

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-526901

(P2004-526901A)

(43) 公表日 平成16年9月2日(2004.9.2)

(51) Int.Cl.⁷

FO1L 33/02

FO1L 1/34

FO1L 13/00

FO2D 13/02

F1

FO1L 33/02

FO1L 1/34

FO1L 13/00

FO2D 13/02

テーマコード(参考)

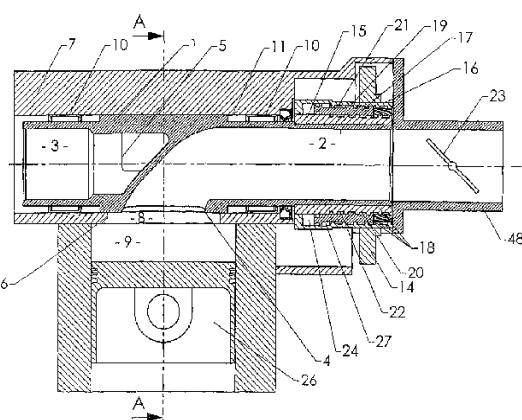
3G018

3G092

3O1Y

H

審査請求 未請求 予備審査請求 有 (全 81 頁)


(21) 出願番号 特願2003-500394 (P2003-500394)
 (86) (22) 出願日 平成14年5月30日 (2002.5.30)
 (85) 翻訳文提出日 平成15年12月1日 (2003.12.1)
 (86) 國際出願番号 PCT/AU2002/000687
 (87) 國際公開番号 WO2002/097244
 (87) 國際公開日 平成14年12月5日 (2002.12.5)
 (31) 優先権主張番号 PR 5315
 (32) 優先日 平成13年5月30日 (2001.5.30)
 (33) 優先権主張国 オーストラリア(AU)

(71) 出願人 500054732
 ビショップ イノヴェーション リミテッド
 オーストラリア国 ニューサウスウェールズ 2113 ノース ライド ウータールー ロード 10
 (74) 代理人 100072051
 弁理士 杉村 興作
 (72) 発明者 アンソニー ブルース ウォーリス
 オーストラリア国 ニューサウスウェールズ 2111 グレイズヴィル ウエスト ミンスター ロード 48
 F ターム(参考) 3G018 AB02 AB16 BA21 BA32 CA11
 DA17 EA17 FA01 FA07 GA02
 3G092 AA11 DA08 DG08 FA12
 最終頁に続く

(54) 【発明の名称】回転バルブ型内燃機関のバルブタイミング調整機構

(57) 【要約】

回転バルブ式内燃機関は、クランクシャフト、スロットル(23)、スロットルアクチュエータ、シリンダヘッド(7)、燃焼室(8)、及び少なくとも1個の回転バルブ(1)を有する。回転バルブ(1)は、周方向の開口(4, 5)で終端する少なくとも2個のポート(2, 3)を有し、シリンダヘッド(7)は、内部で回転バルブ(1)が回転するボア(11)と、燃焼室(8)に連通するボア(11)における窓(6)を有し、開口(4, 5)は回転によって窓(6)に順次に整列し、また位相変更手段(18)を有する駆動機構によって回転バルブ(1)を駆動する。少なくとも2個のポート(2, 3)は吸気ポート(2)と排気ポート(3)とを有し、位相変更手段(18)は少なくとも1回のエンジンサイクルにわたり、エンジンの動作条件の変化に応じて位相を変更する。

【特許請求の範囲】**【請求項 1】**

クランクシャフト、スロットル、スロットルアクチュエータ、シリンダヘッド、燃焼室、および少なくとも1個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも2個のポートを有し、前記シリンダヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも2個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関の動作条件の変化に応答して位相変更を生じ、この位相変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする回転バルブ型の内燃機関。

10

【請求項 2】

前記位相変更手段は、更に、前記内燃機関の少なくとも1回のエンジンサイクルにわたり、前記内燃機関に送られる少なくとも1個の要求値の変化に応答して位相変更を生ずるものとした請求項1記載の回転バルブ型の内燃機関。

【請求項 3】

前記位相変更の最大許容変更量を大きくした請求項1または2記載の回転バルブ型の内燃機関。

20

【請求項 4】

前記内燃機関が最大負荷または最大に近い負荷状態で動作するとき、エンジン速度が減少するにつれて前記位相変更を負側に変更し、エンジン速度が増大するにつれて前記位相変更を正側に変更する請求項1乃至3のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 5】

前記内燃機関が冷えているとき、前記位相変更を正側に変更し、前記内燃機関が作動温度に達したとき、前記位相変更を負側に変更する請求項1乃至4のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 6】

前記駆動機構を前記クランクシャフトから駆動する請求項1乃至5のうちのいずれか一項に記載の回転バルブ型の内燃機関。

30

【請求項 7】

前記駆動機構を電動モータとした請求項1乃至5のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 8】

クランクシャフト、スロットル、スロットルアクチュエータ、シリンダヘッド、燃焼室、および少なくとも1個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも2個のポートを有し、前記シリンダヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも2個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関に送られる少なくとも1個の要求値の変化に応答して位相変更を生じ、この位相変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする回転バルブ型の内燃機関。

40

【請求項 9】

前記位相変更の最大許容変更量を大きくした請求項8記載の回転バルブ型内燃機関。

【請求項 10】

前記内燃機関が最大負荷または最大に近い負荷状態で動作するとき、エンジン速度が減少するにつれて前記位相変更を負側に変更し、エンジン速度が増大するにつれて前記位相変

50

更を正側に変更する請求項 8 または 9 に記載の回転バルブ型の内燃機関。

【請求項 1 1】

前記内燃機関が冷えているとき、前記位相変更を負側に変更し、前記内燃機関が作動温度に達したとき、前記位相変更を正側に変更する請求項 8 乃至 10 のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 1 2】

クランクシャフト、スロットル、スロットルアクチュエータ、シリンダヘッド、燃焼室、および少なくとも 1 個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも 2 個のポートを有し、前記シリンダヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも 2 個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関に送られる少なくとも 1 個の要求値の変化に応答して位相変更を生じ、また、前記スロットルアクチュエータは前記スロットル位置を変更しない状態に維持し、この位相変更を前記内燃機関の少なくとも 1 回のエンジンサイクルにわたり生ずるものとしたことを特徴とする回転バルブ型の内燃機関。

【請求項 1 3】

前記スロットルアクチュエータは、前記スロットル位置を全開状態に維持する請求項 1 2 記載の回転バルブ型の内燃機関。

【請求項 1 4】

前記少なくとも 1 個の要求値における前記変化は、前記内燃機関を部分的な負荷または低負荷状態で動作させるのに必要な変化とした請求項 1 2 または 1 3 記載の回転バルブ型の内燃機関。

【請求項 1 5】

前記位相変更の前記最大許容変更量を大きくした請求項 1 2 乃至 1 4 のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 1 6】

前記少なくとも 1 個の要求値の変化がエンジン負荷の減少であるとき、前記位相変更を負側の変更とし、前記少なくとも 1 個の要求値の変化がエンジン負荷の増大であるとき、前記位相変更を正側の変更とした請求項 1 2 乃至 1 5 のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 1 7】

前記駆動機構を前記クランクシャフトから駆動する請求項 1 2 乃至 1 6 のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 1 8】

前記駆動機構を電動モータとした請求項 1 2 乃至 1 6 のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項 1 9】

クランクシャフト、スロットル、スロットルアクチュエータ、シリンダヘッド、燃焼室、電子制御ユニット、および少なくとも 1 個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも 2 個のポートを有し、前記シリンダヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも 2 個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関に送られる少なくとも 1 個の要求値の変化に応答して位相変更を生じ、この位相変更は、前記変化した要求値に対して最大許容位相変更として前記電気制御ユニットによって計算し、また、前記スロットルアクチュエータは前記スロットル位置を変更して前記要求値を達成するようにし、この位相

10

20

30

40

50

変更およびスロットル変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする回転バルブ型の内燃機関。

【請求項20】

前記電子制御ユニットは、変化した要求値における最大許容排気ガス内部循環を達成するよう前記最大許容位相変更を計算する請求項19記載の回転バルブ型の内燃機関。

【請求項21】

前記位相変更の前記最大許容変更量を大きくした請求項19または20に記載の回転バルブ型の内燃機関。

【請求項22】

前記少なくとも1個の要求値が前記エンジンに低負荷または部分的負荷で動作することを要求するものであるとき、前記スロットルアクチュエータは、前記スロットルを全開位置または全開に近い位置に維持するものとした請求項19乃至21のうちのいずれか一項に記載の回転バルブ型の内燃機関。 10

【請求項23】

前記位相変更手段は、前記内燃機関の作動条件における変化に応答する位相変更を生ずるものとし、前記位相変更は、前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとした請求項19乃至22のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項24】

前記駆動機構を前記クランクシャフトから駆動する請求項19乃至23のうちのいずれか一項に記載の回転バルブ型の内燃機関。 20

【請求項25】

前記駆動機構を電動モータとした請求項19乃至23のうちのいずれか一項に記載の回転バルブ型の内燃機関。

【請求項26】

位相変更手段は、液圧圧力源と、少なくとも1個のヘリカルスプーラインを組み込んだ液圧ピストンと、前記液圧ピストンに摺動自在に噛合する整合ヘリカルスプーラインを有する第1駆動部材と、前記液圧ピストンに摺動自在に噛合する整合ヘリカルスプーラインとは反対側における第2整合ヘリカルスプーラインを有する第2駆動部材と、前記整合ヘリカルスプーラインおよび第2整合ヘリカルスプーラインのうちの少なくとも一方にゼロでないヘリカル角度を持たせ、前記第1駆動部材を前記クランクシャフトによって駆動し、前記第2駆動部材により前記回転バルブを駆動し、前記液圧圧力源からの圧力供給に応じて前記液圧ピストンを軸線方向に移動し、この軸線方向移動によって前記第1駆動部材を前記第2駆動部材に対して相対回転させる請求項1記載の回転バルブ型の内燃機関。 30

【請求項27】

位相変更手段は、液圧圧力源と、半径方向に突出するベーンの第1のセットを組み込んだ第1駆動部材と、半径方向に突出するベーンの第2のセットを組み込んだ第2駆動部材であって、前記第1駆動部材に対して同心状に取り付けた第2駆動部材とを有し、前記半径方向に突出するベーンの第1のセットを前記第2駆動部材に摺動自在に密着し、半径方向に突出するベーンの第2のセットを第1駆動部材に摺動自在に密着して前記半径方向に突出するベーンの第1のセットと半径方向に突出するベーンの第2セットとの間に一連の密封液圧キャビティを生じ、これら密封液圧キャビティを前記液圧圧力源に接続し、前記第1駆動部材を前記クランクシャフトにより駆動し、前記第2駆動部材により前記回転バルブを駆動し、前記液圧圧力源からの液圧圧力を加えて一連の密封液圧キャビティを変更することに応じて前記第1駆動部材を前記第2駆動部材に対して相対回転させる請求項1記載の回転バルブ型の内燃機関。 40

