH), 2.22 (br s, IH), 1.87-1.84 (m, IH).

EXAMPLE 32

6-[(1-Ethyl-7H-pyrrolo[2,3-β]pyridin-4-yl)methyl]-3-[(J R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one
Synthesis of 4-(bromomethyl)-ethyl-1H-pyrrolo[2,3-b]pyridine.

To a solution of 1H-pyrrolo[2,3-\&]pyridine-4-carbaldehyde (0.413 g, 2.83 mmol) in 5 mL of DMF under an atmosphere of nitrogen was added sodium hydride (74.6 mg, 3.11 mmol). After 5 min, iodoethane (0.529 g, 3.39 mmol) was added. After 30 min, the reaction was treated with saturated aqueous ammonium chloride, diluted with water, and extracted 2x with dichloromethane. The combined organic solution was washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-25% ethyl acetate in hexanes to provide 1-ethyl-1H-pyrrolo[2,3-f]pyridine-4-carbaldehyde that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 175.2.
To a solution of the above compound (0.343 g, 1.97 mmol) in 10 mL of methanol was added sodium borohydride (0.022 g, 0.59 mmol). After 30 min, the reaction was treated with saturated aqueous ammonium chloride, diluted with water, and extracted 3x with dichloromethane. The combined organic fractions were washed 3x with water, dried over sodium sulfate, filtered, and concentrated in vacuo to provide (l-ethyl-l/l-pyrrol[2,3-&]pyridine-4-yl)methanol that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 177.2.

To a solution of the above compound (0.109 g, 0.619 mmol) in 3 mL of dichloromethane was added triphenylphosphine (0.162 g, 0.619 mmol), imidazole (0.084 g, 1.3 mmol), and carbon tetrabromide (0.226 g, 0.680 mmol). After 30 min, the reaction was treated with saturated aqueous sodium carbonate. The organic solution washed 2x with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-25% ethyl acetate in hexanes to provide 4-(bromomethyl)-l-ethyl-7H-pyrrol[2,3- &]pyridine that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 241.1 (8^1Br).

The title compound was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(3 R, ^{3}S)-3-hydroxytetrahydro-2 H-pyran-4-yl]benzo[11]quinazolin-4(5H)-one in Example 15, substituting 4-(bromomethyl)-l-ethyl-7H-pyrrol[2,3- &]pyridine for 4-(bromomethyl)-2-chloropyridine. The resultant orange solid gave proton NMR spectra consistent with theory and a mass ion (ES+) of 455.2087 for [M+H]^+ [Calc'd for C_{27}H_{27}N_{4}O_{3}, [M+H]^+ = 455.2078]; 1H NMR (400 MHz, d_{6}-DMSO) δ 9.01-8.98 (m, IH), 8.71 (s, IH), 8.14-8.08 (m, 2H), 8.01 (s, IH), 7.75-7.71 (ra, 2H), 7.56 (s, IH), 6.74-6.72 (m, IH), 6.59 (s, IH), 5.31 (d, J = 5.5 Hz, IH), 4.80 (s, 2H), 4.63 (br s, IH), 4.28 (q, J = 7.2 Hz, 2H), 4.18-4.15 (m, IH), 3.99-3.92 (m, IH), 3.42 (t, J = 11.1 Hz, IH), 3.14 (t, J = 10.4 Hz, IH), 2.26 (br s, IH), 1.91-1.89 (m, IH), 1.38 (t, J = 7.2 Hz, 3H).

EXAMPLE 33

Synthesis of (3R, 4S)-4-aminotetrahydro-2H-thiopyran-3-ol hydrochloride.

To a solution of tetrahydrothiopyran-4-one (5.00 g, 43.0 mmol) in 200 mL of dichloroethane was added D-proline (0.991 g, 8.61 mmol) and nitrosobenzene (13.8 g, 0.129 mol). After 15 h, the reaction was treated with water and extracted 2x with dichloromethane. The combined organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-40% ethyl acetate in hexanes to provide (3R)-3-hydroxytetrahydro-4H-thiopyran-4-one.

To a solution of the above compound (0.700 g, 5.30 mmol) in 25 mL of dichloromethane was added Α',β-diisopropylethylamine (1.85 mL, 10.6 mmol) and 2-(trimethylsilyl)ethoxymethyl chloride (1.13 mL, 6.35 mmol). After 15 h, the reaction was treated with water and extracted 2x with dichloromethane. The combined organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-15% ethyl acetate in hexanes to provide (J,R)-3-[[2-(trimethylsilyl)ethoxy]methoxy]tetrahydro-4H-thiopyran-4-one.
To a solution of the above compound (0.504 g, 1.92 mmol) in 10 mL of THF at -78 °C was added L-Selectride (1.0 M in THF, 2.11 mL, 2.11 mmol). After 1 h, the reaction was treated with 10% aqueous sodium carbonate, warmed to rt, and extracted 2x with diethyl ether. The combined organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-25% ethyl acetate in hexanes to provide (3R, 4R)-3-[2-(trimethylsilyl)ethoxy]methoxy]tetrahydro-2/ß-thiopyran-4-ol that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.500 g, 1.92 mmol) in 10 mL of THF at -78 °C was added L-Selectride (1.0 M in THF, 2.11 mL, 2.11 mmol). After 1 h, the reaction was treated with 10% aqueous sodium carbonate, warmed to rt, and extracted 2x with diethyl ether. The combined organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo to provide (3R, 4S)-3-[2-(trimethylsilyl)ethoxy]methoxy]tetrahydro-2/i-thiopyran-4-yl methanesulfonate that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.648 g, 1.89 mmol) in 20 mL of dichloromethane at 0 °C was added N,N-diisopropylethylamine (0.726 mL, 4.16 mmol) and methanesulfonyl chloride (0.18 mL, 2.3 mmol). After 30 min, the reaction was treated with water and extracted 2x with diethyl ether. The combined organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo to provide (3R, 4S)-3-[2-(trimethylsilyl)ethoxy]methoxy]tetrahydro-2/i-thiopyran-4-yl methanesulfonate that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.150 g, 0.518 mmol) in 3 mL of THF and 3 mL of water was added trimethylphosphine (1.0 M in THF, 1.30 mL, 1.30 mmol). The mixture was heated to 50 °C for 15 h, and additional trimethylphosphine was added (1.0 M in THF, 1.30 mL, 1.30 mmol). After 24 h, the reaction was cooled to rt, treated with water, and extracted 2x with dichloromethane. The organic solution was dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-10% methanol in dichloromethane to provide 2-ethyl[4-azidotetrahydro-2 H-thiopyran-3-yl]oxymethyl]ethyl)(trimethyl)silane that gave proton NMR spectra consistent with theory.

