ABSTRACT

The disclosure relates to a transmitter in a transmission system operable to optimize estimates of a quantity at a receiver for improved operation. The transmission system includes a transmitting means connected to a number of antennas (Txm), and to control means. The control means controls the transmitting means to initially transmit an initial training/quantity estimation sequence during an initial training/quantity estimation phase and subsequently transmit a sequence of data symbols such that the information rate of the data symbols is progressively increased.
FIG 10

START 140

Initial training 142

Increase information rate 144

END 146

FIG 11

START 150

To receive initial training 152

Increasing information rate 154

END 156
START

Separate transmission

Initial estimate

To store a current estimate

To decode

To duplicate the modulation function

To transmit at a low t.r.

To increase t.r.

END
FIG 16

START

Separate transmission

To apply a different assignment of subcarriers

END

FIG 17

START

Receive an initial portion

Initial estimate

Receive a subsequent portion

To update

END
FIG 20

START 470

To transmit initial training 472

Subcarriers for pilot tone transmission is changed from symbol to symbol 474

END 476

FIG 21

START 500

Initial estimate of c.t.f. 502

Receive transmitted pilot tones 504

To duplicate the modulation function 506

To update the estimate of c.t.f. 508

END 510
FIG 22

START 420

Separate transmission 422

Initial estimate of c.t.f. 424

To update 426

To duplicate the modulation function 428

Subcarriers changed from symbol to symbol 430

END 432
OPERATION FOR BACKWARD-COMPATIBLE TRANSMISSION

RELATED APPLICATIONS

[0001] This application is a Continuation Application of U.S. patent application Ser. No. 11/089,284, which was filed on Mar. 24, 2005. The priority of the pending patent application is hereby claimed and the entire contents thereof are hereby incorporated herein by reference. The patent application Ser. No. 11/089,284 claimed priority benefit of Provisional Application No. 60/558,220, filed on Mar. 31, 2004, the entire contents of which are hereby herein incorporated by reference.

BACKGROUND

[0002] The IEEE 802.11 wireless LAN standardization process recently created the "high throughput" task group, which aims to generate a new standard for wireless LAN systems with a measured throughput of greater than 100 Mbit/s. The dominant technology that promises to be able to deliver these increased speeds are so-called MIMO (multiple-input, multiple-output) systems. MIMO systems are defined by having multiple antennas used for both transmission and reception. The maximum theoretical throughput of such a system scales linearly with the number of antennas, which is the reason that the technology is of great interest for high throughput applications. An example of such a system is shown in FIG. 1, with a laptop 2 transmitting to an access point where each device has three antennas.

[0003] The reason why these systems can offer improved throughput compared to single antenna systems, is that there is spatial redundancy: each piece of information transmitted from each transmitting antenna travels a different path to each receiving antenna, and experiences distortion with different characteristics (different channel transfer functions). In the example of FIG. 1, there are three different channel transfer functions from each antenna to each receiver: the transfer function from transmitting antenna x to receiving antenna y is denoted by H_{xy}. Greater capacity is obtained by making use of the spatial redundancy of these independent or semi-independent channels (perhaps in conjunction with other coding techniques) to improve the chance of successfully decoding the transmitted data. The examples given here use three transmitting antennas. However, any arbitrary number of transmit antennas can be used.

[0004] There are a wide range of published techniques for encoding information over a MIMO channel set, for example, linear beamforming with a Wiener filter receiver, space time block coding, etc. In virtually all of the techniques, it is necessary to obtain a reasonably accurate estimate of the channel transfer functions at least at the receiver. In some of the techniques, channel transfer function estimate must also be available at the transmitter: it is possible to encode the estimated transfer function at the receiver and send it back to the transmitter if the channel transfer functions change sufficiently slowly with time.

[0005] An important criterion of the high-throughput WLAN standardization activity is that the new systems can interoperate with existing 802.11a and 802.11g OFDM WLAN systems. This means, primarily, that the legacy systems can interpret sufficient information from the transmission of the new system such that they do not interact in a negative manner (e.g., making sure that legacy systems remain silent during an ongoing transmission of the new system). For this reason, it has been proposed that the new high-throughput standard uses the same preamble structure as for 802.11a/g. The preamble is the information transmitted before the data-carrying portion of a transmission, which allows the transmission to be detected and allows estimation of, amongst other things, the channel transfer function. The aim is that the transmitted preambles will be sufficiently similar so that legacy devices can determine the presence and duration of a high-throughput transmission.

[0006] A representation of an IEEE 802.11a/g OFDM preamble is shown in FIG. 2. The first portion of the preamble consists of 10 repetitions of a short 0.8 μs long sequence known as the short preamble symbol Λ. These are used to detect the presence of an incoming signal and to perform initial estimations of, for example, carrier frequency offset.

