Abstract:

Title: STRAIN OF ENTOMOPATHOGENIC FUNGUS ISARIA FUMOSOROSEA CCM 8367 (CCEFO.01 L.PFR) AND THE METHOD FOR CONTROLLING INSECT AND MITE PESTS

Figure 1

Cumulative mortality of pupae

(57) Abstract: Strain of entomopathogenic fungus Isaria fumosorosea CCM 8367 (CCEFO.01 L.PFR) deposited in collection CCM (Czech Collection of Microorganisms) in Brno, applicable for biological control of substrates infested by insect and mite pests. Infested woods, plants, etc. are treated with blastospores or conidiospores of this strain.
Strain of entomopathogenic fungus *Isaria fumosorosea* CCM 8367 (CCEFO.011.PFR) and the method for controlling insect and mite pests

Technical field

Mycoinsecticide which is usable as a considerate biological mean of plant and wood protection against insect and mite pests.

Background art

Plant protection against insect pests is performed largely using conventional chemical insecticides. Their application is, however, problematic from nature conservation and human health points of view. Insects become more and more resistant to them which in turn leads to the increase of dosage or needs to develop other more effective insecticides. The opportunities in this direction are approaching the limits. More rigorous legislative also restrains this way of pest control.

The horse chestnut leaf miner, *Comeraria ohridella* (Deschka et Dimic) (Lepidoptera: Gracillariidae) has favourable conditions for its development in the Czech Republic. This pest was discovered for the first time at Ohrid lake in Macedonia between Albania and Greece in 1984. This important pest of the horse chestnut started to spread invasively through whole Europe where it has good conditions for its development (for the lack of natural enemies) while not being enough regulated by natural mechanisms. Damage inflicted to horse chestnut leaves cause serious weakening of most of the infested trees. Contemporary pest control methods are based either on the application of non-selective insecticides or composting or burning of decaying (fallen) leaves. All these methods, however, also kill beneficial organisms including natural enemies of *Corneraria ohridella*.

An application of biological control, i.e. methods based on natural antagonistic interactions between organisms for suppression of pest population is safer to natural balance and stability of agricultural and forests ecosystems. Most of these biocontrol agents are harmless for non-target organisms including man and, contrary to chemical insecticides, do not posses any ecological risk for environment and thus contribute to biodiversity conservation. For this reason, biocontrol agents are more and more preferred as alternative means of insect pest control at the global scale.
Mycoinsecticides are such means of biological control. They are based on entomopathogenic fungi. For practical pest control representatives of several key Deuteromycet (Hyphomycetes: Moniliales) are of dominant importance. The best known are entomopathogenic fungi belonging to the genera Beauveria, Hirsutella, Metarhizium, Nomuraea, Isaria (Paecilomyces), Tolypocladium and Verticillium (Lecanicillium). Among many species of these genera about 25 species are contemporarily used in the form of standard biopesticides. Application of mycoinsecticides in pest control is one of the approaches in modern applied entomology and their development reached the stage of commercial bioinsecticides in many countries.

Entomopathogenic fungus Isaria fumosorosea (syn. Paecilomyces fumosoroseus) (WIZE) Brown & Smith is in comparison to other species of entomopathogenic Deuteromycet (Beauveria bassiana, Metarhizium anisopliae, Verticillium lecanii etc.) a less studied species. Fungus Isaria fumosorosea (syn. Paecilomyces fumosoroseus), often reported under abbreviation PFR, is a cosmopolite polyphagous entomopathogenic species. Most records of the isolation of this fungus from insects (under natural conditions) frequently report species of the orders Lepidoptera, Diptera and Coleoptera as the hosts. The PFR was for the first time reported as naturally occurring pathogen in the whitefly (Trialeurodes vaporariorum) populations in Peking in 1983, where strong local epizootics occurred, which temporarily eradicated this pest. This strain of PFR was isolated and as highly virulent against greenhouse whitefly was assigned as a subspecies Paecilomyces fumosoroseus var. beijingensis.

Substantial increase of interest in this pathogen happened when harmfulness of the whitefly Bemisia tabaci increased in field agroecosystems in Southern USA. Since 1987 regular spontaneous epizootics of Paecilomyces fumosoroseus in Bemisia tabaci populations on various host plants/localities were reported in Florida where a new strain of Paecilomyces fumosoroseus (PFR) was isolated in 1987. The isolated strain was assigned as PFR 97 - strain Apopka (Apopka - name of the region in Florida. The pure culture was identified in 1988 and deposited at the American Type Culture Collection (strain ATCC 20874). Strain PFR 97 turned out to be able to cause large epizootics in Bemisia tabaci populations both in greenhouses and in the field crops. Further experiments with this strain proved the polyphagous feature of this strain and a high virulence against aphids, thrips, larvae of certain moth species, larvae and pupae of leafminers (Diptera) and even a high activity against two-spotted spider mite (Tetranychus urticae). Contrary to the fungus Verticillium lecanii, PFR is able to cause infection also in the eggs of whiteflies and spider mites.
Disclosure of the invention

