Title: ANAEROBIC BLOOD STORAGE AND PATHOGEN INACTIVATION METHOD

Abstract: A method for reducing hemolysis and microparticle formation during storage of pathogen reduced blood. Oxygen reduced blood compositions comprising SAGM and riboflavin having reduced hemolysis. Oxygen reduced blood compositions comprising SAGM and riboflavin having reduced microparticles. Oxygen and pathogen reduced blood compositions comprising CPAD and riboflavin having reduced hemolysis. Oxygen and pathogen reduced blood compositions comprising SAGM and riboflavin having reduced microparticles.

FIG. 1
Published:
— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))
ANAEROBIC BLOOD STORAGE AND PATHOGEN INACTIVATION METHOD

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/342,756, filed May 27, 2016, and U.S. Provisional Application No. 62/445,081, filed January 11, 2017. All the foregoing applications are incorporated by reference in their entirety herein.

FIELD OF THE INVENTION

[0002] The present disclosure relates methods to improve the quality and safety of blood and blood products for use in transfusion medicine.

BACKGROUND OF THE INVENTION

[0003] The use of blood and blood components for transfusion is a common practice in current medicine, but presents a risk to patients with respect to the potential for exposure to immunogenic and pathogenic contaminants. The practice of storing the collected blood and blood components for up to several weeks exacerbates this risk. Whole blood is typically processed by filtration to remove leukocytes (leukoreduction), then centrifuged to separate the 3 major blood components of plasma, platelets, and red blood cells. The leukoreduced packed red blood cells (LRpRBC) are then typically suspended in an additive solution, such as AS-1 (Adsol®), AS-3 (Nutricel®), AS-5 (Optisol®), and AS-7 (SOLX®) in the United States, or SAGGM or PAGGSM in the EU, to prolong storage life before refrigerated storage for up to 42 days. Plasma is typically frozen within 24 hours of phlebotomy and separation ("Fresh Frozen Plasma" - FFP or FP24). The FFP is thawed before use and must be used within 5 days of thawing. Platelets (PLT) are collected by apheresis or by pooling the PLT fractions separated from multiple units of whole blood. PLT collected by apheresis are typically suspended in additive solutions such as PAS-C (Intersol®) or PAS-F (Isoplate®) in EU (not yet in US). PLT are kept agitated at room temperature to prevent PLT activation and must be used within 5 to 7 days of collection. While all blood components are susceptible to donor viral and bacterial contamination, due to the storage conditions, PLT are more susceptible to bacterial contamination and proliferation than other blood components.

[0004] Recent advances in the art have provided for the inactivation of bacterial and viral pathogens by utilizing UV light to irradiate the blood components with photosensitizers prior to storage (see for example the psoralen-based INTERCEPT® system, the riboflavin-based
MIRASOL® system), and also without photosensitizes (THERAFLEX® UV-Platelet system). These systems cross-link and inactivate the DNA in the pathogenic species and thereby reduce the risk they pose to the patient. The INTERCEPT® system uses amotosalen HCl (a synthetic psoralen) and UV-A light delivered at a radiant exposure of 3 J/cm² to cross-link the pathogen DNA, with the removal or reduction of residual amotosalen and photoproducts after treatment. The Mirasol® system uses riboflavin and UV light centered near 313 nm to target absorption by riboflavin-nucleotide complexes. Systems without photosensitizers typically use UV-C light at 254 nm. Long-term effects of some photosensitizers and photoproducts in these systems remain to be established.

[0005] Other advances in the art include the use of S-303 (Cerus Corporation, Concord, CA), an alkylating agent based on quinacrine mustard that includes a frangible anchoring group, to crosslink nucleic acids and inactivate infectious bacteria and other pathogens (see Henschler et al. "Development of the S-303 pathogen inactivation technology for red blood cell concentrates," Transfus Med Hemother 38:33-42 (2011) ("Henschler 201 1")). Not to be limited by theory, it is thought that there are two reactions that form the basis of the S-303 pathogen inactivation process. The first reaction is the formation of covalent DNA and RNA adducts by reaction with the S-303 molecule. This first reaction is complete within approximately 30 minutes. The second reaction is the degradation of excess S-303 into the less toxic byproduct, S-300. This decomposition occurs concurrently with the adduct reaction and is complete within 16-18 hours.

[0006] While not limited to any particular theory, the formation of covalent DNA and RNA adducts with S-303 is thought to be based on the intercalation of the molecule with a nucleic acid polymer (e.g., DNA or RNA). As currently understood, when S-303 is added to the RBCs, it rapidly (within seconds to minutes) passes through the membranes, including those of cells and viral envelopes due to its amphipathic character and intercalates into the helical regions of nucleic acid. It is hypothesized that the presence of a frangible anchor on the molecule assists in the intercalation process by the attraction of the positively charged amine groups on the molecule to the negative charges in the nucleic acid chains of DNA or RNA. Close proximity of the S-303 molecule allows for thermal cycloaddition reactions to rapidly occur, covalently bonding the S-303 molecule to the DNA or RNA. It is believed that the covalent linkage prevents replication or translation processes from occurring and further halts the production of additional pathogens. During the process of forming the covalent adduct, the frangible anchor is removed by hydrolysis, yielding the less toxic compound S-300.
The spontaneous decomposition of S-303 to the less toxic S300 is the second reaction in the pathogen inactivation process. An excess of S-303 (approximately 0.2 mM) is normally added to the RBCs to provide enough reagent to completely react with all of the DNA and RNA in the sample. However, S-303 is a toxic compound so in order to safely transfuse the resulting product, residual S-303 must be removed. In the Cerus pathogen inactivation process, this is mainly achieved by allowing the S-303 to degrade to S-300, a compound with significantly less toxicity. The degradation process occurs by hydrolysis; the hydrolysis of S-303 is triggered by the shift in pH from low to high when the S-303 reagent is initially mixed with the RBCs. The decomposition kinetics of the residual S-303 are rapid at concentrations above 10 nM/L with half-life of about 20 minutes.

As currently understood, S-303 also has the potential to react with other nucleophiles in a unit of RBCs, including small molecules such as phosphates, water and macromolecules such as proteins. While not limited to any particular theory, to reduce these nonspecific interactions with proteins, 20mM of glutathione (GSH) is simultaneously added to the RBCs during the pathogen inactivation process. (See Henschler 2011). Glutathione (GSH) is a naturally occurring antioxidant present in most cells at an intracellular concentration of about 5mM. As currently understood, GSH distributes only in the extracellular plasma space, while the S-303 diffuses across membranes and equilibrates inside and outside of cells. This allows GSH to quench extracellular reactions of S-303 without a significant impact on the pathogen inactivation (See Olcina et al. Hypoxia and the DNA damage response. Hypoxia and Cancer in Cancer Drug Discovery and Development 2014; Chapter 2:21-30; Melillo G (ed)).

Recent advances in the art also include the use of anaerobically stored packed red blood cells in additive solution to reduce the amount of storage lesions commonly associated with the use of older blood (see Bitensky, et al. US 5,789,152; Bitensky, et al. US 6,162,396; and Bitensky, et al. US 8,071,282). These storage lesions are thought to be derived from the metabolic processes and byproducts that result from storing the blood without the normal physiological environment of the circulatory system, and that the removal or reduction of available oxygen in the stored blood reduces the creation of damaging oxidative species within the red blood cell during storage.

Hemolysis is recognized as an important indicator of blood quality and safety. During storage, hemolysis levels increase over time and it the presence of the free hemoglobin is an indicator that the blood has exceeded its shelf life. From this, regulations and guidelines have developed that limit the acceptable storage times for units of blood
products that can be used for transfusions. The importance of hemolysis for blood safety has led Europe to set an upper limit of 0.8% before the blood must be discarded. The FDA recommends that the level of hemolysis not exceed 1.0%. Thus, methods that reduce hemolysis extend the safe shelf life of the blood, decreasing costs and increasing blood availability.

[0011] Another indicator of stored blood health and safety are microparticles. See, Cognasse et al, "The role of microparticles in inflammation and transfusion: A concise review," Transfus. Apher. Sci. 53(2): 159-167 (2015). Microparticles (Mps) are produced by red cells, leukocytes, platelets and endothelial cells. Microparticles are thought to be produced as result of normal physiology, apoptosis, or cell damage. Generally, they are described as particles less than 1000nm. A lower range is sometimes indicated at 50 nm but there is no clear definition or agreement regarding the lower limit. Usually, a flow cytometer in conjunction with fluorescent surface antibody is used for quantification, but there is no generally accepted method for MP measurement, and measurements can depend on the instrument used. See Poncelet et al., "Tips and tricks for flow cytometry-based analysis and counting of microparticles," Transfus. Apher. Sci. 53(2): 110-126 (2015). Composition of Mps reflect the parent cell from which they are derived, although only selected molecules are included or exposed on the surface of the resulting MPs. Some of the MPs are considered highly thrombogenic (especially MPs of platelet origin). Generally Mps in stored RBC components are harmful to recipients as sources for immune modulation, hyper coagulation, nitric oxide scavenging (poor blood perfusion), or development of alloimmunity. Accordingly, methods that result in reduced levels of microparticles provide for improved stored blood health and safety.

[0012] Here we demonstrate that reduced oxygen in whole blood provides for unexpected reductions in the amount of hemolysis and microparticle production when treating blood products to reduce a disease-causing viruses, bacteria, and multi-cellular parasites, and reduce white blood cells. The methods provided in the present specification provide for extending the usable life of pathogen reduced blood products by reducing hemolysis.

[0013] Pathogen inactivation of blood and blood products has been developed to improve their safety. Although a variety of bacteria, viruses and parasites can be inactivated, research studies demonstrate the negative impact to blood components. Currently, plasma and platelet concentrates can be treated with pathogen inactivation systems; however, red blood cell treatment is still under development. Pathogen inactivation of whole blood after donation would provide the advantage that all products derived are pathogen inactivated along with
destruction of residual white cells. However, recent studies demonstrated that the quality of red blood cells derived from whole blood illumination using the riboflavin/UV light technology (Mirasol, TerumoBCT) is significantly reduced compared to the untreated study arm to the extent that it would require a shortening if the shelf life under standard storage conditions. The hallmark of these analyses is the accelerated development of hemolysis which reaches the current acceptance level of 0.8% at about day 30 of blood bank storage. The creation of reactive oxygen species (ROS) during the UV illumination is one the contributors to hemolysis.

Here we demonstrate that reduction of oxygen from whole blood prior to treatment for pathogens using the Mirasol system improves the blood quality. The Hemanext™ system (New Health Sciences) designed to remove oxygen from whole blood and red cell concentrates combined with pathogen reduction results in improved red blood cell quality compared to pathogen reduction under non-oxygen reduced conditions. Hemanext™ processing combined with Mirasol pathogen reduction treatment results in blood having less than 0.8% blood hemolysis after 42 days of storage under oxygen reduced conditions.

SUMMARY OF THE INVENTION

The present disclosure provides a method for inactivating blood pathogens and reducing hemolysis during storage by removing oxygen from a blood product, adding riboflavin to a final concentration of between 40 to 60 μM, and irradiating the riboflavin containing blood product with UV light between 265-400 nm.

The present disclosure provides for a method reducing microparticle formation and inactivating blood pathogens by removing oxygen from a blood product, adding riboflavin to a concentration of between 40 to 60 μM and irradiating the riboflavin containing blood product with UV light between 265-400 nm.

The present disclosure provides for oxygen reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of less than 25%, and having a pCO2 of 90 mmHg or less at 37 °C, wherein the oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm.

The present disclosure provides for oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 400 to 60 μM riboflavin, having an oxygen saturation (S02) of less than 25%, and having a pCO2 of 20 mmHg or less at 37 °C, wherein the oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm.
The present disclosure provides for a method for inactivating blood pathogens and reducing hemolysis by removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM.

The present disclosure provides for a method for inactivating blood pathogens and reducing microparticle production by removing oxygen and carbon dioxide from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM.

The present disclosure provides for oxygen reduced red blood cells having a final concentration of approximately 0.2 mM S-303, having an oxygen saturation (SO2) of less than 25%, and having a pCO2 of 90 mmHg or less at 37 °C.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is disclosed with reference to the accompanying drawings, wherein:

Figure 1 presents a diagram illustrating a blood bag collection and storage system according to an aspect of the present specification.

