(54) Title: LIGANDS FOR ASYMMETRIC CATALYSIS

(57) Abstract

A chiral compound of formula (I) or (II) wherein \(R^1, R^2, R^3 \) and \(R^4 \) are each independently H, alkyl, cycloalkyl, aryl, or alkaryl, provided that \(R^1 \) and \(R^2 \) are not both H; and X is any group capable of forming a stable bond to phosphorus, is useful as a ligand in asymmetric reactions.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>United States of America</td>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIGANDS FOR ASYMMETRIC CATALYSIS

Field of the Invention

This invention relates to phosphine ligands that are useful for asymmetric reactions, especially as chiral ligands for catalytic asymmetric hydrogenation.

Background of the Invention

Chiral phosphines are useful ligands for asymmetric catalysis. In particular, ligands incorporating a trans-2,5-disubstituted phospholane of formula (1), or the opposite enantiomeric form (2)

![Diagram](image)

Although the 5-membered ring phospholane ligands are useful in asymmetric synthesis, the ligands themselves are difficult to synthesise. This can be a limitation to their usage on an industrial scale, and arises from the need to synthesise the chiral 1,4-diol intermediate which is required for construction of the 5-membered ring; see Burk et al, Organometallics (1990) 9:2653, US-A-5021131 and US-A-5329015. This requires specialist methods such as an electrochemical Kolbe coupling which can be problematic on scale-up.
The chiral 1,4-diols are otherwise difficult to access. For example, 1,4-diketones are difficult to hydrogenate under asymmetric catalytic conditions, giving low yields of poor optical purity material and producing mainly the achiral meso-1,4-diol.

Phosphetanes have been prepared by reaction of organophosphorus reagents with olefins (Marinetti et al, Tetrahedron (1993) 49:10291) or by alkylation of phosphine complexes with an alkyl halide (Hockless et al, Organometallics (1996) 15:1301). The latter method leads to extensive polymer formation.

Summary of the Invention

Novel compounds according to this invention are chiral phosphetanes of the formulae

\[
\begin{align*}
X - P & \quad \text{or} \quad X - P \\
R^1 & \quad R^3 \\
R^2 & \quad R^4
\end{align*}
\]

wherein \(X\) is a group that forms a stable bond to phosphorus. \(X\) may include a further phosphetane ring, in which case compounds of the invention have the formula

\[
\begin{align*}
\begin{array}{c}
R^1 \\
\vdots \\
\vdots \\
\vdots \\
R^4
\end{array} & \begin{array}{c}
P - Y- P \\
\vdots \\
\vdots \\
\vdots \\
R^4
\end{array} & \begin{array}{c}
R^1 \\
\vdots \\
\vdots \\
\vdots \\
R^4
\end{array} \\
\begin{array}{c}
R^2 \\
\vdots \\
\vdots \\
\vdots \\
R^3
\end{array} & \begin{array}{c}
R^2 \\
\vdots \\
\vdots \\
\vdots \\
R^3
\end{array} & \begin{array}{c}
R^2 \\
\vdots \\
\vdots \\
\vdots \\
R^3
\end{array}
\end{align*}
\]

wherein \(Y\) is a bivalent group capable of forming stable bonds to phosphorus. \(R^1, R^2, R^3\) and \(R^4\) are each H, alkyl, cycloalkyl, aryl or aralkyl.
These phosphetanes, which are easily accessible from readily available 1,3-diol precursors, are ligands which may be complexed with a transition metal such as iridium, rhodium and ruthenium to provide a catalyst for asymmetric synthesis, especially asymmetric hydrogenation. One aspect of the present invention is the surprising discovery that the performance of such catalysts can surpass that of equivalent catalysts derived from homologous phospholane ligands.

Description of the Invention

The group attached to the phosphetane, X or Y, may be any such residue which forms a stable bond to phosphorus. In particular, this may be an organic alkyl or aryl group, a heterocyclic group, or an organometallic residue such as ferrocenyl. It may have up to 8, 12 or 20 C atoms.

For the monodentate compounds, X is preferably phenyl. For the bidentate compounds, Y is preferably 1,2-phenylene or -(CH₂)₄, e.g. -CH₂-.

The substituents at the chiral centre of the phosphetane R¹ and R² are preferably the same, and are preferably each a lower alkyl group, especially methyl, ethyl and isopropyl, but may also be aryl or cycloalkyl, e.g. fluoroalkyl, it may be substituted, without affecting utility. Each may have up to 8, 10 or 12 C atoms. R³ and R⁴ are preferably hydrogen, but may also each be groups of the same scope as R¹. Optionally, R¹ and/or R⁴ can be joined to either of R¹ and R² to form a ring.

