«» UK Patent Application .,GB ,2519629

(13)A

(43)Date of A Publication 29.04.2015
(21) Application No: 1414545.2 (51) INT CL:
GO6F 12/02 (2006.01) G11C 16/08 (2006.01)
(22) Date of Filing: 15.08.2014 G11C 29/04 (2006.01)
(30) Priority Data: (56) Documents Cited:
(31) 61866672 (32) 16.08.2013 (33) US US 8843711 B US 6374341 B
(31) 14055336 (32) 16.10.2013 (33) US US 20140223089 A US 20100017578 A

(71) Applicant(s):
LSI Corporation
1320 Ridder Park Drive, San Jose 95131, California,
United States of America

(72) Inventor(s):
Earl T Cohen

(74) Agent and/or Address for Service:
Williams Powell
11 Staple Inn, LONDON, WC1V 7QH, United Kingdom

US 20070143569 A

(58) Field of Search:
INT CL GO6F, G11C
Other: EPODOC, WPI, TXTE.

(54) Title of the Invention: Variable-size flash translation layer

Abstract Title: Reading variable size flash memory transition layer storing compressed data.

(57) Disclosed is a method of using a variable-size flash transition layer in a non-volatile memory. The method starts
when the non-volatile memory receives a read request to read data corresponding to a logical block address of the
non-volatile memory. Next, a particular entry of a map, associated with the logical block address, is read, to obtain
(i) a physical address of a particular page of the non-volatile memory, (ii) an offset in the particular page to stored
compressed data and (iii) a length of the compressed data. Then the memory converts the offset and the length to
(i) an address of a given read unit in the particular page and (ii) a number of the read units to be read. Finally, the
data is read from the particular page starting from the given read unit to at most the number of the read units given
to be read in (ii). The offset and length granularity are finer than one read unit.

FLASH
PAGE,
100
MAP)
101 .
[]
LBAM:U},110 [ENTRY | SUB-PAGE ADDRESS, 104 .
e 102
LBA[U-1:0], 111 DATA
[]
. SECTOR(S) WITHIN /{
° SUB-PAGE, 113 DATA
DATA

FIG. 1

V 6¢9619¢ 99

LBA[M:U], 110

LBA[M:U], 110

1/8

FLASH
PAGE,

100
)

MAP
101 .
[]
ENTRY SUB-PAGE ADDRESS, 104 .
102
LBA[U-1:0], 111 DATA
. SECTOR(S) WITHIN /'{
SUB-PAGE, 113 DATA
DATA
FLASH
PAGE,
100 1
[]
[]
MAP .
201
DATA
ENTRY BYTE ADDRESS, 204
202
DATA
. LENGTH, 206 f
[
DATA

FLASH I

FIG. 2 o

LBA[M:U], 110

2/8

ﬂ
READ UNIT
READ UNIT FLASH PAGE
—1 > INCL.SPARE,
READ UNIT 100
READ UNIT
-
FLASH
PAGE,
100y
READ UNIT
MAP READ UNIT
401
READ UNIT
ENTRY | READ UNIT ADDRESS, 404
402
- READ UNIT
[]
. SPAN IN READ UNITS,
. 1054 | READUNIT
READ UNIT
READ UNIT
READ UNIT

FLASH I

FIG.4 ™

HEADER,
501

HEADER,
501

3/8

<

<

FIG. 5

LBA LENGTH | OFFSET h
LBA LENGTH | OFFSET -
® \
[]
[]
LBA LENGTH | OFFSET .
. READ
DATA - UNIT,
500
DATA
[]
[]
®
DATA, START
y
LBA LENGTH | OFFSET)
[]
[]
. NEXT
LBA LENGTH OFFSET READ
UNIT,
DATA, CONTINUE 510
[]
[]
. y

POINTER TO
FIRST BYTE OF
THIS FP'S DATA

POINTER TO LAST BYE
OF OVERFLOW DATA

LAST BYTE OF OVERFLOW
DATA PLUS 6B x NUMBER
OF HEADERS

4/8

REDUNDANCY BLOCK
HEADER (6B)

MASTER BLOCK (6B)

PACKED 6B HEADERS
(UP TO ~512 HEADERS)

OPTIONAL COMPLETION
OF DATA FROM PRIOR FP

PACKED DATA TO FILL
FLASH PAGE (FP)
(AND OPTIONAL PADDING)

FIG. 6

"~ REDUNDANCY BLOCK
HEADER (6B)

MASTER BLOCK (6B)

OPTIONAL COMPLETION
OF DATA FROM PRIOR FP

640
/

PACKED 6B HEADERS
(UP TO ~512 HEADERS)

630
/

PACKED DATA TO FILL
FLASH PAGE (FP)
(AND OPTIONAL PADDING)

650
/

FIG. 7

5/8

6 Old

(3218 @3SSIUANOD B 39Vd ANV ‘31d
IWNWININ) 8821 SNINV3IW [o:bLlgziN N1 | [0:61113S440 | MD0719 AONVANNA3Y
0 HLIM @3401S SI HLON31 3HL [0:zeld4d
~h8@
‘AM1IN3T
dvIN
088 ‘¥3AVYIH XD2019 AODNYANNAIY [0:p¥]OANI M9 L)
_ . - [0:¢] [0:61]
0.8 ‘43avaH Y¥3LSYN [0:61]1MVLS Vivd INouanl avd LlolL]L
. " 'SINIOIMO3IHD
08 'H3AVIH ¥3HLIO YIONOT ‘ONIAAVd :SIdAL HIAVIH HIHLO d
0€8 ‘Y3AV3H HOOd3 [0:6¥IHOOd3 ol
028 ‘43AV3H "LdMD . i [0:¢]
/9071 TIVINS ANV WIS [o:g1INT lo:ezlin4 3dAL L0
018 ‘Y3avaH v.iva [0:GLINTT [0:62lVdH olo

6/8

0Y0} ‘SNOIAIYd STHOLVIN 8ZLN NI
ANV 82} + 8ZLN NITSNOIATHd
+ 135440 SNOIATYd == 138440

0€0l ‘82} + 8ZLN N3
SNOIATYd + 13S440 <
SNOIATYd == 138440

0201 ‘d4 INVS o

0101 ‘d3SSIHANOINN <

[o:LLlgzlIA NI | O | L

[o:1LlgziW N3 | [0:61]L3S440 | ©

[0:11]8ZLN N3N

[0:61]1138440

39Vd ANV ‘31a
‘MD019 ADONVYANNA3
[0:-22]ld4d

1100 ~

7/8

1102
START

1110
\

RECEIVE READ COMMAND WITH LBA

v

1114
\

CONVERT LBA TO MAPPING UNIT ADDRESS

v

1118
.\

LOOK UP MAPPING UNIT ADDRESS IN MAP TO
DETERMINE ASSOCIATED MAP ENTRY

v

1122
\

EXTRACT FLASH PAGE ADDRESS FROM
ASSOCIATED MAP ENTRY

v

1126
\

EXTRACT OFFSET AND LENGTH FROM MAP
ENTRY -> NUMBER OF READ UNITS, ETC.

1130
YES

PAGE IN FLASH PAGE

1134
\

READ NUMBER OF READ UNITS OF FLASH
PAGE FROM NVM

v

1138
\

PERFORMING ERROR CORRECTION
DECODING ON THE NUMBER OF READ UNITS

£

1142
\

EXTRACT DATA FROM CORRECTED DATA
PER OFFSET/LENGTH AND UNCOMPRESS

v

1146
\

RETURN UNCOMPRESSED DATA IN
RESPONSE TO READ COMMAND

FIG. 11

1190
END

1200 ~

8/8

< GIMP RESP |
L GIMP REQ |
[

GAFl j¢—»

TO/FROM NVM TO/FROM NVM +
GIMP RESP |
GIMP REQ

———— 1
) A FDTX RESP >
FDTX REQ

GAFI

FDTX
{
¢

FDRX RESP |
FDRX REQ |

FDTX RESP >
FDTX REQ

M FDRX RESP >

I FDRX REQ

FDRX <

FDTX

A
N
L
"4
n
" 4

LDPC-D RESP >

Lopc-D[*

NP

g "|-
FDRX

LDPC-D REQ |

UBUF

FIG. 12

RASP RESP N

RASP REQ

J]

COPY RESP

>

CPUCACHE
CPU

COPY REQ |

I CAM

CPUROM

? HDRX RESP >
:o: HDRX REQ

HDTX RESP
—> 'é HDTX REQ

Y Yy HIF CMD
HIF RESP
HIFSTAT REQ
HIFRX REQ

{

A

7

<4—»| SERDES

TO/FROM HOST

OPRAM

10

15

20

VARTABLE-SIZE FLASH TRANSLATION LAYER

This application relates to U.S. Provisional Application
No. 61/888,681, filed October 9, 2013, U.S. Provisional Application
No. 61/866,672, filed August 16, 2013, and U.S. Provisional
Application No. 61/755,169, filed January 22, 2013, each of which
are hereby incorporated by reference in their entirety.