Figure 2 presents a diagram illustrating a discontinuous apheresis system according to an aspect of the present specification.

Figure 3 presents a diagram illustrating a discontinuous apheresis system according to an aspect of the present specification.

Figure 4 is a graph presenting the results of an experiment according to the present disclosure, comparing the average hemolysis of control whole blood with sterile saline (1 avg), control whole blood with riboflavin (2 avg), oxygen reduced packed RBCs with sterile saline (3 avg), oxygen reduced pRBCs with riboflavin (4 avg), oxygen reduced whole blood with sterile saline (5 avg), and oxygen reduced whole blood with riboflavin (6 avg).

Figure 5 is a graph presenting the results of an experiment according to the present disclosure, comparing the average amount of microparticles of control whole blood with sterile saline (1 avg), control whole blood with riboflavin (2 avg), oxygen reduced packed RBCs with sterile saline (3 avg), oxygen reduced pRBCs with riboflavin (4 avg), oxygen reduced whole blood with sterile saline (5 avg), and oxygen reduced whole blood with riboflavin (6 avg).

Figure 6A to 6G are graphs presenting the results of an experiment according to the present disclosure comparing the osmotic fragility (6A), potassium (6B), total hemoglobin (6C), oxygen saturation (6D), glucose (6E), lactate (6F) and pH (6G) of control
whole blood with sterile saline (1 avg), control whole blood with riboflavin (2 avg), oxygen reduced packed RBCs with sterile saline (3 avg), oxygen reduced pRBCs with riboflavin (4 avg), oxygen reduced whole blood with sterile saline (5 avg), and oxygen reduced whole blood with riboflavin (6 avg).

[0029] Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrate aspects of the present specification but should not be construed as limiting the scope of the present specification in any manner.

DETAILED DESCRIPTION

[0030] Here we show that the harmful side effects of irradiating blood samples with UV light can be mitigated by reducing the amount of oxygen present in the sample. Not to be limited by theory, it is thought that the reduction in oxygen decreases the generation of reactive oxygen species (ROS). The reduction of ROS is thought to increase the beneficial aspects of UV light irradiation for pathogen inactivation in blood samples, whether the sample be whole blood or any blood component, such as plasma, platelets, or red blood cells.

[0031] In accordance with aspects of the present specification, a blood processing and storage system may collect, separate, deoxygenate, and irradiate blood components with UV light prior to storage. The blood processing system may be a gravity driven bag system, such as is commonly used in whole blood leukoreduction. In some aspects the blood processing system may be an apheresis system of either the continuous or discontinuous flow type, as is commonly known in the art, wherein the blood is collected and separated into desired components and the desired components are then deoxygenated and irradiated in accordance with the present specification prior to storage. In some aspects the blood is collected and deoxygenated before separation and UV irradiation of the desired blood component before storage. In some aspects the blood is collected and separated before deoxygenation and UV irradiation of the desired blood component before storage. In some aspects the blood is collected, deoxygenated, and UV irradiated before separation and storage of the desired blood components.

[0032] It will be appreciated by one of ordinary skill in the art that the following examples and drawings are intended for illustration only and are not meant to be limiting as to the scope of the invention. For the purposes of the present specification and description, the following definitions and terms are understood to have their common meaning. The term "UV" refers to ultraviolet light, having a wavelength of about 220 nm to about 400 nm, and generally includes the peak from a mercury arc lamp at 405 nm. The term "blood sample" is
meant to refer to a sample of blood from an animal or human, and includes whole blood and components of whole blood, including red blood cells (RBC), platelets (PLT), plasma, leukocytes, proteins commonly found in blood, such as albumin, enzymes, clotting factors, and also includes combinations of such components commonly found in blood, such as partially separated fractions of whole blood, recombined components previously separated, and includes freshly collected or stored blood samples. The term "apheresis" is meant to have its common meaning in the art and includes the collection and separation of blood by both continuous and discontinuous methods, as are commonly known in the art. The term "apheresis system" is meant to have its common meaning in the art and includes devices and systems for the collection and separation of blood by both continuous and discontinuous methods, as are commonly known in the art. The term "blood container" is meant to refer to any container made from polymeric materials for the purpose of storing blood, regardless of the duration of storage, and includes the generic term "blood bag" as is commonly used in the art. The term "PVC" is meant to refer to the polymer comprised of polyvinylchloride, and includes PVC with any added materials, such as plasticizers, stabilizers, inhibitors, and other materials commonly known in the art and used in the manufacture of PVC.

[0033] Figure 1 shows an aspect of the present specification comprising a blood collection bag 1, a blood processing bag 4, a UV irradiation chamber 10, and a blood storage bag 13. The blood collection bag 1 is commonly known in the art and typically made from flexible plastic, such as polyvinyl chloride (PVC), but can be made from other polymer materials such as urethane, silicone, or other biocompatible materials. The blood collection bag 1 has a blood transfer line 3. The blood transfer line 3 is also made from flexible plastic as is commonly known in the art, and is typically made from PVC, but can also be made from other biocompatible polymeric materials. The blood transfer line 3 is fitted with a flow control device 2, such as a pinch clamp, a ratchet clamp, or a frangible seal to prevent the flow of blood from the collection bag 1 through the transfer line 3 into the processing bag 4 until such flow and transfer of blood is desired. In some aspects the flow control device is designed to control the rate of flow.

[0034] The processing bag 4 is comprised of an outer barrier bag 5 and an inner blood bag 6, wherein the outer barrier bag 5 is substantially impermeable to oxygen. Materials suitable for construction of the barrier bag 5 are commonly known in the art and include metallic foils, such as aluminum foil, polymer films having suitable barrier properties, such as ethyl vinyl alcohol (EVA), polyvinyl alcohol (PVA), polyacrylonitrile (Barex®), cyclic polyolefins, polychlorotrifluoroethylene (PCTFE or Aclar®), polyvinylidene chloride (PVDC), polymer
films with coatings to provide suitable barrier properties, such as by coating polyethylene or nylon film with a coating of silicon oxide, aluminum oxide, or multilayer films comprising a combination of polymer films and/or coatings to provide suitable barrier properties. In aspects the barrier bag is made from RollPrint ClearFoil® Z film or Renolit Solmed Wrapflex® film. Exemplary methods for the production of processing bags are provided in International Patent Application No. PCT/US20 16/02 1794, filed March 10, 2016, hereby incorporated by reference in its entirety.

[0035] The inner blood bag 6 is made from flexible polymer materials having high oxygen transfer properties that are commonly known in the art, and include PVC, urethanes, silicones, polyethylene, polypropylene, polyethersulfone, polyvinylidene fluoride (PVDF). In an aspect the inner blood bag 6 is made from silicone, such as for example Wacker Silpuran® 30-um thick silicone film. In another aspect the inner blood bag 6 is made from Millipore GVHP29325 PVDF membrane. An oxygen absorbing sorbent material 7 is disposed between the outer barrier bag 5 and the inner blood bag 6. The oxygen absorbing sorbent material 7 is commonly known in the art and is typically comprised of an iron-based sorbent material, such as the Mitsubishi Ageless® series of oxygen absorbers, or other oxygen absorbing materials or systems, such as ascorbate/metallic salt systems, metal catalysts such as platinum, or oxygen absorbing polymers such as nylon MXD6. In some aspects the outer barrier bag 5 and inner blood bag 6 can be laminated together with the oxygen absorbing material 7 disposed within the laminated structure, such as the Mitsubishi Ageless® OMAC® film.

[0036] The oxygen absorbing sorbent material 7 is typically disposed in a breathable sachet and is adapted to absorb the oxygen in the gas headspace between the outer barrier bag 5 and the inner blood bag 6. In some aspects the oxygen absorbing sorbent material 7 is affixed to a plastic mesh structure (not shown) to provide for spacing between the inner and outer bags and thus provide for enhanced gas transfer in the gas headspace. In some aspects a plurality of oxygen absorbing sachets are disposed in the gas headspace. In aspects the oxygen absorbing sorbent material 7 is formulated to be fast acting and absorb high levels of oxygen quickly, with a capacity to absorb the entire oxygen content of a full unit of blood. In aspects the oxygen absorbing capacity of the oxygen absorbing sorbent material 7 is at least 100 cc oxygen, and more preferably at least 200 cc. In some aspects an oxygen indicator tab (not shown) is disposed in the gas headspace to indicate by color the presence or absence of oxygen at a particular level, such as for example the Sorbent Systems Tell-Tab®. Additional
details of processing bags 4 and inner blood bags 6 suitable for the present specification are provided in International Patent Application No. PCT/US20 16/02 1794, filed March 10, 2016.

[0037] The fluid path of the inner blood bag 6 is connected to UV irradiation chamber 10 by blood transfer line 9 having a flow control device 8, such as a pinch clamp, a ratchet clamp, or a frangible seal to prevent the flow of blood from the inner blood bag 6 through the transfer line 9 into the UV irradiation chamber 10 until such flow and transfer of blood is desired. In some aspects the flow control device is designed to control the rate of flow. The UV irradiation chamber 10 is further fluidly connected to a blood storage bag 13 by a blood transfer line 12 having a flow control device 11, such as a pinch clamp, a ratchet clamp, or a frangible seal to prevent the flow of blood from the UV irradiation chamber 10 through the transfer line 12 into the blood storage bag 13 until such flow and transfer of blood is desired. In some aspects the flow control device 11 is designed to control the rate of flow, and in some aspects the flow control device is in communication with the UV lamp to provide for a controlled irradiation exposure of the blood sample contained within the UV irradiation chamber.

[0038] The UV irradiation chamber 10 further comprises a UV lamp (not shown) that is operatively connected to a source of power (not shown), and provides for UV irradiation of the blood contained within or passing through the chamber. In some aspects the UV irradiation chamber is adapted to receive a section of blood transfer tubing 9 and irradiate UV light through the tubing. It will be appreciated by those of ordinary skill in the art that most plastics absorb UV light at lower wavelengths and would be unsuitable for using lower wavelength UV light for processing, such as UV-C light at 254-nm, but for certain photosensitizers absorbing at higher wavelengths, such as UV-B (-290-320 nm) or UV-A (-320-400 nm) thin sections of plastic may be suitable. Thus, in some aspects a portion of blood transfer tubing 9 is adapted to be very thin in wall thickness to be adapted into UV irradiation chamber 10 to provide for enhanced light penetration through the plastic tubing into the blood sample. In some aspects the wall thickness of the portion of transfer tubing in the UV irradiation chamber is about 0.1 to about 1.0 mm, and in aspects the transfer tubing wall thickness is about 0.2 to about 0.5 mm thick.

[0039] In some aspects the UV irradiation chamber 10 is adapted to have a UV-C transparent portion, such as a section of quartz (SiO₂) or sapphire (Al₂O₃) material in fluid communication with blood transfer tubing 9 and blood transfer tubing 12. In some aspects the blood transfer line 9 is adapted to have a UV-C transparent portion, such as a section of quartz (SiO₂) or sapphire (Al₂O₃) tubing nested between blood transfer tubing 9 and blood
transfer tubing 12, such that the UV-C transparent portion can be easily inserted into UV irradiation chamber 10. In some aspects the UV irradiation chamber 10 is fabricated from a UV-C transparent material, such as quartz (SiC\(^{\text{a}}\)) or sapphire (Al\(_2\)O\(_3\)), and is connectively adapted to and in fluid communication with blood transfer tubing 9 and blood transfer tubing 12. In some aspects the UV irradiation chamber 10 is fabricated from a material that is not transparent to UV-C, but is transparent to UV-A and or UV-B wavelengths, such as glass or polymers such as polycarbonate, acrylic, PVC, urethane and others, and is connectively adapted to and in fluid communication with blood transfer tubing 9 and blood transfer tubing 12. In some aspects the UV irradiation chamber 10 is fabricated from a polymeric material, such as silicone that is sufficiently transparent to UV-C, UV-A and UV-B wavelengths to be effective at transmitting UV light into the lumen of the irradiation chamber.