By way of example, the chiral phosphetanes of the invention may be monodentate ligands such as (3), or bidentate ligands such as (4) and (5). For asymmetric hydrogenation reactions at least, such chiral phosphetanes are particularly useful.
The utility of the present invention can be demonstrated by the effectiveness of the rhodium-based catalyst derived from the monodentate ligand (3) wherein $R^1=R^2=\text{Me}$, relative to catalyst derived from the phospholane homologue, described by Burk, Organometallics (1990) supra. The results of these studies, concerning the asymmetric hydrogenation of 4 classes of functionally distinct substrates, are shown below, in Table 1. As can quickly be discerned, in each case the phosphetane-containing catalyst outperformed the phospholane-catalyst with regard to enantioselectivity.

In addition, Table 1 shows that the desired effect is demonstrable with acetophenone, even though this is not recognised as a satisfactory substrate for such reactions.

Chiral 1,3-diols that can be used as starting materials for the preparation of the novel phosphetanes are readily available. They can be prepared in very high optical purity by asymmetric hydrogenation of the corresponding 1,3-diketones. For example, Noyori et al, J. Am. Chem. Soc. (1988), 110:629, discloses the preparation of (R,R)-2,4-pentanediol by utilisation of Ru-BINAP as catalyst. It has been found that this method is also applicable to other chiral 1,3-diols, for example $(3R,5R)$-2,6-dimethyl-3,5-heptanediol, the precursor to phosphetanes wherein both R^1 and R^2 are isopropyl. For preparation of the Ru-BINAP catalyst, the method of Heiser was prepared, as described in Tetrahedron Asymmetry (1991) 2:51. The 1,3-diketone precursors are either commercially available, or may be conveniently prepared according to the method of Brändström, Ark. Kemi. (1951/52) 38:365. The ability to prepare chiral phosphine ligands directly from the readily-available chiral 1,3-diols makes these phosphetanes particularly attractive for use in large-scale industrial applications.
The conversion of a chiral 1,3-diol to a chiral phosphetane is exemplified by the synthesis of the 1-phenylphosphetane (3), outlined in the following Scheme:

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{O} & \quad \text{O} \\
\text{P} & \quad \text{Ph}
\end{align*}
\]

In this scheme, the chiral 1,3-diol pentane-2,4-diol is firstly converted to its cyclic sulfate which is then treated with lithium phenylphosphide, followed by a second lithiation with butyllithium, to form the cyclic phosphetane. The general utility of this process, to prepare any compound of the invention, will be readily apparent to those of ordinary skill in the art. Thus, for example, phosphetanes of the invention can be prepared via lithiation of XPH₂.

The method described herein represents a novel approach to the synthesis of phosphetanes and has the added advantage that any polymerised material is formed in the reaction can be easily removed by distillation.

The following Examples illustrate the preparation and utility of products of the invention.

Example 1 (4S,6S)-4,6-Dimethyl-2,2-dioxo-1,3,2-dioxathiane

a) (4S,6S)-4,6-dimethyl-2-oxo-1,3,2-dioxathiane (cyclic sulfate): A solution of thionyl chloride (14.3 g, 0.12 mol) in dichloromethane (60 ml) is dropped within ten minutes to neat (2S,4S)-pentanediol-2,4 (10.4 g, 0.1 mol). The obtained yellow solution is stirred for another ten minutes and then the solvent is removed on a rotavapor to leave the product.

\[^1\text{H-NMR}\, (200 \text{ MHz, CDCl}_3): \delta 1.37, 1.55 \, (2 \, d, \, 2 * 3 \, H, \, 2 \, CH_3), \, 1.85-2.20 \, (m, \, 2 \, H, \, CH_2), \, 4.45 \, ('sext', \, 1 \, H, \, CH), \, 5.03 \, (m, \, 1 \, H, \, CH). \, ^{13}\text{C-NMR}\, (50 \text{ MHz, CDCl}_3): \delta 20.67, \, 22.27 \, (2 \, CH_3); \, 37.76 \, (CH_2); \, 62.16, \, 71.47 \, (2 \, CH).\]

b) (4S,6S)-4,6-dimethyl-2,2-dioxo-1,3,2-dioxathiane (cyclic sulfate): The material obtained from a) was redissolved in a mixture of dichloromethane (60 ml) and acetonitrile (60 ml). A solution of RuCl₅·xH₂O (200 mg) in water (100 ml) was added. The obtained brown biphasic mixture was cooled to 0°C, and then NaIO₄ (32.1 g, 0.15 mol) was added in one portion. Within two minutes the temperature had risen to 25°C, and the colour had
turned from dark to pale brown. After stirring the mixture for another hour the organic layer was separated and washed with 10% sodium sulfite solution (200 ml). Pentane (ca 200 ml) was added, and then the isolated organic layer was dried (Na₂SO₄). After removal of the solvent the product was obtained as mobile colourless liquid which crystallised.