【請求項28】

前記位相変更手段を電子制御ユニットに接続し、この電子制御ユニットによって位相を制御する請求項1記載の回転バルブ型の内燃機関。

【請求項29】

10

20

30

40

50

前記スロットルアクチュエータを電子制御ユニットに接続し、この電子制御ユニットによってスロットル位置を制御する請求項1記載の回転バルブ型の内燃機関。

【請求項30】

前記駆動機構は、前記クランクシャフトと前記回転バルブとの間に運動を伝達するための少なくとも1個のエピサイクリックギヤセットを有する一次駆動手段と、前記エピサイクリックギヤセットの太陽歯車を駆動する二次駆動手段とを有するものとした請求項1記載の回転バルブ型の内燃機関。

【請求項31】

前記二次駆動手段を電動モータとした請求項30記載の回転バルブ型の内燃機関。

【請求項32】

前記二次駆動手段を、前記電子制御ユニットに接続し、この電子制御ユニットによって前記位相を制御する請求項30記載の回転バルブ型の内燃機関。

【請求項33】

前記スロットルを前記電子制御ユニットに接続し、この電子制御ユニットによって前記スロットルの位置を制御する請求項30記載の回転バルブ型の内燃機関。

【請求項34】

前記駆動機構は、前記回転バルブに直接連結した電動モータを有するものとした請求項1記載の回転バルブ型の内燃機関。

【請求項35】

前記駆動機構は、前記回転バルブに掛合する少なくとも1個の中間駆動部材を駆動する電動モータを有するものとした請求項1記載の回転バルブ型の内燃機関。

【請求項36】

前記少なくとも1個の中間駆動部材は、ギヤ、ギヤ列、チェーン駆動組立体、またはベルト駆動組立体のうちのいずれか一つとした請求項35記載の回転バルブ型の内燃機関。

【請求項37】

前記電動モータを電子制御ユニットに接続し、この電子制御ユニットによって前記位相を制御する請求項34、または35記載の回転バルブ型の内燃機関。

【請求項38】

前記スロットルを前記電子制御ユニットに接続し、この電子制御ユニットによって前記スロットルの位置を制御する請求項34または35記載の回転バルブ型の内燃機関。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、内燃機関に使用する回転バルブ組立体のための可変バルブタイミング調整機構に関し、特に、吸気ポートおよび排気ポートの双方が同一の回転バルブに存在する可変バルブタイミング機構に関するものである。

【背景技術】

【0002】

回転バルブ装置は多くの人々によって提案してきた。最近の一つの例としては、(ワリス[Wallis]氏の)米国特許第5,526,780号明細書によって提案されたものがある。これら回転バルブ装置に共通して言えることは、回転バルブの周面に設ける開口が燃焼室に形成した同一形状の窓に周期的に整列することである。回転バルブの周面に設ける開口が燃焼室の窓に整列するとき、流体が燃焼室に入ったり(吸入行程の場合)、出たり(排気行程の場合)することができる。バルブの周面の開口が燃焼室の窓に整列しないとき、圧縮行程および燃焼行程中にシリンダ内に内容物は閉じ込められる。

【0003】

従来技術の多くは、回転バルブのクランクシャフトに対する角速度比を固定にして回転バルブを駆動する。このことは、一定角速度比を伝達するギヤ列、チェーン駆動またはベルト駆動のような機械的駆動機構によって行う。

【0004】

10

20

30

40

50

「角速度比」とは、回転バルブの角速度がクランクシャフトの角速度によって駆動されるときに得られる比である。

【0005】

内燃（I C）機関（エンジン）のための回転バルブは、多くの特許の対象であるが、一つも商品化されていない。これは、回転バルブに固有の問題が無数にあり、これら固有の問題は適正には解決されていない結果である。これら問題点の多くを解決した一つの特別な例としては、米国特許第5,526,780号明細書に記載の回転バルブ装置がある。この装置は、吸気ポートおよび排気ポートの双方を同一のバルブ内に組み込んだシリンドラ各個に設けた單一回転バルブにより構成している。このコンセプトにおける機械的問題点は解決されたものの、現在、この技術が市場で受け入れられるか否かという他の問題に直面している。近年、厳しい排出ガス規制が世界各国で増大している。I Cエンジン製造業者は、可変バルブタイミング調整機構付きのI Cエンジンを生産することによってこれら規制を満たそうとしている。これらエンジンでは、吸気バルブおよび排気バルブのバルブタイミングを独立的に変化させる。

【0006】

米国特許第5,526,780号明細書に記載の装置は、吸気ポートおよび排気ポートの双方を同一バルブ内に収納してあり、従って、吸気バルブおよび排気バルブを独立的に変更することが不可能であるという問題がある。他の利点があるものの、このことは、一般的に、このような回転バルブを将来商品化することを妨げるという難点として認識されている。

【0007】

本発明は、吸気ポートと排気ポートの双方を同一バルブ内に配置した回転バルブで排出ガス規制の問題を満足のいくよう対処するとともに、I Cエンジン効率を向上することができる機構によってこれらの問題を解決することを意図する。更に、この機構は、スロットル全開での性能を改善するのにも使用する。

【0008】

バルブタイミングは、一般的に、クランクシャフト位置に対する、吸気バルブ開放ポイント、吸気バルブ閉鎖ポイント、排気バルブ開放ポイント、および排気バルブ閉鎖ポイントとして表現される。クランクシャフト位置は、一般的に、基準位置に対する角度として特定される。この基準位置は、一般的に、ピストン行程（ストローク）の上死点にピストンがある位置（即ち、トップデッドセンター [top dead centre] t d c）を選択する。排気バルブが t d c 後の 15° で閉鎖するとは、ピストンが t d c にあった位置からクランクシャフトが 15° 回転したとき、排気バルブのシリンドラとの連通がなくなることを意味する。他の例としては、基準位置を、ピストンがストロークの下死点（ボトムデッドセンター [bottom dead centre] b d c）にあるときの位置を選択するものがある。

【0009】

代案として、バルブタイミングは、吸気期間、排気期間、閉鎖期間、およびオーバーラップ期間という持続期間と、初期位置および位相との組み合わせとしても考慮することができる。初期位置は、何らかのポイントでのクランクシャフト位置と回転バルブ位置との間の関係を決定する。

【0010】

用語「オーバーラップ」とは、吸気ポートおよび排気ポートの双方が同時に燃焼室に開放しているエンジンサイクルの期間を意味する。

【0011】

用語「期間」とは、2つの任意の事象間でクランクシャフトが回転する角度である。

【0012】

「吸気期間」は、吸気ポートが燃焼室に連通しているとき、即ち、吸気バルブ開放と吸気バルブ閉鎖との間でクランクシャフトが回転する角度である。同様に、「排気期間」とは、排気ポートが燃焼室に連通しているとき、即ち、排気バルブ開放と排気バルブ閉鎖との間でクランクシャフトが回転する角度である。「閉鎖期間」は、吸気ポートまたは排気ポ

10

20

30

40

50

ートのいずれも燃焼室には開放していないとき、即ち、吸気バルブ閉鎖と排気バルブ開放との間でクランクシャフトが回転する角度である。このことは、4ストロークエンジンにおける圧縮行程と出力行程の期間中に生ずる。「オーバーラップ期間」は、吸気ポートおよび排気ポートの双方が同時に燃焼室に開放するとき、即ち、吸気バルブ開放と排気バルブ閉鎖との間でクランクシャフトが回転する角度である。

【0013】

すべての内燃機関（エンジン）において、バルブ事象（イベント）をエンジンサイクルの適正位置に同期させることは重要である。「位相」は、この同期を記述するのに使用する。位相がサイクル毎に一定であるとき、バルブイベントは、それぞれ一つのサイクルから次のサイクルに移行する場合でもサイクルにおいて同一位置で正確に生ずる。

10

【0014】

サイクルにおける位置は、クランクシャフト位置によって規定される。回転バルブの位置は、容易に観測できるバルブ事象の一つとして選択するのが一般的な基準位置から回転バルブが回転した角度によって記述される。このような基準位置としては、吸気バルブ開放（i v o）、吸気バルブ閉鎖（i v c）、排気バルブ開放（e v o）、排気バルブ閉鎖（e v c）がある。参考のため、本明細書では基準位置として i v o を選択した。「回転バルブ位置」は、回転バルブが i v o ポイントから回転した角度として規定する。

【0015】

定角速度比をもたらす駆動機構を使用する普通の回転バルブ型の内燃機関（エンジン）に関しては、サイクル位置に対する回転バルブの位置は、図 11 に示すタイプのグラフによって表すことができる。ライン 53 はすべてのクランクシャフト位置に対する回転バルブの位置を規定する。このラインによって規定される関係が順次のサイクルで生ずる限りは、この位相は一定に維持される。回転バルブ位置とクランクシャフト位置との間の関係が、何らかの位置でライン 54 によって表される場合、位相変更が生じたと言え、位相変更の大きさは $^\circ$ である。基準としてライン 53 を選択した場合、位相は $^\circ$ である。

20

【0016】

「位相」は、一定位相を規定する基準ライン 53 に対して一定位相を規定するライン 54 がシフトしたクランクシャフトにおける角度距離（ $^\circ$ ）として規定される。

【0017】

「位相変更」は、一定位相を規定する任意のラインが一定位相を規定する他の任意のラインに対してシフトしたクランクシャフトにおける角度距離（ $^\circ$ ）として規定する。

30

【0018】

位相変更は、エンジンサイクルにおいて吸気バルブの開放が遅れるような変更である場合「正」の変更と規定する。図 11 におけるライン 53 からライン 54 への位相変更は、「正」の変更である。

【0019】

エンジンサイクルにおいて吸気バルブの開放が早期に開放される場合には、位相変更は「負」の変更である。

【0020】

普通のポペットバルブ型エンジンでは、通常上からタイミングがどのくらいずらして変化するかに関しては実用上の限界がある。これは、ポペットバルブが燃焼室に開放しているという事実の結果である。ピストンが吸入行程の t d c にあるとき、ピストンのクラウン部は突入するポペットバルブのヘッドに極めて接近する。圧縮比を高くすれば高くするほど、バルブの数は多くなければならず、また、バルブをピストンのクラウン部に一層接近させねばならない。最近のエンジンは、これらの変数を最大限にしようとしている。ポペットバルブを燃焼室に一層突入させることを必要とするタイミング変更は、従って、変更度合いに限界がある。スロットル全開タイミング調整に比較すると、変更は、吸気の開放遅延または排気の早期閉鎖に限定され、このことは、ポペットバルブヘッドとピストンクラウン部との間の距離を増加させる。

40

【0021】

50

すべてのエンジンは、スロットル全開では、最適な出力結果を得るためにには、所定量のオーバーラップを必要とする。スロットル開度が小さい設定では、このオーバーラップ量は、過剰な排気ガス内部再循環（EGR）を招き、燃焼安定性を損なって、「ラフランニング」と、過剰な炭化水素発生を生ずる。ポベットバルブの製造業者は、バルブタイミングを変更して部分的スロットル開度または低負荷動作でオーバーラップ量を最小限にしようとする。例えば、多くのエンジンは、最大限の出力を得るために、tdc前の15°で吸気バルブを開放し、tdc後の15°で排気バルブを閉鎖することを必要するのが一般的である。位相変更は、スロットル全開から最大で約15°の位相位置に限定されるのが一般的である。