To a solution of the above compound (0.135 g, 0.512 mmol) in 5 mL of methanol was added 3 N HCl (0.85 mL, 2.55 mmol). After 2 h, the reaction was concentrated in vacuo to provide (3R, 4S)-4-aminotetrahydro-2/i-thiopyran-3-ol hydrochloride that gave proton NMR spectra consistent with theory.
To a solution of methyl 1-amino-4-bromo-2-naphthoate hydrobromide (1.94 g, 5.37 mmol) in 10 mL of THF at 0 °C under an atmosphere of nitrogen was added (2-chloro-5-pyridyl)methylzinc chloride (41.6 mL, 0.5 M in THF, 83.2 mmol) and bis(tri-fc/-butylphosphine)palladium(0) (0.177 g, 0.346 mmol). The reaction was warmed to rt, and after 16 h, treated with water (10 mL). The mixture was diluted dichloromethane and water, and a beige solid was removed via filtration. The filtrate was extracted 2x with dichloromethane and the combined organic fractions were dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified via silica gel chromatography, eluting with 0-20% ethyl acetate in hexanes provide methyl 1-amino-4-(4-chlorobenzyl)-2-naphthoate that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 326.1 for [M+H]+.

A solution of the above compound (1.10 g, 3.37 mmol) in â',N-dimethylformamide dimethylacetal (1.35 mL, 10.1 mmol) was heated at 100 °C for 3 h. The reaction was cooled to rt, concentrated in vacuo, and dried to provide methyl 4-[(6-chloropyridin-3-yl)methyl]-1-[(IE)-(dimethylamino)methylene]amino]-2-naphthoate that gave a mass ion (ES+) of 381.9 for [M+H]+.

To a solution of the above compound (0.025 g, 0.065 ramol) in 1 mL of toluene was added (3R, 4S)-4-amino tetrahydro-2H-thiopyran-3-ol hydrochloride (0.013 g, 0.079 mmol) and triethylamine (0.011 mL, 0.082 mmol). After 5 min, acetic acid (0.038 mL, 0.66 mmol) was added, and the reaction was heated to 105 °C for 4 h. The mixture was cooled to rt, concentrated in vacuo, and the residue was purified via silica gel chromatography, eluting with 0-4% methanol in dichloromethane to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 438.1039 for [M+H]+ [Calc'd for C23H21ClIN3O2S, [M+H]+ = 438.1038]: 1H NMR (400 MHz, CDCl3) δ 8.98-8.94 (m, IH), 8.30 (s, IH), 8.26 (s, IH), 7.93 (s, IH), 7.83-7.79 (m, IH), 7.67-7.60 (m, 2H), 7.36-7.30 (m, IH), 7.71 (d, J = 8.3 Hz, IH), 4.61 (br s, IH), 4.37 (s, 2H), 4.17 (br s, IH), 2.95-2.87 (m, IH), 2.84-2.68 (in, 2H), 2.61-2.34 (m, IH), 2.02-1.98 (m, 3H).

EXAMPLE 34
3-[(5S, 4S)-4-Hydroxytetrahydro-2H-pyran-3-yl]-6-[(6'-methyl-2,3-bipyridin-5-yl)methyl] benzo[h]quinazolin-4(3iJ)-one
Synthesis of (55, 45)-3-aminotetrahydro-2-pyran-4-ol.

A solution of 4,4-dimethoxydihydro-2H-pyran-3(4H)-one (172 g, 1.07 mol, see Example 1) in 310 mL of toluene was stirred in toluene for 30 min, then extracted 3x with water (270 mL). To the aqueous solution was added potassium dihydrogenphosphate (14.1 g, 0.104 mol), sodium formate (55.1 g, 0.810 mol), and L-Alanine (72.2 g, 0.810 mol). The pH was adjusted to 7.8 with 5N NaOH, and NAD (0.810 g), PLP (0.810 g), LDH (0.162 g), FDH (1.62 g), and Codexis
TA P1G5 (4.05 g) were added. The mixture was heated to 45 °C for 12 h, then cooled to it. Potassium carbonate (324 g, 2.34 mol) was added, and after 30 min, the mixture was diluted with acetonitrile (810 mL). After 30 min, the reaction was filtered through a pad of solka-floc. The filtrate was partitioned and the aqueous layer was extracted with additional acetonitrile (810 mL).

The combined organic fractions were concentrated in vacuo to provide crude (1S)-4,4-dimethoxytetrahydro-2H-pyran-3-amine.

The above residue was redissolved in 700 mL of THF and 254 mL of water, and cooled to 0 °C. Sodium hydroxide (5 N, 96 mL, 0.48 mol) was added, and the reaction was recooled to -5 °C. Benzyl chloroformate (68.0 mL, 0.476 mol) was added via a syringe pump over 30 min, and the mixture was then warmed to rt. HCl (6 N, 250 mL, 1.50 mol) was added to pH = 0.40, and the mixture was stirred with an overhead stirrer. After 2 h, 3M potassium carbonate was added to pH = 7.4, and the reaction was diluted with THF (700 mL). A white solid was removed via filtration, and washed with additional THF (100 mL). The combined organic fractions were concentrated in vacuo to provide crude benzyl [(3S)-4-oxotetrahydro-2H-pyr-m-3-yl]carbamate.

To a solution of potassium dihydrogen phosphate (62.7 g, 0.461 mol) in 3.6 L of water was added phosphoric acid to pH = 7.0. To this solution was added glucose (112 g, 0.622 mol), NADP (3.6 g), GDH-103 (1.8 g), KHED 119 (3.6 g), and crude benzyl [(3S)-4-oxotetrahydro-2H-pyran-3-yl]carbamate (103.4 g, 0.4148 mol). After 17 h, the reaction was adjusted to pH = 6.5 with 5 TVNaOH. A white solid was collected via filtration and washed 2x with water (200 mL). The solid was suspended in 600 mL of toluene and stirred with an overhead stirrer at 105 °C for 1 h, then cooled to rt. A white solid was collected via filtration and washed with toluene (200 mL) to provide benzyl [(3S, 4S)-4-hydroxytetrahydro-2H-pyran-3-yl]carbamate.

To a solution of the above compound (90.5 g, 0.360 mol) in 1.8 L of methanol was added palladium hydroxide on carbon (9 g). The mixture was subjected to 40 psi of hydrogen at 25 °C for 15 h, then filtered through solka-floc. The filter cake was washed 3x with methanol (200 mL), and the combined filtrates were concentrated in vacuo to provide crude (3S, 4S)-Z-aminotetrahydro-2H-pyran-4-ol that gave proton NMR spectra consistent with theory.

6-Bromo-3-[1(3S, 4S)-4-hydroxytetrahydro-2ff-pyran-3-y1]benzo[h]quinazolin-4-(3H)-one was prepared by the procedure described for the synthesis of 1-amino^ bromo-iV-fXJi, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]-2-naphthamide in Example 1, substituting (3S, 4S)-3-aminotetrahydro-2H-pyran-4-ol for (3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-aminium chloride.