Yield 14.3 g (86%). ¹H-NMR (200 MHz, CDCl₃): δ 1.60 (d, 6 H, CH₃), 2.05 ('tr', 2 H, CH₂), 5.08 ('sext', 2 H, CH). ¹³C-NMR (50 MHz, CDCl₃): δ 19.72 (CH₃), 35.03 (CH₂), 80.18 (CH).

Example 2 (2R,4R)-2,4-Dimethyl-1-phenylphosphetane

A 100 ml Schlenk flask was purged with N₂ and then charged with anhydrous ether (25 ml) and phenylphosphine (1.1 g, 10 mmol). Then 4.0 ml of a 2.5 molar solution of n-BuLi was slowly added via a syringe. The obtained yellow solution of lithium phenylphosphide was stirred for 10 minutes and then a solution of 1.66 g (10 mmol) of (4S,6S)-4,6-dimethyl-2,2-dioxo-1,3,2-dioxathioxane in 20 ml of THF was added dropwise over a period of 20 minutes. When the addition was complete, 5 ml of THF was added to dissolve the oily material and then a solution (4.0 ml) of 2.5 molar n-BuLi, which was diluted with 10 ml of pentane, was added dropwise under efficient stirring to the reaction mixture over a period of 45 minutes. The reaction was then stirred for a further 15 minutes, and then the solvent was removed in vacuo. The residue was treated with pentane (ca. 10 ml), the precipitated salt removed by filtration, and the filter cake washed with pentane (ca. 10 ml). Evaporation of the solvent from the filtrate gave a colourless oil which consisted of a 75:25 mixture of (2R,4R)-2,4-dimethyl-1-phenylphosphetane and polymer.

¹³C-NMR(C₆D₆, 50 MHz): δ 17.82 (CH₃, ²Jₚ,C = 4.8 Hz), 20.54 (CH₃, ³Jₚ,C = 22.3 Hz), 24.36 (CH, ¹Jₚ,C = 3.8 Hz), 25.09 (CH, ¹Jₚ,C = 8.2 Hz), 39.25 (CH₂, ³Jₚ,C = 1.4 Hz), 128.0 (Ph p-C), 128.67 (Ph m-C, ³Jₚ,C = 4.9 Hz), 131.95 (Ph o-C, ²Jₚ,C = 15.0 Hz), 139.37 (Ph ipso-C, ¹Jₚ,C = 35.1 Hz), 31P-NMR(C₆D₆, 161 MHz): δ 24.28. The polymer gave a singlet at δ = -13.05 ppm.

For preparation on a larger scale, phenylphosphine (5 g, 45.5 mmol) and the cyclic sulfate (7.56 g, 45.5 mmol) were reacted in a similar way, to give after distillation 1.86 g (23%) of (2R,4R)-2,4-dimethyl-1-phenylphosphetane, bp 120-124°C at 2.4 mbar. Spectroscopic analysis indicated this material to be of >95% chemical purity.
Example 3 Bis[(2R,4R)-2,4-Dimethyl-1-phenylphosphetano]-[1,5-cyclooctadiene]rhodium(I) tetrafluoroborate

All procedures were carried out under an atmosphere of nitrogen. Fluoroboric acid diethyl etherate (162 mg, 1.0 mmol) was added to a solution of (R,R)-2,4-dimethyl-1-phenylphosphetane (356 mg, 2.0 mmol) in degassed THF (1.5 ml) giving a cloudy solution. This mixture was then added dropwise to a yellow solution of [Rh(COD)(acac)] (310 mg, 1.0 mmol) in degassed THF (1.5 ml). The resultant orange solution was heated at 50°C for 10 minutes and then cooled to room temperature. Degassed diethyl ether (5 ml) was added giving an orange oil which crystallised on standing, resulting in an orange solid. The solvent was decanted off and the solid washed with THF (2 ml) which was again removed by decantation to give, after drying under vacuum, the catalyst (I) (298 mg, 45%) as an orange solid.

![Chemical structure](image)

1H-NMR (CDCl₃, 200 MHz): δ 0.56, 1.47 (2 m, 3 H each, 2 CH₃), 2.05-2.35, 2.35-2.65 (2 m, 7 H and 1 H, 2 phosphetane CH, phosphetane CH₂, 2 COD-CH₂), 4.95-5.25 (m, 2 H, 2 COD-CH), 7.31, 7.52 (2 m, 2 H and 3 H, phenyl-H). ¹³C-NMR (CDCl₃, 50 MHz): δ 16.87, 18.70 (2 'tr', 2 CH₃), 26.80, 27.49 (2 'd', 2 phosphetane CH), 29.89, 30.52 (2 s, 2 COD-CH₂), 37.81 ('tr', phosphetane-CH₂), 96.54, 101.48 (2 m, 2 COD-CH), 129.05 (m, phenyl ipso-C), 128.93, 131.08, 132.24 (other phenyl-C). ³¹P-NMR (CDCl₃, 162 MHz): δ 65.59 (d, Jₚ,ₖ = 145 Hz).

