### (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

### (19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

30 January 2014 (30.01.2014)





(10) International Publication Number WO 2014/016352 A2

(51) International Patent Classification:

 A61K 8/34 (2006.01)
 A61Q 5/12 (2006.01)

 A61K 8/41 (2006.01)
 A61K 8/04 (2006.01)

 A61K 8/42 (2006.01)
 A61K 8/00 (2006.01)

(21) International Application Number:

PCT/EP2013/065646

(22) International Filing Date:

24 July 2013 (24.07.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12178167.8 27 July 2012 (27.07.2012) EP 12179303.8 3 August 2012 (03.08.2012) EP

- (71) Applicant (for AE, AG, AU, BB, BH, BN, BW, BZ, CA, CY, EG, GB, GD, GH, GM, IE, IL, IN, KE, KN, LC, LK, LS, MT, MW, MY, NA, NG, NZ, OM, PG, QA, RW, SC, SD, SG, SL, SZ, TT, TZ, UG, VC, ZA, ZM, ZW only): UNI-LEVER PLC [GB/GB]; Unilever House, 100 Victoria Embankment, London, Greater London EC4Y 0DY (GB).
- (71) Applicant (for all designated States except AE, AG, AU, BB, BH, BN, BW, BZ, CA, CY, EG, GB, GD, GH, GM, IE, IL, IN, KE, KN, LC, LK, LS, MT, MW, MY, NA, NG, NZ, OM, PG, QA, RW, SC, SD, SG, SL, SZ, TT, TZ, UG, US, VC, ZA, ZM, ZW): UNILEVER N.V. [NL/NL]; Weena 455, NL-3013 AL Rotterdam (NL).
- (71) Applicant (for US only): CONOPCO, INC., d.b.a UNI-LEVER [US/US]; 800 Sylvan Avenue, AG West, S. Wing, Englewood Cliffs, New Jersey 07632 (US).
- (72) Inventors: CASUGBO, Christia; Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral, Merseyside CH63 3JW (GB). FLANAGAN, Mark; Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral,

Merseyside CH63 3JW (GB). HOUGH, John, Alan; Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral, Merseyside CH63 3JW (GB). NAUGHTON, John, Michael; Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral, Merseyside CH63 3JW (GB). SERRIDGE, David; 4 Bryce Close, Bromborough, Wirral, Merseyside CH62 2FD (GB).

- (74) Agents: NEWBOULD, Frazer, Anthony et al.; Unilever PLC, Unilever Patent Group, Colworth House, Sharnbrook, Bedford, Bedfordshire MK44 1LQ (GB).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

### Published:

 without international search report and to be republished upon receipt of that report (Rule 48.2(g))



(54) Title: PROCESS

(57) Abstract: Process for making a conditioning gel phase comprising: i) forming an aqueous dispersion of fatty alcohol and amidoamine; ii) adding a cationic surfactant to the aqueous dispersion and mixing; and iii) neutralising the amidoamine, wherein the temperature of the mixture of cationic surfactant in the aqueous dispersion is maintained at from 56°C to 67°C.

- 1 -

## **PROCESS**

The present invention relates to a process for manufacturing improved conditioner compositions.

WO 99/62467 (P&G) and WO 99/62492 (P&G) disclose a method for manufacturing a conditioning composition by forming a conditioning gel phase by melting fatty alcohol with tertiary amidoamine and cationic surfactant.

- WO 2007/019160 (Alberto Culver) discloses a process for making a conditioning gel phase comprising adding fatty alcohol to stearamidopropyl dimethyl amine and cationic surfactant.
- 15 Despite the prior art there remains a need for improved conditioning compositions.
  - Accordingly, and in a first aspect, there is provided a process for making a conditioning gel phase according to claim 1.
- Conditioning compositions made with the conditioning gel phase of the invention have improved conditioning performance. More specifically, the conditioning compositions made using the conditioning gel phase of the invention are thicker, even when using a lower level of solids, and provide improved clean feel the following day. This is surprising since one usually associates improved conditioning with increased deposition of solids which results on greasiness and heaviness the next day. To provide the opposite is an unmet consumer need.