This application relates to U.S. Serial No. 13/053,175,
filed March 21, 2011, which relates to U.S. Provisional Application
No. 61/316,373, filed March 22, 2010, each of which are hereby
incorporated by reference in their entirety.

This application also relates to International
Application PCT/US2012/058583, with an International Filing Date of
October 4, 2012, which claims the benefit of U.S. Provisional
Application No. 61/543,707, filed October 5, 2011, each of which

are incorporated by reference in their entirety.

Field of the Invention
The invention relates to computing host and input/output

device technology generally and, more particularly, to a method

10

15

20

25

and/or apparatus for implementing a variable-size flash

transition layer.

Background
Conventional solid state drives store a fixed, integer

number of host logical blocks in each page of nonvolatile
memory. Storage efficiency issues arise when either a user data
size or a usable size of each page of the nonvolatile memory is
not fixed. Architectures for variable size flash transition
layers in the solid state drives are hardware intense. Page
headers are used to identify where the user data is stored
among multiple read units within the pages of the solid state
drive, and extracting the data involves first reading and

parsing the page headers.

Summarx

According to an aspect of the present invention, there is
provided a method for using a variable-size flash transition
layer. Step (A) receives a read request to read data
corresponding to a logical block address from a non-volatile
memory. Step (B) reads a particular entry of a map to obtain
(i) a physical address of a particular page of the nonvolatile
memory, (ii) an offset in the particular page to compressed
data previously stored and (iii) a length of the compressed

data. The particular

10

15

20

entry is associated with the logical block address. Step (C)
converts the offset and the length to (i) an address of a

given read unit in the particular page and (ii) a number of

the read units to be read. Step (D) reads from the particular

page at most the number of the read units starting from the
given read unit. An offset and length granularity are finer

than one read unit.

Brief Description of the Figures

Embodiments of the invention will now be described, by
way of example only, referring to the following detailed
description and the appended claims and drawings in which:

FIG. 1 is an illustration of selected details of an
embodiment of mapping of a logical block address to fixed-
sized regions within a flash page;

FIG. 2 is an illustration of selected details of an
embodiment of mapping of a logical block address to a
variablesized region that optionally spans flash pages;

FIG. 3 is an illustration of an embodiment of a flash
page comprising an integer number of read units;

FIG. 4 is an illustration of selected details of an
embodiment of mapping of a logical block address to a

variablesized region spanning one or more read units;

10

15

20

FIG. 5 is an illustration of selected details of an
embodiment of a read unit comprising headers and data;

FIG. 6 is an illustration of selected details of an
embodiment of a flash page comprising headers and data;

FIG. 7 is an illustration of selected details of an
embodiment of a flash page comprising headers and data in
accordance with an embodiment of the invention;

FIG. 8 is an illustration of selected details of an
embodiment of various types of headers;

FIG. 9 is an illustration of selected details of an
embodiment of a map entry;

FIG. 10 is an illustration of selected details of an
embodiment of various compressed map entries;

FIG. 11 is a flow diagram of reading a non-volatile
memory; and

FIG. 12 is an illustration of selected details of an

embodiment of a solid-state drive controller.

Detailed Description of the Embodiments

Selected embodiments seek to provide a variable-size
flash transition layer that may (i) support a wide range of

data sizes (ii) create headers with a tiling process,

10

15

20

25

(iii) parse headers with an un-tiling process, (iv)
place all headers at a start of each page, (v) place all data
after the headers in each page, (vi) use offsets and headers
not aligned to read unit boundaries and/or (vii) be
implemented as one or more integrated circuits and/or

associated firmware.

Embodiments of the present invention may be implemented
in numerous ways, for example, as a process, an article of
manufacture, an apparatus, a system, a composition of matter,
and a computer readable medium such as a computer readable
storage medium (e.g., media in an optical and/or magnetic
mass storage device such as a disk, an integrated circuit
having nonvolatile storage such as flash storage), or a
computer network wherein program instructions are sent over
optical or electronic communication links. The detailed
description provides an exposition of one or more embodiments
of the invention that enable improvements in cost,
profitability, performance, efficiency, and utility of use in
the field identified above. The detailed description includes
an introduction to facilitate understanding of the remainder
of the detailed description. The introduction includes
example embodiments of one or more of systems, methods,
articles of manufacture, and computer readable media in

accordance with concepts described herein. As is

10

15

20

discussed in more detail, the invention encompasses all possible
modificationg and variations within the scope of the issued claims.

Flash translation layers (e.g., FTLs) map logical block
addresses (e.g., LBAs) in a logical block address space (such as
used by a host to perform input/output operations to an
input/output device) to physical locations in a nonvolatile memory
(e.g., NVM), such as a NAND flash nonvolatile memory. The mapping
operates on aligned units of one or more logicél blocks, termed a
mapping unit, such that each mapping unit has a corresponding
physical location where Adata of the mapping unit is stored
(including the possibility of a NULL physical location if the
mapping unit has never been written or is trimmed). For example,
with 4 kilobyte (e.g., KB) mapping units, eight contiguous (and
typically eight-sector aligned) Serial Advanced Technology
Attachment {e.g., SATA) 512 byte sectors are mapped as a single
unit. Generally, a translation table, such as a map, has an entry
per mapping unit to store a respective translation from the logical
block address associated Qith the wmapping unit to a physical
address in the nonvolatile memory and/or other control information.

Nonvolatile memories, such as NAND flash, provide a
writeable (or programmable) unit called a flash page. A flash page

comprises a number of user (non-error correction code} data bytes

10

15

20

and an amount of spare space for meta-data and error correction
coding (e.g., ECC), and is generally a smallest writable unit of
the nonvolatile memory. Typical flash page sizes are 8KB or 16KB
or 32KB of user data, whereas typical mapping unit sizes are 4KB or
8KB. (While the term “user” data is used with respect to flash
pages, some flash pages store “system” data such as map data and/or
checkpoint data. ﬁser data is intended to refer in general to
non;ECC portions of a flash page.) The flash pages are organized
into blocks, typically 128, 256, or 512 flash pages per block. A
block is the minimum-sized unit that can be erased, and a flash
page is erased before the page is able to be (re)written.
Referring to FIG. 1, an illustration of selected details
of an embodiment of mapping of a logical block address to fixed-
sized regions within a flash page is shown. Traditional flash
transition layers assume a number of user data bytes in a flash
page (e.g., Flash Page 100) is a power-of-two (and/or a multiple of
the sector size), and divide the flash page into an integer number
of mapping units (each shown as DATA in FIG. 1). For example, with
16KB of user data per flash page and 4KB mapping units, each flash
page containg four mapping units, and the flash transition layer
maps an address of each mapping unit (e.g., LBA[M:Ul 110) to a

respective flash page and one of the four mapping units within the

7

10

15

20

respective flash page. That is, each map entry contains respective
fields such as:

flash page address[n-1:0], mapping unit_within flash page [k-1:0]
where the flash_page;address refers to a unique flash page in the
nonvolatile memory, and the mapping_unit_within_ flash page refers

to one of 2* mapping-unit-size portions of each flash page (k being

fixed for the entire nonvolatile memory). Sub-page address 104 is

a combination of flash page_address and mapping unit within flash
page. For sector-based addressing, lower-order bits of the logical
block address (e.g., LBA[U-1:0] 111) specify a subnpbrtion, such as
a number of sectors (e.g., sector(s) within sub-page 113) within
the mapping unit.

