This invention relates to improvements in a sundae dish and the like, and more particularly to a dish formed of paper or equivalent material of the economical type warranting disposal after a single usage, the dish being highly desirable for use in connection with the serving of confections such as ice cream sundaes, although it may be used for the serving of various other types of foods as well, as will be apparent to one skilled in the art.

In the past, many and various types of dishes have been made from paper, paper pulp, or an equivalent substance. In many cases these dishes were pressed or molded from a pulp-like material rather than formed from a blank, and the resultant product was expensive to make, not appetizing in appearance, and bulky and clumsy to handle. In other cases where the dishes were formed or shaped from a blank of paper or the like, side slits or pleats were provided in the body portion of the dish in order to acquire the desired shaping, and such pleats, seams, fold lines, and the like, in the region of the dish wherein they are contacted by the commodity served, provide liquid and syrup traps and render it difficult to remove the commodity with a spoon. In other instances, dishes of this type were provided with numerous small size flutes also rendering it extremely difficult to remove the commodity, and in most cases all of the commodity could not be removed, to the disappointment of the consumer. In many cases, dishes of this type heretofore known when made of one piece of material were of flimsy construction, did not provide flat bottoms, were made of blanks affording considerable wastage of material, and in nearly every case were objectionably expensive to produce.

With the foregoing in mind, it is an important object of the instant invention to provide a dish of paper or the like having a smooth interior, devoid of pleats, folds, seams, and the like, in the entire region contacted by the commodity served in the dish.

Also an object of this invention is the provision of a dish of paper or the like which may be easily formed from a single blank of material, and provided with a flat bottom and a smooth interior from which a commodity may be entirely removed in an easy manner with the aid of a spoon or other eating utensil.

It is also an object of this invention to provide a dish of paper or the like which may be made from a much lighter weight of paper, and yet be rigid and stable, than was heretofore possible.

A further feature of the invention resides in the provision of a paper dish or the like made from a substantially polygonal blank which may be cut from a stock sheet or strip with extremely little wastage of material.

Another feature of the invention resides in the provision of a paper sundae dish or the like formed from a flat blank of stock, and in which the shape of the dish is maintained by virtue of overlapping portions being glued together, but all seams and gluing lines are disposed in the rim of the dish in a region where they will not be contacted by the commodity served in the dish.

Still a further object of the invention resides in the provision of a paper sundae dish or the like, devoid of seams in any portion of the dish contacted by the commodity served, and which dish is therefore definitely leakproof.

Also an object of the invention resides in the provision of a rigid and stable paper sundae dish or the like which may be formed from a flat blank with a simple fixture or die means, with no distortion of the paper, and which is not pressed or molded from stock.

Still a further feature of the instant invention resides in the provision of a paper sundae dish or the like made from a single blank of material, the blank being initially flat, and the ultimate dish being devoid of seams, fine flutes, or folds in the interior thereof, there being merely a minimum of broad curvate sections in the wall of the finished dish which do not interfere with the use of an eating utensil and do not trap any part of the commodity served.

It is also a feature of the invention to provide a dish embodying improvements hereinafore outlined, and which is especially shaped and adapted for the serving of a confection of the order of the commonly known banana split or the like.

While some of the more salient features, characteristics and advantages of the instant invention have been above pointed out, others will become apparent from the following disclosures, taken in conjunction with the accompanying drawings, in which—

Figure 1 is a plan view of a blank from which a dish embodying principles of the instant invention may be formed;

Figure 2 is a top plan view of the formed dish;

Figure 3 is an enlarged transverse vertical sectional view taken substantially as indicated by the line III—III of Fig. 2, looking in the direction of the arrow;

Figure 4 is also a vertical sectional view taken diagonally of the dish, as indicated by the line IV—IV of Fig. 2;

Figure 5 is a perspective view of the finished dish;

Figure 6 is a plan view of a blank from which a dish highly desirable for the serving of a banana split or the like may be formed;

Figure 7 is a top plan view of a dish formed from the blank of Fig. 6;

Figure 8 is a fragmentary top plan view of the upper corner portion of a dish embodying principles of the instant invention but of slightly different construction than that shown in Figs. 1 to 5 inclusive; and

Figure 9 is an exaggerated vertical sectional view taken substantially as indicated by the line IX—IX of Fig. 8.