[0040] The blood storage bag 13 is comprised of an outer barrier bag 14 and an inner blood bag 15, wherein the outer barrier bag 14 is substantially impermeable to oxygen. Suitable blood storage bags 13 are described in International Patent Application No. PCT/US2016/029069, filed April 22, 2016, and hereby incorporated by reference in its entirety. Briefly, materials suitable for construction of the outer barrier bag 14 are provided; the outer barrier bag 14 is substantially equivalent to outer barrier bag 5. The inner blood bag 15 is substantially equivalent to blood collection bag 1 described above, except that it further comprises spike ports 17, wherein spike ports 17 are commonly known in the art of transfusion medicine and are adapted for sterile connection of an infusion spike to receive the blood contained within the inner blood bag 15 at the time of patient use. The blood storage bag 13 further comprises an oxygen absorbing material 16 disposed between outer barrier bag 14 and inner blood bag 15. In aspects the oxygen absorbing material 16 is formulated to function at refrigerated temperatures for extended periods of time and absorb low levels of oxygen.

[0041] Figure 2 shows a discontinuous three-line apheresis system, wherein whole blood is withdrawn from a subject through a venous-access device 110 that may be inserted into the subjects arm. The blood draw line 120 fluidly connects the venous-access device 110 to a blood component separation device 150 for separation of the blood components. A draw pump 122 located on the draw line 120 controls the direction, rate, and duration of the flow through the draw line 120.

[0042] As the whole blood is being withdrawn from the subject, anticoagulant can be added to the whole blood to prevent the blood from coagulating within the lines or within the blood component separation device 150. To that end, the system includes an anticoagulant
line 130 fluidly connected to an anticoagulant source 134 (e.g., a bag of anticoagulant) at one
end, and the venous-access device 110 (or the draw line 120) at the other end. An
anticoagulant pump 132, through which the anticoagulant line 130 passes, controls the flow
through the anticoagulant line 130 and the amount of anticoagulant introduced into the whole
blood. The anticoagulant pump 132 operates proportionately to the draw pump 122 to ensure
that the proper amount of anticoagulant is added to the whole blood. The anticoagulant is
typically introduced into the whole blood as close as possible to the venous-access device
110. The lines/conduits typically include a clamp valve 164 to stop the flow within the line.

Once the desired amount of anticoagulated whole blood is withdrawn from the
subject and contained within the blood component separation device 150, the blood
compartment separation device separates the whole blood into several blood components,
typically plasma, platelets, red blood cells, and, optionally, white blood cells.

Some aspects of the blood processing system 100 include a transfer pump 210 and
a dilution/extraction line 160 connected to the plasma bag 158. The transfer pump 210 and
dilution/extraction line 160 can be used for a variety of purposes including dilution of the
anticoagulated drawn blood being introduced into the blood component separation device.
For example, if the user wishes the drawn blood to have a higher plasma content, the system
can dilute the withdrawn blood by turning on the transfer pump and introducing plasma from
the plasma bag 158 into the withdrawn blood within the draw line 120. Additionally or
alternatively, the transfer pump may be used during surge elutriation to introduce plasma
from the plasma bag 158 into the blood component separation device 150 to extract the
platelets (or other blood component).

After the blood sample is separated in the blood component separation device 150
and the desired components are removed and stored in the appropriate storage container 156
or 158, the system returns un-extracted and/or unwanted components back to the subject via
dedicated lines.

Figure 3 shows an aspect of the present specification for use with a discontinuous
three-line apheresis system, wherein the improved portion is shown within the dashed lines.
In particular, the apheresis blood processing system 100 further comprises fluid transfer
pump 172, deoxygenation device 173, processing reservoir 174, and UV irradiation chamber
177, which are fluidly connected by transfer line 170 and recirculating line 175. The control
of fluid flow in transfer line 170 and recirculating line 175 is maintained by control over flow
control valves 171, 176, 178, and 179 acting in cooperation to direct the fluid into the desired
devices.
Upon completion of separation of the blood components in blood separation device 150, the flow of the desired blood component is directed into transfer line 170 of the present specification by closing flow control valve 179 and opening flow control valve 171 of the present specification. Thus, the desired blood component is directed to the transfer pump 172 of the present specification rather than the transfer line 152 and ultimately plasma bag 158 or platelet bag 156. The flow of fluid in transfer line 170 can be directed by fluid flow from transfer pump 122 or transfer pump 210, or by transfer pump 172 of the present specification, or a combination thereof.

The flow of fluid in transfer line 170 is controlled by flow control valve 171 and flows into transfer pump 172 and continues to flow into deoxygenation device 173 and processing reservoir 174, as shown by the arrow in the drawing. During the deoxygenation process flow control valves 178 would be closed and flow control valve 176 disposed on recirculation line 175 would be open, thereby allowing fluid to be recirculated by transfer pump 172 through deoxygenation device 173, processing reservoir 174 and recirculation line 175 until the desired level of oxygen is achieved in the fluid. In some aspects the deoxygenation device 173 is comprised of hollow porous fibers commonly known in the art and used for fluid degassing, such as Membrana Liqui-Cel® and MiniModule® devices, and for blood oxygenation in cardiopulmonary bypass perfusion such as the Medtronic Affinity® series oxygenators and Sorin Inspire® series oxygenators. In some aspects deoxygenation device 173 is operably connected to a supply of nitrogen gas (not shown) to provide the hollow porous fibers with nitrogen gas to remove the oxygen from the blood. In some aspects deoxygenation device 173 is operably connected to a means of measuring the oxygen content of the fluid contained therein (not shown) to provide a means for determining when the fluid sample has been deoxygenated to a level of about 25% oxygen or less, and in aspects to about 10% oxygen or less. In some aspects the transfer pump is operably connected to a means of control for powering off the pump after a predetermined period of time that has been experimentally shown to be efficacious for the volume of fluid being treated.

After the fluid sample has been adequately deoxygenated, the blood sample is pumped through UV irradiation chamber 177 by pump 172 by opening flow control valves 178. The blood sample is irradiated with UV light from a suitable UV light source (not shown). The UV light source can be contained within the UV irradiation chamber 177 and operatively connected to a source of power (not shown), or the UV light source can be operatively connected to UV irradiation chamber, such as by a light pipe or mirror (not shown). The UV light source is known in the art and is selected based on the desired spectral
output and chemistry involved in the treatment of the blood component, and can be selected from the group comprising a mercury arc lamp, a xenon lamp, a flash lamp, a deuterium lamp, a halogen lamp, a tungsten lamp, a fluorescent lamp, and a UV-emitting LED.

[0050] The flow of fluid in the UV irradiation chamber is preferably controlled such that a target radiant exposure of UV light is achieved in the fluid, either by a timed UV irradiation of a static sample contained within UV irradiation chamber 177, or by the controlled flow of a dynamic sample passing through UV irradiation chamber 177 and controlled by flow valves 178. In some aspects the radiant exposure of UV light is about 1-8 J/cm², and in aspects is about 3 J/cm². The deoxygenated and UV irradiated blood component then flows through transfer line 180 into transfer line 152 for collection and storage. Having been treated to reduce pathogens and deoxygenated to a level of less than about 25% oxygen according to the present specification, the blood component is transferred into a blood storage bag. In some aspects the transfer line 180 includes a component absorption device (not shown) to provide for the reduction of excess photosensitizer and photoproducts, such as is used with psoralens photosensitizers and is commonly known in the art.

[0051] The present disclosure provides for, and includes, methods for pathogen reduction having reduced hemolysis comprising removing oxygen from a blood product to prepare an oxygen reduced blood product, reducing blood pathogens from the blood product comprising adding riboflavin to a final concentration of between 40 to 60 μM, irradiating said riboflavin containing blood product with UV light between 265 to 400 nm. In certain aspects, the method further includes storing said oxygen reduced pathogen reduced blood product under anaerobic conditions. Also included and provided for in the present specification are methods for pathogen reduction having reduced hemolysis comprising removing oxygen and carbon dioxide from a blood product to prepare an oxygen and carbon dioxide reduced blood product, reducing blood pathogens from the blood product comprising adding riboflavin to a final concentration of between 40 to 60 μM, irradiating said riboflavin containing blood product with UV light between 265 to 400 nm. As used herein, "anaerobic conditions" includes both carbon dioxide depleted and carbon dioxide containing conditions. In most aspects, anaerobic conditions refer to both oxygen and carbon dioxide depleted storage conditions.

[0052] The present disclosure provides for, and includes, methods for pathogen reduction having reduced hemolysis comprising removing oxygen from a blood product to prepare an oxygen reduced blood product, reducing blood pathogens from the blood product comprising adding S-303 to a final concentration of between approximately 0.1 to 0.5 mM and adding
glutathione (GSH) to a final concentration of between 2 to 20 mM. In certain aspects, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen from a blood product to prepare an oxygen reduced blood product prior to reducing blood pathogens. In other aspects, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen from a blood product to prepare an oxygen reduced blood product after reducing blood pathogens. In other aspects, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen from a blood product to prepare an oxygen reduced blood product at the same time as reducing blood pathogens. Also included and provided for in the present specification are methods for pathogen reduction having reduced hemolysis comprising removing oxygen and carbon dioxide from a blood product to prepare an oxygen and carbon dioxide reduced blood product, reducing blood pathogens from the blood product comprising adding S-303 to a final concentration of approximately 0.2 mM and adding glutathione (GSH) to a final concentration of between 5 to 20 mM. In other aspects, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen and carbon dioxide from a blood product to prepare an oxygen and carbon dioxide reduced blood product, and reducing blood pathogens from the blood product comprising adding S-303 to a final concentration of between approximately 0.1 to 0.5 mM and adding glutathione (GSH) to a final concentration of between 2 to 20 mM. In another aspect, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen and carbon dioxide from a blood product to prepare an oxygen and carbon dioxide reduced blood product, and reducing blood pathogens from the blood product comprising adding S-303 to a final concentration of between approximately 0.1 to 0.4 mM and adding glutathione (GSH) to a final concentration of between 5 to 20 mM. In yet another aspect, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen and carbon dioxide from a blood product to prepare an oxygen and carbon dioxide reduced blood product, and reducing blood pathogens from the blood product comprising adding S-303 to a final concentration of between approximately 0.1 to 0.3 mM and adding glutathione (GSH) to a final concentration of between 5 to 10 mM. In a further aspect, the methods for pathogen reduction having reduced hemolysis comprise removing oxygen and carbon dioxide from a blood product to prepare an oxygen and carbon dioxide reduced blood product, and reducing blood pathogens from the blood product comprising adding S-303 to a final concentration of between approximately 0.1 to 0.3 mM and adding glutathione (GSH) to a final concentration of between 2 to 10 mM.
As used herein, pathogens include viruses, parasites, and bacteria. Also as used herein, low levels of leukocytes that remain after leukoreduction are considered pathogens. Thus, the methods of pathogen reduction may further provide for the reduction of leukocytes that may remain after leukocyte reduction.

As used herein, the term "reducing", "reduction", or "reduced" is meant to refer to a final amount lower than an initial amount or lower relative to a control sample. A reduced level of a pathogen means that the pathogen level is reduced by at least one order of magnitude when compared to a similar untreated sample. Generally, for purposes of transfusion medicine, the levels of pathogen are reduced by at least 1.8 logs, in an aspect of the present disclosure, the levels of pathogen are reduced by at least 3 logs. In another aspect, the levels of pathogen are reduced by at least 4 logs. In another aspect, the levels of pathogens are reduced by between 3 to 10 logs. In another aspect, the levels of pathogen are reduced by at least 7 logs.

As used herein, "reducing oxygen" or "reducing oxygen saturation" refers to reductions in the oxygen saturation of red blood cells to 25% or less. As used herein, "reducing carbon dioxide" refers to reducing the carbon dioxide to 90 mmHg or less when measured at 37 °C. An oxygen depleted blood product has an oxygen saturation of less than 25%, generally less than 10%, and can be about 5% S02. A carbon dioxide depleted blood product is a blood product having a carbon dioxide level of below 20 mmHg when measured at 37 °C.

As used herein, "blood product" includes whole blood or any component derived from whole blood including red blood cells, platelets, plasma, and white blood cells.