Example 4 (3R,5R)-2,6-Dimethyl-3,5-heptanediol

The distilled mixture of 2,6-dimethyl-3,5-heptanediolone and diethyl malonate obtained from the reaction of diethyl malonate (264 g) and isobutyric acid anhydride (500 g) (201 g, containing ca. 150 g of the diketone) was dissolved in 200 ml of methanol and degassed by sparging with nitrogen for 20 minutes plus three following cycles of vacuum (5 min ca. 20 mbar) and stirring under nitrogen (5 min). To this solution was added the
solution of the Ru-(S)-Tol-BINAP obtained from (S)-Tol-BINAP (494 mg, 0.729 mmol) and Ru(COD)(methallyl)_2 (212 mg, 0.66 mmol). The mixture was transferred under strict exclusion of air into a nitrogen flushed 2 L Parr hydrogenation bomb. After purging the bomb with hydrogen the hydrogenation was performed at 100°C/115 bar for five hours. The solvent was removed from the reaction mixture on a rotavapor, and the residue was distilled in vacuum over a 30 cm vigreux column. Yield: 78g, bp 150°C at 26 mm; needles, mp 83-84°C. ^1H-NMR (CDCl_3, 200 MHz): δ 0.90, 0.96 (2 d, 12 H, ^3J = 6.8 Hz, 2 CH_3); 1.59 (dd', 2 H, CH_2); 1.69 (oct, 2 H, CHMe_2); 2.40 (br s, 2 H, OPh); 3.63 ('q', 2 H, CHOH). ^13C-NMR (CDCl_3, 50 MHz): δ 16.07, 18.64 (2 CH_3); 33.64 (CHMe_2); 36.47 (CH_2); 73.90 (CHOH).

Example 5

(4R,6R)-4,6-Diisopropyl-2,2-dioxo-1,3,2-dioxathiane

a) (4R,6R)-4,6-diisopropyl-2-oxo-1,3,2-dioxathiane (cyclic sulfite): A 500 ml flask was charged with (3R,5R)-2,6-dimethyl-3,5-heptanediol (16.02 g, 0.1 mol) and dichloromethane (100 ml). To this solution was added thionyl chloride (14.3 g) via a syringe within 2 minutes. When the evolution of HCl had ceased stirring was stopped, and the solvent was removed on the rotavapor to leave the product as yellow oil. ^13C-NMR (CDCl_3, 50 MHz): δ 17.52, 17.70, 18.14, 18.46 (4 CH_3); 31.27 (CH_2); 32.16, 32.63 (2 CHMe_2); 71.18, 78.97 (2 CHOH).

b) (4R,6R)-4,6-diisopropyl-2,2-dioxo-1,3,2-dioxathiane (cyclic sulfite): The crude cyclic sulfite obtained from a) was dissolved in ethyl acetate (100 ml). To this solution was added RuCl_3·3H_2O (20 mg), crushed ice (100 g), and NaI/O_4 (25.7 g, 0.12 mol). The mixture was stirred rapidly, and within 1 1/2 minutes the colour had changed to yellow. The organic layer was decanted, and the aqueous layer was extracted with four portions of ethyl acetate (100 ml each). To the vigorously stirred combined organic layers was added Na_2SO_4, and stirring was continued until the colour of the organic layer had disappeared almost completely (ca. 25 min). After drying (Na_2SO_4) and filtering the solvent was removed to leave the (4R,6R)-4,6-diisopropyl-2,2-dioxo-1,3,2-dioxathiane as yellow oil which crystallised from pentane. Yield 18.6 g (83.4%). ^1H-NMR (CDCl_3, 200 MHz): δ 0.97 (d, 6 H, J = 6.8 Hz, CH_3); 1.07 (d, 6 H, J = 6.6 Hz, CH_3); 2.08 (t', 2 H, CH_2); 2.15 (m, 2 H, CHMe_2); 4.45 ('quart', 2 H, OCH). ^13C-NMR (CDCl_3, 50 MHz): δ 18.02, 18.10 (2 CH_3); 28.81 (CH_2); 31.45 (CHMe_2); 88.03 (OCH).
Example 6 \((2S,4S)-2,4\text{-Diisopropyl-1-phenylphosphetane}\)

In a 100 ml Schlenk flask a solution of lithium phenylphosphanide was prepared by the slow addition of n-BuLi (10 minutes, 2.5 n solution, 28 ml, 70 mmol) via a syringe to a solution of phenylphosphine (7.7 g, 70 mmol) in THF (60 ml) at 0°C.