Synthesis of (6'-methyl-2,3'-bipyridin-5-yl)methanol.
To a solution of (6-bromo-pyridin-3-yl)-methanol (0.614 g, 3.27 mmol) in 10 mL of THF under an atmosphere of nitrogen was added cesium carbonate (3.27 mL, 2 eq aqueous, 6.53 mmol), 2-picoline-5-boronic acid pinacol ester (0.477 g, 2.18 mmol), and [1,1’-bis(diphenylphosphino)ferrocene]dichloro-palladium(II), 1:1 complex with dichloromethane (0.178 g, 0.218 mmol). The reaction was heated at 85 °C for 1 h, cooled to it, and diluted with dichloromethane. The organic solution was washed with water, dried over sodium sulfate, filtered, and concentrated in vacuo. The aqueous fraction was concentrated in vacuo, triturated 3x with 20% methanol in dichloromethane, and collected via filtration. The combined solids were purified via silica gel chromatography, eluting with 100% ethyl acetate to provide (6'-methyl-2,3'-bipyridin-5-yl)methanol that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 201.1 for [M+H]+.

The title compound was prepared by the procedure described for the synthesis of 6-[(2-chloropyridin-4-yl)methyl]-3-[(3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[l]quinazolin-4(3H)-one in Example 15, substituting 6-bromo-3-[(5S,5')-4-hydroxytetrahydro-2H-f-pyran-3-yl]benzo/[l]quinazolin-4(3H)-one for 1-amino-4-bromo-N-[(3S,4S)-3-hydroxytetrahydro-2H-f-pyran-4-yl]-2-naphthamide, and (6'-methyl-2,3'-bipyridin-5-yl)methanol for 2-chloropyridine-4-methanol. The eventual tan solid gave proton NMR spectra consistent with theory and a mass ion (ES+) of 479.2073 for [M+H]+ [Calc'd for C29H27N4O3, [M+H]+ = 479.2078]: 1H NMR (400 MHz, d6-DMSO) δ 9.09 (d, J = 2.2 Hz, IH), 9.01-8.99 (m, IH), 8.70-8.67 (m, 2H), 8.38-8.24 (m, 2H), 8.01 (s, IH), 7.92 (d, J = 8.1 Hz, IH), 7.91-7.70 (m, 3H), 7.36 (d, J = 8.1 Hz, IH), 5.29 (br s, IH), 4.62 (s, 2H), 4.50 (br s, IH), 4.34 (br s, IH), 3.93-3.89 (m, 2H), 3.76-3.71 (m, IH), 3.50 (t, J = 11.4 Hz, IH), 2.50 (s, 3H), 2.05-1.99 (m, IH), 1.68-1.63 (m, IH).

EXAMPLE 35
rac-6-[(6-Chloropyridin-3-yl)methylJ-3-[(3R,4R)-3-hydroxypiperidin-4-yl]benzo/[l]quinazolin-4(3H)-one
To a solution of iV-boc-1,2,3,6-letrahydropyridine (3.63 g, 21.0 mmol) in 40 ml of dichloromethane was added 3-chloroperoxybenzoic acid (2.75 g, 15.0 mmol). The reaction was stirred at room temperature for 4 h, then washed 3x with saturated aqueous potassium carbonate and once with brine. The solution was dried over sodium sulfate, filtered, and concentrated in vacuo to provide crude tert-butyl 7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate that gave a proton NMR spectra consistent with theory.

A solution of methyl l-amino-4-bromo-2-naphthoate hydrobromide (see Example 1, 3.20 g, 8.86 mmol) in N,N-dimethylformamide dimethylacetal (3.56 mL, 26.6 mmol) was heated at 100 °C for 2 h. Additional N,N-dimethylformamide dimethylacetal (1.19 mL, 8.9 mmol) was added and the solution was heated at 100 °C for an additional 3 h. The reaction was cooled to rt, concentrated, and dried to provide crude methyl 4-bromo-l-[(l£)-
(dimethylamino)methylene] amino]-2-naphthoate that gave a mass ion (ES+) of 337.1 (81Br) for [M+H]^+.

A solution of the above compound (2.20 g, 6.56 mmol) and ammonium acetate (0.607 g, 7.88 mmol) in 10 mL of acetic acid was heated at 140 °C for 3 h. The reaction was cooled to rt, diluted with 50 mL of water, filtered, washed with water and Et2O, and dried on high vac to provide 6-bromobenzol/[l]quinazolin-4(3/f)-one that gave a mass ion (ES+) of 276.9 (81Br) for [M+H]^+.

To a solution of the above compound (0.400 g, 1.45 mmol) in 3 mL of DMF was added tert-butyl 7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (0.579 g, 2.91 mmol) and potassium
carbonate (0.402 g, 2.91 mmol). The reaction was stirred at 100 °C for 15 h, cooled to room temperature, and diluted with ethyl acetate and water. A beige solid was removed via filtration, and the organic fraction was washed with water and brine, dried over sodium sulfate, filtered, and concentrated in vacuo. The resultant residue was subjected to purification via column chromatography on silica gel eluted with 0-50% ethyl acetate in hexanes to provide tert-butyl rac-(3R,4R)-4-((6-bromo-4-oxobenzo[\(\text{z}\)]quinazolin-3(4H)-yl)-3-hydroxypiperidine-1-carboxylate that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 475.8 (\(+^1\) Br) for M+H\(^+\), and tert-butyl rac-(3i?,4i?)-3-((6-bromo-4-oxobenzo[\(\text{h}\)]quinazolin-3(4H)-yl)-3-hydroxypiperidine-1-carboxylatethat that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 475.8 (\(+^1\) Br) for M+H\(^+\).

To a dry 25 mL round bottom flask containing tert-butyl rac-(3i?,4i?)-4-((6-bromo-4-oxobenzo[ft]quinazolin-3(4H)-yl)-3-hydroxypiperidine-1-carboxylate (0.163 g, 0.344 mmol) under N\(_2(g)\) was added (2-chloro-5-pyridyl)methylzinc chloride (0.5 M in THF, 2.06 mL, 1.03 mmol) and tetrakis (triphenylphosphine)palladium (0) (10 mol%). The reaction was heated to reflux at 90 °C for 20 h, cooled to room temperature, and diluted with dichloromethane. Hexanes were added to the solution and the resultant beige precipitate was collected via filtration, washed with dichloromethane and hexanes, and dried on high vac to provide crude tert-butyl rac-\((3R,4R)-4-\{(6\text{-chloropyridin-3-yl)}\text{methyl}\} -4\text{-oxobenzo[}\text{z}]\text{quinazolin-3(4H)-yl}\} -3\text{-hydroxypiperidme- 1-carboxylate that gave a mass ion (ES+)} of 520.9 for M+H\(^+\).

To a solution of the above compound (0.18 g, 0.345 mmol) in 5 mL of dichloromethane was added 4 \(\text{HCl} in dioxane (0.43 mL, 1.7 mmol). After 4h, additional 4 \(\text{N HCl} in dioxane (0.081 mL, 0.34 mmol) and 5 mL of MeOH were added. After 16 h, the reaction was concentrated \text{in vacuo} and ethyl acetate was added to the resultant brown oil. A light yellow solid was collected via filtration and subjected to purification via reverse phase HPLC to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 420.9 for M+H\(^+\): ^1\text{H} NMR(400 MHz, d\(_6\)-DMSO) 59.08-9.06 (m, IH), 8.38 (s, IH), 8.29 (s, IH), 8.14-3.12 (m, IH), 8.00 (s, IH), 7.78-7.67 (m, 3H), 7.38 (d, J = 8.2 Hz, IH), 4.80-4.68 (m, IH), 4.59 (s, 2H), 4.46-4.39 (m, IH), 3.62-3.52 (m, 2H), 3.22-3.13 (m, IH), 3.01-2.79 (m, 2H), 2.28-2.22 (m, IH).