As used herein, "whole blood" includes white blood cells (WBCs), platelets suspended in plasma, and includes electrolytes, hormones, vitamins, antibodies, etc. In whole blood, white blood cells are normally present in the range of between 4.5 and 11.0 x 10^9 cells/L, and the normal RBC range at sea level is 4.6-6.2 x 10^12/L for men and 4.2-5.4 x 10^12/L for women. The normal hematocrit, or percent packed cell volume, is about 40-54% for men and about 38-47% for women. The platelet count is normally 150-450 x 10^9/L for both men and women. Whole blood is collected from a blood donor, and is usually combined with an anticoagulant. Whole blood, when collected is initially at about 37 °C and rapidly cools to about 30 °C during and shortly after collection, but slowly cools to ambient temperature over about 6 hours. Whole blood may be processed according to methods of the present disclosure at collection, beginning at 30-37 °C, or at room temperature (typically about 25 °C).
[0058] As used herein, "red blood cells" (RBCs), stored red blood cells, oxygen reduced red blood cells, and oxygen and carbon dioxide reduced red blood cells, include RBCs present in whole blood, leukoreduced RBCs, platelet reduced RBCs, leukocyte and platelet reduced RBCs, and packed red blood cells (pRBCs). Human red blood cells in vivo are in a dynamic state. The red blood cells contain hemoglobin, the iron-containing protein that carries oxygen throughout the body and gives red blood its color. The percentage of blood volume composed of red blood cells is called the hematocrit. As used herein, unless otherwise limited, RBCs also includes packed red blood cells (pRBCs). Packed red blood cells are prepared from whole blood using centrifugation techniques commonly known in the art. As used herein, unless otherwise indicated, the hematocrit of pRBCs is about 70%. As used herein, oxygen reduced RBC (OR-RBC) can include oxygen and carbon dioxide reduced (OCR-) RBC (OCR-RBC)

[0059] As used herein, "leukoreduced whole blood" (LRWB) includes whole blood having an anticoagulant that has been treated to remove white blood cells and platelets, usually by filtration or centrifugation. Leukoreduced whole blood has levels of white blood cells that are reduced by at least 5 logs.

[0060] As used herein, "oxygen reduced leukoreduced whole blood" (OR-LRWB) can include oxygen and carbon dioxide reduced leukoreduced whole blood (OCR-LRWB).

[0061] As used herein, "leukoreduced packed red blood cells" (LRpRBC) includes packed red blood cells having oxygen reduced (OR-) whole blood that has been treated to remove white blood cells. As used herein, oxygen reduced leukoreduced packed red blood cells (OR-LRpRBC) can include oxygen and carbon dioxide reduced leukoreduced packed red blood cells (OCR-LRpRBC).

[0062] In accordance with aspects of the present specification, viruses reduced by the recited methods include enveloped viruses. In other aspects, the methods provide for reduction of non-enveloped viruses. In aspects of the present specification, viral pathogens that are reduced include one or more of the following: HIV-1, HIV-2, Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotrophic virus I and II (HTLV-1 and -II), Cell-associated cytomegalovirus (CMV), Bovine viral diarrhea virus (BVDV), Duck hepatitis B virus (DHBV), Pseudorabies virus (PRV), West Nile virus, Human corona virus, Chikungunya virus, Influenza virus, Suid herpesvirus (SuHV-1), Vesicular stomatitis virus (VSV), Sindbis virus, Herpes simplex virus (HSV), Epstein-Barr virus (EBV), Porcine pseudorabies virus (PRPV), Pseudorabies virus (PRV), or Semliki forest virus (SLFV). In some aspects inactivated viruses include non-enveloped viruses comprising Bluetongue virus,
Calicivirus, Human Adenovirus-5, Porcine parvovirus (PPV), Encephalomyocarditis virus (EMCV), Hepatitis A virus (HAV), Coxsackie virus, and Polio virus. It will be understood that the methods of viral parasite reduction include all viruses and are not limited to the ones recited above. One of ordinary skill in the art would recognize that the inactivation methods are directed to the genetic material of the various pathogens, while the oxygen reduction reduces, for example hemolysis of the red blood cell component of the blood product, and otherwise improves blood quality.

[0063] In aspects according to the present specification, the methods provide for reduced hemolysis and inactivation of parasites. In some aspects of the present specification inactivated parasites include Plasmodium falciparum (malaria), Trypanosoma cruzi (Chagas' disease), Leishmania mexicana, Leishmania major, leishmania infantum (leishmaniosis), Babesia microti, and Babesia divergens (babesiosis). In some aspects inactivated pathogenic bacteria can include Bacillus cereus, Clostridium perfringens, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Propionibacterium acnes, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas fluorescens, Listeria monocytogenes, Streptococcus pyogenes, and Acinetobacter baumannii.

[0064] The methods of the present disclosure, provide for, and include, reducing hemolysis of red blood cells after pathogen treatment. Pathogen reduction methods applied to oxygen reduced blood or oxygen and carbon dioxide reduced blood result in significantly reduced levels of hemolysis. Pathogen reduction methods applied to oxygen reduced blood or oxygen and carbon dioxide reduced blood result in significantly reduced levels of microparticles. Incorporating an additional oxygen reduction step to pathogen reduction methods results in improvements to the quality of the stored blood leading to improved shelf life. Importantly, the application of blood oxygen reduction methods to existing methods of pathogen reduction results in significant improvements. Thus, the methods of the present specification can be applied to pathogen reduction methods known in the art. Suitable methods for pathogen removal compatible with reduced oxygen pathogen inactivation include, but are not limited to the methods discussed in Wagner et al, "Developing pathogen reduction technologies for RBC suspensions" in Vox Sanguinis, 100:112-121 (2011), Pidcocke et al, "Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time" in Transfusion, 53:137-149 (2013), Henschler et al, "Development of the S-303 pathogen inactivation technology for red blood cell concentrates" in Transfusion Medicine and Hemotherapy, 38:33-42 (2011), Guignard et al, "The clinical and biological impact of new pathogen inactivation technologies on platelet

The methods provide for reductions in hemolysis that provide for extending the allowable storage time after pathogen inactivation by maintaining the levels of hemolysis below 0.8% or, in certain aspects, below 1.0%. In an aspect, the hemolysis is no greater than 0.2% after 14 days of storage under anaerobic conditions. In an aspect, hemolysis is no greater than 0.4% after 21 days of storage under anaerobic conditions. In another aspect, hemolysis is no greater than 0.5% after 28 days of storage under anaerobic conditions.

In another aspect, hemolysis is no greater than 0.6% after 28 days of storage under anaerobic conditions. In another aspect, the hemolysis is between 0.01 to 0.2% after 14 days of storage under anaerobic conditions. In an aspect, hemolysis is between 0.2 to 0.4% after 21 days of storage under anaerobic conditions. In another aspect, hemolysis is no greater than 0.4% after 35 days of storage under anaerobic conditions. In another aspect, the hemolysis is no greater than 0.6% after 28 days of storage under anaerobic conditions. In another aspect, hemolysis is no greater than 0.1% after 14 days of storage under anaerobic conditions. In another aspect, the hemolysis is between 0.01 to 0.2% after 14 days of storage under anaerobic conditions. In an aspect, hemolysis is between 0.2 to 0.4% after 21 days of storage under anaerobic conditions.
another aspect, hemolysis is between 0.2 to 1.0% after 49 days of storage under anaerobic conditions. Methods of pathogen reduction using oxygen and carbon dioxide reduced blood products provide for the reductions in hemolysis as provided above.

[0066] As provided herein, the methods provide for reducing the level of hemolysis in pathogen treated oxygen reduced red blood cells when compared to non-oxygen reduced red blood cells. In an aspect, pathogen reduction under oxygen reduced conditions results in about 30% of the levels of hemolysis observed in pathogen reduction in non-oxygen reduced preparations. In an aspect, at least about 30% reduction is observed after 21 days of anaerobic storage. In an aspect, the about 30% reduction in hemolysis is observed at 35 days of anaerobic storage. In a further aspect, the about 30% reduction is observed at 42 days of anaerobic storage.

[0067] As provided herein, the methods provide for reducing the level of hemolysis in pathogen treated oxygen reduced leukoreduced whole blood (OR-LRWB) when compared to non-oxygen reduced leukoreduced whole blood (LRWB). In an aspect, pathogen reduction under oxygen reduced conditions results in about 30% of the levels of hemolysis observed in pathogen reduction in non-oxygen reduced preparations. In an aspect, at least about 30% reduction is observed after 21 days of anaerobic storage. In an aspect, the about 30% reduction in hemolysis is observed at 35 days of anaerobic storage. In a further aspect, the about 30% reduction is observed at 42 days of anaerobic storage.

[0068] In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 20%. In an aspect, the at least 20% reduction is observed after 21 days of anaerobic storage. In an aspect, the at least 20% reduction in hemolysis is observed at 35 days of anaerobic storage. In a further aspect, the at least 20% reduction is observed at 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 25%. In an aspect, the at least 25% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 25% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 25% reduction is observed after 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 35%. In an aspect, the at least 35% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 35% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 35% reduction is observed after 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 40%. In an aspect, the at least 40%
reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 40% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 40% reduction is observed after 42 days of anaerobic storage.

[0069] In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 45%. In an aspect, the at least 45% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 45% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 45% reduction is observed after 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 50%. In an aspect, the at least 50% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 50% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 50% reduction is observed after 42 days of anaerobic storage.

[0070] As provided herein, the methods provide for reducing the level of hemolysis in pathogen treated oxygen and carbon dioxide reduced red blood cells when compared to non-oxygen reduced red blood cells. In an aspect, pathogen reduction under oxygen and carbon dioxide reduced conditions results in about 30% of the levels of hemolysis observed in pathogen reduction in non-oxygen and carbon dioxide reduced preparations. In an aspect, at least about 30% reduction is observed after 21 days of anaerobic storage. In an aspect, the about 30% reduction in hemolysis is observed at 35 days of anaerobic storage. In a further aspect, the about 30% reduction is observed at 42 days of anaerobic storage.

[0071] As provided herein, the methods provide for reducing the level of hemolysis in pathogen treated oxygen and carbon dioxide reduced leukoreduced whole blood (OR-LRWB) when compared to non-oxygen reduced leukoreduced whole blood (LRWB). In an aspect, pathogen reduction under oxygen and carbon dioxide reduced conditions results in about 30% of the levels of hemolysis observed in pathogen reduction in non-oxygen reduced preparations. In an aspect, at least about 30% reduction is observed after 21 days of anaerobic storage. In an aspect, the about 30% reduction in hemolysis is observed at 35 days of anaerobic storage. In a further aspect, the about 30% reduction is observed at 42 days of anaerobic storage.

[0072] In some aspects, the reduction of hemolysis in oxygen and carbon dioxide depleted blood products when compared to conventional pathogen reduction methods is at least 20%. In an aspect, the at least 20% reduction is observed after 21 days of anaerobic storage. In an aspect, the at least 20% reduction in hemolysis is observed at 35 days of anaerobic storage. In a further aspect, the at least 20% reduction is observed at 42 days of anaerobic storage.
anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 25%. In an aspect, the at least 25% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 25% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 25% reduction is observed after 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 35%. In an aspect, the at least 35% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 35% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 35% reduction is observed after 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 40%. In an aspect, the at least 40% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 40% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 40% reduction is observed after 42 days of anaerobic storage.

[0073] In some aspects, the reduction of hemolysis in oxygen and carbon dioxide depleted blood products, when compared to conventional pathogen reduction methods is at least 45%. In an aspect, the at least 45% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 45% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 45% reduction is observed after 42 days of anaerobic storage. In some aspects, the reduction of hemolysis when compared to conventional pathogen reduction methods is at least 50%. In an aspect, the at least 50% reduction is observed after 21 days of anaerobic storage. In another aspect, the at least 50% reduction is observed after 35 days of anaerobic storage. In a further aspect, the at least 50% reduction is observed after 42 days of anaerobic storage.

[0074] Due to the improved health of the red blood cells as indicated by reduced hemolysis, by reducing the level of oxygen in the blood prior to pathogen inactivation, the safe storage period (e.g., shelf life) of a pathogen reduce blood product can be extended. Not to be limited by theory, it is thought that the safety and usefulness of a stored blood product is reflected in a number of measurable parameters. Among the parameters are the overall levels of hemolysis and the level of microparticles. Accordingly the reduced hemolysis and reduced microparticle formation observed using the methods of the present specification may reflect underlying improvements to red blood physiology that are uncharacterized or unknown.

[0075] Due to the improved initial health of the red blood cells provided by reducing the oxygen in blood before pathogen treatment, the present specification provides for, and
includes, extending the safe storage period (e.g., shelf life) of a pathogen reduced blood product. As provided herein, the shelf life of a pathogen reduced blood product can be increased by a week or more. In an aspect the shelf life can be increased by two weeks. In other aspects, the shelf life can be increased by three weeks wherein the blood retains hemolysis levels below 0.8%.