As shown on the drawings:

That illustrated embodiment of the instant invention shown in Figs. 1 to 5 inclusive, includes a dish which may be made from a novel blank seen in Fig. 1.

The blank 1 is preferably substantially square in shape, except for rounded corners, and slight curve indentations in the side edges. A blank of this shape may be cut from a stock strip or sheet with very little wastage of material. As seen clearly in Fig. 1, each side edge of the blank is preferably provided with a notch 2 cut therein and extending to a depth approximating that of the ultimate rim on the formed dish. It is a simple expedient to die cut the notches 2.

In Fig. 1 I have indicated fold lines 3, 4 and 5. These fold lines are preferably imaginary although if desired they may be in the nature of die formed creases made at the time the blank is cut, but that additional and expensive operation is not necessary. The central circular fold line 3 defines inside thereof, a flat bottom for the dish. The lateral extending fold lines 4 leading from the circular line 3 to the apices of the notches 2 define what will ultimately be inward deflections in the side wall of the formed dish. The generally circumferential fold line 5 is where the marginal portion of the finished dish will be outwardly and downwardly turned.

By placing the blank of Fig. 1 in a simple jig or die, the dish may be formed from the blank in a simple
operation, and when the dish is formed into a bowl-like shape from the flat blank, the marginal portions adjacent to the opening will not suffice as indicated at 6. These overlapping marginal portions are spot glued together in order to hold the dish rigidly and stably in shape. Of course, the spots of glue may be applied to the blank prior to its introduction to the forming means, and the gluing will automatically result at the time the dish takes shape.

With reference now particularly to Figs. 2 and 5, it will be noted that the finished dish has a flat bottom 7, a plurality of smooth curvate wall sections 8, and a circumscirbing rim 9. As seen best in Fig. 4, this rim 9 is a forming cup downwardly from the body of the dish preferably at an angle rather than a right angle. It will be especially noted that the seams formed at the point 6 are located entirely in the rim, and the entire interior of the dish is completely smooth and devoid of any seams, pleats, folds, or the like. It will at once be apparent that there are sections 20 at the interior of the dish, where the dish is contacted by a commodity, that will trap any portion of the commodity, and it is a simple expedient to use a spoon or other eating utensil and remove all of the commodity from the dish. The relatively slight indentations occurring at 10 in the side wall when the dish is formed are not sufficient to interfere with the smooth action of an eating utensil.

It will also be especially noted that by virtue of the gluing of the overlying portions of the dish, the resultant dish will be extremely rigid, and the dish will be reinforced by virtue of the margin 9 extending therearound, so that the entire dish is extremely stable, and yet may be made from very lightweight and economical material. In other words, the particular shape of the resultant dish is dependent upon the necessary rigidity and stability, rather than the strength of the stock employed.

In Figs. 6 and 7 I have illustrated a blank and dish highly desirable for the serving of commodities in the nature of banana splits wherein a long and relatively narrow type of vessel is one to be desired. With this form of dish, a blank 11 is used which is substantially of rhomboidal or rhombic shape and which, because of that shape, may be very economically cut from a stock strip or sheet. The corners are rounded, and notches 12 are provided in the marginal portion adjacent the lateral rounded corners of the device, so that the notches are not equally spaced around the blank. Fold lines 13, 14 and 15, which are lines of the same general character as the fold lines 3, 4 and 5 described in connection with Fig. 1. When this dish or blank is placed in a forming die or jig, the notches are closed and adjacent margins thereof overlapped as indicated at 16 in Fig. 7, and these overlapping regions are spot glued. The resultant dish has a flat bottom 17, a circumscirbing margin 18, and the interior of the dish has opposed elongated curvate wall sections 19 with relatively short and narrow curved wall sections 20 and right angles thereto, so that the resultant dish is long and narrow with opposed curvate portions 20 disposed in such locations as to receive additional commodity or trim in a highly attractive manner. The entire contents may readily be removed from the dish with any suitable eating utensil, and the interior of the dish is extremely smooth and devoid of pleats, folds, seams, and the like.