EXAMPLE 36
mc-3-\{(3J?,4i?)\}-l-acetyl-3-hydroxy piperidin-4-yl]-6-\{(6\text{-chloropyridin-3-yl)}\text{methyl\} benz:0/[i]qumazolin-4(3/i)-one
To a solution of rac-6-t(6-chloropyridin-3-yl)methyl]-3-[3i?,4J?)-3-hydroxy piperidin-4-y]benzo[h]quinazolin-4(3 H)-one (Example 35, 0.050 g, 0.11 mmoi) in 2 mL of dichloromethane at 0°C was added triethylamine (0.023 mL, 0.16 mmol) and acetic anhydride (0.013 mL, 0.14 mmol). The reaction was stirred at 0°C for 5 h, quenched with water, and concentrated in vacuo. The resultant residue was subjected to purification via reverse phase HPLC to provide the title compound that gave a proton NMR spectra consistent with theory and a mass ion (ES+) of 462.9 for M+H+: 1H NMR(400 MHz, CDCl3) δ 9.01-9.00 (m, 1H), 8.37 (s, 1H), 8.37 (s, 1H), 7.96 (d, J = 7.1 Hz, 1H), 7.88 (s, 1H), 7.72-7.68 (m, 2H), 7.41 (d, J = 8.7 Hz, 1H), 7.22-7.20 (m, 1H), 5.07-5.01 (m, 1H), 4.92-4.67 (m, 2H), 4.44 (s, 2H), 4.23-3.98 (in, 3H), 3.34-3.24 (m, 1H), 3.20-3.11 (m, 1H), 2.22 (s, 3H).

EXAMPLE 37

6-[(6-Chloropyridin-3 -yl)methyl]-3-piperidin-4-ylbenzo [h]quinazolin-4(5 H)-one
Benzyl 4-[(6-chloropyridin-3-yl)methyl]-4-oxo[5H/quinazolin-3(4H)-yl]piperidine-1-carboxylate was prepared by the procedure described for 6-[(6-chloropyridin-3-yl) methyl]-3-(3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[5H]quinazolin-4(5H)-one in Example 1, substituting 4-amino-piperidine-1-carboxylic acid benzyl ester for (3R,4S)-3-hydroxytetrahydro-2H-pyran-4-aminium chloride.

A solution of benzyl 4-[(6-chloropyridin-3-yl)methyl]-4-oxo[5H/quinazolin-3(4H)-yl]piperidine-1-carboxylate (0.130 g, 0.241 mmol) in 3 mL of HBr/acetic acid solution (48.0% wt, 264 mmol) was stirred at rt for 3 h. The mixture was concentrated \textit{in vacuo} and azetroped 3x with toluene. The residue was purified via preparative reverse phase HPLC to provide the title compound that gave proton NMR spectra consistent with theory and a mass ion (ES+) of 404.9 for M+H⁺: 1HNMR(400 MHz, d₆-DMSO) δ 9.07 (d, J = 7.7 Hz, 1H), 8.47 (s, 1H), 8.30 (s, 1H), 8.12 (d, J = 7.9 Hz, 1H), 8.11 (s, 1H), 7.80-7.66 (m, 3H), 7.37 (d, J = 8.3 Hz, 1), 3.64 (s, 2H), 3.65-3.61 (m, 2H), 3.31-3.23 (m, 2H), 2.62-2.52 (m, 2H), 2.26 (d, J = 12.5 Hz, 2H).