[0007] The second portion B of the preamble uses the same sort of transmission as the OFDM symbols that are used to carry data in the payload of the transmission. The symbols are 3.2 μs long, and are made up of 52 subcarriers with a spacing of 0.3125 MHz, as shown in FIG. 3. The preamble consists of 2 repetitions of a known 3.2 μs training symbol, preceded by a 1.6 μs cyclic prefix (a copy of the last half of a training symbol prepended to the sequence). These OFDM training symbols are used to perform an estimate of the channel transfer function from the transmitting antenna to each receiving antenna. The cyclic prefix CP means that each OFDM subcarrier experiences a flat fading channel (for sufficiently short channel delay spreads). Flat fading means that the channel transfer function for the signal on each subcarrier can be represented purely by a phase rotation and a scaling of amplitude. These amplitude and phase changes for each subcarrier can readily be estimated when the received signal is transformed into the frequency domain (e.g., via the FFT).

[0008] The final portion of the preamble, known as the SIGNAL field C, is a single OFDM data symbol (3.2 μs long with a 0.8 μs cyclic prefix) modulated using BPSK, the most robust transmission mode defined in the standard. This contains details of what modulation format is used for the rest of the transmission, as well as the overall length of the transmission.

[0009] D represents the data symbols.

[0010] There are two primary difficulties in implementing a MIMO system that is interoperable with legacy 11a/11g devices. Firstly, it is necessary to be able to signal that the new MIMO transmission methods are being used while also allowing legacy devices to gather sufficient information of the transmission in progress. This can be done in a straightforward manner: there are unused portions of the 802.11a/11g SIGNAL field, which are defined as reserved (not used in transmission, and ignored on reception). These portions can be used to flag the use of a new transmission mode, while the rate and length information contained in the SIGNAL field can be used to indicate the duration of the transmission. For MIMO devices, this first signal field can then be followed by another signal field, shown in FIG. 4 with the second signal field denoted as SIGNAL 2, E.

[0011] These portions of the preamble structures in FIGS. 2 and 4, which correspond to each other, have been denoted with the same reference letter.

[0012] The legacy device will thereby interpret the SIGNAL C field correctly (ignoring the reserved sections): the remainder of the frame will not be correctly received, but the legacy device will recognise that a transmission is underway
and know what the duration of the transmission is. A non-legacy device will interpret both SIGNAL C and SIGNAL 2, E, using the SIGNAL 2 field, E to configure the operating mode for the remainder of the transmission (perhaps in conjunction with information from the SIGNAL field C).

[0013] A more complicated problem is the task of creating the estimates of the channel transfer function from each transmitting antenna to each receiving antenna. Techniques exist whereby the transfer function at the receiver can be estimated with transmission occurring on all antennas simultaneously; however, these techniques are not compatible with the existing 11a/11g preamble structure. The alternative is that transmissions on each antenna are separated, in time and/or in frequency.

[0014] Probably the simplest way to generate channel estimates for each transmit antenna is to separate the transmissions in time. The initial preamble is transmitted on a single antenna. This will allow legacy devices to receive the preamble, and will allow MIMO devices to estimate the channel transfer function from the first transmitting antenna to each receiving antenna. Subsequently, long training symbols can be repeated on each of the other transmit antennas, allowing the channel transfer functions to be estimated from each of the remaining transmit antenna to each receive antenna.

[0015] An example of one possible preamble structure using this method is shown in FIG. 3. Here, everything up to the SIGNAL 2 field are transmitted on antenna 1, and antennas 2 and 3 then transmit copies of the training sequence (the chosen order of the training sequences and the SIGNAL 2 field is unimportant, as long as it is standardized).

[0016] An alternative to separating the transmissions in time is to separate the transmissions on each antenna in frequency, so that a given antenna is the only one transmitting on a given subcarrier at a given time, and to use the standard 802.11a/g preamble. An example of a possible distribution is shown in FIG. 5. The subcarrier/TX antenna distribution can be either used for the whole preamble, or can be used for the long training symbols and the SIGNAL/SIGNAL 2 fields only. The channel spacing is 0.3125 MHz.

[0017] From the point of view of a legacy device, there is a unique transfer function for each subcarrier that can be estimated that remains constant through to the SIGNAL field and allows the required information to be decoded.

[0018] For a MIMO device, the channel transfer functions are not completely known for all subcarriers for each transmitting antenna. It is therefore necessary to exploit the characteristics of the physical channel, whereby nearby subcarriers have a channel transfer function that is correlated with one another. It is therefore possible to make an estimate of the unknown subcarriers interpolated or extrapolated from the nearby subcarriers.

[0019] Multiple training symbols give an unambiguous and good-quality estimate for the channel transfer functions. However, they represent a significant overhead (an extra 20 μs per packet). Since the aim of the MIMO system is to provide very greatly increased throughput, this overhead becomes the limiting factor in determining the available transmission rate and fails to meet the required target of 100 Mbps.

[0020] The use of the diagonal channel estimate offers a minimal overhead. However, the requirement to interpolate/ extrapolate the channel transfer functions causes problems, particularly for difficult channels, due to errors in the resulting estimates. Such channel estimation errors are irreducible (increasing signal power does not improve the situation), and are likely to be a limit to the available data rate. The problem is particularly bad for the subcarriers at the edge of the band, for which extrapolation must be performed (since a known subcarrier channel transfer function exists only on one side).