As provided above, a variety of pathogen reduction methods provide for one of more photosensitizers to be added to the blood product prior to irradiation with one or more wavelengths of light. Table 1 presents a number of suitable photosensitizers. As used herein, photosensitizers include those that produce reactive products as well as photosensitizers that are themselves reactive (for example psoralen related photosensitizers).
<table>
<thead>
<tr>
<th>Author</th>
<th>Blood Component</th>
<th>X-linker</th>
<th>X-linker Conc. (µM)</th>
<th>Radiant Exposure</th>
<th>Citation</th>
<th>Secondary Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pidcock</td>
<td>WB</td>
<td>Riboflavin</td>
<td>50</td>
<td>80 J/mL @ 265-400nm; 6.2 J/cm² @ 265-400nm</td>
<td>Transfusion 2013, Vol. 53, Supplement pp. 139S-149S</td>
<td>n/a</td>
</tr>
<tr>
<td>Wagner</td>
<td>RBC</td>
<td>Hypericin</td>
<td>2</td>
<td>15 J/cm² Fluor. light</td>
<td>Vox Sanguinis (2011) 100, 112-121</td>
<td>“ “</td>
</tr>
<tr>
<td>Wagner</td>
<td>RBC</td>
<td>Silicon Phthalocyanine</td>
<td>5</td>
<td>15 J/cm² @ 670 nm</td>
<td>Vox Sanguinis (2011) 100, 112-121</td>
<td>“ “</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Type</td>
<td>Dye</td>
<td>Power</td>
<td>Wavelength</td>
<td>Source</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Wagner</td>
<td>RBC</td>
<td>Phenothiazine DMMB dye</td>
<td>6</td>
<td>0.187 J/cm² @ 670 nm</td>
<td>Vox Sanguinis (2011) 100, 112–121</td>
<td>Wagner S, Skripchenko A, Thompson-Montgomery D: Use of a flow-cell system to investigate virucidal dimethylmethylene blue phototreatment in two RBC additive solutions. Transfusion 2002; 42:1200–1205</td>
</tr>
</tbody>
</table>
In aspects according to the present specification, the pathogen reduction methods may include one or more photosensitizers. In an aspect the photosensitizer is riboflavin. In one aspect of the present disclosure, the final concentration of riboflavin is between 40 to 60 µM. In another aspect, the final concentration of riboflavin is at least 40 µM. In another aspect, the final concentration of riboflavin is at most 60 µM. In another aspect, the final concentration of riboflavin is between 40 to 55 µM. In another aspect, the final concentration of riboflavin is between 45 to 55 µM. In a further aspect, the final concentration of riboflavin is between 50 to 60 µM. In an aspect, the final concentration of riboflavin is 50 µM.

The present disclosure provides for and includes irradiating oxygen reduced blood products having an added photosensitizer to reduce pathogens levels. As used herein, the term "irradiation" is refers to illumination of blood using both visible and ultraviolet wavelengths.

In one aspect of the present disclosure, an oxygen reduced blood product having riboflavin is irradiated between 265 to 400nm. In another aspect, a blood product is irradiated between 300 to 400nm. In another aspect, a blood product is irradiated between 265 to 350nm. Suitable wavelengths for the irradiation of an oxygen reduced blood product are determined based on the photosensitizer, for example as provided in Table 1. As provided by the present specification, the reduction in oxygen levels results in decreased hemolysis and decreased microparticle formation that normally result from the pathogen reduction process and reflects the improved health of the red blood cells in the pathogen inactivated blood products.

The present specification provides for, and includes, irradiating the oxygen reduced blood product having riboflavin with a UV radiant exposure f between 3.2 to 7.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV radiant exposure of between 5 to 7.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV radiant exposure of between 5 to 6.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV radiant exposure of between 4 to 7.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV radiant exposure of at least 3.2 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV radiant exposure of at least 5 J/cm². In a further aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV radiant exposure of at most 7.0 J/cm².

The present disclosure provides for, and included, total dosages of up to 100 J/mL. In an aspect, the dosage is between 10 and 100 J/mL. In another aspect, the dosage is between 50
and 100 J/mL. In another aspect, the dosage is between 50 and 80 J/mL. In other aspect, the dosage is less than 150 J/mL. In an aspect, the dosage is at least 25 J/mL. Other suitable dosages can be determined.

[0081] The present specification provides for, and includes, a method of pathogen inactivation that reduces the level of microparticles in stored blood. In aspects according to the present specification, the method comprises obtaining an oxygen reduced blood product, adding a photosensitizer, and irradiating said photosensitizer containing oxygen reduced blood product. In certain aspects, the method further includes storing the irradiated photosensitizer containing oxygen reduced blood product for a storage period. In other aspects, the irradiated photosensitizer containing oxygen reduced blood product is stored under anaerobic conditions for a storage period.

[0082] As provided herein, the storage period may be up to 9 weeks under either aerobic or anaerobic conditions and provides for reduced microparticle formation. In an aspect, the storage period under either aerobic or anaerobic conditions is 2 weeks. In another aspect, the storage period under either aerobic or anaerobic conditions is 3 weeks. In a further aspect, the storage period under either aerobic or anaerobic conditions is 3 weeks. The present methods further provide for storage periods under either aerobic or anaerobic conditions of 4 weeks. In other aspects, the storage period following pathogen inactivation may be 5 weeks. In yet other aspects, the aerobic or anaerobic storage period is 6 weeks. In an additional aspect, the aerobic or anaerobic storage period is 6 weeks. Notably, as the storage period is extended, the observed improvement in blood cell quality increases. Not to be limited by theory, it is thought that the reduction in microparticle formation is the result of improved red blood cell quality that is immediate. That is, the red blood cell quality is improved prior to storage and the decreased microparticle formation is evidence of that improvement. It is believed that other, uncharacterized changes in the red blood cells, may underlie the observed microparticle reduction.

[0083] In aspects according to the present specification, the pathogen reduction methods providing for reduced microparticle formation may include one or more photosensitizers. In an aspect the photosensitizer is riboflavin. In one aspect of the present disclosure, the final concentration of riboflavin is between 40 to 60 µM. In another aspect, the final concentration of riboflavin is at least 40 µM. In another aspect, the final concentration of riboflavin is at most 60 µM. In another aspect, the final concentration of riboflavin is between 40 to 55 µM. In another aspect, the final concentration of riboflavin is between 45 to 55 µM. In a
further aspect, the final concentration of riboflavin is between 50 to 60 µM. In an aspect, the final concentration of riboflavin is 50 µM.

[0084] The present disclosure provides for and includes irradiating oxygen reduced blood products having an added photosensitizer to reduce pathogens levels and reduce microparticle formation. As used herein, the term "irradiation" is refers to illumination of blood using both visible and ultraviolet wavelengths.

[0085] In one aspect of the present disclosure, an oxygen reduced blood product having riboflavin is irradiated between 265 to 400 nm to result in reduced microparticle formation. In another aspect, a blood product is irradiated between 300 to 400 nm. In another aspect, a blood product is irradiated between 265 to 350 nm. Suitable wavelengths for the irradiation of an oxygen reduced blood product are determined based on the photosensitizer, for example as provided in Table 1. As provided by the present specification, the reduction in oxygen levels results in decreased microparticle formation that normally result from the pathogen reduction process and reflects the improved health of the red blood cells in the pathogen inactivated blood products.

[0086] Reductions in microparticle formation can be measured by methods known in the art. Suitable methods for microparticle formation include Schubert et al. (Schubert, et al, "Whole blood treated with riboflavin and ultraviolet light: Quality assessment of all blood components produced by the buffy coat method." Transfusion 55(4):815-823 (2015)). While absolute values of the numbers of microparticles can be determined, in general, the reduction of microparticles is determined relative to a control sample. In the present specification, the control comprises a non-oxygen reduced blood product. Absolute values may be determined by preparing a set of standards.

[0087] The methods of the present specification provide for reductions in microparticle formation in stored blood. In some aspects, the stored blood is stored under anaerobic conditions, thus maintaining the oxygen reduced state obtained for the pathogen inactivation process. In other aspects, the stored blood is maintained under conventional storage conditions. Though conventional storage conditions allow for the ingress of oxygen over time and diminishes the improvements to ATP and 2,3-DPG for example, conventional storage may decrease costs and reduce disruption to existing blood banking facilities. In most aspects however, it is expected that storage would occur under anaerobic conditions, either with or without carbon dioxide.

[0088] As provided herein, microparticle formation is decreased by reducing oxygen to 25% S02 or below before completing the pathogen inactivation methods. In an aspect, the
microparticles are reduced by about two-fold in oxygen reduced samples compared to equivalently treated aerobic samples after 2 days. The methods further provide for at least two-fold reductions in microparticles after one week. In an aspect, the level of microparticles is reduced by greater than five-fold after two weeks of storage. In an aspect, microparticles are reduced by 9-fold after 3 weeks storage. In a further aspect, the number of microparticles is reduced by 9-fold after 6 weeks of storage. The present methods provide for at least a two-fold reduction in microparticle formation after 9 weeks of storage under anaerobic conditions. In other aspects, the methods provide for at least a two-fold reduction in microparticle formation after 9 weeks of storage under aerobic conditions.

Also provided by the present methods are reductions in microparticle formation of at least three fold when compared to pathogen reduction methods performed in the presence of oxygen. When measured at two to 6 weeks, the level of microparticles remains at least three fold less compared to similarly treated oxygen containing samples. In other aspects, the reduced microparticle formation results in at least a five-fold reduction after two weeks of storage.

In aspects of the present specification, the level of microparticle formation are reduced to levels of non-pathogen treated samples. Accordingly, using the methods of the present specification, the increase in microparticle formation that results from pathogen inactivation are reversed.

The present specification provides for, and includes, improved blood compositions that have extended shelf lives. In an aspect, the present disclosure provides for and includes, oxygen reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of from 1 to 25%, and having a pCO2 of 90 mmHg or less at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm.

In aspects according to the present specification, oxygen reduced whole blood comprising whole blood having an oxygen saturation (S02) of less than 25% may have an S02 of less than 20%. In other aspects, the riboflavin containing pathogen reduced blood may have an S02 of less than 15%. In an aspect, the S02 level in the riboflavin containing oxygen reduced blood products may have an S02 of less than 10%. In certain aspects, the riboflavin containing pathogen reduced blood may have an S02 of 5%. The present specification further provides for oxygen reduced whole blood having an S02 of between 5 and 20%. In another aspect, the S02 may be between 5 and 25%. In another aspect, the S02 may be between 5 and 15%. In a further aspect, the S02 is reduced to between 5 and 10%.
[0093] In aspects according to the present specification, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of between 3.2 to 7.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of between 5 to 7.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of between 5 to 6.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of between 4 to 7.0 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of at least 3.2 J/cm². In another aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of at least 5 J/cm². In a further aspect, oxygen reduced whole blood containing riboflavin is irradiated with a UV dosage of at most 7.0 J/cm².

[0094] The present specification provides for, and includes, improved blood compositions that have extended shelf lives. In an aspect, the present disclosure provides for and includes, oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of from 1 to 25%, and having a pCO2 of 20 mmHg or less at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm. In another aspect, the oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of from 1 to 25%, and having a pCO2 of between 20 and 40 mmHg at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm. In another aspect, the oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of from 1 to 25%, and having a pCO2 of between 40 and 70 mmHg at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm. In another aspect, the oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of from 1 to 25%, and having a pCO2 of between 10 and 20 mmHg at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm. In another aspect, the oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 40 to 60 μM riboflavin, having an oxygen saturation (S02) of from 1 to 25%, and having a pCO2 of less than 15 mmHg at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm.
The methods of the present specification provide for and include improvement in parameters selected from the group comprising complete blood count (CBC), concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303, and a combination thereof in stored blood when compared to pathogen reduction methods performed in the presence of oxygen. In some aspects, the stored blood is stored under anaerobic conditions, thus maintaining the oxygen reduced state obtained for the pathogen inactivation process. In other aspects, the stored blood is maintained under conventional storage conditions. Though conventional storage conditions allow for the ingress of oxygen over time and diminishes the improvements to ATP and 2,3-DPG for example, conventional storage may decrease costs and reduce disruption to existing blood banking facilities. In most aspects however, it is expected that storage would occur under anaerobic conditions, either with or without carbon dioxide.