【0022】

10

持続時間が固定のカムを有するポベットバルブ構成に適用できる位相変更量には実用上の限界があるのが一般的である。エンジンが低負荷で動作するときに吸気バルブ開放位置がtdc前の15°からtdcに移行する場合には、吸気閉鎖ポイントも15°遅れて生ずる。この吸気バルブ閉鎖遅れは、チャージ量の相当多くの損失を招き、チャージはシリンダから吸気ポートにポンプ作用で送り返され、従って、効率損失となる。この結果、位相変更は、満足のいく内部EGR結果を得る大きさは、約15°の大きさに制限されるのが一般的である。位相変更を大きくする必要がある場合、製造業者は、吸気期間および排気期間を変更する装置を導入した。この場合、許容位相変更のサイズは拡張される。

【0023】

20

一方、回転バルブは、燃焼室には突入はしない。従って、この回転バルブには、バルブタイミングの変更ができる範囲に物理的な制限がない。このことにより、ポベットバルブエンジンには手がけることができなかつた解決方法を見出すことが可能である。本発明は、エンジン動作条件の変化に応答して、吸気ポートおよび排気ポートの双方が同一バルブに存在する回転バルブの位相をシフトする。基本的に、吸気ポートおよび排気ポートは、スロットル全開における吸気持続期間および排気持続期間を維持しつつ、同時に位相を等しい量だけ変更できる。本発明は、所定の動作条件において大きな位相変更を使用することができる。ポベットバルブエンジンではこのような手法は物理的に不可能である。例えば、ポベットバルブ機構では、同一のスロットル全開の吸気持続期間および排気持続期間を維持しつつ吸気バルブおよび排気バルブの双方を同じ大きさの位相変更を同時に加えようすると、位相変更が正か負かに基づいて、吸気バルブまたは排気バルブのどちらかがピストンに衝突することになる。ポベットバルブエンジンでは、バルブがピストンに衝突する前にほんの僅かな位相変更しか生じ得ない。バルブがピストンに衝突する前に生じ得る位相変更の大きさは、エンジン設計を変更することになる。しかし、最近の高性能ポベットバルブICエンジン（高圧縮比のオーバーヘッドツインカム式の4バルブエンジン）では、位相変更は10°以下に制限されるのが一般的である。

30

【0024】

本明細書にわたり、吸気および／または排気の持続時間が固定の構成では、表現「大きな位相変更」または「位相変更の大きな大きさ」が、15°より大きい位相変更、代表的には25°以上を意味する。

40

【0025】

しかし、既知の回転バルブに対する可変タイミングの提案は、すべて、ポベットバルブ型エンジンの製造業者により採用されているのに模した手法を採用するに過ぎなかつた。すべての従来技術の可変タイミング回転バルブに関する提案は、吸気ポートおよび排気ポートに関して個別のバルブを有する構成を採用するものである。これらの構成は、吸気ポートおよび排気ポートのタイミングを互いに独立的に変更することができ、従って、吸気バルブタイミングと排気バルブタイミングを独立的に位相変更するポベットバルブの手法に似ている利点を有する。このような例としては、（コンクリン[Conklin]氏の）米国特許第5,205,251号明細書に記載されている。

【0026】

（コンクリン[Conklin]氏の）米国特許第5,205,251号明細書は、シリンダ当た

50

り 2 個の回転バルブを装着した回転バルブ型エンジンのバルブタイミングを変更する手段について記載している。1 個の回転バルブは吸気ポートを有し、他の回転バルブは排気ポートを有する。回転バルブはスリーブ内に収納し、これらスリーブ内で各回転バルブは回転することができる。これらスリーブは、シリンダヘッド内で回転自在に配置する。吸気または排気のイベント(事象)のタイミング変更は、サイクル中にスリーブの回転と回転バルブ角速度の変更とを組み合わせることによって達成している。この構成において、サイクル中の回転バルブ角速度変更は、吸気および/または排気の持続期間を変更する。スリーブの回転は、クランクシャフトに対する吸気および/または排気のイベント位置、若しくはクランクシャフトに対するこれらイベントの位相を変更する。回転バルブの角速度変更とスリーブの回転変更との組み合わせは、吸気開放ポイント、吸気閉鎖ポイント、排気開放ポイント、排気閉鎖ポイントの独立的な運動を可能にする。

10

【0027】

スリーブおよびスリーブ位置を変更する付加的な機構を設けることは、他の複雑さが加味され、更に、ガス封止という他の困難さももたらす。米国特許第 5,205,251 号明細書は、ガス封止をどのように達成しているかについては黙している。しかし、燃焼室とスリーブとの間、およびスリーブと回転バルブとの間には、ガス封止が必要なことは明らかである。この構成における実際上の解決法は知られておらず、また 2 力所のシールに対する必要条件は、複雑さを増大させるだけである。

20

【0028】

米国特許第 5,205,251 号明細書に記載されているサイクル中の回転バルブ角速度を変更するための駆動機構は、複雑であり、また実現が困難である。即ち、偏心ギヤを設け、この偏心ギヤの回転中に偏心度を変更しなければならず、また、この偏心ギヤが掛合するアイドルギヤも、このアイドルギヤ中心がサイクル全体にわたり連続的に移動することができなければならない。この個別の機構は各バルブにつき各個に必要である。

30

【0029】

スリーブを使用してタイミングを変更するいかなる構成も、シリンダヘッドに窓を必要とし、この窓は、バルブにおける開口よりも広い窓でなければならない。このことは、米国特許第 5,205,251 号明細書の図 2 および図 5 に明示されている。回転バルブの吸排気能力は、部分的には、回転バルブにおける開口の窓によって決定されるため、スリーブを使用する際に導入されているものとは別に、シリンダヘッド窓を回転バルブ開口よりも広くする実用上の必要性はないはずである。従って、回転バルブの吸排気能力は不必要に制限されている。シリンダヘッドにおける広い窓は、更に、以下の付加的な問題をも有する。第 1 に、燃焼中に回転バルブに課せられるガス負荷は、シリンダヘッド窓の幅に直接比例し、従って、タイミングを変更するためのスリーブを使用する場合、不必要に高いガス負荷となる。第 2 に、これら窓が占める容積は、不必要に大きく、必要な圧縮比を有する燃焼室を設計するのが困難になる。

30

【0030】

吸気ポートおよび排気ポートの双方を同一のバルブに組み込む單一回転バルブは、吸気ポートおよび排気ポートに関して個別のバルブを必要とする構成よりも大幅な改善がみられる。このことを以下の考察によって明らかにする。

40

【0031】

内燃機関(エンジン)のためのすべてのバルブ機構に関連する 2 つの重要な特徴は、バルブ開閉の速度であり、またバルブシステムの最大吸排気能力である。回転バルブの場合には、シリンダヘッドにおける窓の長さと、バルブ直径とがバルブ開閉速度を決定する。窓の長さは、幾何学的形状上、窓がシリンダのボアに位置する必要条件により規制され、またシリンダ当たり 1 個または 2 個のバルブがある場合、同一長さにすることができる。最大吸排気能力はバルブ直径によって決定される。従って、同一の最大吸排気能力に対して、單一吸気ポートを有する回転バルブのバルブ直径は、吸気ポートおよび排気ポートの双方を同一バルブに設けたバルブのバルブ直径と同一でなければならない。この結果、吸気ポートおよび排気ポートの双方を同一バルブに組み込んだ單一バルブは、吸気ポートおよ

50

び排気ポートを個別のバルブに組み込んだ 2 個のバルブと同一の最大吸排気能力と、最大の開閉速度（即ち、同一の吸排気能力）を有するにもかかわらず、構成部材の数は半分で済む。

【 0 0 3 2 】

最大の吸排気能力を必要とする構成では、回転バルブの直径はできるだけ大きくする必要がある。物理的パッケージ上の制約によって、單一回転バルブは、ツイン回転バルブで可能な直径よりも一層大きな直径にすることができる。吸気ポートおよび排気ポートを同一バルブに組み込んだ單一回転バルブを有する構成の最終的な吸排気能力は、従って、それぞれ単独のポートしか持たない 2 個の回転バルブを有する構成よりも一層大きくなる。

10

【 0 0 3 3 】

更に、吸気ポートおよび排気ポートを個別のバルブに組み込むツイン回転バルブは、吸気ポートおよび排気ポートの双方を同一バルブに組み込む單一回転バルブで必要とされるよりも多数の軸受およびシールを必要とする。

【 0 0 3 4 】

従って、2 バルブ構成では摩擦損失が、吸気ポートおよび排気ポートの双方を同一バルブに組み込んだ單一バルブ構成におけるよりも潜在的に 2 倍となる。

【 0 0 3 5 】

他の観点からシリンダ当たり 2 個のバルブを必要とする場合、吸気ポートおよび排気ポートの双方を同一バルブに組み込む 2 個の回転バルブは、単独ポートを各バルブにそれぞれ組み込んだだけの 2 個の回転バルブよりも、同一窓長さで 2 倍の開閉速度となる。このことは、双方のタイプのバルブで直径が同一と仮定する。吸気ポートおよび排気ポートの双方を同一バルブに有する構成の場合、2 倍の最大吸排気能力を有する。従って、吸気ポートおよび排気ポートの双方を同一バルブに組み込んだ 2 個のバルブは、吸気ポートおよび排気ポートを個別の回転バルブに組み込んだ同一直径の 2 個のバルブの吸排気能力の 2 倍の能力を有する。

20

【 0 0 3 6 】

吸気ポートおよび排気ポートを個別の回転バルブに収納する回転バルブ構成における可変バルブタイミングの問題を処理しようとする試みがなされたが、吸気ポートおよび排気ポートの双方を同一回転バルブに収納する構成に内在する一層困難な問題に対処する試みは行われなかつた。

30

【 0 0 3 7 】

困難さが増すのは、この構成では、排気イベントと吸気イベントとの間の位相決めが、バルブのジオメトリ（幾何学的構成配置）によって固定されているからである。従って、吸気ポートおよび排気ポートの双方を組み込んだ回転バルブとクランクシャフトとの間の単純な位相変更によっては、吸気ポートと排気ポートとの相対位置の変更を生ずることはできない。これに対し、吸気ポートと排気ポートに対して個別の回転バルブを使用することは、回転バルブの一方または双方とクランクシャフトとの間の単純な位相変更でも、吸気ポートと排気ポートとの間の位相決めを変更することを意味し、また、オーバーラップを変化させることを意味する。