- 2 -

PCT/EP2013/065646

Preferably, the temperature of the aqueous dispersion is maintained above the melting temperature of the fatty alcohol, preferably at least 5°C higher than the melting point of the fatty alcohol.

Preferably, the aqueous dispersion is formed by adding fatty alcohol to water heated and maintained at least the melting point of the fatty alcohol and preferably at least 5°C above the melting point of the fatty alcohol. Preferably, the aqueous dispersion is maintained at a melting point sufficient to maintain the fatty alcohol in a liquid phase.

Preferably, the temperature of the mixture of the aqueous dispersion is controlled such that it is maintained from 56-67°C, preferably from 58-65°C, more preferably

63°C.

10

WO 2014/016352

- Preferably, the temperature of the mixture of the aqueous dispersion and the cationic surfactant is maintained at from 56°C to 67°C. More preferably, the temperature of the mix of the aqueous dispersion and the cationic surfactant is maintained at from 58°C to 65°C; most preferably at 63°C.
- 20 Controlling the temperature of the mixture of fatty alcohol and the cationic surfactant means controlling the formation of gel structure. In this process the temperature of the mixture of comelt and water is controlled by modifying the temperature/rate of the cationic surfactant to the fatty alcohol and an amidoamine surfactant aqueous mix. If too cold or too hot then a system having a mixture of structures results and this has poorer conditioning capability.

After formation of the gel phase further water and additional ingredients may be added in one go or it may be staged.

- 3 -

Preferably, the process is a batch process.

Preferably the mixing of the cationic surfactant with the aqueous dispersion is monitored by measurement of viscosity, such that when the viscosity change plateaus, the required degree association has occurred and then the amidoamine is neutralised. Typically, this mixing of the cationic surfactant and aqueous dispersion takes from 20 to 60 minutes.

The conditioning composition ultimately made using such conditioning gel phase 10 has improved conditioning performance compared with an identical conditioning composition made with an identical formulation made using a standard process.

Preferably, the process comprises passing the contents of the mixture vessel through a mixer with rotor tip speed of 10-34, preferably from 21-27 and especially preferably 24 ms-1.

Preferably the aqueous dispersion comprises from 25 wt.% to 50 wt.%, more preferably from 35 to 45 wt.% of the total dispersion water.

20 Preferably the aqueous dispersion comprises from 4 to 20 wt.% of the total dispersion fatty alcohol.

Preferably the aqueous dispersion comprises from 1 to 5 wt.% of the total dispersion amidoamine.

25

15

5

Preferably the neutraliser added to the aqueous dispersion and cationic surfactant comprises sufficient neutraliser to neutralise at least 90 wt% of the cationic surfactant, more preferably at least 95 % of the cationic surfactant, most preferably at least 99 % of the cationic surfactant.

- 4 -

Preferably, the fatty alcohol comprises from 8 to 22 carbon atoms, more preferably 16 to 22. Fatty alcohols are typically compounds containing straight chain alkyl groups. Examples of suitable fatty alcohols include cetyl alcohol, stearyl alcohol and mixtures thereof. The use of these materials is particularly preferable.

5

10

15

20

25

The level of fatty alcohol in the conditioner of the invention (not just the conditioning gel phase) will generally range from 0.01 to 10%, preferably from 0.1 % to 8%, more preferably from 0.2 % to 7 %, most preferably from 0.3 % to 6% by weight of the composition. The weight ratio of cationic surfactant to fatty alcohol is suitably from 1:1 to 1:10, preferably from 1:1.5 to 1:8, optimally from 1:2 to 1:5. If the weight ratio of cationic surfactant to fatty alcohol is too high, this can lead to eye irritancy from the composition. If it is too low, it can make the hair feel squeaky for some consumers.