The methods of the present specification provide for reductions in hemolysis of a blood product comprising removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM. In another aspect, the reduction of hemolysis comprises removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 5 to 10 mM. In other aspects, the reduction of hemolysis comprises removing oxygen and carbon dioxide from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM. In a further aspect, reductions in hemolysis comprises removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, adding GSH to a final concentration of between 2 to 20 mM, and storing under anaerobic conditions. In yet another aspect, reduction of hemolysis of a blood product comprises mixing an additive solution with the blood product, removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, adding GSH to a final concentration of between 2 to 20 mM, and storing under anaerobic conditions. The methods of the present specification also provide for reductions in hemolysis in S-303 pathogen inactivated and oxygen reduced blood products, by maintaining the levels of hemolysis below 1.0%. In an aspect, hemolysis is below 0.8%. In another aspect, hemolysis is no greater than 0.2%. In a further aspect, hemolysis is no greater than 0.4%. In yet another aspect, hemolysis is no greater than 0.6%. In another aspect, hemolysis is between 0.01 to 0.2%. In certain aspects, hemolysis is between 0.2 and 0.8%. In
other aspects, hemolysis is between 0.2 and 0.6%. In another aspect, hemolysis is between 0.5 and 1.0%.

[0097] The methods of the present specification provide for having reduced microparticle formation of a blood product comprising removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM. In another aspect, the reduction in microparticle formation comprises removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 10 mM. In other aspects, the reduction in microparticle formation comprises removing oxygen and carbon dioxide from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM. In a further aspect, the level of microparticles is reduced by greater than 60% after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than 5-fold after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than four-fold after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than three-fold after at least one week of storage. In yet another aspect, the level of microparticles is reduced by greater than two-fold after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least one week of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least one week of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after at least one week of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after at least one
week of storage. In an aspect, the level of microparticles is reduced by between 60 and 90% after at least one week of storage. In another aspect, the level of microparticles is reduced by between 90 and 100% after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than 80% after at least one week of storage. The methods of the present specification also provide for reductions in microparticle formation in S-303 pathogen inactivated and oxygen reduced blood products, by reducing the level of microparticles by greater than five-fold after at least three weeks of storage. In an aspect, the level of microparticles is reduced by greater than four-fold after at least three weeks of storage. In another aspect, the level of microparticles is reduced by greater than three-fold after at least three weeks of storage. In yet another aspect, the level of microparticles is reduced by greater than two-fold after at least three weeks of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least three weeks of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after at least three weeks of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after at least three weeks of storage. In an aspect, the level of microparticles is reduced by greater than four-fold after three weeks of storage. In another aspect, the level of microparticles is reduced by greater than three-fold after three weeks of storage. In yet another aspect, the level of microparticles is reduced by greater than two-fold after three weeks of storage. In an aspect, the level of microparticles is reduced by greater than 10% after three weeks of storage. In another aspect, the level of microparticles is reduced by greater than 25% after three weeks of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after three weeks of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after three weeks of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after three weeks of storage. In an aspect, the level of microparticles is reduced by between 60 and 90% after
three weeks of storage. In another aspect, the level of microparticles is reduced by between 90 and 100% after three weeks of storage. In another aspect, the level of microparticles is reduced by greater than 80% after three weeks of storage. The methods of the present specification also provide for reductions in microparticle formation in S-303 pathogen inactivated and oxygen reduced blood products, by reducing the level of microparticles by greater than five-fold after at least six weeks of storage. In an aspect, the level of microparticles is reduced by greater than four-fold after at least six weeks of storage. In another aspect, the level of microparticles is reduced by greater than three-fold after at least six weeks of storage. In yet another aspect, the level of microparticles is reduced by greater than two-fold after at least six weeks of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least six weeks of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least six weeks of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after at least six weeks of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after at least six weeks of storage. In an aspect, the level of microparticles is reduced by between 60 and 90% after at least six weeks of storage. In another aspect, the level of microparticles is reduced by between 90 and 100% after at least six weeks of storage. In another aspect, the level of microparticles is reduced by greater than 80% after at least six weeks of storage.

[0098] The present specification provides for, and includes, improved blood compositions that have extended shelf lives. In an aspect, the present disclosure provides for and includes, oxygen reduced red blood cells comprising red blood cells having a final concentration of approximately 0.2 mM S-303, having an oxygen saturation (S02) of less than 25%, and having a pCO2 of 90 mmHg or less at 37 °C. In another aspect, oxygen reduced red blood cells comprising red blood cells having a final concentration of approximately 0.2 mM S-303 and a final concentration of between approximately 5 to 20 mM GSH. In an aspect, the oxygen reduced red blood cells are also carbon dioxide reduced red blood cells comprising red blood cells having a final concentration of approximately 0.2 mM S-303, having an oxygen saturation (S02) of less than 25%, and having a pCO2 of 90 mmHg or less at 37 °C. In another aspect, oxygen and carbon dioxide reduced red blood cells comprise red blood cells having a final concentration of approximately 0.2 mM S-303 and a final concentration of between approximately 2 to 20 mM GSH. The present specification also provides for, and includes, improved blood compositions having improvement in at least one, at least two, at
least three, at least four, or at least five, parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303. In an aspect, the improved blood compositions have improvement in two parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303. In another aspect, the improved blood compositions have improvement in three parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303. In a further aspect, the improved blood compositions have improvement in four parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303. In yet another aspect, the improved blood compositions have improvement in five parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303. In another aspect, the improved blood compositions have improvement in between five to nine parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %S02, and decomposition kinetics of S-303.

[0099] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having an improved concentration of residual pathogens by reducing the level of pathogens by greater than 10%. In certain aspects, the concentration of residual pathogens is reduced by greater than 20%. In other aspects, the concentration of residual pathogens is reduced by 30%. In another aspect, the concentration of residual pathogens is reduced by greater than 40%. In yet another aspect, the concentration
of residual pathogens is reduced by greater than 60%. In a further aspect, the concentration of residual pathogens is reduced by greater than 80%. In certain aspects, the concentration of residual pathogens is reduced by between 10 to 50%. In other aspects, the concentration of residual pathogens is reduced by between 50 to 95%. In another aspect, the concentration of residual pathogens is reduced by between 60 to 100%. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having an improved concentration of residual pathogens by also having reduced carbon dioxide.

[00100] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having levels of hemolysis is below 1.0%. In an aspect, hemolysis is below 0.8%. In another aspect, hemolysis is no greater than 0.2%. In a further aspect, hemolysis is no greater than 0.4%. In yet another aspect, hemolysis is no greater than 0.6%. In another aspect, hemolysis is between 0.01 to 0.2%. In certain aspects, hemolysis is between 0.2 and 0.8%. In other aspects, hemolysis is between 0.2 and 0.6%. In another aspect, hemolysis is between 0.5 and 1.0%. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved hemolysis by also having reduced carbon dioxide.

[00101] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved deformability. In certain aspects, deformability is increased by greater than 5%. In other aspects, deformability is increased by greater than 10%. In another aspect, deformability is increased by between 10 to 50%. In other aspects, deformability is increased by greater than 50%. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved deformability by also having reduced carbon dioxide.

[00102] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved levels of ATP by having increased levels of ATP. In certain aspects, the level of ATP is increased by greater than 10%. In other aspects, the level of ATP is increased by between 5 to 40%. In another aspect, the level of ATP is increased after one week of storage. In other aspects, the level of ATP is increased after two weeks of storage. In another aspect, the level of ATP is increased after four weeks of storage. In yet another aspect, the level of ATP is increased after five weeks of storage. In a further aspect, the level of ATP is increased after 6 weeks of storage. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having an improved level of ATP by also having reduced carbon dioxide.
[00103] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved levels of 2,3-DPG by having increased levels of 2,3-DPG. In certain aspects, the level of 2,3-DPG is increased by greater than 10%. In other aspects, the level of 2,3-DPG is increased by greater than 20%. In further aspects, the level of 2,3-DPG is increased by greater than 30%. In other aspects, the level of 2,3-DPG is increased by between 5 to 40%. In another aspect, the level of 2,3-DPG is increased after one week of storage. In other aspects, the level of 2,3-DPG is increased after two weeks of storage. In another aspect, the level of 2,3-DPG is increased after four weeks of storage. In yet another aspect, the level of 2,3-DPG is increased after five weeks of storage.

In a further aspect, the level of 2,3-DPG is increased after 6 weeks of storage. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having an improved level of 2,3-DPG by also having reduced carbon dioxide.

[00104] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved levels of microparticles by reducing the levels of microparticles by five-fold after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than four-fold after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than three-fold after at least one week of storage. In yet another aspect, the level of microparticles is reduced by greater than two-fold after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least one week of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least one week of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after at least one week of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after at least one week of storage. In an aspect, the level of microparticles is reduced by between 60 and 90% after at least one week of storage. In another aspect, the level of microparticles is reduced by between 90 and 100% after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than 80% after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least three weeks of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by between
20 and 60% after at least three weeks of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after at least three weeks of storage. In an aspect, the level of microparticles is reduced by between 60 and 90% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by between 90 and 100% after at least three weeks of storage. In another aspect, the level of microparticles is reduced by greater than 80% after at least three weeks of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least six weeks of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least six weeks of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least six weeks of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after at least six weeks of storage. In a further aspect, the level of microparticles is reduced by greater than 60% after at least six weeks of storage. In an aspect, the level of microparticles is reduced by between 60 and 90% after at least six weeks of storage. In another aspect, the level of microparticles is reduced by greater than 80% after at least six weeks of storage. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved levels of microparticles by also having reduced carbon dioxide.

[00105] The present specification also provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved phosphatidylserine exposure on the cell membrane surface by maintaining asymmetrical distribution of phosphatidylserine along the cytosolic surface of the cell membrane. In certain aspects, phosphatidylserine expression can be measured through labeling cell membrane with fluorescent annexin-V and quantifying with flow cytometry or microscopy. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions also having reduced carbon dioxide.

[00106] The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having improved levels of %S02 by having a %S02 of less than 30%. In an aspect, the %S02 is less than 25%. In another aspect, the %S02 is less than 20%. In yet another aspect, the %S02 is less than 20%. In a further aspect, the %S02 is less than 10%. In another aspect, the %S02 is less than 5%. In certain aspects, the %S02 is between 5 to 20%. In other aspects, the %S02 is between 3 to 15%. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions also having reduced carbon dioxide.
The present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions having reduced levels of S-303 after the pathogen inactivation process of 3 hrs. In an aspect, the levels of S-303 are reduced after the pathogen inactivation process of 6 hrs. In another aspect, the levels of S-303 are reduced after the pathogen inactivation process of 9 hrs. In yet another aspect, the levels of S-303 are reduced after the pathogen inactivation process of 12 hrs. In a further aspect, the levels of S-303 are reduced after the pathogen inactivation process of 24 hrs. In some aspects, the present specification provides for S-303 pathogen inactivated and oxygen reduced improved blood compositions also having reduced carbon dioxide.

The methods of the present specification provide for improving the efficacy of pathogen inactivation of S-303 in a blood product comprising removing oxygen from red blood cells, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM. In another aspect, the improvement to the efficacy of pathogen inactivation of S-303 in a blood product comprises removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 10 mM. In other aspects, the improvement to the efficacy of pathogen inactivation of S-303 in a blood product comprises removing oxygen and carbon dioxide from a blood product, adding S-303 to a final concentration of 0.2 mM, and adding GSH to a final concentration of between 2 to 20 mM. In a further aspect, the improvement to the efficacy of pathogen inactivation of S-303 in a blood product comprises removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, adding GSH to a final concentration of between 2 to 20 mM, and storing under anaerobic conditions. In yet another aspect, the improvement to the efficacy of pathogen inactivation of S-303 in red blood cells comprises mixing an additive solution with the blood product, removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, adding GSH to a final concentration of between 2 to 20 mM, and storing under anaerobic conditions. In certain aspects, the improvement to the efficacy of pathogen inactivation of S-303 is by reducing the concentration of residual pathogens by greater than 10%. In certain aspects, the concentration of residual pathogens is reduced by greater than 20%. In other aspects, the concentration of residual pathogens is reduced by 30%. In another aspect, the concentration of residual pathogens is reduced by greater than 40%. In yet another aspect, the concentration of residual pathogens is reduced by greater than 60%. In a further aspect, the concentration of residual pathogens is reduced by greater than 80%. In certain aspects, the concentration of residual pathogens is reduced by between 10 to 50%. In other aspects, the concentration of residual
pathogens is reduced by between 50 to 95%. In another aspect, the concentration of residual pathogens is reduced by between 60 to 100%.