The compounds in Table 1 below were prepared according to the general procedures described above (including the particular Examples referenced in the "Synthesis Method" column). Any additional reagents used in the syntheses are either commercially available or may be made from commercially available reagents using conventional reactions well known in the art.
<table>
<thead>
<tr>
<th>Example</th>
<th>Structure</th>
<th>MW</th>
<th>Synthesis Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td></td>
<td>472.54</td>
<td>Example 2</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>482.52</td>
<td>Example 4</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>478.56</td>
<td>Example 4</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>464.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>420.90</td>
<td>Example 1</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>404.45</td>
<td>Example 1</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>427.51</td>
<td>Example 4</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>413.48</td>
<td>Example 4</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>429.52</td>
<td>Example 9</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>416.48</td>
<td>Example 1</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>452.52</td>
<td>Example 5</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>494.56</td>
<td>Example 4</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>419.51</td>
<td>Example 2</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>458.64</td>
<td>Example 15</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>465.35</td>
<td>Example 1</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>467.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>464.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>484.60</td>
<td>Example 12</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>470.58</td>
<td>Example 12</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>433.53</td>
<td>Example 15</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>532.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>465.51</td>
<td>Example 4</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>401.47</td>
<td>Example 3</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>495.54</td>
<td>Example 4</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>386.45</td>
<td>Example 1</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>449.53</td>
<td>Example 2</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>486.62</td>
<td>Example 12</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>473.58</td>
<td>Example 12</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>517.63</td>
<td>Example 12</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>443.55</td>
<td>Example 12</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>401.47</td>
<td>Example 15</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>528.66</td>
<td>Example 12</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>417.47</td>
<td>Example 14</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>512.61</td>
<td>Example 12</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>445.48</td>
<td>Example 15</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td>477.52</td>
<td>Example 12</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td>455.56</td>
<td>Example 12</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>455.44</td>
<td>Example 15</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>507.60</td>
<td>Example 4</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>427.51</td>
<td>Example 4</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>413.48</td>
<td>Example 4</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>478.56</td>
<td>Example 4</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>478.56</td>
<td>Example 4</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td>415.50</td>
<td>Example 9</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td>500.56</td>
<td>Example 19</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>429.52</td>
<td>Example 9</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td>472.55</td>
<td>Example 19</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>565.68</td>
<td>Example 4</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>489.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>465.35</td>
<td>Example 15</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>443.53</td>
<td>Example 15</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td>478.56</td>
<td>Example 4</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>508.58</td>
<td>Example 4</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td>471.56</td>
<td>Example 12</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>463.54</td>
<td>Example 4</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>506.61</td>
<td>Example 4</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>510.62</td>
<td>Example 4</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>464.53</td>
<td>Example 13</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>482.52</td>
<td>Example 4</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>495.54</td>
<td>Example 4</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td>478.56</td>
<td>Example 4</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>447.56</td>
<td>Example 2</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>100</td>
<td>![Structure Image]</td>
<td>461.59</td>
<td>Example 2</td>
</tr>
<tr>
<td>101</td>
<td>![Structure Image]</td>
<td>437.45</td>
<td>Example 23</td>
</tr>
<tr>
<td>102</td>
<td>![Structure Image]</td>
<td>427.91</td>
<td>Example 15</td>
</tr>
<tr>
<td>103</td>
<td>![Structure Image]</td>
<td>482.52</td>
<td>Example 4</td>
</tr>
<tr>
<td>104</td>
<td>![Structure Image]</td>
<td>431.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>105</td>
<td>![Structure Image]</td>
<td>447.56</td>
<td>Example 2</td>
</tr>
<tr>
<td>106</td>
<td>![Structure Image]</td>
<td>496.55</td>
<td>Example 4</td>
</tr>
<tr>
<td>107</td>
<td>![Structure Image]</td>
<td>405.43</td>
<td>Example 15</td>
</tr>
<tr>
<td>108</td>
<td>![Structure Image]</td>
<td>509.63</td>
<td>Example 27</td>
</tr>
<tr>
<td>109</td>
<td>![Structure Image]</td>
<td>482.52</td>
<td>Example 4</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>482.52</td>
<td>Example 4</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>485.47</td>
<td>Example 27</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td>489.54</td>
<td>Example 4</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>467.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>498.61</td>
<td>Example 4</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>437.50</td>
<td>Example 15</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>455.44</td>
<td>Example 26</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td>423.49</td>
<td>Example 27</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td>496.55</td>
<td>Example 4</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>451.91</td>
<td>Example 27</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>435.91</td>
<td>Example 26</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>496.55</td>
<td>Example 4</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>451.48</td>
<td>Example 23</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td>470.55</td>
<td>Example 4</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>435.91</td>
<td>Example 26</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>439.88</td>
<td>Example 26</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td>435.91</td>
<td>Example 26</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>466.34</td>
<td>Example 15</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td>466.34</td>
<td>Example 15</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>417.53</td>
<td>Example 3</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>467.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>467.53</td>
<td>Example 4</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td>456.33</td>
<td>Example 15</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td>456.33</td>
<td>Example 26</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td>512.43</td>
<td>Examples 26</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>440.51</td>
<td>Example 26</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>435.46</td>
<td>Example 28</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td>421.89</td>
<td>Example 15</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td>504.57</td>
<td>Example 32</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>401.47</td>
<td>Example 3</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>433.53</td>
<td>Example 2</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>418.9</td>
<td>Example 36</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td>446.9</td>
<td>Example 36</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>538.9</td>
<td>Example 1</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>434.9</td>
<td>Example 36</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>498.9</td>
<td>Example 36</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>420.9</td>
<td>Example 35</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>462.9</td>
<td>Example 36</td>
</tr>
<tr>
<td>148</td>
<td></td>
<td>498.8</td>
<td>Example 36</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>387.9</td>
<td>Example 6</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>417.9</td>
<td>Example 2</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>433.9</td>
<td>Example 2</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>152</td>
<td></td>
<td>401.9</td>
<td>Example 3</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>453.9</td>
<td>Example 5</td>
</tr>
<tr>
<td>154</td>
<td></td>
<td>478.9</td>
<td>Example 34</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>421.9</td>
<td>Example 15</td>
</tr>
<tr>
<td>156</td>
<td></td>
<td>417.8</td>
<td>Example 5</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>433.8</td>
<td>Example 2</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>401.9</td>
<td>Example 3</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>427.9</td>
<td>Example 4</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>430.0</td>
<td>Example 9</td>
</tr>
<tr>
<td>161</td>
<td></td>
<td>467.9</td>
<td>Example 4</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td>464.9</td>
<td>Example 4</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td>431.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td>444.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>456.3</td>
<td>Example 26</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td>426.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td>426.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td>426.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>Example</td>
<td>Structure</td>
<td>MW</td>
<td>Synthesis Method</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>453.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td>478.6</td>
<td>Example 26</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td>498.5</td>
<td>Example 26</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td>475.0</td>
<td>Example 26</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>473.6</td>
<td>Example 26</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td>442.5</td>
<td>Example 26</td>
</tr>
</tbody>
</table>
Biological Utility

The utility of the compounds as M1 receptor positive allosteric modulators may be demonstrated by methodology known in the art, including by the assay described below. The assay is designed to select compounds that possess modulator activity at the acetylcholine muscarinic M1 receptor or other muscarinic receptors expressed in CHOnfat cells by measuring the intracellular calcium with a FLIPR.384 Fluorometric Imaging Plate Reader System. The assay studies the effect of one or several concentrations of test compounds on basal or acetylcholine-stimulated Ca^{2+} levels using FLIPR.

Compounds are prepared and subjected to a preincubation period of 4 min. Thereafter, a single EC20 concentration of acetylcholine is added to each well (3 nM final). The intracellular Ca^{2+} level of each sample is measured and compared to an acetylcholine control to determine any modulatory activity.

Cells: CHOnfat/hM1, hM2, hM3 or hM4 cells are plated 24 hr before the assay at a density of 18,000 cells/well (100 µL) in a 384 well plate. CHOnfat/hM1 and CHOnfat/hM3 Growth Medium: 90% DMEM (Hi Glucose); 10% HI FBS; 2 mM L-glutamine; 0.1 mM NEAA; Pen-Strep; and 1mg/ml Geneticin, are added. For M2Gqi5CHOnfat and M4Gqi5CHOnfat cells, an additional 600 µg/ml hygromycin is added.

Equipment: 384 well plate, 120 µL addition plate; 96-well Whatman 2 ml Uniplate Incubator, 37 °C, 5% CO2; Skatron EMBLA-384 Plate Washer; Multimek Pipetting System; Genesis Freedom 200 System; Mosquito System; Temo Nanolitre Pipetting System; and FLIPR_384 Fluorometric Imaging Plate Reader System are used.

Buffers. Assay Buffer: Hanks Balanced Salt Solution, with 20 mM Heps, 2.5 mM Probenecid (Sigma P-8761) first dissolved in 1 N NaOH, 1% Bovine Serum Albumin (Sigma A-9647). Dye Loading Buffer: Assay Buffer plus 1% Fetal Bovine Serum and Fluo-4AM/Pluronic Acid Mixture. 2 mM Fluor-4AM ester stock in DMSO (Molecular Probes F-14202) Concentration of 2 µM in buffer for a final concentration of 1µM in Assay. 20% Pluronic Acid Solution stock, with concentration of 0.04% in Buffer, 0.02% in Assay.

65 µL of 2 mM Fluo-4AM are mixed with 130 µL of 20% Pluronic Acid. The resulting solution and 650 µL FBS is added to the assay buffer for a total volume of 65 mL. Positive Controls: 4-Br-A23 187: 10 mM in DMSO; final concentration 10 µM. Acetylcholine: 10 mM in water, working stock at both 20 µM and 30 µM in assay buffer, final concentration of 10 µM. This is used to check the maximum stimulation of the CHOKI/hM1 cells. 20 µM (2x) acetylcholine is added in the preincubation part of the assay, and the 30 µM (3x) stock is added in the second part. (EC20)Acetylcholine: 10 mM in water, working stock of 9 nM (3x), and final concentration in assay is 3 nM. This is used after the preincubation with test compounds.
Addition of the EC20 Acetylcholine to each well with a test compound will ascertain any modulator activity. 24 wells contain 3nM Acetylcholine alone as a control.