SUMMARY

[0021] The following presents a simplified summary in order to provide a basic understanding of one or more aspects of the invention. This summary is not an extensive overview of the invention, and is neither intended to identify key or critical elements of the invention, nor to delineate the scope thereof. Rather, the primary purpose of the summary is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.

[0022] The present invention is directed to systems and methods that solve the above-mentioned problems. A transmitter in a transmission system according to the invention is operable to optimize estimates of a quantity at a receiver for improved operation. The transmission system comprises, in one example, a transmitting means connected to a number of antennas, and a control means. The control means controls the transmitting means to initially transmit an initial training/quantity estimation sequence during an initial training/quantity estimation phase and subsequently transmit a sequence of data symbols such that the information rate of the data symbols is progressively increased.

[0023] One advantage of the transmitter according to the above embodiment is that it provides an improved trade-off between initial quantity estimation error and the amount of overhead introduced, thereby allowing higher final rates for a given probability of packet error at a receiver, which is able to update the quantity estimates based on the received data.

[0024] In another embodiment of the invention, an optimization system is provided. The optimization system is operable to optimize estimates of a quantity at a receiver for improved operation. The optimization system comprises a receiving means connected to a number of receiving antennas, and to control means. The control means controls the receiving means to initially receive an initial training/quantity estimation sequence during an initial training/quantity estimation phase and subsequently receive a sequence of data symbols such that the information rate of the data symbols is progressively increased.

[0025] One advantage of the optimization system according to one embodiment of the invention is that it provides an improved trade-off between initial quantity estimation error and the amount of overhead introduced, thereby allowing higher final rates for a given probability of packet error at a receiver, which is able to update the quantity estimates based on the received data.

[0026] The invention also comprises a method at a transmitter that facilitates an optimization of estimates of a quantity at a receiver. In one embodiment, the method comprises transmitting an initial training/quantity estimation sequence, and transmitting the first few data symbols of the remainder of the transmission at a low information rate and increasing the information rate progressively with time.

[0027] One advantage of this method is that it provides an improved trade-off between initial quantity estimation error and the amount of overhead introduced, thereby allowing higher final rates for a given probability of packet error at a receiver, which is able to update the quantity estimates based on the received data.
In accordance with another embodiment of the invention, at least one computer program product is provided, wherein the at least one computer program product performs the transmissions in the above-highlighted method and consequently achieves the same advantage.

A method for optimization of estimates of a quantity at a receiver is also provided and comprises receiving an initial training/quantity estimation sequence during an initial training/quantity estimation phase, and adapting the receiver to an increasing information rate used at the transmitter.

One advantage of the above method is that it provides an improved trade-off between initial quantity estimation error and the amount of overhead introduced, thereby allowing higher final rates for a given probability of packet error.

In accordance with another embodiment of the invention, a transmitter in a transmission system is provided, wherein the transmitter is operable to optimize estimates of a channel transfer function at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The transmission system comprises m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The transmissions on each transmitting antenna during an initial training/channel estimation phase are separated in frequency, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time. The transmission system further comprises a transmitting means connected to a number of antenna means. The transmission system also comprises a control means connected to said transmitting means and is operable to control the transmissions in such a way that a different assignment of subcarriers to transmitting antennas is made for later portions of the training/estimation sequence than for the initial portion of the training/estimation sequence containing the 11a/11g SIGNAL field.

An advantage with the above transmission system according to this exemplary embodiment of the present invention is that it provides improved channel estimates without any overhead.

An optimization system according to another embodiment of the invention is operable to optimize estimates of a channel transfer function at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The optimization system comprises m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The transmissions on each transmitting antenna during an initial training/channel estimation phase are separated in frequency, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time. The optimization system comprises a receiving means connected to receiving antenna, and to a control means operable to adapt an estimate updating process to a different subcarrier to transmitting antenna mapping during later portions of the training/estimation sequence than for the initial portion of the training/estimation sequence containing the 11a/11g SIGNAL field.

An advantage of the above optimization system embodiment is that it provides improved channel estimates without any overhead.

In accordance with yet another embodiment of the invention, a method is disclosed for optimising estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The method comprises m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2, and comprises separating the transmissions on each transmitting antenna in frequency during an initial training/channel estimation phase, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a time. The method further comprises applying a different assignment of subcarriers to transmitting antennas for the later portions of the training/channel estimation sequence than for the initial portion containing the 11a/11g SIGNAL field. One advantage with this method is that it provides improved channel estimates without any overhead.

In still another embodiment, a method is disclosed for optimising estimates of channel transfer functions at a receiver for improved operation backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The method comprises m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2, and comprises receiving an initial portion of the training/estimation sequence containing the 11a/11g SIGNAL field, and obtaining an initial estimate of the channel transfer function during the initial portion of the training/estimation sequence containing the 11a/11g SIGNAL field. The method further comprises receiving a subsequent portion of the training/estimation sequence where the mapping of subcarriers to transmit antenna is changed, and updating the initial estimate of the channel transfer function. One advantage with this method is that it provides improved channel estimates without any overhead.