Referring to FIG. 2, an illustration of selected details
of an embodiment of mapping of a logical block address to a
variable-sized region that optionally spans flash pages is shown.
Variable-gize flash translation layers (e.g., VFTLs) conceptually
map an address of a mapping unit (e.g., LBA[M:U] 110) to a
variable-sized region of one or more flash pages (because, for
example, data of the mapping unit is compressed prior to being
stored in flash, and/or because, in another example, the mapping
units are written by the host as variable-sized pieceg, such as for

an object store). However, providing a complete byte address 204

8

10

i5

20

and byte data length 206 in each map entry makes the map entries
large when compared with traditional flash transition layers,

Variable-size flash translation layers are used in some
solid-state disks (e.g., 8SDs). The solid-state disk systems have
generally been designed for higher-end client and/or enterprise
applications where random access performance constraints are a
driving factor in the overall system design. To configure a
variable-size flash translation layer for a low-end and/or mobile
environment, changes may be implemented to configure for sequential
performance as the driving factor. Embodiments of the invention
provide one or more ways of organizing user data and VFTL meta-data
to enable less expensive and more efficient low-end and mobile
nonvolatile memory systems where sequential read performance is a
dominant constraint.

Referring to FIG. 3, an illustration of an embodiment of
a flash page comprising an integer number of read units is shown.
In some embodiments, variable-size flash translation layers perform
the mapping from addresses of mapping units to physical addresses
by mapping to an Epage (e.g., ECC page) address, also termed a
“read unit” address. An FEpage (or read unit) is the minimum amount
of data that can be read from the nonvolatile memory and corrected

by the error correction code used to protect contents of the

10

15

20

nonvolatile memory. That is, each read unit containsg an amount of
data and corresponding ECC check bytes that protect that data. In
some embodiments, a flash page (such as flash page 100), or in
other embodiments, a group of flash pages treated as a unit for
purposes of writing, is divided into an integer number of read
units, as illustrated in FIG. 3.

In various embodiments, the number of read units per
flash page is allowed to vary. For example, some portions of the
nonvolatile memory use stronger error correction code than others
(using more bytes in the flash page for error correction coding},
and have fewer read units and/or less usable data per read unit.
In another example, the number of read units per flash page varies
as the nonvolatile memory is used, since the program/erase cycles
tend to weaken the nonvolatile memory, resulting in stronger error
correction codes as the nonvolatile memory is used (worn) ‘more.

According to various embodiments, the error correction
code used is one or more of: a Reed-Solomon {e.g., R8) code; a Bose
Chaudhuri Hocquenghem (e.g., BCH) code; a turbo code; a low-density
parity-check (e.g., LDPC) code; a polar céde; a non-binary code; a
redundant ar?ay of inexpensive/independent disks (e.g., RAID) code;
an erasure code; any other exror correction code; any combination

of the foregoing including compositions, concatenations, and

10

10

15

20

interleaving. Typical codeword sizes range from 512 bytes (plus
ECC bytes) to 2176 bytes (plus ECC bytes). Typical numbers of ECC
bytes range from only a few bytes to several hundred bytes.

Referring to EIG. 4, an illustration of selected details
of an embodiment of mapping a logical block address to a variable-~
sized region spanning one or more read units is shown. In some
embodiments, VFTL mapping maps the address of a variable-sized
(e.g., compressed) mapping unit (e.g., LBA[M:U] 110} to a number of
read units, represented in each entry of the map as a read unit
address 404 and a span (a number of read units) 406. The read
units referenced by one of the map entries are in one or more
(logically and/or physically) sequential flash pages, for example,
the number of read units optionally and/or selectively cross a
flash page boundary. An entry of the map alone is generally not
sufficient to locate the associated data {(as the entry only
references the read units, and not a location of the data within
the read units), and further information (such as headers) within
the referenced read units is used to preéisely locate the
associated data.

In some embodiments, data is written into flash pages in
a manner that is striped across multiple dies of the nonvolatile

memory. Striping write data across multiple dies advantageously

11

10

15

20

enables greater write bandwidth by only writing a flash page into
a given die once per stripe. A stripe of blocks across multiple
dies is termed a redundancy block, because in further embodiments
and/or usage scenarios, RAID-like redundancy is added on a
redundancy block basis using, for example, one redundant die. 1In
various embodiments, some blocks of the nonvolatile memory are
defective and are skipped on writing, so that the striping
occasionally has “holes” where one of the die is skipped (rather
than writing into flash pages of a bad block). In such
embodiments, “sequential” flash pages are sequential in a logical
order determined by an order in which the flash pages are written.

Referring to FIG. 5, an illustration of selected details
of an embodiment of a read unit comprising headers and data is
shown. In various embodiments, the mapping illustrated in FIG. 4
engenders a criterion to locate the variable-sized data within the
read units. As illustrated in FIG. 5, each read unit (e.g., read
units 500 and 510) has a set of headers 501, and the headers are
written, typically by hardware, as the variable-sized data is
“tiled” (e.g., densely packed without wasted space) into one or
more read units. The headers are interpreted, typically by other
hardware, to extract the variable-sized data when the nonvolatile

memory is read. Variable-sized data is located by a respective

12

10

15

20

offset and length in one of the headers having a matching logical
block address, and data optionally and/or selectively spans read
units (such as illustrated by the variable-sized data illustrated
by "DATA, START” and “DATA, CONTINUE”).

In various embodiments, the headers are also used as part
of recycling (e.g., garbage collection) - including the logical
block address {or equivalently, the mapping unit address) in the
headers both enables finding the variable-sized data within a read
unit, and provides a way to determine whén a particular one of the
read units is read, if the variable-sized data within is still
valid or has been overwritten (by loocking up the logical block
address in the map and determining if the map still references a
physical address of the particular read unit, or has been updated
to reference another one of the read units).

In some embodiments, dedicated hardware to éxtract data
from the read units based on the logical block addresses is
implemented to operate with high efficiency for random reads. The
dedicated hardware parses headers within one or more read units to
find the one of the headers with a given logical block address, and
then uses the respective length and offset to extract the
associated'variable—sized<data. However, a hardware-based solution

is costly {in silicon area and power). For a low-end and/or mobile

13

10

15

20

environment where sequential performance is more important than
random, changes are implemented to the wvariable-size flash
translation layer to reduce silicon area, save power, and achieve
high sequential throughput rates.

In some embodiments, a séquential—read-optimized
variable-size flash translation layer (e.g., SRO-VFTL) tiles data
into flash pages (or, in some embodiments, a group of flash pages
treated as a unit for purposes of writing) without any gaps for
headers within the data - all the headers are grouped in one
portion of the flash page. In further embodiments, the headefs are
not used dynamically to access data (as in some variable-size flash
translation layers), but are only used for recycling and recovery.
Instead, entries of the map comprise complete information used to
find variable-sized (e.g., compressed) data within the flash pages.
Separating headers and data into different portions of the flash
page leads to read units that compriée only headers, read units
that comprise a mixture of headers and data (but only one such read
unit per flash page), and read units that comprise only data.

While being configured for sequential read throughput at
low cost, a sequential-reaa—optimized-variable—sizé flash
translation layer is able to perform comparatively well on other

metrics such as random read input/output operations per second

14

10

15

20

(e.g., IOPs), random write input/output operations per second, and
sequential write throughput. However, removal of hardware assists
for functions such as VFTL-style data tiling with headers in each
read unit places a larger burden on a control processor.

Referring to FIG. 6, an illustration of a first
embodiment of an SRO-VFTL flash page ig shown. Referring to FIG.
7, an illustration of a second embodiment of an SRO-VFTL flash pagé
is shown in accordance with an embodiment of the invention. A
difference between the embodiments of FIG. 6 and FIG. 7 is whether
the continuation data from a previous flash page 640 is before or
after the headers. Various embodiments and arrangements of the
data within the flash page are contemplated.

According to various embodiments, a flash page comprises
one or more of:

- Headers, including a master header 610, optionally and/or
selectively a redundancy block header 620 (e.g., a header added in
the first page of each block in a redundancy block), and zero or’
more additional packed headers 630. Every flash page has at least

a count of the number of followings headers and a pointer to where

‘data (associated with the headers) start in the flash page. In

some embodiments, the headers may be byte-aligned, but are only 6

bytes (e.g., B} each. The headers may include, but are not limited

15

10

15

20

to, data headers, epoch headers and padding. Data headers utilize
a mapping unit address and a length. The offset is implied because
all data is consecutively packed.

- Optionally and/or selectively continuation data from a
previous flash page (a portion of variable-sized data of a mapping
unit) 640.

- Packed (e.g., optionally'and/or'selectively'compressed)-data
of one or more mapping units 650 to £ill the flash page, the last
of which optionally and/or selectively continues in a subsequent
flash page.