[00109] In a further aspect, reduction in microparticle formation of a blood product comprises mixing an additive solution with the blood product, removing oxygen from a blood product, adding S-303 to a final concentration of 0.2 mM, adding GSH to a final concentration of between 2 to 20 mM, centrifuging the blood product, and storing under anaerobic conditions. In certain aspects, the reduction in microparticle formation in a blood product comprises reducing the levels of microparticles by five-fold after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than four-fold after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than three-fold after at least one week of storage. In yet another aspect, the level of microparticles is reduced by greater than two-fold after at least one week of storage. In an aspect, the level of microparticles is reduced by greater than 10% after at least one week of storage. In another aspect, the level of microparticles is reduced by greater than 25% after at least one week of storage. In a further aspect, the level of microparticles is reduced by between 10 and 50% after at least one week of storage. In another aspect, the level of microparticles is reduced by between 20 and 60% after at least one week of storage.

[00110] The present specification provides for S-303 pathogen inactivated and oxygen reduced blood compositions having improved parameters selected from the group consisting of CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %SO2, and decomposition kinetics of S-303 in stored blood when compared to a pooled sample of blood. In certain aspects, the improvements in CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %SO2, and decomposition kinetics of S-303 in stored blood are as described above.

[00111] The present specification provides for units of S-303 pathogen inactivated and oxygen reduced blood having improved parameters selected from the group comprising CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability, microparticles formation, phosphatidylserine exposure on the cell membrane surface, %SO2, and decomposition kinetics of S-303 in stored blood when compared to units of blood having pathogen reduction methods performed in the presence of oxygen.

[00112] The terms "comprises," "comprising," "includes," "including," "having," and their conjugates mean "including but not limited to."
The term "consisting of means "including and limited to."

The term "consisting essentially of means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.

As used herein, the singular forms "a," "an," and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a compound" or "at least one compound" may include a plurality of compounds, including mixtures thereof.

While the present disclosure has been described with reference to particular aspects, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the scope of the present disclosure.

Therefore, it is intended that the present disclosure not be limited to the particular aspects disclosed as the best mode contemplated for carrying out the present disclosure, but that the present disclosure will include all aspects falling within the scope and spirit of the appended claims.
EXAMPLE 1: COLLECTION OF BLOOD AND SAMPLE PREPARATION

Six ABO-matched whole blood units are collected, pooled, and split into 6 samples in three pairs as provided in Table 2. Six units of whole blood (450 mL + 10%) is collected in CPD and held on cooling trays until pathogen inactivation treatment. On the day of donation (Do) these six whole blood units are pooled and split. Deoxygenation of whole blood is performed as described below. Units are treated with saline or riboflavin as indicated in Table 2. Samples 3 and 4 are oxygen reduced after pathogen treatment and component separation and preparation of packed red blood cells. Samples 5 and 6 are oxygen reduced at the whole blood stage and pathogen reduced prior to component separation and preparation of packed red blood cells. Riboflavin containing units are transferred to a MIRASOL® whole blood illumination bag and all the units placed on a cooling tray. Within 24 hours of donation, whole blood units are processed by the buffy coat method and red cell concentrates stored after addition of SAGM additive solution. Oxygen reduced red blood cell concentrates are prepared as described in Example 2.

| Table 2: Samples for Pathogen Reduction with Riboflavin Photosensitiser |
|---------------------------|----------------|-----------------|----------------|----------------|----------------|
| Treatment | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
| Oxygen reduced | No | No | RBCs | RBCs | Whole Blood | Whole Blood |
| Riboflavin (50 μM final) | No | 35 ml | No | 35 ml | No | 35 ml |
| Sterile Saline | 35 ml | No | 35 ml | No | 35 ml | No |
| O₂ removed prior to Pathogen reduction | n/a | No | n/a | No | n/a | Yes |

EXAMPLE 2: COLLECTION, LEUKOREDUCTION AND GAS DEPLETION OF WHOLE BLOOD

Pooled and split red blood cell units ("Blood units") in CPD are leukoreduced according to manufacturer's instructions after Mirasol treatment and component separation.

Each whole blood unit (sample 5 and 6) is processed for oxygen depletion by
transferring to a whole blood in collection bag connected to an Sorin D100 membrane oxygenator and at a flow rate of 700 ml/minute with a mixture of 95%N₂ and 5%CO₂ gas to achieve pre-storage %SO₂ of less than 3% and pCO₂ of 70 mHg (37°C). For Sample 6, O₂ from Mirasol® disposables (not including the riboflavin solution) are purged of oxygen prior to processing. Immediately following the preparation of each sample, ABL90 blood gas levels are determined according to manufacturer's instructions to establish baseline SO₂ and PCO₂ levels (e.g., To). For Sample 6, oxygen-reduced blood is then transferred to the Mirasol treatment bag. After adding riboflavin, it is placed in the Mirasol photosensitizing device and exposed to UV according to manufacturer's instructions. After Mirasol treatment (Sample 6), the content is transferred back into original blood collection bag then component processed according to the standard top-bottom buffy coat method. Separated RBCs are leukoreduced with attached leukoreduction filter and stored in an anaerobic canister. For Sample 5, the Mirasol treatment steps are skipped from above.

For Samples 3 and 4, a separated and leukoreduced RBC bag is connected to an Sorin D100 membrane oxygenator and at a flow rate of 700 ml/minute with a mixture of 95%N₂ and 5%CO₂ gas to achieve pre-storage %SO₂ of less than 3% and pCO₂ of 70 mHg (37°C). Immediately following the preparation of each sample, ABL90 blood gas levels are determined according to manufacturer's instructions to establish baseline SO₂ and pCO₂ levels (e.g., To). O₂-reduced RBC are transferred back into the original RBC storage bag and stored in anaerobic canister.

EXAMPLE 3: MIRASOL® PATHOGEN REDUCTION

Samples are processed using the Mirasol Illuminator according to manufacturer's instructions. The experiment is replicated five times for a total of n=5 samples at each data point.

EXAMPLE 4: STORAGE OF ANAEROBIC TEST PRODUCTS

Oxygen reduced and oxygen and carbon dioxide reduced blood in transfer bags are wrapped in mesh, secured with elastic and placed in anaerobic canisters with 4 sorbent sachets (Mitsubishi, SS-300). Canisters are sealed and the canister purged of air using nitrogen gas. Anaerobic and aerobic blood is placed in a Blood Bank refrigerator at 1 to 6 °C. Canister gauges are monitored daily to ensure that they read 5±1 psi. Canisters that fall below 2 psi are adjusted.
EXAMPLE 5: SAMPLE ANALYSIS

[00124] At days 2, 7, 14, 21, 28, and 42, the following measurements are performed from each of the six samples prepared according to the Examples above. The experiment is replicated five times for a total of n=5 samples at each data point.

 a. Sample preparation

[00125] These methods are known to those of skill in the art. Red blood cell-supernatant is prepared for microvesicle MV counts using the procedure of Schubert et al. (Schubert, et al., "Whole blood treated with riboflavin and ultraviolet light: Quality assessment of all blood components produced by the buffy coat method," Transfusion 55(4):815-823 (2015)). Red blood cell count, the mean corpuscle volume (MCV) and total hemoglobin in the individual samples are determined in a hematology analyzer (ADVIA 120, Siemens). Haematocrit is determined using the HAEMATOKRIT 210 device from Hettrich Zentrifugen according to the manufacturers' instructions. Metabolites (glucose and lactate) and potassium (K+) are quantified using a Gem Premier 3000 blood gas analyzer (Instrumentation Laboratories). pH is measured with an Orion Ross Ultra Semi-Micro pH probe (Thermo Scientific). After day 1 measurements, hemoglobin and blood gas status is determined using Gem Premier 3000 blood gas analyzer (Instrumentation Laboratories) (%SO2, pCO2, pH, K+, glucose, %Hb-02, %Hb-CO, %met-Hb, %Hb). The degree of hemolysis is determined by the Harboe method of Han et. al, (2010) Vox Sang: 98: 116-23). The level of ATP in red cells is quantified by HPLC after perchloric acid extraction of the red cells. Bacterial testing is performed at day 42 using the BacT/ALERT system (bioMerieux).

[00126] The results of a hemolysis analyses is presented in 4. As shown in Figure 4, oxygen reduction prior to pathogen reduction greatly reduces hemolysis at all time points. The improvement to the storability of the red blood cells become evident beginning at day 14, though improvements are seen at earlier times.

[00127] The results of a microparticle analysis showing the relative reduction in microparticle is presented in Figure 5. As shown in Figure 5, oxygen reduction prior to pathogen reduction greatly reduces the formation of microparticles at all time points. The improvement to the storability of the red blood cells become evident beginning at day 14, though improvements are seen at earlier times.

[00128] The results of osmotic fragility (6A), potassium (6B), total hemoglobin (6C), oxygen saturation (6D), glucose (6E), lactate (6F) and pH (6G) of control whole blood with sterile saline (1 avg), control whole blood with riboflavin (2 avg), oxygen reduced packed
RBCs with sterile saline (3 avg), oxygen reduced pRBCs with riboflavin (4 avg), oxygen reduced whole blood with sterile saline (5 avg), and oxygen reduced whole blood with riboflavin (6 avg).

EXAMPLE 6: PATHOGEN INACTIVATION METHODS FOR OXYGEN REDUCED BLOOD

[00129] A sample of blood to be treated for pathogen inactivation is first processed for oxygen depletion by transferring to a whole blood collection bag connected to a Sorin D100 membrane oxygenator (Sorin Group, Arvada, CO) and pumped at a flow rate of 700 ml/minute with a mixture of 95% N2 and 5% CO2 gas to achieve pre-processing %S02 of less than 25% and pC02 of about 70 mmHg at about 23°C. For a desired blood component of whole blood with anticoagulant (WB), a volume of 500 +/- 50 mL is used; for a desired blood component of leukoreduced packed red blood cells with additive solution (LRpRBC), a volume of 500 +/- 50 mL is used; for desired blood component of suspended platelets (PLT), samples are combined for a total volume of about 400 +/- 50 mL; for a desired blood component of plasma, two units of about 200 mL each are combined for a volume of 400 +/- 50 mL. The blood sample is transferred into a polyvinyl chloride illumination bag (Terumo BCT, Lakewood, CO) and the bag is infused and mixed with the calculated dose of crosslinking agent. The illumination bag is then placed on a tray and illuminated with the appropriate illumination source according to the crosslinking agent, and the duration of illumination is calculated according to the dose required for the given volume and dose required for the given crosslinking agent, according to the table. The tray is gently agitated during illumination to provide uniform exposure of the contents to the illumination source during the exposure period. Upon completion of the illumination cycle the blood sample is transferred from the illumination bag into an anaerobic storage bag for refrigerated storage. A whole blood sample may be further processed by centrifugation and separation into the separate blood components. Pathogen inactivation methods suitable for the methods of the present specification include the methods presented in Table 1.

EXAMPLE 7: APHERESIS COLLECTION AND UV TREATMENT OF BLOOD COMPONENTS

[00130] A blood donor is accessed with venous puncture using a 17 gauge hypodermic needle and connected to an apheresis system. About 450 mL of whole blood (WB) is aspirated from the donor into the apheresis system and mixed with anticoagulant before centrifugation and separation of the blood components. The separated red blood cells
(RBC's) are then mixed with additive solution and riboflavin, followed by passage through a UV illumination chamber and irradiation with UV light to inactivate pathogens and also inactivate any residual leukocytes. After UV irradiation, the RBC's are collected in a separate storage bag. The separated PLT's are then mixed with PLT additive solution and riboflavin, followed by passage through a UV illumination chamber and irradiation with UV light to inactivate pathogens. After UV irradiation, the PLT's are collected in a separate storage bag. The separated plasma is then mixed with riboflavin, followed by passage through a UV illumination chamber and irradiation with UV light to inactivate pathogens. After UV irradiation, the plasma is collected in a separate storage bag. A replacement fluid volume of 0.9% saline and crystalloid is returned to the donor before removal of the phlebotomy needle.