Research and development of new means of plant protection based on influencing physiological processes in a pest organism (so called biorational insecticides, i.e. means based on natural models), or on principles of biological control when natural enemies of pests like predators, parasitoids or pathogenic organisms are used, is a solution for modern plant protection. Biological control methods utilize natural antagonistic interactions between organisms for the suppression of pest population without disturbing natural balance so that they contribute to the stability of ecosystems in man-affected environment. The biocontrol agents proved to be harmless for the non-target organisms including man and, contrary to chemical insecticides, do not posses any ecological risk for the environment and thus contribute to biodiversity conservation. For this reason, biocontrol agents are more and more preferred as alternative means of insect pest control at the global scale. Our strain of entomopathogenic fungus *Isaria fumosorosea* with high virulence is a prospective biocontrol agent against insect and mite pests. The *Isaria fumosorosea* strain is deposited under number CCM 8367 (CCEFO.011.PFR) as patent culture in CCM collection (Czech Collection of Microorganisms) in Brno. Spores of this microorganism attack insect pests and mites and kill them.

A preparation based on the spores of *Isaria fumosorosea* strain CCM 8367 for control of insect pests (belonging to the orders Lepidoptera, Coleoptera, Hymenoptera and Homoptera) and mites is made by submerged or surface cultivation. For application, homogenous suspension of spores is prepared from a biomass concentrate or the spores are applied in the mixture with an inert carrier. After the application the fungus grows and infects insect pests and mites which then die. The advantage is that the fungus is a microorganism naturally occurring in the environment, and thus no disturbance of the ecosystem is made.

Figure

Figure 1: Cumulative mortality of *Comeraria ohridella* pupae after the treatment with conidiospores or blastospores of CCM 8367 strain of *Isaria fumosorosea* or with distilled water (control).
Examples

Example 1
Application of conidiospores of CCM 8367 strain of *Isaria fumosorosea* against pupae of the horse chestnut leaf miner

Conidiospores were collected from the fungus *Isaria fumosorosea* grown on agar dish (Sabouraud agar) and put into 50 ml of sterile distilled water with 10 µl of the soaking agent Tween. Homogenous suspension prepared by a hand homogenizer was diluted to the concentration of 5×10^7 conidiospores/ml.

One hundred of hibernating pupae of the horse chestnut leaf miner was collected from fallen leaves of horse chestnut trees. Each pupa was immersed (dipped) into the prepared suspension for one second. 100 pupae immersed to distilled water with Tween only served as a control. Pupae were then placed on filter paper to remove excess suspension or water, put into dishes with high humidity and incubated in dark climatized box at 23°C. Survival of pupae was checked using dissection microscope by mechanical stimulation at 12-hours intervals. Resulting mortality of pupae treated by conidiospores or water only is shown in Fig. 1.

Example 2
Application of blastospores of CCM 8367 strain of *Isaria fumosorosea* against pupae of the horse chestnut leaf miner

The strain of *Isaria fumosorosea* was cultivated using orbital shaker at 140 cycles per minute and temperature 23°C using grow media of the following composition: 2% glucose, 2% maltose, 2% peptone for bacteriology, pH=5.5. The cultivation was stopped after 120 hours and the biomass of blastospores was isolated from the grow media by centrifugation at 2500 rotations/min. for 20 minutes. A suspension of blastospores was prepared from the biomass by diluting with distilled water so that the concentration was 5×10^7 blastospores/ml. One hundred of hibernating pupae of the horse chestnut leaf miner was collected from fallen leaves of the horse chestnut trees. Each pupa was immersed into the prepared suspension of blastospores for one second. 100 pupae immersed to distilled water with Tween only served as a negative control. The pupae were then placed on filter paper to remove excess suspension or water, put into dishes with high humidity and incubated in dark climatized box at 23°C. Survival of pupae was checked using dissection microscope by mechanical stimulation at 12-
hours intervals. Resulting mortality of pupae treated by blastospores or water only is shown in Fig. 1.

Example 3
Application of conidiospores of CCM 8367 strain of *Isaria fumosorosea* against the eggs of the horse chestnut leaf miner

Conidiospores were collected from fungus *Isaria fumosorosea* grown on agar dish (Sabouraud agar) and put into 100 ml of sterile distilled water with 20 µl soaking agent Tween. Homogenous suspension prepared by a hand homogenizer was diluted to the concentration of 5x10^7 conidiospores/ml. A leaf of the horse chestnut tree, *Aesculus hippocastanum*, with deposited eggs of *Cameraria ohridella* (Deschka et Dimic) (Lepidoptera: Gracillariidae) was immersed into the prepared suspension for one second. Another leaf with the eggs immersed into distilled water with Tween only served as a negative control. After removing excess suspension or water the leaves were placed into dishes with high humidity and incubated in a dark climatized box at 23°C. Mortality of the eggs was assessed one week later. Totally, 102 eggs were treated with the fungus, 314 eggs served as a negative control. Results showed that the mortality of eggs treated with the suspension of conidiospores was 52.94%, by 40% higher compared to that of negative control.