- Optional padding at the end of the flash page {included in
650). In various embodiments, the data is byte-packed (e.g., no
holes), though possibly padded at the end of the flash page if
highly compressed (e.g., too many headers). Padding is, for
example, used if: (i) the last variable-sized piece of data added
to the flash page left fewer unused bytes than a size of a header
{so a new header could not be added to begin another variable-sized
piece of data) and (ii) optionally and/or seiectively, a agpecified
number of headers per flash page is exceeded (go the number of
mapping units stored in the flash pages is limited by the specified

number of headersg and not by a size of data of the mapping units) .

16

10

15

20

In some embodiments, recovery and/or recycling (e.qg.,
garbage collection) with a sequential-read-optimized-variable-size
flash translation layer is advantageously enabled to read and/or
error correct and/or examine oﬁly a header_portion of each of the
flash pages, and not every read unit as in a non-sequential-read-
optimized-variable-size flash translation layer. If recycling
determines that data of a flash page may be rewritten, that data
may also be read and may also be error corrected. In some
embodiments, an entire flash pageAis read for recycling, but only
the header portion is error corrected until a determination is made
that some data in the flash page should be recycled.

In various embodiments, a number of headers per flash
page is limited to bound a number of read units per flash page that
may be read to ensure all the headers have been read from the
nonvolatile memory. In the embodiment of FIG. 6, only a number of
read units. sufficient to contain the maximum number of headers are
read. In the embodiment of PIG. 7, an additional number of read
units are read to account for a largést size of data completing
from a previous flash page (e.g., continuation data 640). The
embodiment of FIG. 7, however, enables a number of reads units to
access the completion of data from a previous flash page to be

determined f£rom the associated map entry, as the number of bytes in

17

10

15

20

the completion of data is determinable based on the regpective
offset and length of the associated map entry, and the number of
bytes of user (non-error correction code) data in the previous
flash page. Further, the only headers prior to the completion of
data are the optional redundancy block header (omly presenﬁ in
known flash pages, such as the first page in each block) and the
master header (always present in each flash page). In the
embodiment of FIG. 6, to read the completion of data‘without having
to access nonvolatile memory twice, the maximum number of headers
are assumed to be.present (or the ‘entire flash page is read).

In some ' embodiments, the sequential-read-optimized-
variable-size flash translation layer uses a single-level wmap
having a plurality of map entries. In other embodiments, the
sequential—readfoptimized—variable—size flash translation layer
uses a multi-level map, such as a two-level map having a first-
level map (e.g., FIM) pointing to second-level map {e.g., SLM)
pages, where each of the second-level map pages cémprises a
plurality of leaf-level wmap entries. In further embodiments, the
multi-level map has more than two levels, such as three levels. 1In
some embodiments and/or usage scenarios, use of a multi-Jlevel map
enables only a relevant (e.g., in use) portion of the map to be

stored (e.g., cached} in local (e.g., on-chip) memory, reducing a

18

i0

15

20

cost of maintaining the map. For example, if typical usage
patterns have 1 gigabyte (e.g., GB} of the logical block address
space active at any point in time, then only a portion of the map
sufficient to access the active 1GB portion of the logical block
address space is locally stored for fast access versus being stored
in the nonvolatile memory. References outside of the active
portion of the logical block address space fetch requested portions
of one or more levels of the multi-level map from the nonvolatile
memory, ‘optionally' and/or selectively replacing other locally-
stored portions of the map.

Each of the leaf-level map entries is associated with
(corresponds to) an address of one of a plurality of mapping units.
A logical block address is convertéd to a mapping unit address,
such as by removing zerc or more least-significant bits (e.g.,
LsSBs) of the logical block address and/or adding a constant to the
logical block address for alignment purposes, and the mapping unit
address is looked up in the map to determine a corresponding entry
of the map.

Referring to FIG. 8, an illustration of details of an
embodiment of various types of headers is shown. In the example of
FIG. 8, the headers have been formatted to fit in six bytes each.

According to various embodiments, the various types of headers are

19

10

15

20

one or more of: all of a same size; optionally and/or selectively
of different sizes; each comprises a respective field specifying a
size of the header; vary in size in different flash pages; and any
combination of the foregoing.
Accoréing to various embodiments, the headers in the
flash page comprise one or more of:
- Data headers (810) indicating information associated with a
variable—siéed data portion. In some embodiments, data associated
with a data header starts in a same flash page as the data header

appears. In further embodiments and/or usage scenarios, if a flash

~ page only has remaining -space for a data header, all of the

associated data starts in a subsequent flash page.

- Map headers, such as second-level map {e.g., SLM)} headers
(820). The second-level map headers comprise a first-level map
index (e.g., FLMI) to indicate (such as for second-level map
recycliﬁg and/or recovery) which second-level map page is being
stored.

Log/Checkpoint headers (820). Log/Checkpoint headers indicate
data used for recycling, recovery, error handling, debugging, or

other special conditions.

20

10

15

20

- Epoch headers (830} are used as part of recovery to
associate data with corresponding map/checkpoint information.
Typically, there is at least one Epoch header per flash page.

- Master headers (870) are used once per flash page to provide
information as to a number of headers in the flash page and where
non-header data starts within the flash page. Various techniques
determine a start of non-header data, such as illustrated in the
embodiments of FIG. 6 and FIG. 7.

- Redundancy block headers (880) are used in certain flash
pages, such as the first flash page in each block in a redundancy
block.

- Other types of headers (840), such as padding headers,
checkpoint headers supporting larger lengths,vetc.

In some embodiments, some headers comprise a TYPE field
to provide multiple subtypes of the header. In various
embodiments, some headers comprise a LEN (length) field containing
a length of data associated with the header. 1In other embodiments,
rather than a LEN field, some headers comprise an OFFSET (offset)
field (not shown) containing an offset (within the flash page) to
the end of data associated with the header. (If the last one of
the variable-sized pieces of data spans a flash page, the OFFSET is

an offset within a subsequent flash page or a number of bytes

21

10

15

20

within the subsequent flash page.) Only one of a LEN field or an
OFFSET field is generally implemented since with the variable-sized
pieces of data packed with no wasted spacé, the starting location
and ending location of each of the variable-sized pieces of data in
a flash page is implied by the starting location of the first
variable-sized pieces of data in the flash page (e.g., immediately
after the headers as in FIG. 7), and the list of LEN or OFFSET
fields.

Referring to FIG. 9, an illustration of selected details
of an embodiment of a map entry 900 is shown. According to various

embodiments, the entries of the map comprise one or more of:

3

A physical flash page address,

An offset within the flash page to a wvariable-gized data

item,

A length of the variable-sized data item, and

Other control information.

In some embodiments, the length is encoded, for example
by being offset such that a wvalue of =zero corresponds to a
specified minimum length. In further embodiments, data that is
compressed to less than the specified minimum length is padded to

ke at least the specified minimum length in size.

22

10

15

20

In various embodiments, the SRO-VFTL map entries are
larger than VFTL map entries since the SRO-VFTL map entries store
a full offset and byte length of corresponding data. Accordingly,
reducing a size of the map entries when stored in the nonvolatile
memory may be advantages. In typical wuse, data 1is often
sequentially read and written, at least with some granularity
and/or an average number of sequential mapping units greater than
one, and a map entry compression format taking advantage of the
sequential nature of writing is relatively inexpensive to implement
and produces a high map compression rate. Compression of map
entries is further aided by sequentially-written data going into
same flash pages, until a flash page boundary is crossed.

Referring to FIG. 10, an illustration of selected details
of an embodiment of various compressed map entries is shown. The
various map entries include uncompressed (1010), having a same
flash page address as a previous map entry (1020), having a same
tlash page address as the previous map entry and starting at an
offset where the previous data ended (1030), and having a sgame
flash page address as the previous map entry, starting at an offset
where the previous data ended, and having a same length as the

previous map entry (1040).