A solution of the cyclic sulfate \((4R,6R)-4,6\text{-diisopropyl-2,2-dioxo-1,3,2-dioxathiane}\) (16.32 g, 73.5 mmol, 5% excess) was made up in a Schlenk flask in absolute THF (700 ml), sparged with nitrogen for 30 minutes, and cooled to -78°C. The lithium phenylphosphanide solution was added to this solution via a syringe within 20 minutes. The pale yellow mixture was stirred at -78°C for one more hour, and then the second portion of BuLi (2.5 n solution, 30 ml, 75 mmol) was added within 30 minutes to the reaction mixture. The mixture was allowed to warm up overnight, and then the solvent was distilled off. To the residue was added water (100 ml) and sulfuric acid (10 ml of 2M acid), and the ligand was extracted from this mixture into pentane. After drying (Na₂SO₄) and removal of the solvent the residue (14.6 g) was double-distilled in vacuum to give the ligand as colourless liquid. Yield: 8.68 g (53% based on phenylphosphate), bp. 120°C at 2 mbar. ¹H NMR (CDCl₃, 400 MHz): δ 0.63, 0.67 (2 d, 6 H, J = 6.4 Hz, 2 CH₃); 1.03, 1.05 (2 d, 6 H, J = 6.4 Hz, 2 CH₃); 1.28 (m, 1 H, CHMe₂); 1.94-2.04 (m, 3 H, CHMe₂, 2 phosphetane CH); 2.49-2.57, 2.66-2.73 (2 m, 2 H, phosphetane CH₂); 7.29-7.41 (m, 3 H, phenyl-H); 7.62-7.69 (m, 2 H, phenyl-H). ¹³C-NMR(CDCl₃, 50 MHz): δ 19.20 (d, J₁P,C = 5 Hz, CH₃); 20.42 (s, CH₃); 20.55 (d, J₁P,C = 6.5 Hz, CH₃); 20.99 (d, J₁P,C = 12.2 Hz, CH₃); 29.80 (d, J₁P,C = 3.3 Hz, CHMe₂); 31.29 (d, J₁P,C = 18.2 Hz, CHMe₂); 33.40 (d, J₁P,C = 3.2 Hz, phosphetane-CH); 35.51 (d, J₁P,C = 8.7 Hz, phosphetane-CH); 37.77 (d, J₁P,C = 5.8 Hz, phosphetane-CH); 128.05 (d, J = 6.0 Hz, m-C); 128-31 (s, p-C), 133.64 (d, J = 17.6 Hz, o-C); 136.64 (d, J = 32.6 Hz, ipso-C).

Example 7 \((2S,4S)-2,4\text{-Diisopropyl-1-phenylphosphetano-(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate}\)

A solution of \((2S,4S)-2,4\text{-diisopropyl-1-phenylphosphetane}\) (1.0 g, 4.27 mmol) and HBF₄·OEt₂ (687 mg, 2.14 mmol) in THF (8 ml) was added under nitrogen via a syringe to [Rh(COD)(acac)] (662 mg, 2.14 mmol) within two minutes. The obtained orange solution was heated to reflux and after cooling to RT, diethyl ether (ca 10 ml) was added via a syringe. The complex crystallised spontaneously, and gave after filtering and drying
a yield of 1.38 g (84.3%) of orange-yellow crystals. \(^1\)H-NMR (CDCl\(_3\), 400 MHz): \(\delta 0.54, 0.78, 1.16, 1.93\) (4 d, J = 6.4 Hz, CH\(_3\)); 2.00-2.56 (m, COD-CH\(_2\)), 2 phosphetane-CH\(_2\), 2 CHMe\(_2\), phosphetane-CH\(_2\)); 2.72 (m, COD-CH\(_2\)); 5.10 (\textquoteright br quart', COD-CH), 5.72 (\textquoteright br tr', COD-CH), 7.14-7.82 (m, phenyl-H). \(^{13}\)C-NMR(CDCl\(_3\), 50 MHz): \(\delta 16.87\) (tr', CH\(_3\)); 20.61 (tr', CH\(_3\)); 21.55 (s', CH\(_3\)); 25.51 (tr', CH\(_3\)); 27.91 (COD-CH\(_2\)); 29.76 (tr', CHMe\(_2\)); 30.61 (CHMe\(_2\)); 39.98, 42.87 (2 m, phosphetane-CH); 95.41, 100.64 (2 m, COD-CH); 129.57 ('m', phenyl ipso-C); 128.58('tr'); 130.20(s); 131.06(broad m) (other phenyl-C). \(^{31}\)P-NMR (CDCl\(_3\), 162 MHz): \(\delta 51.35\) (d, J\(_{\text{P, Rb}}\) = 144.5 Hz).