Suitable conditioning surfactants include those selected from cationic surfactants, used singly or in admixture. Preferably, the cationic surfactants have the formula  $N^{+}R^{1}R^{2}R^{3}R^{4}$  wherein  $R^{1}$ ,  $R^{2}$ ,  $R^{3}$  and  $R^{4}$  are independently ( $C_{1}$  to  $C_{30}$ ) alkyl or benzyl. Preferably, one, two or three of  $R^{1}$ ,  $R^{2}$ ,  $R^{3}$  and  $R^{4}$  are independently ( $C_{4}$  to  $C_{30}$ ) alkyl and the other  $R^{1}$ ,  $R^{2}$ ,  $R^{3}$  and  $R^{4}$  group or groups are ( $C_{1}$ - $C_{6}$ ) alkyl or benzyl. More preferably, one or two of  $R^{1}$ ,  $R^{2}$ ,  $R^{3}$  and  $R^{4}$  are independently ( $C_{6}$  to  $C_{30}$ ) alkyl and the other  $R^{1}$ ,  $R^{2}$ ,  $R^{3}$  and  $R^{4}$  groups are ( $C_{1}$ - $C_{6}$ ) alkyl or benzyl groups. Optionally, the alkyl groups may comprise one or more ester (-OCO- or –COO-) and/or ether (-O-) linkages within the alkyl chain. Alkyl groups may optionally be substituted with one or more hydroxyl groups. Alkyl groups may be straight chain or branched and, for alkyl groups having 3 or more carbon atoms, cyclic. The alkyl groups may be saturated or may contain one or more

- 5 -

carbon-carbon double bonds (eg, oleyl). Alkyl groups are optionally ethoxylated on the alkyl chain with one or more ethyleneoxy groups.

Suitable cationic surfactants for use in the invention include cetyltrimethylammonium chloride, behenyltrimethylammonium chloride, 5 cetylpyridinium chloride, tetramethylammonium chloride, tetraethylammonium chloride, octyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octyldimethylbenzylammonium chloride, decyldimethylbenzylammonium chloride, stearyldimethylbenzylammonium 10 chloride, didodecyldimethylammonium chloride, dioctadecyldimethylammonium chloride, tallowtrimethylammonium chloride, dihydrogenated tallow dimethyl ammonium chloride (eg, Arquad 2HT/75 from Akzo Nobel), cocotrimethylammonium chloride, PEG-2-oleammonium chloride and the corresponding hydroxides thereof. Further suitable cationic surfactants include 15 those materials having the CTFA designations Quaternium-5, Quaternium-31 and Quaternium-18. Mixtures of any of the foregoing materials may also be suitable. A particularly useful cationic surfactant for use in conditioners according to the invention is cetyltrimethylammonium chloride, available commercially, for example as GENAMIN CTAC, ex Hoechst Celanese. Another particularly useful cationic 20 surfactant for use in conditioners according to the invention is behenyltrimethylammonium chloride, available commercially, for example as GENAMIN KDMP, ex Clariant.

Preferably, the cationic surfactant component of the comelt comprises from 0-70% cationic component, cationic surfactants have the formula N<sup>+</sup>R<sup>1</sup>R<sup>2</sup>R<sup>3</sup>R<sup>4</sup> as described above, more preferably from 30-60% wt. cationic surfactant component.

-6-

Suitable amidoamine surfactants (cationic when protoated) are preferabley of the general formula (I):

# (I) R1CONH(CH2)mN(R2)R3

5

in which R<sup>1</sup> is a hydrocarbyl chain having 10 or more carbon atoms, R<sup>2</sup> and R<sup>3</sup> are independently selected from hydrocarbyl chains of from 1 to 10 carbon atoms, and m is an integer from 1 to about 10; and

10 As used herein, the term hydrocarbyl chain means an alkyl or alkenyl chain.

Preferred amidoamine compounds are those corresponding to formula (I) in which R<sup>1</sup> is a hydrocarbyl residue having from about 11 to about 24 carbon atoms,

R<sup>2</sup> and R<sup>3</sup> are each independently hydrocarbyl residues, preferably alkyl groups, having from 1 to about 4 carbon atoms, and m is an integer from 1 to about 4.