40

【 0 0 3 8 】

更に、吸気ポートおよび排気ポートを同一バルブに組み込んだ單一回転バルブでは、オーバーラップ期間を変更することに関しての方法は知られていない。

【 0 0 3 9 】

單一回転バルブ構成では、オーバーラップ期間は、回転バルブにおける吸気ポートと排気ポートとの間のブリッジ部の幅と、シリンダヘッドにおける窓の幅とによって物理的に決定される。ブリッジ部の幅は、図 6 に示すように窓の幅よりも小さい。この構成はオーバーラップを生ずる。オーバーラップの大きさは、回転バルブおよびシリンダヘッドを機械加工した細部によって物理的に決定されるため、オーバーラップの大きさを変更する方法は存在しない。この結果、ポペットバルブおよびツイン回転バルブで使用される普通のバ

50

ルブタイミング手法は單一回転バルブを装着したエンジンには利用できない。このことは、吸気ポートおよび排気ポートの双方を同一バルブに組み込むいかかる回転バルブにあっても本來的な限界である。

【0040】

吸気ポートおよび排気ポートの双方を同一バルブに組み込んだ回転バルブに関してタイミング変更を論じた特許文献としては2例がある。（ウイリアムズ[Williams]氏の）英國特許第2,072,264号明細書には、吸気ポートおよび排気ポートの双方を同一バルブに組み込んだ回転バルブ型エンジンが記載されている。この單一バルブを2個またはそれ以上のシリンダに連結する。しかし、この英國特許に記載の装置は、ICエンジンとして満足に機能することはできない。このことは、以下の考察によって確認することができる。英國特許第2,072,264号明細書の図5Aおよびテキストは、回転バルブの周囲における開口が見込む角度（回転バルブの回転軸線を中心として）は60°である回転バルブについて記載している。バルブの周囲における開口とシリンダとの間を連通するシリンダ開口101が見込む角度は45°である。シリンダ開口が90°離れているとき、一方のシリンダ開口の閉じようとしている端縁と、隣接するシリンダ開口の開こうとしている端縁とが見込む角度は45°である。吸気ポートがシリンダ50およびシリンダ52の双方に同時に開く英國特許第2,072,264号明細書の図5に示す位置から時計方向にバルブが45°回転することははっきりしている。シリンダ52が排気行程にあり、シリンダ50が吸気行程にあるとき、吸気ポートは異なる行程で2個のシリンダに開放する。このことは、うまく機能しないこと明らかである。

10

20

30

40

50

【0041】

英國特許第2,072,264号はこの事実の利点を見出そうとしている。バルブ周囲の開口の見込み角度がシリンダ開口の見込み角度よりも大きい結果として、エンジンの稼働中にバルブタイミングを変更することができる機構によって、バルブが完全に開く時間の長さを変化させることができるということを主張する。しかし、この英國特許においては、バルブが完全に開く時間の長さにおいて、どの程度の変更がもたらされるのかについての記載はない。更に、このような結果をもたらすタイミング変更手段について既知の手段は存在しない。この結果は、（本発明の主題である）位相変更を導入することによっては得ることができない。位相変更は、バルブタイミングを単に変化させるだけであり、バルブが完全に開く時間の長さを対象としているのではないからである。バルブが完全に開く時間の長さを変更するコンセプトは、以下の問題を考慮するとメリットはほとんどない。

【0042】

いかなる回転バルブエンジンにおいても、最大吸排気能力は、バルブ周囲の開口および窓をできるだけ大きくすることによって得られる。どの所定持続期間に対しても、最適吸排気能力はバルブ周囲の開口の幅および窓の幅が同一であるときに得られる。英國特許第2,072,264号明細書に記載されているように、窓の幅が、バルブ周囲の開口の幅よりも意図的に狭く形成されているとき、この構成の最大吸排気能力は、双方が同一寸法であるときに得られるよりも狭い窓の開口部分によって、減少する。（吸排気能力を向上させることを考えて）バルブが全開している時間を増大させる未公開の方法コンセプトは、一部のジオメトリの単純な変更が達成する吸排気能力を達成することもできないことを考慮するとほとんどメリットがない。

【0043】

これらの問題は、すべて（迫地氏の）特開平9 32518号公報で論じられている。この特許公開公報には、吸気ポートおよび排気ポートを同一バルブに組み込んだ單一回転バルブを開示している。このバルブは2個のシリンダに共有されている。特開平9 32518号公報の図11は、バルブの周囲の開口と窓がすべて同一の幅を有し、すべての見込み角度が45°であることを示している。更に、窓の閉鎖しようとする側の端縁と隣接する窓の開放しようとする側の端縁とがなす角度も45°である。この構成は、吸気ポート（または排気ポート）が、互いに隣接して異なる行程にあるシリンダに同時に開放する英

国特許第2072264号の問題を克服する。しかし、この構成は、吸気ポートと排気ポートとの間のブリッジ部も見込み角度が45°である。このブリッジ部が窓に直接位置決めされるときには、窓は完全に閉鎖される。従って、この構成はオーバーラップ量がゼロである。

【0044】

オーバーラップ量がゼロであることは、単一の回転バルブが2個またはそれ以上の隣接シリンダに供給する設計のものに関しては必要な制約条件である。

更に、Aをバルブの周囲における開口の見込み角度、Bを窓の見込み角度として、吸気（または排気）の持続期間は2(A+B)である。特開平9 32518号公報においてこれら角度を45°とすると、吸気または排気の持続期間は180°となる。

10

【0045】

180°の最大吸気期間および最大排気期間は、単一の回転バルブが2個またはそれ以上の隣接シリンダに供給する設計のものに関しては必要な制約条件である。

【0046】

オーバーラップ量がゼロ、並びに大吸気期間および最大排気期間が180°は、ICエンジンの設計上のやっかいな制約である。これらの制約を有するエンジンは、オーバーラップ量が30°、期間が230°であるのが典型的な最近のICエンジンに比較すると、最大出力にとって大きな欠点となる。

【0047】

バルブとクランクシャフトとの間の位相を変更する方法も、特開平9 32518号公報に記載されている。同公報は、吸気ポートが吸入行程のt d cで精密に開口し、排気ポートが排気行程のb d cで精密に閉鎖する状態にバルブを維持することができるようバルブ位相を微調整する装置について記載している。しかし、その装置は、位相を変更する機構というよりも、位相を維持するための調整機構である。

20

【発明の開示】

【発明が解決しようとする課題】

【0048】

本発明の本質は、吸気ポートおよび排気ポートを同一バルブに組み込んだ回転バルブにはタイミングをどの程度変更するかに対する大きな物理的制約があるにもかかわらず、回転バルブにおけるユニークな他の特徴（特に、燃焼室へのバルブ突入がない点）は、これらユニークな特徴を利用する他の手法を用いることによって利点が得られるとの認識に基づいている。エンジンの動作条件に応答して位相を動的に変更させることにより、負荷および排出物における改善が得られる。更に、位相変更をスロットル制御と組み合わせる場合、より少ないポンピング損失が得られ、部分的スロットル開度での効率を改善し、またNO_x排出の改善も得られる。

30

【課題を解決するための手段】

【0049】

発明の概略

本発明の第1の発明は、クランクシャフト、スロットル、スロットルアクチュエータ、シリンダヘッド、燃焼室、および少なくとも1個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも2個のポートを有し、前記シリンダヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも2個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関の動作条件の変化に応答して位相変更を生じ、この位相変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする。

40

【発明を実施するための最良の形態】

【0050】

50

好適には、前記位相変更手段は、更に、前記内燃機関の少なくとも1回のエンジンサイクルにわたり、前記内燃機関に送られる少なくとも1個の要求値の変化に応答して位相変更を生ずるものとする。

【0051】

好適には、前記位相変更の最大許容変更量を大きくする。

【0052】

好適には、前記内燃機関が最大負荷または最大に近い負荷状態で動作するとき、エンジン速度が減少するにつれて前記位相変更を負側に変更し、エンジン速度が増大するにつれて前記位相変更を正側に変更する。

【0053】

好適には、前記内燃機関が冷えているとき、前記位相変更を正側に変更し、前記内燃機関が作動温度に達したとき、前記位相変更を負側に変更する。

【0054】

好適には、前記駆動機構を前記クランクシャフトから駆動する。

【0055】

好適には、前記駆動機構を電動モータとする。

【0056】

一つの実施例においては、位相変更手段は、液圧圧力源と、少なくとも1個のヘリカルス プラインを組み込んだ液圧ピストンと、前記液圧ピストンに摺動自在に噛合する整合ヘリカルス プラインを有する第1駆動部材と、前記液圧ピストンに摺動自在に噛合する整合ヘリカルス プラインとは反対側における第2整合ヘリカルス プラインを有する第2駆動部材と、前記整合ヘリカルス プラインおよび第2整合ヘリカルス プラインのうちの少なくとも一方にゼロでないヘリカル角度を持たせ、前記第1駆動部材を前記クランクシャフトによって駆動し、前記第2駆動部材により前記回転バルブを駆動し、前記液圧圧力源からの圧力供給に応じて前記液圧ピストンを軸線方向に移動し、この軸線方向移動によって前記第1駆動部材を前記第2駆動部材に対して相対回転させる。

【0057】

他の実施例においては、位相変更手段は、液圧圧力源と、半径方向に突出するベーンの第1のセットを組み込んだ第1駆動部材と、半径方向に突出するベーンの第2のセットを組み込んだ第2駆動部材であって、前記第1駆動部材に対して同心状に取り付けた第2駆動部材とを有し、前記半径方向に突出するベーンの第1のセットを前記第2駆動部材に摺動自在に密着し、半径方向に突出するベーンの第2のセットを第1駆動部材に摺動自在に密着して前記半径方向に突出するベーンの第1のセットと半径方向に突出するベーンの第2セットとの間に一連の密封液圧キャビティを生じ、これら密封液圧キャビティを前記液圧圧力源に接続し、前記第1駆動部材を前記クランクシャフトにより駆動し、前記第2駆動部材により前記回転バルブを駆動し、前記液圧圧力源からの液圧圧力を加えて一連の密封液圧キャビティを変更することに応じて前記第1駆動部材を前記第2駆動部材に対して相対回転させる。

【0058】

好適には、前記位相変更手段を電子制御ユニットに接続し、この電子制御ユニットによって位相を制御する。

【0059】

好適には、前記スロットルアクチュエータを電子制御ユニットに接続し、この電子制御ユニットによってスロットル位置を制御する。

【0060】

他の実施例においては、前記駆動機構は、前記クランクシャフトと前記回転バルブとの間に運動を伝達するための少なくとも1個のエピサイクリックギヤセットを有する一次駆動手段と、前記エピサイクリックギヤセットの太陽歯車を駆動する二次駆動手段とを有するものとする。