Example 8 (3S,5S)-Heptane-3,5-diol

The distilled mixture of heptane-3,5-dione and diethyl malonate obtained from the reaction of diethyl malonate (317 g) and propionic acid anhydride (515 g) (contains ca. 150 g of the diketone) was dissolved in 300 ml of methanol and degassed by sparging with nitrogen for 20 minutes plus three following cycles of vacuum (5 min ca. 20 mbar) and stirring under nitrogen (5 min). To this solution was added the solution of the Ru-(S)-Tol-BINAP obtained from (S)-Tol-BINAP (247 mg, 0.36 mmol) and Ru(COD)(methyl)(1\(_2\)) (106 mg, 0.33 mmol). The mixture was transferred under strict exclusion of air into a nitrogen-flushed 2 L Parr hydrogenation bomb. After purging the bomb with hydrogen the hydrogenation was performed at 100°C/115 bar over night. The solvent was removed from the reaction mixture on a rotavapor, and the residue was distilled in vacuum over a 30 cm Vigreux column. Yield: 83g, bp = 140°C at 26 mm, ee = 98% (chiral GC), the product solidifies on standing at RT. \(^1\)H-NMR (CDCl\(_3\), 200 MHz): \(\delta 0.90\) (tr, 6 H, J = 7.3 Hz, 2 CH\(_3\)); 1.34-1.66 (m, 6 H, 3 CH\(_2\)); 3.47 (br s, 2 H, OH); 3.80 (pent', 2 H, CHOCH); 3.13-1.66 (m, 6 H, 3 CH\(_2\)). \(^{13}\)C-NMR (CDCl\(_3\), 50 MHz): \(\delta 10.01\) (CH\(_3\)); 30.10 (CH\(_2\)Me); 41.40 (CH\(_2\)); 70.39 (CHOH).

Example 9 (4S,6S)-4,6-Diethyl-2,2-dioxo-1,3,2-dioxathiane

a) (4S,6S)-4,6-diethyl-2-oxo-1,3,2-dioxathiane (cyclic sulfite): The product was obtained as described in Example 5 a) from (3R,5R)-heptane-3,5-diol (110 g, 0.83 mol) and thionyl chloride (12.0 g, 0.101 mol). 14.9 g yellow oil. \(^1\)H-NMR (CDCl\(_3\), 50 MHz): \(\delta 0.95-1.20\) (m, 6 H, 2 CH\(_3\)); 1.50-1.85 (m 4 H), 1.90-2.15 (m, 2 H) (CH\(_2\)); 4.05-4.25 (m, 1 H), 4.70-4.85 (m, 1 H) (2 CH).

b) (4S,6S)-4,6-diethyl-2,2-dioxo-1,3,2-dioxathiane (cyclic sulfate): The crude cyclic sulfite obtained from a) was dissolved in ethyl acetate (100 ml). To this solution was
added RuCl₃·xH₂O (100 mg), ice (100 g), and NaIO₄ (25.7 g, 0.12 mol). The mixture was stirred rapidly, and within 1½ minutes the colour changed to yellow. The organic layer was decanted, and the aqueous layer was extracted with four portions of ethyl acetate (100 ml). To the vigorously stirred combined organic layers was added Na₂SO₃, and stirring was continued until the colour of the organic layer had disappeared almost completely (ca. 25 min). After drying (Na₂SO₄) and filtering the solvent was removed to leave the (4S,6S)-4,6-diethyl-2,2-dioxo-1,3,2-dioxathiane as yellow oil. Yield 15.1 g (94%). ¹H-NMR (CDCl₃, 200 MHz): δ 0.99 (tr, 6 H, J = 7.3 Hz, 2 CH₃); 1.59-1.89 (m, 2 H, CH₂); 1.89-2.12 (m, 4 H, 2 CH₂CH₃); 4.75 (m, 2 H, 2 CH). ¹³C-NMR (CDCl₃, 50 MHz): δ 9.31 (CH₃), 26.82 (CH₂), 32.01 (CH₂CH₃), 85.21 (CH).

Example 10 (2S,4S)-2,4-Diethyl-1-phenylphosphane

In a 100 ml Schlenk flask a solution of lithium phenylphosphane was prepared by the slow addition of n-BuLi (8 minutes, 2.5 n solution, 17.3 ml, 43.1 mmol) via a syringe to a solution of phenylphosphine (4.75 g, 43.1 mmol) in THF (60 ml) at 0°C.