Preferably, R<sup>2</sup> and R<sup>3</sup> are methyl or ethyl groups.

Preferably, m is 2 or 3, i.e. an ethylene or propylene group.

20

25

Preferred amidoamines useful herein include stearamido-propyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyl-diethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethyl-amine, behenamidopropyldiethylmine, behenamidoethyldiethyl-amine, behenamidoethyldimethylamine, arachidamidopropyl-dimethylamine, arachidamidopropyldiethylamine, arachid-amidoethyldiethylamine, arachidamidoethyldimethylamine, and mixtures thereof.

- 7 -

Particularly preferred amidoamines useful herein are stearamidopropyldimethylamine, stearamidoethyldiethylamine, and mixtures thereof.

5 Commercially available amidoamines useful herein include: stearamidopropyldimethylamine with tradenames LEXAMINE S-13 available from Inolex (Philadelphia Pennsylvania, USA) and AMIDOAMINE MSP available from Nikko (Tokyo, Japan), stearamidoethyldiethylamine with a tradename AMIDOAMINE S available from Nikko, behenamidopropyldimethylamine with a 10 tradename INCROMINE BB available from Croda (North Humberside, England), and various amidoamines with tradenames SCHERCODINE series available from Scher (Clifton New Jersey, USA).

Acid may be any organic or mineral acid which is capable of protonating the

amidoamine in the conditioner composition. Suitable acids useful herein include
hydrochloric acid, acetic acid, tartaric acid, fumaric acid, lactic acid, malic acid,
succinic acid, and mixtures thereof. Preferably, the acid is selected from the
group consisting of acetic acid, tartaric acid, hydrochloric acid, fumaric acid, lactic
acid and mixtures thereof. Particularly preferred is lactic acid.

20

The primary role of the acid is to protonate the amidoamine in the hair treatment composition thus forming a tertiary amine salt (TAS) in situ in the hair treatment composition. The TAS in effect is a non-permanent quaternary ammonium or pseudo-quaternary ammonium cationic surfactant.

25

Suitably, the acid is included in a sufficient amount to protonate more than 95 mole% (293 K) of the amidoamine present.

WO 2014/016352

Should an amidoamine of the type described herein be present then the corresponding acid component will not be present in the comelt. Instead it will be present in the water. Preferably, the water comprises protonating component at from 0.01 to 3% wt.

5

In conditioning compositions of the invention (not merely the conditioning gel phase), the level of cationic surfactant will generally range from 0.01 % to 10%, more preferably 0.05 % to 7.5%, most preferably 0.1 % to 5% by weight of the composition.

10

In a second aspect there is provided a process for manufacturing a conditioning composition by forming a conditioning gel phase obtained by the first aspect and then adding any remaining ingredients. Typical remaining ingredients include fragrances, silicones, fibre actives or other benefit agents.

15

20

25

Preferably, the conditioning composition is passed through a mixer with rotor tip speed of 10-34, preferably from 21-27 and especially preferably 24 ms-1 one more time after the remaining ingredients have been added.

Suitable mixers for use with the invention have a kw/kg figures preferably in the range from 2 to 30 kw/kg, more preferably 10 – 25 and even more preferably 15 -25.

Conditioning compositions of the invention or using conditioning gel phases of the invention also deposit silicone better than conventionally made conditioning compositions.

Accordingly, the compositions of the invention can contain, emulsified droplets of a silicone conditioning agent, for enhancing conditioning performance.