23

10

i5

20

In some embodiments having a multi-level map, a cache is
maintained of lower-level (such as leaf-level) map pages. The
cached map pages are in an ﬁncompressed form, providing quick
access by the processor. When map pages are moved (such as from
nonvolatile memory or dynamic random access memory (e.g., DRAM))
into the cache, the map pages are uncompressed. When the map pages
are flushed from the cache (such as due to being modified), the map
bages are compressed for storage {such as in the nonvolatile
memery) . According to various embodiments in which DRAM is used to
reduce latency by storing some or all of the map pages in the
dynamic random access memory, the map pages in the dynamic random
access memoxry are stored in one or more of: compressed form;
uncompressed form; a'selectively compressed or uncompressed form;
and with an indirection table used to access the compressed
versions of the map pages in the dynamic random access memory

In some embodiments, host write data of a host write
command is optionally and/or selectively compressed as the host
write data arrives, and stored in a first-in-first-out (e.g.,
FIFO)-like fashion in a local (such as an on-chip) memory. For
example, in some embodiments the host write data is stored in a
unified buffer (e.g., UBUF in FIG. 12), along with firmware data

structures, flash statistics, portions of the map such as a cache

24

10

15

20

holding one or more pages of the map, read data from the
nonvolatile memory including recycling read data, headers of data
to be written to the nonvolatile memory, firmware code, and other
uses. In other embodiments, one or more dedicated memories are
used for various local storage criteria of the solid-state drive.

With each mapping unit of data that arrives from the
host, a control processor of the solid-state drive (e.g., central
processing unit, CPU, in FIG. 12) is notified of one or more of: a
respective mapping unit address, a respective local memory address,
and/or a fespective length of each mapping-unit of variable-sized
{e.g., compressed) host data. The control processor is enabled to
determine an order of writing of flash pages, and a total number of
non-ECC bytes available in each of the flash pages. According to
the total number of non-ECC bytes available in a given one of the
flash pages, the control processor is enabled to determine an
amount of headefs and an amount of data blaced in the given flash
page. For example, the control processor accumulates headers for
the given flash page (and tracks a number of bytes of headers used
gso far), and adds variable-sized data of maéping units and headers
to the given flash page one at a time until the given flash page is
full. WwWhen tﬁe given flash page is full, a last portion of data of

a final one of the mapping units added to the given flasch page

25

10

15

20

possibly did not fit in the given flash rage, and is used as a data
completion portion of a subsequent one of the flash pages, reducing
the total number of non-ECC bytes available in the subsequent flash
page for new headers and data.

At a particular point in time, one or more flash pages
are enabled to be filled with host write data, and one or more
flash pages are enabled to be filled with recycleﬁ data. For
example, at least two bands (e.g., FIFO-like series of redundancy
blocks) may be filled, one band with “hot” data (e.g., fresh from
the host) and the other band with “cold” data (e.g., recycled) .
Continuing the example, in various embodiments, the hosﬁ write data
is enabled to be directed into either the hot or the cold band, and
recycled data is enabled to be directed into either the hot or the
cold band.

The control processor is enabled to convert the series of
regpective mapping unit addresses, local memory addresses and
lengths into one or more of: a series of headers to be written to
a flash page as a header portion of the flash page; a first
starting address and a first léngth of a sequential portion of the
local memory to be written to the flash page as a user data portion
of the flash page, the user data portion of the flash page

comprising at least a portion of data of at least one mapping unit;

26

10

15

20

a second starting address and a second length of a sequential
portion of the local memory to be written to a subsequent flash
page as a user data completion portion of the subseguent flash
page, the user data completion portion comprising a portion of data
of one mapping unit or being empty; a number of zero or more
padding bytes to be written to the flash page, where the padding
bytes are, for example, used if the user data cbmpletion.portion is
empty and the flash page is not full. Advantageously, the control
processor is enabled to simply convert the series of respective
mapping unit addresses, local memory addresses and lengths into the
series of headers by reformatting, and to generate a small number
of direct memory access (e.g., DMA) commgnds to transfer the
portions comprising the flash page (the series of headers, a
completion portion of a previous flash page, the user data portion,
and.any padding bytes) to the nonvolatile memory.

In various embodiments, compression of the host write
data is optionally and/or selectively enabled. In a first example,
information of the host write command selectively enables
compression. In a secon& example, compression is selectively
enabled as a function of a logical block address of the host write
command. In a third example, compression is selectively disabled

if compression of the host write data did not reduce a size of the

27

10

15

20

host write data. If compression is not enabled, the host write
data is stored uncompressed. Accoxrding to various embodiments,
entries of the map indicate if the corresponding data is compressed
or uncompressed by one or more of: a respective bit in each entry
of the map; and/oxr a value of the length stored in each map entry.
For example, if mapping units are 4KB, a length of 4KB in a map
entry indicates thatv associated data of the map entry is
uncompressed, whereas a length less than 4KB indicates that the
associated data is compressed.

In some embodiments, data is recycled by selecting a
redundancy block to be recycled, reading flash pages of the
redundancy block in an order in which the flash pages were written,
processing solely read units that contain headers of the flash
pages, looking up a logical' block address (or equivalently a
mapping unit address) of each header that is a data header in the
map to gee if the data is still wvalid, and if the data is still
valid constructing appropriate new headers and DMA commands to
assemble the data to be recycled as part of a new flash page. The
new flash page is then written to the nonvolatile memory.

Referring to FIG. 11, an illustration of a flow diagram
1100 of reading a nonvolatile memory is shown. In contrast with

the non-sequential-read-optimized variable-size flash translation

28

10

15

20

layer, headers within the read units (or within the flash pages)
are not used to extract read data. Both the non-sequential-read-
optimized variable-size flash translation layer and the sequential-
read-optimized-variable-size flash translation layer advantageocusly
are enabled to access variable—sized data, and to only access the
read units that contain the desired read data.

In some embodiments, in response to receiving a read
command from the host c0mprising a logical block address (step
1110), tbe control procegssor and/or various hardware units are
enabled to perform one or more of:

- converting the logical block address to a mapping unit
address (step 1114);

- loocking up the mapping unit address in a map comprising a
plurality of map entries to determine an associated one of the map
entries (step 1118);

- extracting a respective flash page address of the associated
map entry (step 1122) and determining if the associated flash page
is in a flash page cache, or is read from the nonvolatile memory
(step 1130) ;

- extracting a respective offset and length from the
associated map entry, and according to the respective offset and

length, determining (step 1126):

29

10

15

20

- a. number of a plurality of read units to access in the
associated flash page,

-b. a read ﬁnit of fset and total read unit length within
the flash page of the accessed read units, and

- ¢. a DMA command to extract and process {such as by
uncompressing) data associated with the mapping unit address from
decoded versions of the accessed read units;

- in response to determining that the associated flash page is
not in the flash page cache, reading the accessed read units of the
associated flash page from nonvolatile memory (step 1134), and
performing error correction decoding on the accesgsed read units
(step 1138) to produce corrected data;

- extracting the associated data within the corrected data
according to the regpective offset and length of the associated map
entry, and uncompressing the extracted data (step 1142); and

- providing the uncompressed data to the host in response to
the read command (step 1146).

Typically for random read, the number of read units to
access in the associated flash page to read the associated data is
less than all of the read units in the associated flash page.
Further, as the associated data is variable-sized, a number of read

units to access in the associated flash page for a first xread

30

10

15

20

command referencing a first logical block address is different fxrom
a number of read units to access in the associated flash page for
a second read command referencing a second logical block address,
the second logical block address different from the first logical
block address. In some embodimeﬁts, solely the number of read
unite to access in the associated flash page are read from the
associated flash page. That is, only the ones of the read units
that contain a portion of the associated data are read in order to
access the associated data.

In some embodiments and/or usage scemarios, a particular
one of the read units comprises at least a portion of data
associated with a first logical block address, and at least a
portion of data associated with a second different logical block
address.

Referring to FIG. 12, an illustration selected details of
an embodiment of a solid-state drive controller 1200 is shown. In
some embodiments, the solid-state drive controller 1200 is enabled
to implement a sequential-read-optimized-variable-size <£flash
translation layer. In various embodiments, the controller 1200 may
be implemented as one or more integrated circuits.

As illustrated in FIG. 12, a host interface (e.g., HIF),

via an input/ocutput receiver such as a SerDes (e.g., serialization-

31

10

15

20

deserialization), =receivegs commands, such as read and write
commands, receives write data, and sends read data. Commands are
gsent to a CPU via a shared memory (e.g., OpRAM). The CPU
interprets the commands and controls other portions of the S8SD
controlier wvia the shared memory. For example, the CPU
communicates DMA commands to and receives responses from various
datapath transmit and receive units, such as the host receive
datapath {(e.g., HDRx) or the flash transmit datapath (e.g., FDTx),
via the shared memory.