EXAMPLE 8: APHERESIS COLLECTION AND UV TREATMENT OF WHOLE BLOOD

[00131] A blood donor is accessed with venous puncture using a 17 gauge hypodermic needle and connected to an apheresis system. About 450 mL whole blood (WB) is aspirated from the donor into the apheresis system and mixed with anticoagulant and riboflavin before passage through an irradiation chamber and irradiation with UV light to inactivate pathogens, followed by centrifugation and separation of the blood components. After centrifugation and separation of the blood components, the RBC's are mixed with additive solution and collected in a separate storage bag. The separated PLT's are then mixed with PLT additive solution collected in a separate storage bag. The separated plasma is collected in a separate storage bag. A replacement fluid volume of 0.9% saline and crystalloid is returned to the donor before removal of the phlebotomy needle.

EXAMPLE 9: EXAMINING THE QUALITY OF PATHOGEN INACTIVATION (S-303) TREATED RBC

[00132] Five units of leukoreduced packed red blood cells with additive solution (e.g. AS3) (LRpRBC) are measured for complete blood counts (CBC) and percent oxygen saturation (%S02). The five units are pooled together into a 2-3 liter blood bag to create a homogenous pool. The CBC and %S02 is determined for the pooled LRpRBCs. Equal aliquots of 300 mL LRpRBC are placed into 5 storage containers, labelled A through E, treated as outlined in Table 3, and stored inside a standard blood bank refrigerator at 4°C for 42 days.

[00133] Using the methods described in Example 5, aliquots of samples A to E are collected on days 0 (prior to storage), 7, 14, 21, and 42, and tested for the following parameters: CBC, percent hemolysis, ATP, 2,3-DPG, deformability using the MVA,
microparticles, Phosphatidylserine (PS) exposure on red cell membrane, %S02, RBC morphology, and RBC aggregation. The concentration of S-303 and S-300 is determined from aliquots of samples A to E collected at 0, 3, 6, 9, 12, and 24 hrs. The experiment is replicated five times for a total of n=5 samples at each data point.

5 [00134] The central trend in the data is measured using the mean and median values and the spread of the data is determined with the standard deviation.

Table 3: Treatment Conditions of LRpRBC

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>TREATMENT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unprocessed control followed by conventional storage at 4°C for 42 days</td>
</tr>
<tr>
<td>B</td>
<td>Pathogen inactivation followed by conventional storage at 4 °C for 42 days</td>
</tr>
<tr>
<td>C</td>
<td>Pathogen inactivation followed by oxygen reduction in Oxygen-Reduction Bag (ORB)</td>
</tr>
<tr>
<td>D</td>
<td>Oxygen reduction of RBC followed by pathogen inactivation</td>
</tr>
<tr>
<td>E</td>
<td>Conduct overnight pathogen inactivation inside ORB</td>
</tr>
</tbody>
</table>

EXAMPLE 10: EXAMINING THE EFFICACY OF S-303 PATHOGEN INACTIVATION UNDER ANAEROBIC CONDITIONS

10 [00135] Five units of leukoreduced packed red blood cells (LRpRBC) with AS3 additive solution are measured for complete blood counts (CBC) and percent oxygen saturation (%S02). The five units are pooled together into a 2-3 liter blood bag to create a homogenous pool. The CBC and %S02 is determined for the pooled LRpRBCs. The pooled blood is spiked with a selected pathogen or model virus according to manufacturer's instructions.

15 Equal aliquots of 300 mL LRpRBC are placed into 5 storage containers, labelled A through E, treated as outlined in Table 3. Sample B is treated with approximately 0.2 mM S-303 and approximately 2-20 mM glutathione (GSH) under aerobic conditions. Samples C and D are treated with approximately 0.2 mM S-303 and approximately 2-20 mM GSH, prior to and post oxygen reduction, respectively. Sample E is treated with approximately 0.2 mM S-303 and approximately 2-20 mM GSH overnight in an ORB. Following the outlined treatment, all samples are stored inside a standard blood bank refrigerator at 4°C for 42 days. Alternatively, residual amount of S-300 in the samples is removed by centrifugation and replacement of fresh AS3.

20 [00136] Using the methods described in Example 5, aliquots of samples A to E are collected on days 0 (prior to storage), 7, 14, 21, and 42, and tested for the following
parameters: CBC, concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability using the MVA, microparticles, Phosphatidylserine (PS) exposure on red cell membrane, and %S02. The concentration of S-303 and S-300 is determined from aliquots of samples A to E collected at 0, 3, 6, 9, 12, and 24 hrs. The experiment is replicated five times for a total of n=5 samples at each data point.

[00137] The central trend in the data is measured using the mean and median values and the spread of the data is determined with the standard deviation. Differences between the various sample conditions are analyzed with the repeated measures of analysis of variance with Neuman-Keuls multiple comparison test and the probability level of less than 0.05 is considered significant.
CLAIMS:

1. A method for blood pathogen reduction having reduced hemolysis comprising:
 removing oxygen from a blood product to prepare an oxygen reduced blood product;
 reducing blood pathogens from said blood product comprising:
 adding riboflavin to a final concentration of between 40 to 60 µM and
 irradiating said riboflavin containing blood product with UV light between 265-400 nm.

2. The method of claim 1, further comprising storing said oxygen reduced pathogen reduced
 blood product under anaerobic conditions.

3. The method of claim 1, further comprising reducing carbon dioxide from said blood
 product.

4. The method of claim 1, wherein hemolysis is less than 0.2% at 14 days, less than 0.4% at
 21 days, less than 0.5% at 28 days, less than 0.8% at 35 days, or less than 1.2% at 42
 days.

5. The method of claim 1, wherein said blood product is whole blood or leukoreduced whole
 blood.

6. The method of claim 1, wherein said riboflavin containing blood product is an oxygen
 reduced blood product.

7. The method of claim 1, wherein said blood product is collected in the anticoagulant
 solution citrate phosphate dextrose (CPD), citrate phosphate double dextrose (CP2D), or
 citrate phosphate dextrose adenine (CPDA1).

8. The method of claim 1, wherein said oxygen reduced pathogen reduced blood product is
 whole blood, leukoreduced whole blood, or packed red blood cells.

9. A method for blood pathogen reduction having reduced microparticle formation
 comprising:
 removing oxygen from a blood product to prepare an oxygen reduced blood product;
 reducing blood pathogens from said blood product comprising:
 adding riboflavin to a concentration of between 40 to 60 µM and
irradiating said riboflavin containing blood product with UV light between 265-
400 nm.

10. The method of claim 9, further comprising storing said oxygen reduced pathogen reduced
blood product under anaerobic conditions.

11. The method of claim 9, further comprising reducing carbon dioxide from said blood
product.

12. The method of claim 11, further comprising storing said oxygen reduced pathogen
reduced blood product under anaerobic and carbon dioxide reduced conditions.

13. The method of claim 9, wherein the number of microparticles is reduced by at least two
fold at 14 days, reduced by at least 2 fold at 21 days, or reduced by at least 2 fold at 42
days relative to a sample treated in the presence of oxygen.

14. The method of claim 9, wherein the number of microparticles is reduced by at least 5 fold
at 14 days, reduced by at least 5 fold at 21 days, or reduced by at least 5 fold at 42 days
relative to a sample treated in the presence of oxygen.

15. The method of claim 9, wherein said riboflavin concentration is about 50 µM.

16. The method of claim 9, wherein said blood product is collected citrate phosphate dextrose
(CPD), citrate phosphate double dextrose (CP2D), and citrate phosphate dextrose adenine
(CPDA1).

17. The method of claim 9, wherein said blood product is whole blood or leukoreduced whole
blood.

18. The method of claim 9, wherein said oxygen reduced pathogen reduced blood product is
whole blood, leukoreduced whole blood, or packed red blood cells.

19. Oxygen reduced whole blood comprising whole blood collected in CPD, having between
400 to 60 µM riboflavin, having an oxygen saturation (S02) of less than 25%, and having
a pCO2 of 90 mmHg or less at 37 °C, wherein said oxygen reduced whole blood has been
irradiated with UV light between 265 to 400 nm.
20. The oxygen reduced whole blood of claim 19, wherein said pCO2 is 5 to 90 mmHg at 37 °C.

21. The oxygen reduced whole blood of claim 19, wherein said pCO2 is 70 mmHg at 37 °C.

22. Oxygen and carbon dioxide reduced whole blood comprising whole blood collected in CPD, having between 400 to 60 µM riboflavin, having an oxygen saturation (SO2) of less than 25%, and having a pCO2 of 20 mmHg or less at 37 °C, wherein said oxygen reduced whole blood has been irradiated with UV light between 265 to 400 nm.

23. The oxygen and carbon dioxide reduced whole blood of claim 19, wherein said pCO2 is 5 to 20 mmHg at 37 °C.

24. The oxygen reduced whole blood of claim 19, wherein said pCO2 is 5 mmHg at 37 °C.

25. The oxygen reduced whole blood of claim 19, wherein said irradiation comprises a UV dosage of between 3.2 to 7.0 J/cm².

26. A method for blood pathogen reduction having reduced hemolysis comprising:
 removing oxygen from a blood product to prepare an oxygen reduced blood product;
 reducing blood pathogens from said oxygen reduced blood product comprising:
 adding S-303 to a final concentration of 0.2 mM; and
 adding GSH to a final concentration of between 2 to 20 mM.

27. The method of claim 26, further comprising storing said oxygen reduced pathogen reduced blood product under anaerobic conditions.

28. The method of claim 26, further comprising reducing carbon dioxide from said blood product.

29. The method of claim 26, wherein said blood product is whole blood, leukoreduced whole blood, or packed red blood cells.

30. The method of claim 26, further comprising centrifuging said blood product after said adding S-303.

31. The method of claim 30, further comprising mixing in an additive solution having an acidic pH after said centrifuging.
32. A method for blood pathogen reduction having reduced microparticle formation
comprising:
removing oxygen from a blood product to prepare an oxygen reduced blood product;
reducing blood pathogens from said blood product comprising:
adding S-303 to a final concentration of 0.2 mM and
adding GSH to a final concentration of between 2 to 20 mM.

33. The method of claim 32, further comprising storing said oxygen reduced pathogen
reduced blood product under anaerobic conditions.

34. The method of claim 32, further comprising reducing carbon dioxide from said blood
product.

35. The method of claim 32, wherein said blood product is whole blood, leukoreduced whole
blood, or packed red blood cells.

36. The method of claim 32, further comprising centrifuging said blood product after said
adding S-303.

37. The method of claim 36, further comprising mixing in an additive solution having an
acidic pH after said centrifuging.

38. Oxygen reduced red blood cells having a final concentration of approximately 0.2 mM S-
303, having an oxygen saturation (S02) of less than 25%, and having a pC02 of 90
mmHg or less at 37 °C.

39. The oxygen reduced red blood cells of claim 38, further comprising a final concentration
of between approximately 2 to 20 mM GSH.

40. The oxygen reduced red blood cells of claim 38, further comprising improvements at least
two parameters selected from the group comprising complete blood counts (CBC),
concentration of residual pathogen, percent hemolysis, ATP, 2,3-DPG, deformability,
microparticle formation, %S02, and decomposition kinetics of S-303.

41. The method of claim 40, wherein said percent hemolysis is below 0.8%.

42. The method of claim 40, wherein said deformability is increased by greater than 10%
compared to pathogen inactivated oxygenated blood.
43. The method of claim 40, wherein said ATP is increased by greater than 10% compared to pathogen inactivated oxygenated blood.

44. The method of claim 40, wherein 2,3-DPG is increased by greater than 10% after at least one week of storage compared to pathogen inactivated oxygenated blood.

45. The method of claim 40, wherein said microparticle formation is reduced by greater than four-fold after at least one week of storage compared to pathogen inactivated oxygenated blood.

46. A method for improving the efficacy of pathogen inactivation of S-303 in red blood cells comprising:

- removing oxygen from red blood cells to prepare an oxygen reduced blood product;
- adding S-303 to a final concentration of 0.2 mM; and
- adding GSH to a final concentration of between 2 to 20 mM.

47. The method of claim 46, further comprising reducing carbon dioxide from said blood product.