In Figs. 8 and 9 I have illustrated a dish of the character of that shown in Figs. 1 to 5 inclusive, but which is of a slightly different construction. The dish is made from a blank highly similar to that seen in Fig. 1, but the notches 2 are not provided in the side edges of the blank. On the contrary, the blank may be left solid as to the side edges, and when the blank is formed into a dish, a pleat is formed in the marginal portion 9 of the dish which is in the nature of a double reverse fold as indicated at 21. As seen in Fig. 9, the bottom two layers of the pleat may be cemented together as indicated at 22. It will be understood that such a pleat is formed on each side of the dish, there being such one pleat 21 in lieu of each of the overlapping seams 6, above described.

The completed dish will have the same flat bottom 7, the same smooth curvate wall sections 8, and the same general circumscirbing rim 9. It will be especially noted that the pleats 21 are located in the rim only and no portion of the pleat extends into the interior of the dish where it could be contacted by any commodity served in the dish.

It will be understood that modifications and variations may be effected without departing from the scope of the novel concepts of the present invention.

1. A paper dish made from a single cut blank of material folded to provide a generally circular flat bottom part, outwardly curvate wall sections upwardly extending inwards and terminating in substantially a common plane at their tops, and an integral rim flange having overlapping portions secured together at the top intersections of the curvate wall sections to hold the dish in shape.

2. A paper dish made from a single cut blank of material folded to provide a generally circular flat bottom part, outwardly curvate wall sections upwardly extending inwards and terminating in substantially a common plane at their tops, and an outwardly extending and downwardly inclined rim flange circumscirbing the dish and having overlapping portions secured together adjacent the top intersections of the curvate wall sections.

3. A paper dish formed from a single cut blank folded to provide a flat bottom, upwardly extending side walls, and a smooth interior devoid of cracks and seams, said walls comprising transversely curvate sections meeting at integral inwardly extending angular ridges, and an outwardly extending rim flange circumscirbing the side walls at the top thereof and having overlapping portions secured together at the upper ends of the ridges to hold the dish in shape, said overlapping portions being in the rim alone and forming the only seams in the dish.

4. A paper dish formed from a single cut blank folded to provide a flat bottom, upwardly extending side walls, and a smooth interior devoid of cracks and seams, said walls comprising transversely curvate sections meeting at integral inwardly extending angular ridges, and an outwardly extending rim flange circumscirbing the side walls at the top thereof and having overlapping portions secured together at the upper ends of the ridges to hold the dish in shape, said overlapping portions being in the rim alone and forming the only seams in the dish, said rim flange being wider at said overlapping portions than therebetween.

5. A paper dish made from a single cut blank of material provided initially with inwardly extending slits at spaced points therearound, said blank being folded to provide a generally flat bottom, outwardly curvate wall sections upwardly extending inwards and terminating in substantially a common plane at their tops, and an integral outwardly extending rim flange at the top of said wall sections, said rim flange including overlapping portions to the depth of each said slit secured together.

References Cited in the file of this patent

UNITED STATES PATENTS

221,564 Ingersoll Nov. 11, 1879
672,275 Leighton Apr. 16, 1901
1,101,589 Turnbull June 30, 1914
1,457,998 Norwood June 5, 1923
2,023,470 Hart Dec. 10, 1935
2,245,684 Stuart May 20, 1941
2,407,118 Waters Sept. 3, 1946