In another embodiment a transmitter in a transmission system is provided and is operable to optimize estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The system comprises m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The transmitter comprises a transmission means capable of transmitting on a number of antennas and a control means, which is operable to control transmissions in such a way that the subcarriers used for a pilot tone transmission is changed from symbol to symbol.

One advantage with the above transmitter is that it allows channel estimates to be improved without the risk of data decoding errors, and gives the additional benefit of making pilot transmission more robust to deep fading or interference on particular subcarrier frequencies.

A receiver according to yet another embodiment of the invention comprises a receiver in a transmission system that is operable to optimize estimates of channel transfer functions at said receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The system comprises m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The receiver comprises a first estimating means operable to make an initial estimate of said channel transfer function, based on the received symbols during an initial training/channel estimation phase. The receiver also comprises estimating means operable to update said estimate of said channel transfer function, and remodulating means operable to duplicate the modulation function performed at the trans-
mitter. The receiver also comprises pilot measuring means and a control means connected to said pilot measuring means, said estimate updating means and said demodulating means, wherein the control means is operable to control the pilot measuring means such that the subcarriers used for a pilot tone reception are changed from symbol to symbol.

According to still another embodiment of the invention, a method at a transmitter is provided that facilitates optimized estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The method comprises transmitting an initial training/channel estimating sequence during an initial training/channel estimation phase, and controlling transmissions in subsequent data symbols in such a way that the subcarriers used for a pilot tone transmission are changed from symbol to symbol.

An advantage with this method is that it allows channel estimates to be improved without the risk of data decoding errors, and gives the additional benefit of making pilot transmission more robust to deep fading or interference on particular subcarrier frequencies.

Another embodiment, a method at a receiver is disclosed for producing optimized estimates of channel transfer functions for improved operation in a multiple input multiple output (MIMO) OFDM-based wireless LAN networks. The method comprises making an initial estimate of said channel transfer function, based on the received symbols during said initial training/channel estimating phase, and receiving the transmitted pilot tones from the subcarriers used at the transmitter. The method further comprises duplicating the modulation function performed at the transmitter, and updating the estimate of said channel transfer function using the received pilot tones.

An advantage with this method is that it allows channel estimates to be improved without the risk of data decoding errors, and gives the additional benefit of making pilot transmission more robust to deep fading or interference on particular subcarrier frequencies.

To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference number in different instances in the description and the figures may indicate similar or identical items.

FIG. 1 is a diagram showing a MIMO system illustrating channel transfer functions between antennas.
FIG. 2 shows an IEEE 802.11a/g OFDM preamble structure.
FIG. 3 discloses an OFDM subcarrier (frequency domain) structure.
FIG. 4 shows an OFDM preamble structure with a second SIGNAL field (SIGNAL 2).
FIG. 5 discloses a 11a/g compatible OFDM-MIMO preamble with replicated training sequences.
FIG. 6 shows a distribution of subcarriers over transmit antennas for diagonal channel estimation.
FIG. 7 is a block diagram of a first embodiment of a transmitter according to the present invention.
FIG. 8 is a block diagram of an optimization system according to the present invention.
FIG. 9 is a block diagram of the optimization system disclosed in FIG. 8 in more detail.
FIG. 10 is a flow chart of a first embodiment of a method at a transmitter according to the present invention.
FIG. 11 is a flow chart of a first embodiment of a method for optimization according to the present invention.
FIG. 12 is a flow chart of the method disclosed in FIG. 11 in more detail.
FIG. 13 is a block diagram of a second embodiment of a transmitter according to the present invention.
FIG. 14 is a block diagram of a second embodiment of an optimization system according to the present invention.
FIG. 15 is a block diagram of the optimization system disclosed in FIG. 14 in more detail.
FIG. 16 is a flow chart of a second embodiment of a method at a transmitter according to the present invention.
FIG. 17 is a flow chart of a second embodiment of a method for optimising according to the present invention.
FIG. 18 is a block diagram of a third embodiment of a transmitter according to the present invention.
FIG. 19 is a block diagram of a receiver according to the present invention.
FIG. 20 is a flow chart of a third embodiment of a method at a transmitter according to the present invention.
FIG. 21 is a flow chart of a method at a receiver according to the present invention.
FIG. 22 is a flow chart of the method disclosed in FIG. 21 in more detail.
FIG. 23 shows the change of subcarrier/Tx antenna allocation for the SIGNAL 2 field.
FIG. 24 show some examples of computer program products according to the present invention.