【0061】

10

20

30

40

50

好適には、前記二次駆動手段を電動モータとする。

【0062】

好適には、前記二次駆動手段を、前記電子制御ユニットに接続し、この電子制御ユニットによって前記位相を制御する。

【0063】

好適には、前記スロットルを前記電子制御ユニットに接続し、この電子制御ユニットによって前記スロットルの位置を制御する。

【0064】

他の実施例においては、前記駆動機構は、前記回転バルブに直接連結した電動モータを有するものとする。

【0065】

他の実施例においては、前記駆動機構は、前記回転バルブに掛合する少なくとも1個の中間駆動部材を駆動する電動モータを有するものとする。

【0066】

好適には、前記少なくとも1個の中間駆動部材は、ギヤ、ギヤ列、チェーン駆動組立体、またはベルト駆動組立体のうちのいずれか一つとする。

【0067】

好適には、前記電動モータを電子制御ユニットに接続し、この電子制御ユニットによって前記位相を制御する。

【0068】

好適には、前記スロットルを前記電子制御ユニットに接続し、この電子制御ユニットによって前記スロットルの位置を制御する。

【0069】

本発明の第2の発明は、クランクシャフト、スロットル、スロットルアクチュエータ、シリンドラヘッド、燃焼室、および少なくとも1個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも2個のポートを有し、前記シリンドラヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも2個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関に送られる少なくとも1個の要求値の変化に応答して位相変更を生じ、この位相変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする。

【0070】

好適には、前記位相変更の最大許容変更量を大きくする。

【0071】

好適には、前記内燃機関が最大負荷または最大に近い負荷状態で動作するとき、エンジン速度が減少するにつれて前記位相変更を負側に変更し、エンジン速度が増大するにつれて前記位相変更を正側に変更する。

【0072】

好適には、前記内燃機関が冷えているとき、前記位相変更を負側に変更し、前記内燃機関が作動温度に達したとき、前記位相変更を正側に変更する。

【0073】

本発明の第3の発明によれば、クランクシャフト、スロットル、スロットルアクチュエータ、シリンドラヘッド、燃焼室、および少なくとも1個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも2個のポートを有し、前記シリンドラヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも2個のポートは、

10

20

30

40

50

吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関に送られる少なくとも1個の要求値の変化に応答して位相変更を生じ、また、前記スロットルアクチュエータは前記スロットル位置を変更しない状態に維持し、この位相変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする。

【0074】

好適には、前記スロットルアクチュエータは、前記スロットル位置を全開状態に維持する。

【0075】

好適には、前記少なくとも1個の要求値における前記変化は、前記内燃機関を部分的な負荷または低負荷状態で動作させるのに必要な変化とする。

【0076】

好適には、前記位相変更の前記最大許容変更量を大きくする。

【0077】

好適には、前記少なくとも1個の要求値の変化がエンジン負荷の減少であるとき、前記位相変更を負側の変更とし、前記少なくとも1個の要求値の変化がエンジン負荷の増大であるとき、前記位相変更を正側の変更とする。

【0078】

好適には、前記駆動機構を前記クランクシャフトから駆動する。

【0079】

好適には、前記駆動機構を電動モータとする。

【0080】

本発明の第4の発明によれば、クランクシャフト、スロットル、スロットルアクチュエータ、シリンダヘッド、燃焼室、電子制御ユニット、および少なくとも1個の回転バルブを具え、前記回転バルブは、回転バルブの周縁に開口として終端する少なくとも2個のポートを有し、前記シリンダヘッドには、前記回転バルブが内部で回転することができるボアと、前記燃焼室に連通するよう前記ボアに形成した窓とを設け、前記回転バルブの回転によって前記ポートの開口が順次に前記窓と整列するようにし、更に、前記回転バルブを駆動する駆動機構に位相変更手段を設けた回転バルブ型の内燃機関において、前記少なくとも2個のポートは、吸気ポートおよび排気ポートとし、前記位相変更手段は、前記内燃機関に送られる少なくとも1個の要求値の変化に応答して位相変更を生じ、この位相変更は前記変化した要求値に対して最大許容位相変更として前記電子制御ユニットによって計算し、また、前記スロットルアクチュエータは前記スロットル位置を変更して前記要求値を達成するようにし、この位相変更およびスロットル変更を前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとしたことを特徴とする。

【0081】

好適には、前記電子制御ユニットは、変化した要求値における最大許容排気ガス内部循環を達成するよう前記最大許容位相変更を計算する。

【0082】

好適には、前記位相変更の前記最大許容変更量を大きくする。

【0083】

好適には、前記少なくとも1個の要求値が前記エンジンに低負荷または部分的負荷で動作することを要求するものであるとき、前記スロットルアクチュエータは、前記スロットルを全開位置または全開に近い位置に維持するものとする。

【0084】

好適には、前記位相変更手段は、前記内燃機関の作動条件における変化に応答する位相変更を生ずるものとし、前記位相変更は前記内燃機関の少なくとも1回のエンジンサイクルにわたり生ずるものとする。

【0085】

好適には、前記駆動機構を前記クランクシャフトから駆動する。

【0086】

10

20

30

40

50

好適には、前記駆動機構を電動モータとする。

【0087】

好適には、位相変更手段は、液圧圧力源と、少なくとも1個のヘリカルスプーラインを組み込んだ液圧ピストンと、前記液圧ピストンに摺動自在に噛合する整合ヘリカルスプーラインを有する第1駆動部材と、前記液圧ピストンに摺動自在に噛合する整合ヘリカルスプーラインとは反対側における第2整合ヘリカルスプーラインを有する第2駆動部材と、前記整合ヘリカルスプーラインおよび第2整合ヘリカルスプーラインのうちの少なくとも一方にゼロでないヘリカル角度を持たせ、前記第1駆動部材を前記クランクシャフトによって駆動し、前記第2駆動部材により前記回転バルブを駆動し、前記液圧圧力源からの圧力供給に応じて前記液圧ピストンを軸線方向に移動し、この軸線方向移動によって前記第1駆動部材を前記第2駆動部材に対して相対回転させる。

10

【実施例1】

【0088】

発明の実施の態様

図1及び図2には、一方の端部に吸気ポート2、他方の端部に排気ポート3を有する本発明の第1実施例としての回転バルブ1を示す。これらポートは、それぞれ回転バルブ1の中心円筒形部分の周縁における開口4, 5に接続する。回転バルブ1が回転するとき、開口4, 5は、シリンダ9の頂部における燃焼室8に直接開口するシリンダヘッド7の同一形状の窓6に周期的に整列する。この整列により、ガスがシリンダ9に対して出入りすることができる。圧縮行程及び出力行程中には、回転バルブ1の周縁はシリンダヘッド7の窓6をカバーして燃焼室8からガスが漏洩するのを阻止する。

20

【0089】

回転バルブ1を2個の軸受10によって支持し、またシリンダヘッド7のボア11に対して僅かな半径方向クリアランスを有する。これら軸受10により、回転バルブはシリンダヘッド7のボア11内で回転することができる。スロットルアクチュエータは、シリンダ9へのエア通過量を調整するスロットル23の位置を制御する。

【0090】

クランクシャフトスプロケット13によりチェーン12を介して回転バルブスプロケット14を駆動する。回転バルブスプロケット14は、位相変更手段18を介して回転バルブ1を駆動する。位相変更手段18は、図2に示すように、ハブ15、外側スリーブ16及び液圧ピストン17により構成する。液圧ピストン17は、外側スリーブ16の内側ヘリカルスプーライン21に摺動自在に掛合する外側ヘリカルスプーライン19を有する。圧ピストン17は、ヘリカルスプーライン19, 21側とは反対側の内側ヘリカルスプーライン20を有し、この内側ヘリカルスプーライン20はハブ15における外側ヘリカルスプーライン22に摺動自在に掛合する。所要に応じて、外側ヘリカルスプーライン19または内側ヘリカルスプーライン20のいずれかの螺旋角度をゼロにすることもできる。

30

【0091】

位相変更の所要の向きに基づいて、液圧流体を加圧して前方キャビティ24または後方キャビティ27に供給する。前方キャビティ24に高圧の液圧流体を供給することによって、液圧ピストン17をシリンダ9から離れる方向に押圧し、外側スリーブ16を介してのスプロケット14に対するハブ15を介しての回転バルブ1の回転を生じ、従って、回転バルブ1とクランクシャフト25との間の位相変更を生ずる。

40

【0092】

この実施例は、内燃機関のための回転バルブ組立体のバルブタイミングを連続的に変化させる手段を提供する。本発明は、バルブタイミングを変化するとともに、吸気期間、排出期間及びオーバーラップ期間をすべて一定にする手段を提供する。バルブタイミングにおける変化は、位相変更によって行う。

【0093】

「連続的に」という表現は、回転バルブのタイミングがある一つのサイクルから次のサイクルに連続的に変化することを意味する。

50

【0094】

単独の回転バルブ1のオーバーラップ期間が固定である場合、ポペットバルブ技術でよく知られている機構によって容易に変更することができる。図2に示す機構は代表例である。位相を力学的に変更することにより生ずる利点は、以下のことを考慮することによって理解される。

【0095】

フルスロットルでは、吸気バルブ開放ポイントと排気バルブ閉鎖ポイントとがt d cの周りに対称的になっているとき、即ち、回転バルブ1のブリッジ57がt d cで窓6の中心に位置する（図6参照）とき最大出力が得られるのが一般的である。このことにより、排気ポート3への燃焼ガス排出と、シリンダ9への吸気ポート2からのフレッシュチャージ吸気が同時に行われる。この流れは、吸気ポート2と排気ポート3との間の正圧勾配の結果維持される。排気系統及び吸気系統は、一般的に、フルスロットルで排気ポート3に負圧が得られ、またt d cオーバーラップで正圧が吸気ポート2に得られる。このことにより、排気の吸気チャージの流れの方向が正確になる。

【0096】

最近の内燃機関（ICエンジン）は、全般的に、最大トルク/出力の設計速度で、吸気トラクトを通過する圧力波が、吸気バルブが閉じる瞬間に燃焼室8への進入ポイントに隣接する位置で最大になるよう調整した吸気トラクト（範囲）長さを有する。このことにより、シリンダ9におけるエアの最大過給圧力と最大出力とが得られる。この設計速度よりも低い速度では、正圧力波は、吸気バルブ閉鎖に先立って燃焼室8への進入ポイントに達し、その後、大きさが減少する。吸気バルブが閉鎖する時点までは、圧力は、設計速度で得られるよりも低い。更に、エンジン速度が設計動作速度よりも低い速度になればなるほど、吸気バルブ閉鎖ポイントでの圧力は低くなる。このことにより、シリンダの中身の圧力及び燃焼に利用できるフレッシュチャージの量は減少する。

【0097】

バルブ閉鎖が燃焼室8への進入ポイント（即ち、ポペットバルブにおけるバルブヘッドまたは回転バルブにおける窓6）でのピーク圧力発生に一致するようエンジン速度が減少し、吸気バルブ閉鎖ポイントが遅れた場合（即ち、吸気バルブが早期に閉じる場合）、最大のシリンダチャージが引き続き行われる。

【0098】

吸気ポート2及び排気ポート3の双方が同じ回転バルブ1にあるので、早期に吸気側を閉じることは、排気とオーバーラップとが早期に生ずる結果となる。一般的に、排気を早期に行なうことは、膨張行程量を減少することになるので有害である。しかし、この損失の大きさは吸気バルブの早期の閉鎖によって生ずるものに比べると僅かである。