Write data from the host interface ig transferred via a
host receive datapath (e.g., HDRx) to a unified buffer (e.g.,
UBUF). In various embodiments, the host receive datapath includes
logic to optionally and/or selectively compress and/or encrypt the
host write data. The optionally and/or selectively compressed
and/or encrypted host write data is then sent from the unified
buffer to the nonvolatile memory via a flash transmit datapath
{e.g., FDIx) and a generic flash interface (e€.g., GAFI). In
various embodiments, the flash transmit datapath includes logic to
perform encryption and/or scrambling and/or error correction
encoding. In responsge to host read commands, data is read from the
nonvolatile memory via the generic flash interface (e.g., GAFI) and

sent to the unified buffer via a flash receive datapath (e.g.,

32

10

15

20

FDRx) . In various embodiments, the flash receive datapath
incorporates error correction decoding and/or decryption and/or de-
scrambling. In other embodiments, a separate error correction
decoder (e.g., LDPC-D to impletr;ent LDPC‘codes) is enabled to
operate on “raw” data stored in the unified buffer by the flash
receive daﬁapath. Decoded read data in the unified buffer is then
sent to the host Interface wvia a host transmit datapath (e.g.,
HDTx). In various embodiments, the host transmit datapath includes
logic to optionally and/or selectively decrypt and/or decompress
decoded read data. In some embodiments, a RAID-like and soft-
decision processing unit (e.g., RASP) is enabled to generate RAID-
like redundancy to additionally protect host write data and/or
system data stored in the nonvolatile memory, and/or to perform
soft-decision processing operations for use with the LDPC-D.
According to various embodiments, any operations of the
control processor are performed by any of one or more CPUs, by one
or more hardware units, and/or by any combination of the foregoing.
For example, for writing, conversion of the sgseries of respective
mapping unit addresses, local memory addresses and lengths into the
series of headers is aided by hardware supplying the series of

respective mapping unit addresses, local memory addresses and

33

10

15

20

lengths in a format that is same ags and/or similar to a format of
the series of headers.

According to various embodiments, a solid-state drive
controller coupled to a nonvolatile memory is enabled to use one or
more of: a traditiomnal flash transition layer; a variable-sized
flash transition layer; a sequential read optimized variable-sized
flash transition layer; any combination of the foregoing in
different physical portions of the ‘nonvolatile memory; any
combination of the foregoing in different logical portions of a
logical address space éf the SSD controller; raw physical access to
the nonvolatile memory; and any combination of the foregoing under
control of a host coupled to the SSD controller.

According to various embodiments, host write data is
optionally encrypted prior teo being written to the nonvolatile
memory, and decrypted after being read from the nonvolatile memory.
In further embodiments, encryption happens subsequent to
compression of the host write data, and decryption happens prior to
decompression of data being read to return to the host.

While example embodiments have used solid-state drives,
the techniques described herein are generally applicable to other
input/output devices and/or data storage devices such as hard disk

drives.

34

10

15

20

The following is a c¢ollection of example embodiments,
including at least some explicitly enumerated example combinations
(e.g., ECs), providing additional description of a wvariety of
embodiment types in accordance with the concepts described herein;
the examples are not meant to be mutﬁally exclusive, exhaustive, or
restrictive; and the invention is not limited to thesge example
embodiments but rather encompasses all possible modifications and
variations within the scope of the issued c¢laims and their
equivalents.

A method ECl1l comprising: receiving, at an input/output
device and via a host to input/output device interface, a read
requegt to read data corregponding to a logical block address of
the read request from nonvolatile memory of the input/output
device; and ip response to receiving the read request, reading a
particular one of a plurality of entries of a map, the particular
map entry associated with the logical block address of the read
request, to obtain a physical address of a particular one of a
plurality of pages of the nonvolatile memory, an offset in the
particular page to compressed data previously stored in response to
writing data corresponding to the logical block address, and a
length in bytes of the compressed data, converting the offset in

the particular page to the compressed data and the length in bytes

35

1¢C

15

20

of the compressed data to an address of a first one of a plurality
of read units in the particular page and a number of the read units
to be read from the particular page, reading from the particular
page solely the number of read units, performing error correction
decoding on eaéh of the read units read from the particular page to
obtain corrected data, extracting the compressed data from the
corrected data according to the offset in the particular page to
the compressed data and the length in bytes of the compressed data,
decompressing the compressed data to produce return data, and
returning the return data to ﬁhe host. '

A method EC2 comprising: receiving, at an input/output
device and via a host to input/output device interface, a read
request to read data corresponding to a logical block address of
the read request from nonvolatile memory of the input/output
device; and in response to receiving the read request, reading a
particular one of a plurality of entries of a map, the particular
map entry associated with the logical block address of the read
request, to obtain a physical address of a particular one of a
plurality of pages of the nonvolatile memory, an offset in the
particular page to compresged data previously stored in response to
writing data corresponding to the logical block address, and a

length in bytes of the compressed data, converting the offset in

36

10

20

the particular page to the compressed data and the length in bytes
of the compressed data to an address of a first one of a plurality
of read units in the particular page and a number of the read units
to be read from the particular page, reading from the particular
page at least the number of read units and less than all of the
read units in the particular page, performing error correction
decoding on each of the read units read from the particular page to
obtain corrected data, extracting the compressed data from the
corrected data according to the offset in the particular page to
the compressed data and the length in bytes of the compressed data,
decompressing the compressed data to produce return data, and
returning the return data to the host.

A method EC3 according to ECl or EC2, wherein the number
of the read units to be read is less than all of the read units in
the particular page.

A method EC4 according to either EC1 or EC2, further
comprising: determining according to the offset in the particular
page to the compressed data and the length in bytes of the
compressed data combined with an amount of user data in the
particular page that at least a portion of the compressed data is
in one or more read units of a subsequent one of the pages of the

nonvolatile memory.

37

10

15

20

A method EC5 according to EC4, wherein, in response to
the update of the global redundant data on the second processing
node, the respective local redundancy computation unit of the
second procesgsing node is enabled to compute second redundant data
according to data of the update of the global redundant data for
storing on at least some of the respective disks of the second
processing node.

A method EC6 accoxrding to ECl or EC2, wherein a first one
of the pages of the nonvolatile memory comprises a first number of
read units, a second cne of the pages of the nonvolatile memory
comprises a second number of read units, and the first number of
read units is different from the second number 6f read units.

A method EC7 accoxding to ECL or EC2, wherein a first one
of the pages of the nonvolatile memory comprises a first amount of
user data, a second one of the pages of the nonvolatile memory
comprises a second amount of user data, and the first number of
user data is different from the second amount of user data.

A method EC8 according to ECl or EC2, further comprising:
receiving, at the input/output device and wvia the host to
input/output device interface, a write request to write the data
corresponding to the logical block address; in response to

receiving the write request, compressing the data corresponding to

38

10

15

20

the logical block address to form compressed-write data that is
smaller than the data corresponding to the logical block address,
writing in the particular page at least a first portion of the
compressed write data, and storing in the particular entry, the
physical address of the particular page, the offset in the
particular page to the compressed write data, and the length in
bytes of the compressed write data.

A method EC9 accoxding to EC8, further comprising: in
response to receiving the>request to write data, writing in the
particular pége.a header, the header comprising at least a portion
of the logical block address of the request and a length in bytes
of the compressed data.

A method EC10 according to EC1 or EC2, wherein the
logical block address is a first one of a plurality of logical
block addresses, and at least one of the read units of the number
of read units comprises at least some data corresponding to a
different one of the logical block addresses.

A method EC11l according to ECl or EC2, wherein at least
one of the read units of the number of read units comprises one or
more headers in addition to a portion of the compressed data.

A method EC12 comprising: receiving, at an input/output

device and via a host to input/output device interface, a read

39

10

15

20

request to read data corresponding to a logical block address of
the read request from nonvolatile memory of the input/output
device; and in response to receiving the read request, reading a
particular one of a plurality of entries éf a map, the particular
map entry associated with the logical block address of the read
request, to obtain a physical address of a particular one of a
plurality of pages of the nonvolatile memory, an offset in the
particular page to variable-sized data previously stored in
response to writing data corresponding to the 1logical block
address, and a length 'in bytes of the wvariable-sized data,
converting the offset in the particﬁlar page to the variable-sized
data and the length in bytes of the variable-sized data to an
address of a first ome of a plurality of read units in the
particular page and a number of the read units to be read from the
particular page, reading from the particular page solely the number
of read units, performing error correction decoding on each of the
read units read from the particular page to obtain corrected data,
extracting the wvariable-sized data from the corrected data
according to the offset in the particular page to the variable-
sized data and the length in bytes of the variable-sized data, and
returning the extracted data to the host.