DETAILED DESCRIPTION

In FIG. 7 there is disclosed a block diagram of a first embodiment of a transmitter 54 according to the present invention. The transmitter 54 is included in a transmission system 50. The transmission system 50 comprises a transmitting means 54 connected to three transmitting antennas Tx 1, Tx 2, Tx 3, and to transmitter control means 52. The control means 52 controls said transmitting means 54 to initially transmit an initial training/quantity estimation sequence during an initial training/quantity estimation phase and subsequently transmit a sequence of data symbols such that the information rate of the data symbols is progressively increased. In FIG. 7 there is also disclosed three receiving antennas Rx 1, Rx 2, Rx 3.
According to a preferred embodiment said transmitter is implemented in a multiple input multiple output (MIMO) transmission system, wherein the transmissions on each transmitting antenna during an initial training/quantity estimation phase are separated in frequency, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time.

In FIG. 8 there is disclosed a block diagram of a first embodiment of an optimization system 100 according to the present invention. The optimization system 100 is operable to optimize estimates of a quantity at a receiver for improved operation. The optimization system 100 comprises a receiving means 60 connected to a number of receiving antennas Rx 1, Rx 2, Rx 3, and to receiver control means 110. The control means 110 controls the receiving means 60 to initially receive an initial training (quantity estimation sequence during an initial training/quantity estimation phase and subsequently receive a sequence of data symbols such that the information rate of the data symbols is progressively increased.

In FIG. 9 there is disclosed a block diagram of the optimization system 100 disclosed in FIG. 8 in more detail. The optimization system 100 comprises a first estimating means 102 operable to make an initial estimate of said quantity, based on the received symbols during an initial training/quantity estimate phase. The system 100 also comprises an estimate updating means 104 operable to store a current estimate of said quantity. The system 100 also comprises a decoding means 106 operable to decode the received symbols. The system 100 also comprises a remodulating means 108 connected to said decoding means 106 and said estimate updating means 104, wherein said remodulating means 108 is operable to duplicate the modulation function performed at the transmitter to generate estimates of the transmitted symbols. The system 100 also comprises a control means 110 connected to the decoding means 106 and the remodulating means 108. In FIG. 9 there is also disclosed a demodulating means 112 and an error correction means 114.

In a preferred embodiment the control means 110 is operable to compare the received symbols and the estimated transmitted symbols and to calculate an error vector, wherein said estimate updating means 104 updates said estimate of the quantity based on said error vector.

In a preferred embodiment the updating means 104 updates said estimate of said quantity by using an RLS algorithm.

According to another embodiment the updating means 104 updates said estimate of said quantity by using an LMS algorithm.

The quantity can be one of a channel transfer function from a transmitting antenna to a receiving antenna, a frequency offset, a timing offset, sampling rate offset or a measure of the spatial position of the transmitter.

In a preferred embodiment the optimization system is implemented in a multiple input multiple output (MIMO) transmission system comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2, wherein the transmissions on each transmitting antenna during an initial training/quantity estimation phase are separated in frequency, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time.

In FIG. 10 there is disclosed a flow chart of a first embodiment of a method at a transmitter according to the present invention. The method allows for optimization of estimates of a quantity at a receiver. The method begins at block 140. The method continues, at block 142, with the transmission of an initial training/quantity estimation sequence. Thereafter the method continues, at block 144, with the transmission of the first few data symbols of the remainder of the transmission at a low information rate and an increase in the information transmission rate progressively with time. The method is completed at block 146.

In a preferred embodiment the above method also comprises deciding upon in advance and signaling the manner in which the information rate is to be changed, by using an agreed upon or predetermined encoding during the initial training/quantity estimation sequence.

In a preferred embodiment the transmission system is a backward-compatible multiple input multiple output (MIMO) transmission system comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. In the above exemplary system, the transmissions on each transmitting antenna are separated in frequency during the initial training/quantity estimation phase, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time.

In a preferred embodiment the above method also comprises making an initial estimate of the quantity, based on the received symbols during the initial training/quantity estimation phase, and storing a current estimate of the quantity. The current quantity estimate is then decoded. A data symbol is received and also decoded and a duplication of the modulation function performed at the transmitter is performed, and is used to update the quantity estimate.

In another embodiment of the method, the received symbols and the transmitted symbols are compared and the comparison is employed to calculate an error vector. The error vector is then used to update the quantity estimate.

In another embodiment the method comprises updating the quantity estimates by using an RLS algorithm or an LMS algorithm.

In yet another embodiment, the method also comprises using an agreed upon or predetermined encoding technique received during the initial training/quantity estimation sequence to determine the manner in which the receiver is to be adapted to a changing information rate.

In one embodiment the quantity comprises a channel transfer function from a transmitting antenna to a receiving antenna.

Alternatively, the quantity may comprise a frequency offset, a timing offset, a sampling rate offset, or the spatial position of a transmitter.

In one exemplary embodiment the transmission system is a backward-compatible multiple input multiple output (MIMO) transmission systems comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. In the system, the
transmissions on each transmitting antenna are separated in frequency during the initial training/quantity estimation phase, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time.