Determining Activity of Putative Compounds:
Screening Plate: Compounds are titrated in 96-well plates (columns 2-11), 100% DMSO, started at a concentration of 15 mM (150x stock concentration), and 3-fold serial dilutions using Genesis Freedom200 System. Four 96-well plates are combined into a 384-well plate using Mosquito Nanolitre Pipetting System by transferring 1 µl of serial diluted compounds to each well, and 1 mM acetylcholine (100x stock concentration) were added as a control. Using Temo, 49 µl assay buffer is added to each well of the 384-well plate right before assay.

In a 96-well Whatman 2ml Uniplate, 9 nM Acetylcholine (3x) is pipetted into wells corresponding to the screening compounds, and into control wells. The 30 µM acetylcholine control (3x) is added into control wells, and the 3x agonist plate is transferred into a 384 well plate.

Cells are washed three times with 100 µL of buffer, leaving 30µL of buffer in each well.

Using Multimek, 30 µL of Dye Loading Buffer is added into each well and incubated at 37 °C, 5% CO2 for up to one hr.

After 60 min, the cells are washed three times with 100 µL of buffer, leaving 30 µL of buffer in each well. The cell plate, screening plate, and agonist addition plates are placed on the platform in the FLIPR and the door closed. A signal test to check background fluorescence and basal fluorescence signal is performed. Laser intensity is adjusted if necessary.

4 min of preincubation with the test compounds is provided to determine any agonist activity on the M1 receptor by comparison to the 1 mM acetylcholine control. After preincubation, the EC20 value of acetylcholine (3 nM final) is added to determine any modulator activity.

A further description of the muscarinic FLIPR assay can be found in International patent application WO2004/073639.

In particular, the compounds of the following examples had activity in the aforementioned assay, generally with an IP (inflection point) of 10 µM (10,000 nM) or less. The inflection point is calculated from the FLIPR values, and is a measure of activity. Such a result is indicative of the intrinsic activity of the compounds in use as M1 allosteric modulators.

IP values from the aforementioned assay for representative exemplary compounds of the invention (as described herein) are provided below in Table 1 below:
<table>
<thead>
<tr>
<th>Example</th>
<th>IP Value (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>16.8</td>
</tr>
<tr>
<td>8</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>76</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>5.8</td>
</tr>
<tr>
<td>14</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>90</td>
</tr>
<tr>
<td>18</td>
<td>124</td>
</tr>
<tr>
<td>19</td>
<td>318</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>24</td>
<td>58</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>30</td>
<td>77</td>
</tr>
<tr>
<td>31</td>
<td>275</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>10</td>
</tr>
</tbody>
</table>
The following abbreviations are used throughout the text:

<table>
<thead>
<tr>
<th>Example</th>
<th>IP Value (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>7.1</td>
</tr>
<tr>
<td>35</td>
<td>54</td>
</tr>
<tr>
<td>36</td>
<td>120</td>
</tr>
<tr>
<td>37</td>
<td>4800</td>
</tr>
</tbody>
</table>

Me: methyl
Et: ethyl
Bu: butyl
t-Bu: tert-butyl
Ar: aryl
Ph: phenyl
Bn: benzyl
Ac: acetyl
RB: round bottom
DMF: dimethylformamide
DMSO: dimethylsulfoxide
DMEM: Dulbecco's Modified Eagle Medium (High Glucose)
FBS: fetal bovine serum
dppa: diphenylphosphoryl azide
dppf: (diphenylphosphino)ferrocene
THF: tetrahydrofuran
mCPBA: meta-chloroperoxybenzoic acid
TEA: triethylamine
THF: tetrahydrofuran
BOP: Benzotriazolylxytris(dimethylamino)phosphonium hexafluorophosphate
SEM: β-(trimethylsilyl) ethoxy] methyl
DMFDMA: N,N-dimethylformamide dimethylacetal
TBAF: tetra-α-butylammonium fluoride
NBS: N-bromosuccinimide
TFAA: trifluoroacetic anhydride
TBSO: tert-butyl-dimethylsilyloxy
DDQ: 2,3-dichloro-5,6-dicyanobenzoquinone
While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. It is intended, therefore, that the invention be defined by the scope of the claims that follow and that such claims be interpreted as broadly as is reasonable.
What is claimed is:

1. A compound of formula (I):

![Chemical Structure](image)

or a pharmaceutically acceptable salts thereof, wherein

X-Y is selected from the group consisting of

- (1) -O-CRARB-
- (2) -CRARB-O-
- (3) -CRARB-SRC-
- (4) -CRARB-NRC-
- (5) -NRC-CRARB-

wherein RA and RB are each independently selected from the group consisting of,

- (a) hydrogen, and
- (b) C_{1-6} alkyl, and

RC is selected from the group consisting of,

- (a) hydrogen,
- (b) -C(O)-C_{1-6} alkyl,
- (c) C_{1-6} alkyl,
- (d) C(=O)-CH2-C_6H_5,
- (e) -S(O)2- C_{1-6} alkyl;

R1 is selected from the group consisting of

- (1) hydrogen, and
R2 is selected from the group consisting of
\begin{enumerate}
\item (l) -C\textsubscript{6}-10 aryl, or
\item (2) -heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N\rightarrow O or S, at least one of which is O, N, N\rightarrow O or S, wherein the aryl or heteroaryl R\textsubscript{2} group is optionally substituted with one or more
\begin{enumerate}
\item (a) halogen,
\item (b) hydroxy,
\item (c) -NR\textsubscript{3}R\textsubscript{4},
\item (d) -Cl-6 alkyl,
\item (e) -O-C\textsubscript{1}-6 alkyl,
\item (f) -C\textsubscript{2}-8 alkenyl,
\item (g) -C(=O)-(O)\textsubscript{m}R\textsubscript{5},
\item (h) -C(=O)-NR\textsubscript{5},
\item (i) -S(=O)2-R\textsubscript{5},
\item (j) -SR\textsubscript{5},
\item (k) -CN;
\item (l) -C\textsubscript{6}-10 aryl,
\item (m) heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N\rightarrow O or S, at least one of which is O, N, N\rightarrow O or S, wherein the alkyl, alkenyl, aryl or heteroaryl moiety is optionally substituted with one or more
\begin{enumerate}
\item (a) halogen,
\item (b) hydroxyl,
\end{enumerate}
\item (n) Si(R\textsubscript{6})\textsubscript{3},
\item (o) =S,
\end{enumerate}
\end{enumerate}
wherein the alkyl moiety is optionally substituted with one or more halogen;

R³ and R⁴, or R⁸ and R⁹, are independently selected from the group consisting of
(1) hydrogen, or
(2) -C₁₋₆ alkyl,

wherein the alkyl is optionally substituted with one or more

(a) halogen,
(b) hydroxyl,
(C) -O-C₁₋₆ alkyl,
(d) -NR¹⁰R¹¹,
(e) -C(O)-(O)ₙ-C₁₋₆ alkyl,

or R₃ and R⁴, or R⁸ and R⁹, are linked together with the nitrogen to which they are
attached to form a 4-6 membered carbocyclic ring, wherein one or two of the ring carbon
atoms is optionally replaced by a nitrogen, oxygen or sulfur, and the ring is optionally
substituted with one or more