【0099】

冷えたエンジンでは、排気バルブの早期開放は、排気系統及び触媒の暖気を早くするので、有益である。この結果、触媒は冷えた状態からスタートアップ後にすぐに作用し、少ない発生物質が少なくなる。

【0100】

オーバーラップが早期に生ずるようオーバーラップを変更することにより、吸気バルブを早期に開放し、排気バルブを早期に閉鎖する。オーバーラップは依然として生ずる。違いは、t d cにおけるピストン26に中心が合う代わりに、t d cに向かって移動するピストン26に対して中心があうことである。吸気ポート2と排気ポート3との間に存在する適度の圧力勾配があると仮定すると、シリンダ9はピストン26が依然としてゆっくりだが上昇しているにもかかわらず適切に排気される。基本的には、オーバーラップが早期に生ずるような位相変更によって生ずる効果は、最大負荷状態またはその近傍で二次効果を生ずる。

【0101】

最大負荷状態で動作するエンジンでは、エンジン速度が減少するときの吸気バルブ早期閉鎖の正味の効果は、燃焼に利用できるフレッシュチャージの量を大幅に増大し、これに対

10

20

30

40

50

して排気バルブの早期開放に関連する損失量を減少させなければならない。この正味効果は、最大トルクノ出力のための設計速度以下の速度で最大負荷パワーが得られることである。

【0102】

この手法は、最近のポペットバルブエンジン、または吸気バルブ若しくは排気バルブ用の個別のバルブを有して吸気バルブ及び排気バルブの位相を独立的に変化させる融通性のある回転バルブエンジンの設計者には最適とは考えられていないが、同一バルブに吸気ポート2及び排気ポート3の双方が存在する回転バルブ1の動作においては重要な改良点である。吸気ポート2及び排気ポート3の双方が同一バルブに存在する回転バルブ1は、市場で好まれる製品にする上でポペットバルブよりも大きな利点がある。更に、タイミング変更に対する制約が一つであるというはっきりとした利点もある。この手法はこれらに関連した事項に対処するものである。

10

【0103】

本発明は、吸気ポート2及び排気ポート3が同一バルブに存在する回転バルブ1の動作を、部分的負荷でのエンジン動作方法を変更するユニークな特徴のいくつかを利用することによって向上することを目指している。

【0104】

従来のガソリンICエンジンは、エンジン負荷をスロットルによって調整する。このスロットルは要求値をセットする。しかし、スロットルに関連した2つの問題点がある。第1に、閉じたまたは部分的スロットル開度では、エンジンに導入されるエアは、極めて小さいオリフィス（閉じたスロットルによって生ずる）を経て引き込まれなければならず、ポンピング損失（即ち、オリフィスを経るエア引き込みをするクランクシャフトの負の作用）を招き、このことはエンジンの効率に悪影響を与える。都市部における多くの車両走行は部分的スロットル開度で行っており、このことは、燃料消費量及びCO₂排出量の増大を招くという大きな問題がある。この問題は、スロットルが存在せず、エンジン出力が燃料噴射量で調整されるジーゼルICエンジンでは常に議論されてきた。

20

【0105】

第2に、スロットルが閉鎖または部分閉鎖をしているとき、吸気マニホールドで真空を発生する問題がある。この結果、オーバーラップ期間中、排気ガスのシリンダ内部及び吸気マニホールドへの逆流を生ずるような圧力勾配となる。この逆流の大きさを制御するのは困難である。過剰な逆流は、排気ガスがシリンダ9内に溜まり過ぎることになる。このようなメカニズムでシリンダ9内に溜まる排気ガスは、排気ガス内部再循環または内部EGRとして知られている。NO_x発生を調整するために、部分的スロットル開度では所定量の排気ガスは必要であるが、過剰の排気ガスは安定した燃焼に悪影響を与え、炭化水素（HC）発生が増大する「ラフランニング（rough running）」エンジンとなる。最近のポペットエンジンは、この問題を、部分的スロットル開度で動作するときにオーバーラップ量及び/又はバルブリフトを減少することによって制御するようにしている。

30

【0106】

排気ガス逆流量は、オーバーラップのサイズ、及び吸気ポート2と排気ポート3との間の圧力勾配、並びにエンジン速度の関数である。低速エンジン速度では、逆流を生ずるのに使われる時間が長くなる。米国特許第5,526,780号明細書に記載のタイプの回転バルブでは、吸気バルブ及び排気バルブの開度は、カムランプ（傾斜面）がないため、極めて大きい。この結果、最適な性能を得るに必要なオーバーラップ期間は、普通のポペットバルブ標準に比べると少なくすることができる。代表的には、20°またはそれ以下のオーバーラップ期間で満足のいく結果が得られる。このことは、逆流量を減らすことで逆流の問題に部分的に対処しようとするものである。

40

【0107】

しかし、最近のエンジンでは、制御したEGRは、多くの国で厳格に規制されたNO_x発生量制御に必要となっている。米国特許第5,526,780号明細書に記載のタイプの回転バルブで見られる問題は、内部EGRが起こっているという問題ではなく、部分的負

50

荷状態でエンジンが遭遇する多くの異なる動作条件を制御するのが困難であるという事実に過ぎない。

【0108】

本発明は、I Cエンジンの部分的負荷状態での効率を、多くの部分的負荷条件に対してスロットル全開または全開に近い状態で動作させることにより向上させ、また内部E G Rを正確に制御することにより排気ガスのN O_xを減少する。本発明は、このことを、位相変更とスロットル位置管理とを組み合わせることにより達成する。

【0109】

上述したように、オーバーラップ期間に対する位相変更だけでは、排気ガス逆流が主にオーバーラップ期間、および吸気ポート2と排気ポート3との間の圧力勾配の大きさによって決定されるため、排気ガス逆流に対してはほとんど効果はない。上述したように、回転バルブ1は、普通のペベットバルブに比較するとオーバーラップ期間を大幅に少なくすることができる。スロットル開度を広くまたは広めに設定することにより、普通のI Cエンジンにおける部分的負荷状態での吸気ポートに存在する真空状態は排除される。この真空排除は、このとき吸気ポート2、および排気ポート3がほぼ同一圧力にあり、排気ガスを吸気ポート2に押し戻す大きな圧力勾配がないことを意味する。この結果、異なる動作条件に基づくオーバーラップ期間の流れおよび変動は、無視できるレベルまで減少することができる。

【0110】

本発明においては、エンジン負荷およびエンジン速度の制御は、スロットル23で制御するのではなく、主に位相変更によって制御する。エンジンに進入するフレッシュチャージ量は、吸気バルブ閉鎖ポイントを適切に選択することによって制御することができる。吸気バルブ閉鎖ポイントを随意に変更できる場合、スロットル23を広めの開度のままにしておき、吸気バルブ閉鎖ポイントは、エアが必要量だけシリンダ9に溜まるように選択する。このことは、スロットルがほぼ閉じた状態でエアが引き込まれるときに生ずるポンピング損失が排除されるため、大きな改善となる。このような微小開度スロットルにおけるポンピング損失は、回転バルブ1と窓6との間に生ずるオリフィスを経てエアが（吸入行程中に）引っ張られることにより生ずる損失、および同じオリフィスを経てエアが（圧縮行程中に）押し出されることにより生ずる損失にとって代わられた。回転バルブ1と窓6との間に生ずるオリフィスの有効寸法は、ほぼ閉じた状態のスロットルに生ずるオリフィスよりも相当大きいため、ポンピング損失は普通の構成におけるよりも小さい。

【0111】

多くのI Cエンジンにおいて、位相変更は、エンジン出力制御機能に対する付加的機能を有する。更に、N O_x発生量を減少するための内部E G Rも管理しなければならない。このことは、以下のようにして行う。

【0112】

図6は、吸入行程におけるt d cにおけるピストン26を示す。オーバーラップは、高速のエンジン速度および負荷状態で最適の性能結果が得られる位相である。代表的には、吸気バルブはt d cよりも10°前で開放し、排気バルブはt d cよりも10°後で閉じる。代表的には、高速および高負荷での最適性能を得るために、吸気閉鎖ポイントは、b d cの50°後で生ずるよう構成し、排気開放ポイントはb d cの50°前で生ずるように構成する。

【0113】

エンジンが低速／低負荷に変更するよう要求したとき、本発明によれば、位相変更を行って、オーバーラップ期間中の必要内部E G Rとエンジン負荷およびエンジン速度との双方を管理する。代表的には45°位相変更を導入する。図7は、ピストン26が吸気行程におけるt d cにあり、回転バルブ1に負の45°位相変更を与えたときのピストン26と回転バルブ1との相対位置関係を示す。ピストン26がt d c後に降下を始めるとき、排気ガスは排気ポート3からシリンダ9ないに引き込まれ、この間に吸気ポート2は閉鎖状態を維持する。この後、吸気ポート2が開いて吸気ポート2と排気ポート3との間大きな

10

20

30

40

50

圧力勾配がないとき（広いスロットル開度に基因して）、フレッシュな空気／燃料混合気が吸気ポート2からシリンダ9内に引き込まれると同時に、排気ポート3からの流れもシリンダ9に引き込まれる。排気ポート3が閉じると、空気および燃料は吸気ポート2からシリンダ9内に引き込まれ続ける。このプロセスにおいて、内部EGR量は、位相変更の大きさによって精密に制御することができる。位相変更が大きくなればなるほど、内部EGR量は多くなる。吸入行程の残りの期間中、内部EGRとフレッシュな空気／燃料混合気はよく混ざり合う。

【0114】

このとき、吸気閉鎖ポイントはbdc後95°で生ずる。高速エンジン速度／高エンジン負荷では、シリンダ9に溜まるフレッシュチャージ量が最大となるようにするために、吸気閉鎖ポイントは、bdc後に生ずるように構成する。圧縮行程が開始されてピストン26がシリンダ9を上昇しているにもかかわらず、bdc後にエアをシリンダ9内に送り込み続けるのに流入空気流のモーメントを使用する。低速エンジン速度／低エンジン負荷では、ピストン26が圧縮行程を開始した後シリンダ9を充填し続けるには流入空気流のモーメントは不十分である。上昇するピストン26は、流入する空気流の方向を逆転させ、吸気ポート2に押し戻してしまう。普通のボベットバルブの手法は、低負荷／低速動作では空気流の逆流を少なくし、溜まった空気の量を最大にするため、吸気バルブを早期に閉じるようにしている。これに対し、本発明は、吸気閉鎖ポイントを早めるよりも、吸気閉鎖ポイントを遅くする。

【0115】

ピストン26が圧縮行程で上昇するとき、このときに混合された内部EGRおよびフレッシュな空気／燃料混合気は、吸気ポート2が閉じるまでシリンダ9から押し出される。これに続く吸入行程中、排気ガスとフレッシュチャージの混合気は、シリンダ9に引き戻される。圧縮行程中に吸気ポート2に送り出される排気ガス量はうまく制御され、主に、オーバーラップタイミングと吸気閉鎖タイミングの関数となる。