Suitable silicones include polydiorganosiloxanes, in particular polydimethylsiloxanes which have the CTFA designation dimethicone. Also suitable for use compositions of the invention (particularly shampoos and conditioners) are polydimethyl siloxanes having hydroxyl end groups which have the CTFA designation dimethiconol. Also suitable for use in compositions of the invention are silicone gums having a slight degree of cross-linking, as are described for example in WO 96/31188.

The viscosity of the emulsified silicone itself (not the emulsion or the final hair conditioning composition) is typically at least 10,000 cst at 25°C the viscosity of the silicone itself is preferably at least 60,000 cst, most preferably at least 500,000 cst, ideally at least 1,000,000 cst. Preferably the viscosity does not exceed 10°C cst for ease of formulation.

15 Emulsified silicones for use in the shampoo compositions of the invention will typically have an average silicone droplet size in the composition of less than 30, preferably less than 20, more preferably less than 10 micron, ideally from 0.01 to 1 micron. Silicone emulsions having an average silicone droplet size of 0.15 micron are generally termed microemulsions.

20

5

Emulsified silicones for use in the conditioner compositions of the invention will typically have a size in the composition of less than 30, preferably less than 20, more preferably less than 15. Preferably the average silicone droplet is greater than 0.5 micron, more preferably greater than 1 micron, ideally from 2 to 8 micron.

25

Silicone particle size may be measured by means of a laser light scattering technique, for example using a 2600D Particle Sizer from Malvern Instruments.

WO 2014/016352

Examples of suitable pre-formed emulsions include Xiameter MEM 1785 and microemulsion DC2-1865 available from Dow Corning. These are emulsions /microemulsions of dimethiconol. Cross-linked silicone gums are also available in a pre-emulsified form, which is advantageous for ease of formulation.

5

A further preferred class of silicones for inclusion in shampoos and conditioners of the invention are amino functional silicones. By "amino functional silicone" is meant a silicone containing at least one primary, secondary or tertiary amine group, or a quaternary ammonium group. Examples of suitable amino functional silicones include polysiloxanes having the CTFA designation "amodimethicone".

Specific examples of amino functional silicones suitable for use in the invention are the aminosilicone oils DC2-8220, DC2-8177 and DC2-8566 (all ex Dow Corning).

15

25

10

Suitable quaternary silicone polymers are described in EP-A-0 530 974. A preferred quaternary silicone polymer is K3474 ex Goldschmidt.

Also suitable are emulsions of amino functional silicone oils with non ionic and/or cationic surfactant.

Pre-formed emulsions of amino functional silicone are also available from suppliers of silicone oils such as Dow Corning and General Electric. Specific examples include DC939 Cationic Emulsion and the non-ionic emulsions DC2-7224, DC2-8467, DC2-8177 and DC2-8154 (all ex Dow Corning).

The total amount of silicone is preferably from 0.01 wt% to 10 %wt of the total composition more preferably from 0.1 wt% to 5 wt%, most preferably 0.5 wt% to 3 wt% is a suitable level.

- 11 -

# **EXAMPLES**

| Material                               | Active | Α      | 1      |
|----------------------------------------|--------|--------|--------|
|                                        | Level  |        |        |
| Stearylamidopropyl dimethylamine       | 100    | 1.25   | 1      |
| Behentrimonium Chloride                | 70     | 1.25   | 1      |
| Lactic Acid                            | 88     | 0.38   | 0.285  |
| Cetearyl Alcohol                       | 100    | 5      | 4      |
| Parfum                                 | 100    | 0.6    | 0.6    |
| Preservative                           | 55     | 0.1    | 0.1    |
| Disodium EDTA                          | 100    | 0.1    | 0.1    |
| Preservative                           | 1.5    | 0.04   | 0.04   |
|                                        |        |        |        |
| Potassium Chloride                     | 100    | 0.1    | 0.1    |
| PEG-150 distearate                     | 100    | 0.025  | 0      |
| Dimethicone/amodimethicone/Cetrimonium | 70     | 3.57   | 3.57   |
| Chloride                               |        |        |        |
| Water                                  |        | To 100 | To 100 |

5

Formulation A is made by standard prior art process which mixes the fatty alcohol and water at 70C. In contrast formulation 1 is made by adding a stearylamidopropyl dimethylamine and fatty alcohol to water at 60°C, maintain temperature by use of external heating, and stir.