(a) halogen,
(b) hydroxyl,
(c) C₁₋₆ alkyl,
(d) -OC₁₋₆ alkyl,
(e) -C(=O)-(O)ₙ-C₁₋₆ alkyl;

R⁵ is selected from the group consisting of
(1) hydrogen,
(Z) -C₁₋₆ alkyl,
(3) -C₃₋₈ cycloalkyl,
(4) -C₂₋₈ alkenyl, or
(5) -C₆₋₁₀ aryl,

wherein the alkyl, cycloalkyl, alkenyl or aryl is optionally substituted with one or more

(a) halogen,
(b) hydroxyl,
(c) -C₁₋₆ alkyl,
(d) -O-C₁₋₆ alkyl,
(e) -C₃₋₈ cycloalkyl, or
(f) \(-\text{C}_{6-10}\) aryl;

R\(^6\) is selected from the group consisting of
(1) hydrogen, or
(2) \(-\text{C}_{1-6}\) alkyl;

R\(^{10}\) and R\(^{11}\) are independently selected from the group consisting of
(1) hydrogen, or
(2) \(-\text{C}_{1-6}\) alkyl,

wherein the alkyl is optionally substituted with one or more
(a) halogen,
(b) hydroxyl,
(c) \(-\text{O-C}_{1-6}\) alkyl,
(d) \(-\text{C(O)-(O)}\)\(^{n}\) \(-\text{Cl-6}\) alkyl,

or R\(^{10}\) and R\(^{11}\) are linked together with the nitrogen to which they are attached to form
a 4-6 membered carbocyclic ring, wherein one or two of the ring carbon atoms is
optionally replaced by a nitrogen, oxygen or sulfur, and the ring is optionally substituted
with one or more
(a) halogen,
(b) hydroxyl,
(c) \text{C}_{1-6} alkyl,
(d) \(-\text{O-C}_{1-6}\) alkyl,
(e) \(-\text{C(OHO)}\)\(^{n}\) \(-\text{Cl-6}\) alkyl;

m is O or 1;
n is 0, 1 or 2.

2. A compound of claim 1, wherein R\(^{1}\) is hydroxy.

3. A compound of claim 2, wherein the R\(^{1}\) hydroxy group is in the isomeric
position:
4. A compound of any of claims 1 to 3, wherein X-Y is -O-CRARB or -CRAR.B-O, wherein R and RB are each hydrogen.

5. A compound of any of claims 1 to 4, wherein R2 is C_{6-10} aryl.

6. A compound of any of claims 1 to 4, wherein R2 is heteroaryl, the heteroaryl group having five ring atoms, the ring atoms selected from C, N, N→O and S, wherein one or two of the ring atoms is N, N→O or S.

7. A compound of any of claims 1 to 4, wherein R2 is heteroaryl, the heteroaryl group having six ring atoms, the ring atoms selected from C, N and N→O, wherein one or two of the ring atoms is N or N→O.

8. A compound of any of claims 1 to 4, wherein R2 is heteroaryl, the heteroaryl group having nine or ten ring atoms, the ring atoms selected from C, O, N, N→O and S, wherein one, two or three of the ring atoms is N, N→O, O or S.

9. A compound of claim 1, wherein the compound of formula (I) is a compound of formula (II):
or a pharmaceutically acceptable salt thereof, wherein X, Y and R2 are as defined in claim 1.

10. A compound of claim 9, wherein X-Y is \(-\text{O-CRARB-}\) or \(-\text{CRARB-O-}\), wherein RA and RB are each hydrogen.

11. A compound of claim 9 or 10, wherein R2 is \(-\text{C}_{6-10}\) aryl.

12. A compound of claim 9 or 10, wherein R2 is heteroaryl, the heteroaryl group having five ring atoms, the ring atoms selected from C, N, N-O and S, wherein one or two of the ring atoms is N, N-O or S.

13. A compound of claim 9 or 10, wherein R2 is heteroaryl, the heteroaryl group having six ring atoms, the ring atoms selected from C, N and N-O, wherein one or two of the ring atoms is N or N-O.

14. A compound of claim 9 or 10, wherein R2 is heteroaryl, the heteroaryl group having nine or ten ring atoms, the ring atoms selected from C, O, N, N-O and S, wherein one, two or three of the ring atoms is N, N-O, O or S.
15. A compound of claim 1, wherein the compound of formula (I) is a compound of formula (III):

(III)

or a pharmaceutically acceptable salt thereof, wherein X, Y and R² are as described above, and R⁷ is selected from the group consisting of

1. halogen,
2. hydroxy,
3. -NR₃R⁴,
4. -C₁-₆ alkyl,
5. -O-C₁-₆ alkyl,
6. -C₂-₈ alkenyl,
7. -C(O)-(0)ₘ-R⁵,
8. -C(O)-N-R⁵,
9. -S(=O)₂-R⁷,
10. -SR⁵,
11. -CN;
12. -CN;
13. -C₆-₁₀aryl,
14. heteroaryl, which is an aromatic cyclic group, having from five to twelve ring atoms, the ring atoms selected from C, O, N, N→O or S, at least one of which is O, N, N→O or S,
(15) Si(R6)3.
(16) S, or
(17) hydrogen,
wherein the alkyl, alkenyl, aryl or heteroaryl moiety is optionally substituted with one or more
5
(a) halogen,
(b) -C1-6 alkyl,
(C) -S-R6,
(d) -NR8R9,
10
(e) -O-C1-6 alkyl,
wherein the alkyl moiety is optionally substituted with one or more halogen.

16. A compound of claim 15, wherein R7 is selected from the group consisting of
15
(1) halogen,
(2) hydroxy,
(3) -NR3R4,
(4) -C1-6 alkyl,
(5) -O-C1-6 alkyl,
20
(6) -S(=O)2-R5, or
(7) -SR5.

17. A compound of claim 15 or 16, wherein X-Y is selected from the group consisting of
25
(I) -O-CRARB-,
(2) -CRARB-O-.

18. A compound of claim 1, wherein the compound of formula (I) is a compound of formula (IY):
wherein R2 is as defined in claim 1.

19. A compound of claim 9 or 10, wherein R2 is -C6-10 ary.

20. A compound of claim 18 or 19, wherein R2 is heteroaryl, the heteroaryl group having five ring atoms, the ring atoms selected from C, N, N→O and S, wherein one or two of the ring atoms is N, N→O or S.

21. A compound of claim 18 or 19, wherein R2 is heteroaryl, the heteroaryl group having six ring atoms, the ring atoms selected from C, N and N→O, wherein one or two of the ring atoms is N or N→O.