In FIG. 12 a flow chart of the method disclosed in FIG. 11 is illustrated in more detail. The method begins at block 120. The method continues, at block 122, with a separating of the transmissions on each transmitting antenna in frequency during an initial training/quantity estimation phase, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time. Thereafter, the method continues, at block 124, with the making of an initial estimate of the quantity, based on the received symbols during the initial training/quantity estimation phase. The method continues, at block 126, with a storing of a current estimate of the quantity. Thereafter the method continues, at block 128, with the decoding of the current quantity estimate. The method continues, at block 130, with the duplicating of the modulation function performed at the transmitter. Thereafter the method continues, at block 132, with transmitting the first few data symbols at a low transmission rate. The method continues, at block 134, with increasing the transmission rate progressively with time. The method is completed at block 136.

In FIG. 13 a block diagram illustrates a exemplary second embodiment of a transmitter 252 according to the present invention. The transmitter 252 in a transmission system 250 is operable to optimize estimates of a channel transfer function at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. For example, MIMO networks that comprise m number of transmitting antennas T1-Txm, and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The transmission system 250 comprises a transmitting means 252 connected to a number of antenna means T1-Txm. The transmission system 250 comprises a transmitting means 252 operable to control the transmissions in such a way that a different assignment of subcarriers to the transmitting antenna is made for later portions of the training/estimation sequence than for the initial portion of the training/estimation sequence containing the 11a/11g SIGNAL field.

In one embodiment, the control means 254 controls the transmissions in such a way that the mapping of subcarriers to the transmit antennas follows a predetermined sequence known at the receiver.

In another embodiment the control means 254 controls the transmissions in such a way that the mapping of subcarriers to transmit antennas optimizes the possibility for the receiver to estimate the channel transfer functions.

In FIG. 14 a block diagram is provided that illustrates a second embodiment of an optimization system 300 according to the present invention.

The optimization system 300 is operable to optimize estimates of a channel transfer function at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. For example, MIMO networks that comprise m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2, and wherein the transmissions on each transmitting antenna during an initial training/channel estimation phase are separated in frequency, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time.

In one exemplary embodiment the optimization system 300, see FIG. 15, comprises a first estimating means 302 operable to make an initial estimate of the channel transfer function, based on the received symbols during the initial portion of the training/channel estimation phase. In addition, an estimate updating means 304 is operable to update the estimate of the channel transfer function during the training/channel estimation phase. The estimate updating means 304 is connected to decoding means 306 which is operable to decode the received symbols. The optimization system 300 also comprises a remodulating means 308 connected to the decoding means 306 and the estimate updating means 304. The remodulating means 308 is operable to duplicate the modulation function performed at the transmitter, wherein that control means 310 also is connected to the decoding means 306 and the remodulating means 308.

In one embodiment the control means 310 controls the estimate updating process in such a way that the mapping of subcarriers to transmit antennas follows a predetermined sequence used at the transmitter.

In another embodiment the control means 310 controls the estimate updating process in such a way as to optimize the estimate of the channel transfer functions.

In one embodiment the optimization system 300 also comprises a remodulating means 312 connected to the estimate updating means 304 and to the decoding means 306, wherein the remodulating means 312 is operable to demodulate the received symbols.

In another embodiment the optimization system 300 also comprises a correction means 314 connected to the decoding means 308, wherein the correction means 314 is operable to perform an error correction on the decoded symbols.

In FIG. 16 a flow chart is provided, illustrating a second embodiment of a method at a transmitter according to the present invention. The method at a transmitter is for optimizing estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks, for example, networks comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The method begins at block 360, and continues at block 362, with separating the transmissions on each transmitting antenna in frequency during an initial training/channel estimation phase, so that only a single given antenna is transmitting on a given subcarrier at a given time. Thereafter, the method continues, at block 364, with the application of a different assignment of subcarriers to the transmitting antennas for the later portions of the training/channel estimation sequence than for the initial portion containing the 11a/11g SIGNAL field.

In one embodiment the method comprises controlling the transmissions in such a way that the mapping of subcarriers to the transmit antennas follows a predetermined sequence known at the receiver.
In another embodiment the method also comprises controlling the transmissions in such a way that the mapping of subcarriers to the transmit antennas optimizes the possibility for the receiver to estimate the channel transfer functions.

In FIG. 17 a flow chart is provided illustrating a second exemplary embodiment of a method for optimizing according the present invention. A method is provided for optimizing estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks, comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The method begins at block 320, and continues at block 322, with the receiving of an initial portion of the training/estimation sequence containing the 11n/11g SIGNAL field. Thereafter, the method continues, at block 324, with obtaining an initial estimate of the channel transfer function during the initial portion of the training/estimation sequence containing the 11n/11g SIGNAL field. The method continues, at block 326, with receiving a subsequent portion of the training/estimation sequence where the mapping of subcarriers to the transmit antennas is changed. Thereafter, the method continues, at block 328, with updating of the initial estimate of the channel transfer function. The method is completed at block 330.

In one exemplary embodiment the method comprises controlling the updating of the channel transfer function estimates based on a predetermined sequence of mappings of subcarriers to the transmit antennas known to be used at the transmitter.

In another embodiment the method comprises demodulating the received symbols.

In another embodiment the method comprises performing an error correction on the decoded symbols.