A solution of the cyclic sulfate (4S,6S)-4,6-diethyl-2,2-dioxo-1,3,2-dioxathiane (8.80 g, 45.3 mmol, 5% excess) was made up in a Schlenk flask in absolute THF (400 ml), sparged with nitrogen for 30 minutes, and cooled to -78°C. The lithium phenylphosphane solution was added to this solution via a syringe within 15 minutes. The pale yellow mixture was stirred at -78°C for one more hour, and then the second portion of BuLi (2.5 n solution, 19 ml, 47.5 mmol) was added within 20 minutes to the reaction mixture. The mixture was allowed to warm up over night, and then the solvent was distilled off. To the residue was added water (100 ml), and the ligand was the extracted from this mixture into pentane. After drying (Na₂SO₄) and removal of the solvent the residue was distilled in vacuum to give the ligand as colourless liquid, bp. 110°C at 2 mbar. ¹H-NMR (CDCl₃, 200 MHz): δ 0.60, 0.90 (2 tr, 3 H each, J = 7.3 Hz, 2 CH₃), 1.75-1.95 (m, 3 H), 2.20-2.50 (m, 5 H) (2 CH₂CH₃, 2 phosphane-CH, phosphane-CH₂), 7.20-7.60 (m, 5 H, phenyl-H). ¹³C (CDCl₃, 50 MHz): δ 11.92 (d, J = 4.7 Hz, CH₃), 12.90 (d, J = 11.7 Hz, CH₃), 24.94 (d, J = 4.3 Hz), 27.60 (d, J = 20.5 Hz, 2 CH₂CH₃), 31.62 (d, J = 0.9 Hz), 31.76 (d, J = 2.5 Hz, 2 phosphane CH), 34.67 (d, J = 2.7 Hz, phosphane CH₂), 127.69 (s), 127.97 (d, J = 5.4 Hz), 132.10 (d, J = 15.8 Hz0 (other phenyl C), 133.43 (d, J = 32.9 Hz, phenyl ipso-C). ³¹P-NMR(CDCl₃, 162 MHz): δ 18.74.
Example 11 (R)-N-Acetyl-3-(2-naphthyl)alanine Methyl Ester

A solution of methyl (Z)-2-acetamido-3-(2-naphthyl)propenoate (0.3 g, 1.11 mmol) and the catalyst (I) (7 mg, 0.011 mmol, 1.0 mol%) in degassed methanol (10 ml) was placed in a 50 ml Parr pressure reactor purged with nitrogen. The vessel was then purged with hydrogen (x3) and charged to 4.13 MPa (600 psi) of hydrogen. After stirring for 2 h, the solution was evaporated to give (R)-N-acetyl-3-(2-naphthyl)alanine methyl ester (0.31 g, quantitative yield, 77.5% ee).

Example 12 (R)-N-Acetylphenylalanine

A solution of α-acetamido-cinnamic acid (0.5 g, 2.44 mmol) and the catalyst (I) (16 mg, 0.024 mmol, 1.0 mol%) in degassed methanol (10 ml) was placed in a 50 ml Parr pressure reactor purged with nitrogen. The vessel was then purged with hydrogen (x3) and charged to 4.34 MPa (630 psi) of hydrogen. After stirring for 2 h, the solution was evaporated to give (R)-N-acetylphenylalanine (0.52 g, quantitative yield, 84.4% ee).

Example 13 (R)-N-Acetylaspartic Acid Methyl Ester

A solution of methyl 2-acetamidoacrylate (22 mg, 0.15 mmol) and the catalyst (I) (1 mg, 0.0015, 1 mol%) in degassed methanol (1 ml) was prepared under exclusion of oxygen in a GC-vial. The vial was placed in a 50 ml Parr reactor which was purged with hydrogen and charged to 3.41 MPa (500 psi). After hydrogenation of the mixture overnight, the solvent was evaporated to give the (R)-N-acetylaspartic acid methyl ester (complete conversion, 62.8% ee).

Example 14 2-Methylsuccinic Acid Dimethyl Ester

A solution of dimethyl itaconate (158 mg, 1 mmol) and the catalyst (I) (6 mg, 1 mmol, 1 mol%) in degassed methanol (10 ml) was prepared under exclusion of oxygen in a Schlenk flask. After hydrogenation of the mixture overnight at 3.41 MPa (500 psi), the solvent was evaporated to give the 2-methylsuccinic acid dimethyl ester (complete conversion, 11.7% ee, configuration unknown).

Example 15 1-Phenylethanol

A solution of the catalyst (I) (1 mg, 0.0015 mmol) in degassed methanol (1 ml) was prepared under a nitrogen atmosphere and added to acetophenone (18 mg, 0.15 mmol) in a GC-vial. The vial was placed in a 50 ml reactor which was purged with hydrogen and charged to 3.41 MPa (500 psi). After stirring the mixture overnight, the
solvent was evaporated and the residue submitted for analysis. (ca. 5% conversion, 8.4% ee, configuration unknown).

Table 1 gives the results for Examples 13, 12, 14 and 15, respectively, i.e. using the rhodium-based catalyst (6), and also for the corresponding phospholane (7). As indicated above, results obtained according to the invention are invariably superior.