22. A compound of claim 18 or 19, wherein R2 is heteroaryl, the heteroaryl group having nine or ten ring atoms, the ring atoms selected from C, O, N, N→O and S, wherein one, two or three of the ring atoms is N, N→O, O or S.

23. A compound of claim 1, which is selected from the group consisting of

6-[(6-Chloropyridin-3 -yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-y1]benzo/[z]quinazolin-4(3H)-one;

3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methylthi0)pyridin-3-y1]methyl]benzo/[?]quinazolm-4(3H)-one;

3-[(3R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(6-methylpyridin-3-y1)methyl]benzo [h]quinazolin-4(3H)-one ;

3-[(R, 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl]methyl]benzo [h]quinazolin-4(5H)-one;
5-[(6-Chloro-1-oxidopyridin-3-yl)methyl]-3-[(3R, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one;
6-[(6-Ethylpyridin-3-yl)methyl]-3-[(5R, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one;
6-[(6-Acetylpyridin-3-yl)methyl]-3-[(3R, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one;
6-[(6-Chloro-1-oxidopyridin-3-yl)methyl]-3-[(3R, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[h]quinazolin-4(3H)-one;
6-[(2-Chloropyridin-4-yl)methyl]-3-[(5S, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[2]quinoxalin-4(3H)-one;
5-[(3-[(3S, S)-3-Hydroxytetrahydro-2H-pyran-4-yl]methyl]benzo/[h]quinazolin-4(3H)-one;
5-[(3-[(5S, S)-3-Hydroxytetrahydro-2H-pyran-4-yl]methyl]benzo/[h]quinazolin-4(3H)-one;
6-[(6-(Fluoromethyl)pyridin-3-yl)methyl]-3-[(5R, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quinazolin-4(3H)-one;
6-[(6-(Fluoromethyl)pyridin-3-yl)methyl]-3-[(5R, S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo/[h]quinazolin-4(3H)-one;
6-[(6-(Difluoromethyl)pyridine-3-yl)methyl]-3-[(3S, 4R)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(z\)]quinazolin-4(3H)-one;
6-[(2-Chloro-1-oxidopyridin-4-yl)methyl]-3-[(5\(\beta\), \(\gamma\),S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(h\)]quinazolin-4(3H)-one;
6-[(2-Fluoropyridin-4-yl)methyl] -3-[(3S, 4R)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(h\)]quinazolin-4(3H)-one;
3-[(J\(\beta\), 4S)-3-Hydroxytetrahydro-2H-pyran-4-yl]-6-[(2-methoxypyridin-4-yl)methyl]benzo[\(h\)]quinazolin-4(3H)-one;
6-[(6-Ethoxypyridin-3-yl)methyl]-3-[(3S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(z\)]quinazolin-4(3H)-one;
6-[(6-Hydroxypyridin-3-yl)methyl]-3-[(3S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(z\)]quinazolin-4(3H)-one;
6-[(2-Difluoromethoxy)pyridine-3-yl]methyl]-3-[(3S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(h\)]quinazolin-4(3H)-one;
6-[(2-(Difluoromethoxy)pyridine-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(h\)]quinazolin-4(3H)-one;
6-[(3-Bromo-1-methyl-7H-pyrrolo[2,3-\(\beta\)]pyridine-4-yl)methyl]-3-[(3R, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(z\)]quinazolin-4(3H)-one;
6-[(6-Chloropyridin-3-yl)methyl]-3-[(3S, 4S)-3-hydroxytetrahydro-2H-pyran-4-yl]benzo[\(z\)]quinazolin-4(3H)-one;
3-[(3S, 4S)-4-Hydroxytetrahydro-2H-pyran-3-yl]-6-[(6'-nitethyl-2,3-bipyridin-5-yl)methyl]benzo[\(z\)]quinazolin-4(3H)-one;
arac-\(\beta\)-[(6-Chloropyridin-3-yl)methyl]-3-[(3S, 4R)-3-hydroxypiperidin-4-yl]benzo[\(h\)]quinazolin-4(3H)-one;
arac-3-[(3S, 4R)-1-acetyl-3-hydroxypiperidin-4-yl]-6-[(6-Chloropyridin-3-yl)methyl]benzo[\(z\)]quinazolin-4(3H)-one;
6-[(6-Chloropyridin-3-yl)methyl]-3-piperidin-4-ylbenzo[\(h\)]quinazolin-4(3H)-one;
or a pharmaceutically acceptable salt thereof.

24. A compound of claim 1, which is selected from the group consisting of
25. A compound of any of claims 1 to 24, which is selected from the group consisting of: and pharmaceutically acceptable salts thereof.

26. A pharmaceutical composition comprising a therapeutically effective amount of a compound of any of claims 1 to 24, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

27. A pharmaceutical composition for the treatment of a disease or disorder mediated by the muscarinic M1 receptor, wherein the disease or disorder is selected from the group
consisting of Alzheimer's disease, schizophrenia, pain or sleep disorders, comprising a therapeutically effective amount of a compound of any of claims 1 to 24, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

28. Use of a pharmaceutical composition of claim 27 for the treatment of a disease or disorder mediated by the muscarinic M1 receptor, wherein the disease or disorder is selected from the group consisting of Alzheimer's disease, schizophrenia, pain or sleep disorders.

29. Use of a compound of any of claims 1 to 24, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, for the manufacture of a medicament for the treatment of a disease or disorder mediated by the muscarinic M1 receptor, wherein the disease or disorder is selected from the group consisting of Alzheimer's disease, schizophrenia, pain or sleep disorders.

30. A method of treating a disease or disorder mediated by the muscarinic M1 receptor, wherein the disease or disorder is selected from the group consisting of Alzheimer's disease, schizophrenia, pain or sleep disorders in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound of any of claims 1 to 24, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
A CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A01N49/54, A61K31/517 (201 001)
USPC - 514/266.1, 514/266 2, 514/266.3
According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
USPC - 514/266 1, 514/266 2, 514/266 3

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 514/266 21, 514/266 31 (see search terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
USPTO-WEST - PGPB. USPTO. USOC. EPAB, JPAB keywords benzoquinazolone, compounds, aryl methyl, M1 receptor, allostere modulator, treating, Alzheimer's, cognitive impairment, schizophrenia, quinoline, benzyl-substituted, quinazolinone, pyranyl, binding site, M1 muscarinic receptor, docking, ligand INTERNET search - Google - s

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

D Further documents are listed in the continuation of Box C

* Special categories of cited documents

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on novelty claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search
06 October 2010 (06 10 2010)

Date of mailing of the international search report
18 NOV 2010

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P O Box 1450, Alexandria, Virginia 22313-1450

Facsimile No 571-273-3201

Authorized officer Lee W Young

PCT Helpdesk 571-272-4000
PCT OSP 571-272-7774
Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos**
 - Because they relate to subject matter not required to be searched by this Authority, namely

2. **Claims Nos**
 - Because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be earned out, specifically

3. **Claims Nos 5-8, 20-22, and 25-30**
 - Because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 64(a)

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims**
2. **As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees**
3. **As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos**
4. **No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos**

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation
- No protest accompanied the payment of additional search fees