A method EC13 according to EC1 or EC22, further

40

10

i5

20

comprising: receiving, at the input/output device and via the host
to input/outpuﬁ device interface, a write request to write the
variable-sized data corresponding to the logical block address and
a size of the variable-sized data; in response to receiving the
write request, writing in the particular page at least a first
portion of the variable-sized data, and storing in the particular
entry, the physical address of the particular page, the offset in
the particular page to the variable-sized data, and the length in
bytes of the variable-sized data according to the size of the
variable-sized data.

In some embodiments, various combinations of all or
portions of operations performed by a multi-node storage device or
portion(s) thereof, for instance a hard disk drive or a solid-state
disk controller of an input/output device enabled for
interoperation with a processor (such as a CPU), an input/output
controller (such as a RAID-on-chip die), and portions of a
processor, microprocessor, system-on-a-chip, application-specific-
integrated-circuit, hardware accelerator, or other circuitry
providing all or portions of the aforementioned operations, are
specified by a specification compatible with processing by a
bomputer system. The specification is in accordance with various

descriptions, such as hardware description languages, circuit

41

10

15

20

descriptiong, netlist descriptions, mask descriptions, or layout
descriptions. Example descriptions include, but are not limited
to: Verilog, VHDL, SPICE, SPICE variants such as PSpice, IRIS,
LEF, DEF, GDS-II, OASIS, or other descriptions. In wvarious
embodiments, the ©processing includes any combination of
interpretation, compilation, simulation, and synthesis to produce,
to verify, or to specify logic and/or circuitry suitable for
inclusion on one or more integrated circuits. Each integrated
circuit, according to various embodiments, is desiénable and/or
manufacturable according to a wvariety of techniques. The
techniques include a programmable technique (such as a field or
mask programmable gate array integrated circuit), a semi-custom
technigue (such as a wholly or partially cell-based integrated
circuit), and a full-custom technique (such as an integrated
circuit that is substantially specialized), any combination
thereof, or any other technique compatible with design and/or
manufacturing of integrated circuits.

In some embodiments, wvarious combinations of all or
portions of operations as described by a computer readable medium
having a set of instructions stored therein, are performed by
execution and/or intefpretation. cof one or more program

instructions, by interpretation and/or compiling of one or more

42

10

15

20

source and/or script language statements, or by execution of binary
instructions produced by compiling, translating, and/or
interpreting information expressed in programming and/or scripting
language statements. The statements are compatible with any
standard programming or scripting language (such as C, C++,
Fortran, Pascal, Ada, Java, VBscript, and Shell). One or more of
the program instructions, the language statements, or the binary
instructions, are optionally stored on one or more computer
readable storage medium elements. 1In varioug embodiments, sonme,
all, or various portions of the program instructions are realized
as one or more functiong, routines, subroutines, in-line routines,
procedures, macros, oOr po;tions thereof .

- Certain choices have been made in the description merely
for convenience in preparing the text and drawings, and unless
there is an indication to the contrary, the choiges should not be
construed per se as conveying adaitional information regarding
structure or operation of the embodiments described. Examples of
the choices include, but are not limited to: the particular
organization or assignment of the designations used for the figure
numbering and the particular organization or assignment of the
element identifiers (e.g., the callouts or numerical designators)

used to identify and reference the features and elements of the

43

10

15

20

embodiments.

The words “includes” or “inc;luding" are specifically
intended to be construed as abstractions describing logical sets of
open-ended scope and are not meant to convey physical containment
unléss explicitly followed by the word “within”.

Although the foregoing embodiments have been described in
some detail for purposes of clarity of description and
understanding, the invention is not limited to the details
provided, There are many embodiments of the invention. The
disclosed embodiments are exemplary and not restrictive.

Many variations in construction, arrangement, and use are
peossible consistent with the description, and are within the scope
of the claims of the issued patent. For example, interconnect and
function-unit bit-widths, clock speeds, and the type of technology
used are wvariable accoxrding to wvarious embodiments in each
component block. The names given to interconnect and legic are
merely exemplary, and should not be construed as limiting tile
concepts described. The order and arrangement of flowchart and
flow diagram process, action, and function elements are variable
according to various embodiments. Also, unless specifically stated
to the contrary, value ranges specified, maximum and minimum values

used, or other particular specifications (such as input/output

44

10

15

20

device technology types, and the number of entries or stages in

registers and buffers), are merely those of the described

- embodiments, are expected to track improvements and changes in

implementation technology, and should not be construed as
limitations.

Functionally equivalent techniques known in the art are
employable instead of those described to implement various
components, sub-systems, operations, functions, routines, sub-

routines, in-line routines, procedures, macros, or portions

thereof. Many functional aspects of embodiments are realizable
selectively in either hardware (e.g., generally dedicated
circuitry) or software (e.g., via some manner of programmed

controller or processor), as a function of embodiment dependent
design constraints and technology trends of faster processing
(facilitating migration of functions previously in hardware into
software) and higher integration density (facilitating migration of
functions previously in sgoftware into hardware). Specific
variations in various embodiments include, but are not limited to:
differences in partitioning; different form factors and
configurations; use of different operating systems and other system
software; use of different interface standards, network protocols,

or communication links; use of different coding types; and other

45

10

15

20

variations to be expected when implementing the concepts described
herein in accordance with the unique engineering and business
constraints of a particular application.

The embodiments have been described with detail and
environmental context well beyond a minimal implementation of many
aspects of the embodiments described. Those of ordinary skiil in
the art will xrecognize that some embodiments omit disclosed
componentgs or features without altering the basic cooperation among
the remaining elements. Much of the details disclosed are not
utilized to implement various aspects of the embodiments described.
To the extent that the remaining elements are distinguishable from
the prior art, components and features that are omitted are not
limiting on the concepts described herein.

All such variations in design are insubstantial changes
over the teachings conveyed by the described embodiments. The
embodiments described herein have broad applicability to other
computing and networking applications, and are not limited to the
particular application or industry of the described embodiments.
The invention is thus to be construed as including all possible
modifiéations and variations encompassed within the scc;pe of the
claims of the issued patent.

The functions performed by the diagrams of FIGS. 1-12 may

46

10

15

20

25

be implemented using one or more of a conventional general
purpose processor, digital computer, microprocessor,
microcontroller, RISC (reduced instruction set computer)
processor, CISC (complex instruction set computer) processor,
SIMD (single instruction multiple data) processor, signal
processor, central processing unit (CPU), arithmetic logic unit
(ALU), video digital signal processor (VDSP) and/or similar
computational machines, programmed according to the teachings
of the specification- as will be apparent to those skilled in
the relevant art(s). Appropriate software, firmware, coding,
routines, instructions, opcodes, microcode, and/or program
modules may readily be prepared by skilled programmers based on
the teachings of the disclosure, as will also be apparent to
those skilled in the relevant art(s) The software is generally
executed from a medium or several media by one or more of the

processors of the machine implementation.

Embodiments of the present invention may also be
implemented by the preparation
of ASICs (application specific integrated circuits), Platform
ASICs, FPGAs (field programmable gate arrays), PLDs
(programmable logic devices), CPLDs (complex programmable logic
devices), sea-of-gates, RFICs (radio frequency integrated
circuits), ASSPs (application specific standard products), one
or more monolithic integrated circuits, one or more chips or

die arranged as flip-chip

47

10

15

20

25

modules and/or multi-chip modules or by interconnecting an
appropriate network of conventional component circuits, as is
described herein, modifications of which will be readily

apparent to those skilled in the art(s).

Embodiments of the present invention thus may also
include a computer product which may be a storage medium or
media and/or a transmission medium or media including
instructions which may be used to program a machine to
perform one or more processes or methods in accordance with
the invention. Execution of instructions contained in the
computer product by the machine, along with operations of
surrounding circuitry, may transform input data into one or
more files on the storage medium and/or one or more output
signals representative of a physical object or substance,
such as an audio and/or visual depiction. The storage medium
may include, but is not limited to, any type of disk
including floppy disk, hard drive, magnetic disk, optical
disk, CD-ROM, DVD and magneto-optical disks and circuits such
as ROMs (read-only memories), RAMs (random access memories),
EPROMs (erasable programmable ROMs) , EEPROMs (electrically
erasable programmable ROMs), UVPROM (ultra-violet erasable
programmable ROMs), Flash memory, magnetic cards, optical
cards, and/or any type of media suitable for storing

electronic instructions.