Table 1

<table>
<thead>
<tr>
<th>Substrate</th>
<th>conversion/%</th>
<th>ee/%</th>
<th>conversion/%</th>
<th>ee/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCONHCONMeOME</td>
<td>100</td>
<td>62.8</td>
<td>100</td>
<td>26.1</td>
</tr>
<tr>
<td>PhCONHCONMeOH</td>
<td>100</td>
<td>84.4</td>
<td>100</td>
<td>51.6</td>
</tr>
<tr>
<td>MeOCOCOCONMeOME</td>
<td>100</td>
<td>11.7</td>
<td>100</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>ca. 5%</td>
<td>8.4</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>
CLAIMS

1. A chiral compound of the formula

\[
R^1\quad R^2\quad R^3\quad R^4
\]

or

\[
R^1\quad R^2\quad R^3\quad R^4
\]

wherein \(R^1, R^2, R^3 \) and \(R^4 \) are each independently H, alkyl, cycloalkyl, aryl or alkaryl, provided that \(R^1 \) and \(R^2 \) are not both H; and \(X \) is any group capable of forming a stable bond to phosphorus.

2. A compound according to claim 1, of the formula

\[
R^1\quad R^2\quad R^3\quad R^4
\]

or

\[
R^1\quad R^2\quad R^3\quad R^4
\]

wherein \(Y \) is any group capable of forming stable bonds to phosphorus.

3. A compound according to claim 1 or claim 2, wherein \(X/Y \) is alkyl or aryl.

4. A compound according to claim 1 or claim 2, wherein \(X/Y \) is an organometallic radical.

5. A compound according to claim 4, wherein \(X/Y \) is ferrocenyl.

6. A compound according to claim 1, wherein \(X \) is phenyl.

7. A compound according to claim 2, wherein \(Y \) is 1,2-phenylene.

8. A compound according to claim 2, wherein \(Y \) is \(-(CH_2)_1-\).

9. A compound according to claim 8, wherein \(Y \) is \(-CH_2-\).

10. A compound according to any preceding claim, wherein \(R^1=R^2 \).
11. A compound according to claim 10, wherein R^3 and R^4 are each H.

12. A process for preparing a compound according to any preceding claim, from the corresponding chiral 1,3-diol of the formula

$$R^1\text{-CHOH-CR}^3\text{R}^4\text{-CHOH-R}^2$$

13. A complex of transition metal and a compound according to any of claims 1 to 11.

14. A complex according to claim 13, wherein the transition metal is iridium, rhodium or rutherium.

15. Use of a compound according to any of claims 1 to 11, or a complex according to claim 13 or claim 14, in an asymmetric reaction.

16. Use of a compound according to any of claims 1 to 11, or a complex according to claim 13 or claim 14, as a ligand for asymmetric catalysis.

17. Use of a compound according to any of claims 1 to 11, or a complex thereof according to claim 13 or claim 14, as a ligand for asymmetric hydrogenation or hydroformylation.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07F9/6568 C07F15/00 C07C45/50 C07C53/00 /C07M7:00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07F C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MARINETTI A ET AL: "Synthesis and characterisation of some P-menthylphosphatanes, a new class of electron-rich chiral phosphines" TETRAHEDRON (TETRAB,00404026);93; VOL.49 (45); PP.10291-304, EC. POLYTECH.;LAB. "HETEROELEMENTS COORD." PALAISEAU; 91128; FR. (FR), XP000673622 see the whole document --- /--</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C. X Patent family members are listed in annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

2 October 1997

Date of mailing of the international search report

17.10.97

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 MV Rijswijk Tel. (+31-70) 340-2040, Tx 31 651 epi nl, Fax (+31-70) 340-3016

Authorized officer:

Beslier, L

Form PCT/ISA/2010 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MARINETTI A ET AL: "Phosphetanes as Chiral Ligands for Catalytic Asymmetric Reactions: Hydrosilylation of Olefins" ORGANOMETALLICS (ORGND7,02767333);94; VOL.13 (10); PP.3956-62, ECOLE POLYTECHNIQUE;LABORATOIRE HETEROELEMENTS ET COORDINATION; PALAISEAU; 91128; FR. (FR), XPO00672511 see the whole document ---</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 5 008 457 A (MARK J. BURK) 16 April 1991 cited in the application see the whole document ---</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 5 171 892 A (MARK J. BURK) 15 December 1992 see the whole document -----</td>
<td>1-17</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5008457 A</td>
<td>16-04-91</td>
<td>AT 116988 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 652756 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7854691 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2082166 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69106703 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69106703 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0528865 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2067230 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 66995 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 68116 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 9590537 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9117998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5177230 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5206398 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5322956 A</td>
</tr>
</tbody>
</table>

US 5171892 A	15-12-92	AT 153667 T	15-06-97
		DE 69220061 D	03-07-97
		DE 69220061 T	11-09-97
		EP 0592552 A	20-04-94
		JP 6508848 T	06-10-94
		WO 9301199 A	21-01-93
		US 5386061 A	31-01-95
		US 5565593 A	15-10-96
		US 5559267 A	24-09-96
		US 5596114 A	21-01-97
		US 5532395 A	02-07-96
		US 5329015 A	12-07-94