【0116】

必要とされる位相変更の大きさは、2つの要因によって決定される。第1に、必要とされる内部EGR量、第2に、必要とされるエンジン負荷およびエンジン速度を示す要求値である。これら2つの要件は、同一必要位相変更とはなり得ない。最大許容レベルの内部EGRに達する前に、エンジン出力を満足するのに必要とされる位相変更が得られる場合、位相変更がエンジン出力要件を満たすように行われ、またスロットルが全開状態のままであるようにする。エンジン出力に適合するよう十分な位相変更が行われる前に、最大許容レベルの内部EGRが得られる場合、位相変更は、最大許容内部EGRを送給するに必要なポイントにロックする。この設定では、エンジンは必要とされるよりも大きい負荷を生ずる。この場合、スロットル23を部分的に閉じて、吸入行程中にシリンダ9内に引き込むフレッシュエア量を一層減少する。このとき、スロットル23は、タイミング装置または微調整装置として使用する。

【0117】

NO_x排出量を制御するのに少ないEGRで済み、また動作の円滑さに優れる極めて軽い負荷の場合、バルブタイミングをスロットル全開位置に復帰し、またスロットル23を普通の使用状態で使用する。

【0118】

このとき、排気開放ポイントはbdc後5°で生ずる。このことは、エンジンが低負荷／低速条件で動作しているときに好ましい結果となる。通常は、高負荷／高速動作では、ピストン26がbdcに達して圧縮行程が始まる前に排気圧力が確実に低下できるようになるため、bdcの十分前に排気バルブを開放することが必要である。排気圧力が低下していない場合、排気行程中にシリンダ9内に残存する圧力に対して過剰の仕事が行われる。しかし、この早期排気開放は、出力行程に若干の仕事損失という犠牲を伴う。エンジンが低速／低負荷で動作している場合、排気されなければならない燃焼済みのガス量は少なく、圧力低下に要する時間も十分ある。従って、出力行程中にクランクシャフト25になさ

10

20

30

40

50

れる仕事量が増大するとき、このような状況では排気はより遅い時点で開放するのが望ましい。

【0119】

上述のように機能させるためには、スロットル23は、もはやアクセルペダルにワイヤ連結しておく必要はなく、スロットルアクチュエータ59によって制御し、このスロットルアクチュエータ59はエンジンのECU60によって制御する。アクセルペダルはエンジンのための要求値を発生する。

【0120】

要求値は、ECU60に送られる値であり、エンジン出力に必要とする各種の値を表すものである。これら要求値は、常に、速度および負荷を示すもので、この速度および負荷でエンジンが動作することが必要となる値である。要求値は、更に、エンジン動作に対する付加的な制約も示す。例えば、共通する付加的制約は、特定空燃比でエンジンが動作するに必要な要件である。要求値は、用途に基づいて幾つかのソース（発生源）から発生する。代表的には、自動車エンジンの場合、ドライバがアクセルペダルを位置決めすることによって発生する負荷要求値および速度要求値がある。

10

【0121】

この場合、エンジン出力および内部EGRの必要レベルは、吸気閉鎖ポイントとスロットル位置との適切な組み合わせを選択することによって制御する。

【0122】

本発明の特徴は、大きな位相変更を行うとともに、固定の吸気および排気期間を維持しつつ排気に対する吸気の相対位相を固定にする点である。

20

【0123】

ECU60の動作を図8に示す。エンジンおよびエンジン動作パラメータ、例えば、エンジン速度、エンジン負荷、エンジン温度、および空気温度をモニタするセンサにより信号48をECU60に送る。アクセルペダルまたは他の入力ソースからの信号58がエンジン要求値としてECU60に送られる。ルックアップテーブルまたはアルゴリズムの計算またはその双方によってECU60は必要とされる位相および必要とされるスロットル位置を決定する。ECU60は、制御信号60および制御信号62を、それぞれスロットルアクチュエータ59および位相アクチュエータ55に出力する。位相アクチュエータ55は位相変更手段56を駆動して必要とされる位相位置に送る。スロットルアクチュエータ59はスロットル23を駆動して必要とされるスロットル位置に送る。

30

【0124】

この動作モードの例を以下に示す。最大負荷でのエンジン動作を考慮する。バルブタイミングは図6で示す通り、即ち、オーバーラップの中心がtdcで窓6の中心にあるとする。アクセルペダルの位置が、エンジン動作条件が同一速度で最大負荷から1/3負荷状態を示す位置に変化する（即ち、エンジン要求値が変化する）ことに応答するものとする。このとき、ECU60は、要求値が示すこれらのエンジン動作条件のための最大許容内部EGRを実現する位相変更を計算する。更に、ECU60は、スロットル23を全開にして1/3負荷でエンジンを動作させるに必要な位相変更を計算する。ECU60はこれら位相変更要件を比較する。これら位相変更要件が同一であれば、ECU60は、計算した量だけ位相変更する信号を位相アクチュエータ55に送る。最大内部EGRにするのに必要な位相変更が、1/3負荷エンジン動作に必要な位相変更よりも大きい場合、1/3負荷およびスロットル全開でエンジンを動作させるのに必要な量だけ位相を変更する衝合を位相アクチュエータ55に送る。最大内部EGRにするのに必要な位相変更が、1/3負荷エンジン動作に必要な位相変更よりも少ない場合、最大許容内部EGRにする位相変更量を計算してこれに対応する信号を位相アクチュエータ55に送り、また1/3負荷でエンジンを動作させるに十分な程度にスロットル23を閉鎖する信号をスロットルアクチュエータ59に送る。

40

【実施例2】

【0125】

50

図3は、クランクシャftsプロケット13がチェーン12を介して回転バルブスプロケット14を駆動する本発明の第2の実施例を示す。回転バルブスプロケット14は、位相変更手段30を介して回転バルブ1を駆動する。位相変更手段30は、半径方向内方に突出するベーン31を有する外側スリーブ32により構成し、各ベーン31はハブ28の外径部に摺動自在に密着し、またハブ28から半径方向外方に突出するベーン29が、外側スリーブ32の内径部に摺動自在に密着する。液圧キャビティ33, 34が、ベーン31が半径方向内方に突出する外側スリーブ32の内径部と、ベーン29が半径方向外方に突出するハブ28の外径部と、ハブ28の端面35と、外側スリーブ32の端面36との間に形成される。

【0126】

10

加圧液圧流体を液圧キャビティ33, 34に、それぞれオイル供給孔38, 37を経て供給する。ハブ28を介してのスプロケット14に対する回転バルブ1の回転は、孔38を経てキャビティ33に高圧の液圧流体を供給するか、または孔37を経てキャビティ34に高圧の液圧流体を供給するかによって生ずる。

【実施例3】

【0127】

図4および図5に示す第3の実施例においては、クランクシャフトギヤ43が、エピサイクリックギヤセット41のリングギヤ45を駆動する。遊星歯車群46は、アイドル歯車40を介して回転バルブギヤ39を駆動するギヤ44を駆動する。電動サーボモータ42は、エピサイクリックギヤ41の太陽歯車47を駆動する。電動サーボモータ42が静止状態即ち、ロックアウト状態であるとき、運動がクランクシャフトギヤ43から回転バルブギヤ39に伝達され、回転バルブギヤ39はクランクシャフトギヤ43に対して一定の角速度比を維持する。電動サーボモータ42が太陽歯車47を駆動するとき、太陽歯車47の回転方向に基づいて、回転バルブギヤ39とクランクシャフトギヤ43との間の角速度比を増大させたり、または減少させたりする。

【0128】

20

この構成において、クランクシャフト25から駆動されるギヤは、正味の運動を生じ、また、電動サーボモータ42は、位相を変更するのに必要な運動に変化を与える。

【実施例4】

【0129】

30

第4の実施例としては、クランクシャフトギヤ43がエピサイクリックギヤセット41のリングギヤ45を駆動する図4および図5に示す構成を変更したもので、アイドルギヤ41を介して回転バルブギヤ39を駆動するギヤ44を、太陽歯車47が駆動する。電動サーボモータ42は、エピサイクリックギヤセット41の遊星歯車群46を駆動する。電動サーボモータ42が静止状態またはロックアウト状態である場合、クランクシャフトギヤ43からの運動が回転バルブ39に伝達され、回転バルブギヤ39は、クランクシャフトギヤ43に対して一定の角速度比を維持する。電動サーボモータ42が遊星歯車群46を駆動するとき、位相を変更する。

【実施例5】

【0130】

40

図9に第5の実施例を示す。この実施例では、中空アーマチャ型の電動サーボモータ49によって、回転バルブ1を駆動する。中空アーマチャ型の電動サーボモータ49のロータ51を回転バルブ1の吸気側端部で回転バルブ1の周囲に取り付ける。中空アーマチャ型の電動サーボモータ49のステータ50をロータ51に対して同心状に取り付ける。

【実施例6】

【0131】

図10に示す第6の実施例においては、電動サーボモータ42が、直接または減速ギヤボックスを介して、転換ギヤ52を駆動する。この転換ギヤ52によって、回転バルブ1の吸気側端部の周囲に取り付けた回転バルブギヤ39を駆動する。

【0132】

50

本明細書中の用語「具えた」は、「含む」または「有する」という意味で使用し、「のみで構成する」という排他的な意味で使用するものではないことを理解されたい。

【図面の簡単な説明】

【0 1 3 3】

【図1】本発明による可変バルブタイミング調整機構を有する回転バルブエンジンの第1実施例の断面図である。

【図2】本発明による可変バルブタイミング調整機構を有する回転バルブエンジンの第1実施例の斜視図である。

【図3】本発明による可変バルブタイミング調整機構を有する回転バルブエンジンの第2実施例の斜視図である。

【図4】本発明による可変バルブタイミング調整機構を有する回転バルブエンジンの第3および第4の実施例の斜視図である。

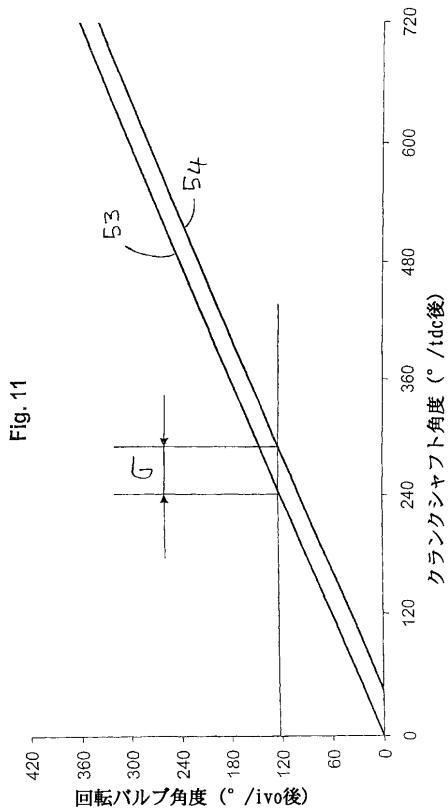
【図5】図4の分解斜視図である。

【図6】図1のA A 線上の断面図である。

【図7】図6の断面とは回転弁の位相がシフトした状態の断面図である。

【図8】E C Uの動作を示すブロック図である。

【図9】本発明による可変バルブタイミング調整機構を有する回転バルブエンジンの第5実施例の断面図である。


【図10】本発明による可変バルブタイミング調整機構を有する回転バルブエンジンの第6実施例の斜視図である。

【図11】「位相」及び「位相変更」を意味を定義するのに使用するチャートである。

10

20

【図1】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
5 December 2002 (05.12.2002)

PCT

(10) International Publication Number
WO 02/097244 A1(51) International Patent Classification: F01L 1/34, 7/02,
25/02, 25/08, 33/02, F02B 29/08, F02D 13/02

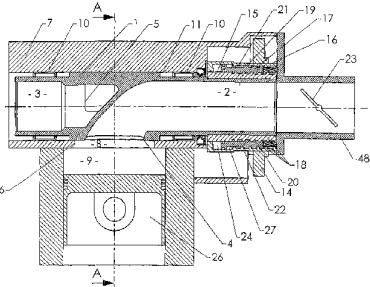
(21) International Application Number: PCT/AU02/00687

(22) International Filing Date: 30 May 2002 (30.05.2002)

(25) Filing Language:

English

(81) Designated States (national): A1, AG, A1, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GI, GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.