In FIG. 18 a block diagram is disclosed illustrating a third exemplary embodiment of a transmitter 450 according to the present invention. The transmitter 450 in a transmission system 460 is operable to optimize estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks. For example, MIMO networks comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The transmission system 460 comprises a transmission means 450 capable of transmitting on a number of antennas Tx1-Txm, and a control means 452 operable to control transmissions in such a way that the subcarriers used for a pilot tone transmission is changed from symbol to symbol.

In one embodiment the control means 452 is further operable to decide in advance the pattern of which subcarriers and/or transmitting antennas are used for the pilot tones in each symbol.

In another embodiment the control means 452 also is operable to transmit known pilot tones on combinations of transmitting antenna Tx1-Txm and on subcarriers that have not been used during the initial training/channel estimating phase.

In FIG. 19 a block diagram is provided that discloses a receiver 400 according to another embodiment of the present invention. The receiver 400 in a transmission system 460 is operable to optimize estimates of channel transfer functions at the receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks, comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The receiver 400 comprises a first estimating means 402 operable to make an initial estimate of the channel transfer function, based on the received symbols during an initial training/channel estimation phase. The receiver 400 also comprises an estimate updating means 404 operable to update the estimate of the channel transfer function, which is operably coupled to a remodulating means 406 operable to duplicate the modulation function performed at the transmitter. The receiver 400 also comprises a pilot measuring means 408 and a control means 410 connected to the pilot measuring means 408, the estimate updating means 404, and the remodulating means 406. The control means 410 is operable to control the pilot measuring means such that the subcarriers used for a pilot tone reception is changed from symbol to symbol.

In another embodiment, the control means 410 is also operable to decide in advance the pattern of which subcarriers and/or transmitting antennas are used for pilot tones in each symbol.

In FIG. 20 a flow chart is provided illustrating an exemplary third embodiment of a method at a transmitter according to the present invention. The method operates at a transmitter for allowing optimized estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks, comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The method begins at block 470, and continues at block 472, with transmitting an initial training/channel estimating sequence during an initial training/channel estimation phase. Thereafter the method continues, at block 474, with controlling transmissions in subsequent data symbols in such a way that the subcarriers used for a pilot tone transmission are changed from symbol to symbol. The method is completed at block 476.

In one embodiment the method also comprises deciding in advance the pattern of which subcarriers and/or transmitting antennas are used for pilot tones in each symbol.

In another embodiment the method also comprises transmitting known pilot tones on combinations of transmitting antennas and subcarriers that have not been used during the initial training/channel estimating phase.

In FIG. 21 a flow chart is provided that illustrates a method at a receiver according to another embodiment of the present invention. The method at a receiver for producing optimized estimates of channel transfer functions for improved operation in a multiple input multiple output (MIMO) OFDM-based wireless LAN network, for example, a network comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2. The method begins at block 500, and continues, at block 502, with making an initial estimate of the channel transfer function, based on the received symbols during the initial training/channel estimating phase. Thereafter, the method continues, at block 504, with receiving the transmitted pilot tones from the subcarriers used at the transmitter. The method continues, at block 506, with duplicating the modulation function performed at the transmitter. Thereafter, the method continues, at block 508, with updating the estimate of the channel transfer function using the received pilot tones. The method is completed at block 510.
In FIG. 22 a flow chart is disclosed, illustrating the method disclosed of FIG. 21 in greater detail. The method begins at block 420, and continues at blocks 422-430. The method comprises separating the transmissions on each transmitting antenna in frequency during an initial training/channel estimating phase, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a time. An initial estimate of the channel transfer function is then made, based on the received symbols during the initial training/channel estimating phase. The estimate of the channel transfer function is updated, and the modulation function performed at the transmitter is duplicated. Transmissions are then controlled in such a way that the subcarriers used for a pilot tone transmission is changed from symbol to symbol. The method is completed at block 432.

Typically, the SIGNAL 2 field will be transmitted using one of the more robust modulation formats (for example, the most robust mode). Since a significant amount of data is already encoded in the 11a/11g SIGNAL field, it is unlikely that a large amount of information would be encoded in the SIGNAL 2 field, thereby allowing such a robust, low data rate format. Since the data, in one example, is transmitted using the most robust encoding, data-based estimates of the channel transfer function are most likely to be reliable. Thus, the SIGNAL 2 field can be treated in some respects as an extension of the preamble before more complex modulation formats are applied to the remainder of the data section. According to the invention, a different assignment of subcarriers to the transmit antennas is made for the SIGNAL 2 field, as shown in FIG. 23. This allows another set of channel transfer functions to be directly estimated without the need for interpolation or extrapolation. It may be the case, in one embodiment, that the number of bits required to be transmitted in the SIGNAL 2 field do not require the use of all of the available subcarriers. In this case, it is advantageous to transmit a known value on the remaining subcarriers. This allows a non data-dependent estimate of the channel transfer function on those subcarriers. It is particularly advantageous if the subcarriers at the band edge (e.g., subcarrier numbers -26, +26) are assigned with known values, since these are the values which will have the greatest error in the channel transfer function estimates and for which data-directed estimation is most likely to fail.