48

10

15

20

25

The elements of embodiments of the present invention may
form part or all of one or more devices, units, components,
systems, machines and/ or apparatuses. The devices may
include, but are not limited to, servers, workstations,
storage array controllers, storage systems, personal
computers, laptop computers, notebook computers, palm
computers, personal digital assistants, portable electronic
devices, battery powered devices, set-top boxes, encoders,
decoders, transcoders, compressors, decompressors, pre-
processors, post-processors, transmitters, receivers,
transceivers, cipher circuits, cellular telephones, digital
cameras, positioning and/or navigation systems, medical
equipment, heads-up displays, wireless devices, audio
recording, audio storage and/or audio playback devices, video
recording, video storage and/or video playback devices, game
platforms, peripherals and/or multi-chip modules. Those
skilled in the relevant art (s) would understand that the
elements of the invention may be implemented in other types

of devices to meet the criteria of a particular application.

The terms "may" and "generally" when used herein in
conjunction with "is(are)" and verbs are meant to communicate
the intention that the description is exemplary and believed
to be broad enough to encompass both the specific examples
presented in the disclosure as well as alternative examples

that could be

49

10

15

derived based on the disclosure. The terms "may" and
“generally” as used herein should not be construed to
necessarily imply the desirability or possibility of omitting

a corresponding element.

While the invention has been particularly shown and
described with reference to embodiments thereof, it will be
understood by those skilled in the art that various changes
in form and details may be made without departing from the

scope of the invention as defined by the claims.

The disclosures in United States patent application no.
14/055336 and 61/866,672, from which this application claims
priority, and in the abstract accompanying this application

are incorporated herein by reference.

50

10

15

20

25

30

CLAIMS

1. A method for using a variable-size flash transition
layer, comprising the steps of:

(A) receiving, at an apparatus from a host, a read
request to read particular data corresponding to a logical
block address from a nonvolatile memory of said apparatus;

(B) reading a particular one of a plurality of entries
in a map to obtain (i) a physical address of a particular one
of a plurality of pages of said nonvolatile memory, (ii) an
offset in said particular page to compressed data previously
stored in response to writing said compressed data
corresponding to said logical block address and (iii) a
length of said compressed data, wherein said particular entry
is associated with said logical block address;

(C) converting said offset and said length to (i) an
address of a given one of a plurality of read units in said
particular page and (ii) a number of said read units to be
read from said particular page; and

(D) reading from said particular page at most said
number of said read units starting from said given read unit,
wherein a granularity of said offset and said length is finer

than a size of one of said read units.

2. The method according to claim 1, further comprising the
steps of:

performing error correction decoding on each of said read
units as read from said particular page to generate corrected
data; and

extracting said compressed data from said corrected data
according to both (i) said offset in said particular page to

said compressed data and (ii) said length of said compressed
data.

51

10

15

20

25

30

3. The method according to claim 2, further comprising the
steps of:

decompressing said compressed data to generate return
data; and

transferring said return data to said host.

4. The method according to claim 1, 2 or 3, wherein said
number of said read units to be read is less than all of said

read units in said particular page.

5. The method according to any preceding claim, further
comprising the step of:

determining that at least a portion of said compressed
data is in one or more subsequent read units of a subsequent
one of said pages of said nonvolatile memory based on both
(i) said offset in said particular page to said compressed
data and (ii) said length of said compressed data combined

with an amount of user data in said particular page.

6. The method according to claim 5, further comprising
the step of:
reading from said subsequent page at most said one or

more subsequent read units.

7. The method according to any claim preceding, wherein
(1) a first one of said pages of said nonvolatile memory
includes a first number of said read units, (ii) a second one
of said pages of said nonvolatile memory includes a second
number of said read units and (iii) said first number is

different from said second number.

52

10

15

20

25

30

8. The method according to any of claims 1 to 6, wherein
(i) a first one of said pages of said nonvolatile memory
includes a first amount of user data, (ii) a second one of
said pages of said nonvolatile memory includes a second
amount of said user data and (iii) said first amount is

different from said second amount.

9. The method according to any preceding claim, further
comprising the steps of:

receiving a write request to write said particular data
in said nonvolatile memory;

compressing said particular data to generate said
compressed data that is smaller than said particular data;

writing in said particular page at least a portion of
said compressed data; and

storing in said particular entry (i) said physical
address of said particular page, (ii) said offset in said
particular page to said compressed data and (iii) said length

of said compressed data.

10. The method according to claim 9, further comprising
the step of:

writing in said particular page a header that includes
at least a portion of said logical block address of said

write request and said length.

11. The method according to any preceding claim, wherein
(i) said logical block address is one of a plurality of
logical block addresses and (ii) at least one of said read
units of said number of said read units includes at least
some different data corresponding to a different one of said

logical block addresses.

53

10

15

20

25

30

12. The method according to any preceding claim, wherein
at least one of said read units of said number of said read
units includes (i) one or more headers and (ii) a portion of

said compressed data.

13. An apparatus comprising:

a nonvolatile memory; and

a circuit configured to (i) receive a read request from
a host to read particular data corresponding to a logical
block address from said nonvolatile memory, (ii) read a
particular one of a plurality of entries in a map to obtain
(a) a physical address of a particular one of a plurality of
pages of said nonvolatile memory, (b) an offset in said
particular page to compressed data previously stored in
response to writing said compressed data corresponding to
said logical block address and (c) a length of said
compressed data, wherein said particular entry is associated
with said logical block address, (iii) convert said offset
and said length to (a) an address of a given one of a plurality
of read units in said particular page and (b) a number of said
read units to be read from said particular page and (iv) read
from said particular page at most said number of said read
units starting from said given read unit, wherein a granularity

of said offset and said length is finer than a size of one of

said read units.

14, The apparatus according to claim 13, wherein said
circuit is further configured to (i) perform error correction
decoding on each of said read units as read from said
particular page to generate corrected data and (ii) extract

said compressed data from said corrected data according to both

54

10

15

20

25

30

(a) said off set in said particular page to said compressed

data and (b) said length of said compressed data.

15. The apparatus according to claim 14, wherein said
circuit is further configured to (i) decompress said compressed
data to generate return data and (ii) transfer said return data

to said host.

16. The apparatus according to claim 13, 14 or 15, wherein
said number of said read units to be read is less than all of

said read units in said particular page.

17. The apparatus according to any of claims 13 to 16,
wherein said circuit is further configured to determine that at
least a portion of said compressed data is in one or more
subsequent read units of a subsequent one of said pages of said
nonvolatile memory based on both (i) said offset in said
particular page to said compressed data and (ii) said length of
said compressed data combined with an amount of user data in

said particular page.

18. The apparatus according to claim 17, wherein said
circuit is further configured to read from said subsequent page

at most said one or more subsequent read units.

19. The apparatus according to any of claims 13 to 18,
wherein (i) a first one of said pages of said nonvolatile
memory includes a first number of said read units, (ii) a
second one of said pages of said nonvolatile memory includes a
second number of said read units and (iii) said first number is

different from said second number.

55

10

20. The apparatus according to any of claims 13 to 19,
wherein said apparatus is implemented as one or more integrated

circuits.

21. A method as herein described and as illustrated in the

accompanying drawings.

22. An apparatus as herein described and as illustrated in

the accompanying drawings.

56

Intellectual
Property
Office

Application No:

Claims searched:

57

GB1414545.2 Examiner: Mr David Maskery
1-20 Date of search: 18 February 2015

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
AE - US 8843711 B
(YADAV et AL) See columns 10 and 11.
A - US 2014/0223089 A
(KANG et AL) See paragraphs 71 - 110, and WO 2013/042880.
A - US 2010/0017578 A
(MANSSON et AL) See paragraphs 100 - 110.
A - US 2007/0143569 A
(SANDERS et AL) See paragraphs 38 - 56.
A - US 6374341 B
(NIJHAWAN et AL) See columns 4 and 8.
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC

| GO6F; G11C

The following online and other databases have been used in the preparation of this search report

| EPODOC, WPL TXTE.

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

58

Intellectual
Property
Office
International Classification:
Subclass Subgroup Valid From
GO6F 0012/02 01/01/2006
Gl11C 0016/08 01/01/2006
Gl11C 0029/04 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

	Front Page
	Drawings
	Description
	Claims
	Search Report