10

Add a cationic surfactant, typically behentrimonium chloride, to this mixture, maintain temperature at 60°C by use of external heating or cooling, and stir.

Add lactic acid to protonate stearylamidopropyl dimethylamine, maintain temperature at 60°C by use of external heating or cooling, and stir.

Cool this towards ambient by adding more water, and other ambient temperature ingredients, and use of external cooling if required, and stir.

- 12 -

The compositions have different levels of conditioning active to demonstrate the improved conditioning performance of the composition made by the claimed process. Levels indicated are of raw materials.

| Panel data            | Α        | 1        |
|-----------------------|----------|----------|
| Conditioner Attribute |          |          |
| Con Thickness         | 58.28 C  | 71.04 AB |
| Level Condition       | 65.33 C  | 69.72 AB |
| Overall Styling       | 66.37 BC | 69.81 AB |
| Next Day              |          |          |
| ND frizz              | 18.39 a  | 16.63 ab |
| ND clean feel         | 65.86 B  | 71.99 A  |
| ND conditioning       | 63.15 b  | 68.45 a  |

5

15

20

Panel data with approx 75 panellists, normal hair (mix of straight and wavy). Assessment via line scale.

The data shows that using a better process we have a thicker product despite having lower total solids (i.e. FA and BTAC). The ingredients are being used more efficiently.

In addition, the product is both significantly more conditioning than the control as well as feeling significantly more clean next day- unusual because there is usually a trade off (more conditioning= heavier) again, despite having a lower level of solids, i.e. conditioning active. One would have expected that a composition which provided improved conditioning benefits immediately post application would achieve this through increased deposition. However, if this were the case, the next day benefits would be markedly reduced.

# **CLAIMS**

- 1. Process for making a conditioning gel phase comprising:
- 5 i) forming an aqueous dispersion of fatty alcohol and amidoamine;
  - ii) adding a cationic surfactant to the aqueous dispersion and mixing; and
  - iii) neutralising the amidoamine,

- wherein the temperature of the mixture of cationic surfactant in the aqueous dispersion is maintained at from 56°C to 67°C.
- Process according to any preceding claim in which the aqueous dispersion
   comprises from 4 to 20 wt% of the dispersion fatty alcohol.
  - 3. Process according to any preceding claim in which the aqueous dispersion comprises from 1 to 5 wt% of the dispersion amidoamine surfactant.
- 20 4. Process according to any preceding claim in which the mixture of cationic surfactant and fatty alcohol and amidoamine comprises from 0.5 to 5 wt% cationic surfactant.
- 5. Process according to any preceding claim in which the cationic surfactant is behenyltrimethylammonium chloride.
  - 6. Process according to any preceding claim in which the amidoamine surfactant is stearylamidopropyl dimethylamine.

- 14 -

- 7. Process according to any preceding claim in which the fatty alcohol is is a C16 to C18 fatty alcohol.
- 8. Process according to any preceding claim in which neutralising the amidoamine comprises adding acid.

- 9. Process according to any preceding claim comprising passing the resulting conditioning gel phase through a mixer with rotor tip speed of 10-34 ms-1.
- 10 10. Process for manufacturing a conditioning composition by forming a conditioning gel phase according to any of claims 1 to 9 and then adding any remaining ingredients.
- 11. Process according to claim 10 comprising passing the conditioningcomposition through a mixer with rotor tip speed of 10-30 ms-1.