The above may pertain to the various embodiments of the invention disclosed in FIGS. 13-17, for example.

In FIG. 24 a schematic diagram of some computer program products according to the present invention is provided. There is disclosed n different digital computers 200, ..., 200n, wherein n is an integer. There is also disclosed n different computer program products 202, ..., 202n, here shown in the form of compact discs, for example. The different computer program products 202, ..., 202n, are directly loadable into the internal memory of the different digital computers 200, ..., 200n. Each computer program product 202, ..., 202n, comprises software code portions for performing some or all of the steps of all the steps of FIG. 10, 11, 12, 16, 17, 20, 21 or 22 when the product(s) 202, ..., 202n, is/are run on said computer(s) 200, ..., 200n, or other type controller. Said computer program products 202, ..., 202n, can, for example, be in the form of floppy disks, RAM disks, magnetic tapes, opto magnetical disks or any other suitable products.

Although the invention has been illustrated and described with respect to one or more implementations, alterations and/or modifications may be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term "comprising".

1. A transmitter in a transmission system operable to facilitate optimization of estimates of a channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks comprising m number of transmitting antennas (Txm) and n number of receiving antennas, wherein m and n are integers and m, n>=2, wherein the transmissions on each transmitting antenna (Txm) during an initial training/channel estimating phase are separated in frequency, so that a given transmitting antenna (Txm) is the only one transmitting on a given subcarrier at a given time, comprising:

- a transmitting device operably coupled to a plurality of antennas (Tm); and
- a control device operably coupled to the transmitting device and operable to control the transmissions from the transmitter to the receiver in such a way that a different assignment of subcarriers to the transmitting antennas is made for later portions of a training/estimation sequence than for an initial portion of the training/estimation sequence containing a 11a/11g SIGNAL field therein.

2. The transmitter of claim 1, wherein the control device controls the transmissions of the transmitting device in such a way that a mapping of subcarriers to the transmit antennas follows a predetermined sequence known at the receiver.

3. The transmitter of claim 1, wherein the control device controls the transmissions of the transmitting device in such a way that a mapping of subcarriers to the transmit antennas (Txm) optimizes a possibility for the receiver to estimate the channel transfer functions.

4. An optimization system operable to optimize estimates of a channel transfer function at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n>=2, wherein the transmissions on each transmitting antenna during an initial training/channel estimating phase are separated in frequency, so that a given transmitting antenna is the only one transmitting on a given subcarrier at a given time, comprising:

- a receiving device operably coupled to the receiving antennas; and
- a control device operably coupled to the receiving device and operable to adapt an estimate updating process to a different subcarrier for transmit antenna mapping during later portions of a training/estimation sequence than for an initial portion of the training/estimation sequence containing an 11a/11g SIGNAL field therein.
5. The optimization system of claim 4, further comprising:
 a first estimating device operable to make an initial estimate of the channel transfer function, based on the received symbols during the initial training/channel estimation phase;
 an estimate updating device operable to update the estimate of the channel transfer function during the initial training/channel estimation phase,
 wherein the control device controls the estimate updating process in such a way that the mapping of subcarriers to the transmit antennas follows a predetermined sequence used at the transmitter.
6. The optimization system of claim 4, wherein the control device controls the estimate updating process in such a way as to optimize the estimate of the channel transfer functions.
7. A method for optimising estimates of channel transfer functions at a receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks, comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2, comprising:
 receiving an initial portion of a training/estimation sequence containing a 11a/11g SIGNAL field;
 obtaining an initial estimate of the channel transfer function during receipt of the initial portion of the training/estimation sequence containing the 11a/11g SIGNAL field;
 receiving a subsequent portion of the training/estimation sequence where a mapping of subcarriers to the transmit antennae is changed; and
 updating the initial estimate of the channel transfer function based on the subsequent portion of the training/estimation sequence.
8. The method of claim 7, further comprising controlling the updating of the channel transfer function estimates based on a predetermined sequence of mappings of subcarriers to the transmit antennae known to be used at the transmitter.
9. A receiver in a transmission system operable to optimize estimates of channel transfer functions at said receiver for improved operation for backward-compatible multiple input multiple output (MIMO) OFDM-based wireless LAN networks, comprising m number of transmitting antennas and n number of receiving antennas, wherein m and n are integers and m, n ≥ 2, comprising:
 a first estimating device operable to make an initial estimate of the channel transfer function, based on the received symbols during an initial training/channel estimation phase;
 estimate updating device operable to update the estimate of the channel transfer function;
 and
 a pilot measuring device and control device connected to the pilot measuring device and the estimate updating device, wherein the control device is operable to control the pilot measuring device such that the subcarriers used for a pilot tone reception is changed from symbol to symbol.
10. The receiver of claim 9, wherein the control device is further operable to decide in advance a pattern of which subcarriers and/or transmitting antennas are used for pilot tones in each symbol.

* * * * *