Example 4
Application of blastospores of CCM 8367 strain of *Isaria fumosorosea* against the eggs of the horse chestnut leaf miner

The strain of *Isaria fumosorosea* was cultivated using orbital shaker at 140 cycles per minute and temperature 23°C using grow media of the following composition: 2% glucose, 2% maltose, 2% peptone for bacteriology, pH=5.5. The cultivation was stopped after 120 hours and the biomass of blastospores was isolated from grow media by centrifugation at 2500 rotations/min. for 20 minutes. A suspension of blastospores was prepared from the biomass by diluting in 100 ml of distilled water with 20 µl of the soaking agent Tween so that the concentration was 5x10^7 blastospores/ml. A leaf of the horse chestnut tree, *Aesculus hippocastanum*, with deposited eggs of *Cameraria ohridella* (Deschka et Dimic) (Lepidoptera: Gracillariidae) was immersed into prepared suspension for one second. Another
leaf with the eggs immersed into distilled water with Tween only served as a negative control. After removing excess suspension or water the leaves were placed into dishes with high humidity and incubated in dark climatized box at 23°C. Mortality of the eggs was assessed one week later. Totally, 143 eggs were treated with the fungus, 314 served as a negative control. Results showed that the mortality of eggs treated with the suspension of blastospores was 88.81%, by 76% higher compared to that of negative control.

Industrial applicability

Biological protection of plants, woods and other organic substrates against insect and mite pests.
CLAIMS

1. The strain of the entomopathogenic fungus *Isaria fumosorosea* CCM 8367 (CCEFO.011.PFR) deposited in the collection CCM (Czech Collection of Microorganisms) in Brno, Czech Republic.

2. The method for controlling insect and mite pests using entomopathogenic fungus *Isaria fumosorosea* CCM 8367 (CCEFO.011.PFR) according to claim 1, wherein infested plants and woods or substrate of organic origin are treated by its spores.

3. The method for controlling insect and mite pests according to claim 2, wherein the spores are in liquid or solid inert carrier.
Figure 1

Cumulative mortality of pupae

Mortality (%) vs. Time (hours)

- conidiospores
- blastospores
- control
A. CLASSIFICATION OF SUBJECT MATTER

INV. C12N1/14 A01N63/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N C12R A0IN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS, FSTA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C
X See patent family annex

Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance
'E' earlier document but published on or after the international filing date
'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
'O' document referring to an oral disclosure, use, exhibition or other means
'P' document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
16 November 2009

Date of mailing of the international search report
27/11/2009

Name and mailing address of the ISA/Office
European Patent Office, P B 5818 Patentlaan 2 NL-2280 HV Rijswijk
Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer
van de Kamp, Mart
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | ZEMEK ROSTISLAV ET AL: "The first record of entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycota: Hyphomycetes) on the hibernating pupae of Cameraria ohridella (Lepidoptera: Gracillariidae)"
ENTOMOLOGICAL RESEARCH,
vol. 37, no. Suppl. 1,
August 2007 (2007-08), pages A135-A136,
XP008114913
ISSN: 1738-2297
the whole document | 1-3 |
| Y | RICHTER DOREEN ET AL: "Pathogenicity of entomopathogenic fungi on hibernating pupae of Cameraria ohridella Deschka & Dimic 1986 (Lepidoptera, Gracillariidae).
Part 1: Pathogenicity against the naked pupa."
COMMUNICATIONS IN AGRICULTURAL AND APPLIED BIOLOGICAL SCIENCES,
vol. 72, no. 3, 2007, pages 399-410,
XP008114864
ISSN: 1379-1176
the whole document | 1-3 |
| Y | RICHTER DOREEN ET AL: "Pathogenicity of entomopathogenic fungi on hibernating pupae of Cameraria ohridella Deschka & Dimic 1986 (Lepidoptera, Gracillariidae).
Part 2: Efficacy of entomopathogenic fungi against pupa in her pupal cell."
COMMUNICATIONS IN AGRICULTURAL AND APPLIED BIOLOGICAL SCIENCES,
vol. 72, no. 3, 2007, pages 411-421,
XP008114863
ISSN: 1379-1176
the whole document | 1-3 |
| Y | KALMUS M ET AL: "Efficacy of entomopathogenic fungi against eggs and larvae of the horse chestnut leafminer Cameraria ohridella"
JOURNAL OF PLANT DISEASES AND PROTECTION,
vol. 114, no. 2, April 2007 (2007-04),
page 92, XP001537307
ISSN: 1861-3829
the whole document | 1-3 |
the whole document | 1 |
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FARGUES ET AL: "Genetic variability among Paecilomyces fumosoroseus isolates from various geographical and host insect origins based on the rDNA-ITS regions" MYCOLOGICAL RESEARCH, vol. 106, no. 9, 1 September 2002 (2002-09-01), pages 1066-1074, XP022474272 ISSN: 0953-7562 abstract table 1</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 644258 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2059057 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69213772 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69213772 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0494592 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2091952 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3022086 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3315142 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5032514 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5360607 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1956915 A1</td>
</tr>
</tbody>
</table>