(26) Publication Language:

English

(30) Priority Data:
PR 5315 30 May 2001 (30.05.2001) AU(71) Applicant (for all designated States except US): BISHOP
INNOVATION LIMITED [AU/AU]; 10 Waterloo Road,
North Ryde, NSW 2113 (AU).(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SI, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AL, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SI, TR), OAPI patent
(BR, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NF, SN, TD, TG).(72) Inventor; and
(75) Inventor/Applicant (for US only): WALLIS, Anthony,
Bruce [NZ/AU]; 48 Westminster Road, Gladesville, NSW
2111 (AU).(74) Agent: PAPPAS, Frank; Bishop Innovation Limited, P.O.
Box 135, North Ryde NSW 1670 (AU).Published:
— with international search report
— with amended claims

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VALVE TIMING MECHANISM FOR A ROTARY VALVE INTERNAL COMBUSTION ENGINE

WO 02/097244 A1

(57) Abstract: A rotary valve internal combustion engine comprising a crankshaft, a throttle (23), a throttle actuator, a cylinder head (7), a combustion chamber (8), and at least one rotary valve (1). The rotary valve (1) having at least two ports (2, 3) terminating as openings (4, 5) in its periphery, the cylinder head (7) having a bore (11) in which the rotary valve (1) rotates, a window (6) in the bore (11) communicating with the combustion chamber (8), the openings (4, 5) successively aligning with the window (6) by virtue of the rotation, a drive mechanism comprising a phase change means (18), the drive mechanism driving the rotary valve (1). The at least two ports (2, 3) comprise an inlet port (2) and an exhaust port (3), and the phase change means (18) applies a phase change in response to changes in the operating conditions of the engine over at least one engine cycle.

**VALVE TIMING MECHANISM FOR A ROTARY VALVE INTERNAL
COMBUSTION ENGINE**

TECHNICAL FIELD

The present invention relates to variable valve timing mechanism for a rotary valve assembly used in an internal combustion engine, and more particularly to a variable valve timing mechanism where both the inlet port and the exhaust port are in the same rotary valve.

BACKGROUND

Rotary valve arrangements have been proposed by many people. One recent example is that proposed by US Patent No. 5,526,780 (Wallis). Common to all these rotary valve arrangements is an opening in the rotary valve's periphery that periodically aligns with a similar shaped window in the combustion chamber. When the opening in the rotary valve's periphery aligns with the window in the combustion chamber, fluid can pass into (in case of the inlet stroke) and out of (in the case of the exhaust stroke) the combustion chamber. When the opening in the valve's periphery is not aligned with the window in the combustion chamber the contents of the cylinder are trapped during the compression and combustion stroke.

In most prior art arrangements the rotary valve is driven at a fixed angular velocity ratio to the crankshaft. This is achieved by way of mechanical drive mechanisms such as gear trains, chain drives or belt drives which transmit constant angular velocity ratios.

"Angular velocity ratio" is the ratio obtained when the angular velocity of the rotary valve is divided by the angular velocity of the crankshaft.

Although rotary valves for internal combustion (IC) engines are the subject of numerous patents none have been commercialized. This is a result of a myriad 5 of problems characteristic to rotary valves that have never been adequately resolved. One particular arrangement that has resolved many of these problems is the rotary valve arrangement disclosed in US Patent No. 5,526,780. This arrangement consists of a single rotary valve per cylinder which incorporates both an inlet and exhaust port in the same valve. Whilst the mechanical 10 problems afflicting this concept have been resolved other issues are now impacting on commercial adoption of this technology. In recent years increasingly stringent emissions regulations have been adopted around the world. The IC engine manufacturers are meeting these regulations by the production of IC engines with variable valve timing. In these engines the valve 15 timing of the inlet and exhaust are independently varied.

The arrangement disclosed in US Patent No. 5,526,780 suffers from the problem that both the inlet and exhaust port are housed in the same valve thus making independent variation of the inlet and exhaust timing impossible. This is widely 20 held to be such a disadvantage that it will prevent future commercialization of such rotary valves despite their other considerable advantages.

This invention addresses these problems with a mechanism that allows a rotary 25 valve with both inlet and exhaust ports in the same valve to satisfactorily address these emission issues whilst also improving the IC engines efficiency. In addition this mechanism is also used to improve full throttle performance.

Valve timing is generally expressed as the location of the inlet open, inlet close, 30 exhaust open and exhaust close points relative to the crankshaft position. The crankshaft position is generally specified as an angle relative to a reference location. This is generally chosen to be the location where the piston is at the top

of its stroke (i.e. top dead centre – tdc). If the exhaust closes 15° after tdc the exhaust port will cease communication with the cylinder when the crankshaft has rotated 15° from the position where the piston was at tdc. In other instances the reference location is chosen to be the location where the piston is at the bottom 5 of its stroke (i.e. bottom dead centre – bdc)

Alternatively valve timing can be thought of as a combination of durations – inlet duration, exhaust duration, close duration and overlap duration together with a initial position and phase. The initial position determines the relationship 10 between the crankshaft position and the rotary valve position at some point.

"Overlap" is that portion of the engine cycle where both inlet and exhaust ports are both simultaneously open to the combustion chamber.

15 "Duration" is the angle the crankshaft rotates through between any two events.

"Inlet duration" is the angle the crankshaft rotates through when the inlet port is in communication with the combustion chamber i.e. between inlet open and inlet close. Similarly "exhaust duration" is the angle the crankshaft rotates through 20 when the exhaust port is in communication with the combustion chamber i.e. between exhaust open and exhaust close. "Close duration" is the angle the crankshaft rotates through when neither the inlet nor the exhaust port are open to the combustion chamber i.e. between inlet close and exhaust open. This occurs during the compression and power strokes on a four-stroke engine. "Overlap 25 duration" is the angle the crankshaft rotates through when both the inlet and exhaust ports are simultaneously open to the combustion chamber i.e. between inlet open and exhaust close.

In all internal combustion engines synchronization of the valve events to their 30 correct position in the engine cycle is essential. Phase is used to describe this

synchronization. If the phase is constant from cycle to cycle the valve events will occur in exactly the same position in the cycle from one cycle to the next.

The position in the cycle is defined by the crankshaft position. The position of the 5 rotary valve is described by the angle the valve has rotated from a reference location usually chosen as one of the easily observable valve events – i.e. inlet valve open (ivo), inlet valve close (ivc), exhaust open (evo) or exhaust valve close (evc). For ease of reference we have chosen the reference location to be 10 ivo. "Rotary valve position" is defined as the angle the valve has rotated from the ivo point.

For conventional rotary valve internal combustion engines using drive mechanisms that deliver constant angular velocity ratio, the position of the rotary valve relative to the cycle position can be represented by a graph of the type 15 shown in Figure 11. Line 53 defines the position of the rotary valve for all crankshaft positions. So long as the relationship defined by this line occurs on successive cycles, phase has remained constant. In the event the relationship between rotary valve position and crankshaft position is at some other time represented by line 54, a phase change is said to have occurred and its 20 magnitude is σ . In the event line 53 is chosen as the reference, the phase is σ °.

"Phase" is defined as the distance in crankshaft degrees that the line 54 defining 25 constant phase has shifted relative to a reference line 53 defining constant phase.

"Phase change" is defined as the distance in crankshaft degrees that any line defining constant phase has shifted relative to any other line defining constant phase.

Phase change is defined as positive if the change is such that the inlet valve opens later in the engine cycle. A phase change from line 53 to line 54 in Figure 11 is positive.

- 5 Phase change is defined as negative if the change is such that the inlet valve opens earlier in the engine cycle.

In conventional poppet valve engines there are practical limitations as to how far the timing may be varied from its nominal position. This is a result of the fact that

- 10 the poppet valves open into the combustion chamber. When the piston is at tdc on the induction stroke the crown of the piston is very close to the heads of the protruding poppet valves. The higher the compression ratio, the greater the number of valves and the greater the bore/stroke ratio the closer the valve must come to the piston crown. Modern engines seek to maximize these variables.
- 15 Timing variations that require the poppet valve to protrude further into the combustion chamber are therefore restricted in magnitude. Compared to their full throttle timing, variations are generally restricted to opening the inlet later or closing the exhaust earlier, both of which increase the distance between the head of the poppet valve and the piston crown.

- 20
- 25 All engines require a certain amount of overlap at full throttle to obtain the optimum power result. At low throttle settings this overlap can result in excessive internal exhaust gas recirculation (EGR) causing poor combustion stability with resultant "rough running" and excessive hydrocarbon emissions. The poppet valve manufacturers vary the valve timing to reduce the overlap to a minimum at part throttle or low load operation. Generally speaking the timing variation is limited to the magnitude of the maximum angle the valve opens or closes from tdc. For example most engines typically require the inlet valve to open 15° before tdc and the exhaust valve to close 15° after tdc to obtain maximum power.
- 30 Phase changes are typically limited to a maximum of about 15° from the full throttle phase position.

There is generally a practical limit to the amount of phase change that can be applied to a poppet valve arrangement with a fixed duration cam. If the inlet valve open position is moved from 15° before tdc to tdc when the engine is

5 operating at low load, the inlet close point will also occur 15° later. This later valve closing will result in a considerable loss of charge that will be pumped out of the cylinder back into the inlet port with consequent loss of efficiency.

Consequently phase changes are generally limited to a magnitude that will achieve a satisfactory internal EGR result – approximately 15°. In the event

10 larger changes are required manufacturers have introduced devices that alter the inlet and exhaust duration. In this event the size of the allowable phase changes is extended.

Rotary valves on the other hand do not protrude into the combustion chamber.

15 There is therefore no physical limit to how far the valve timing may be varied. This creates the possibility of solutions that are not available to poppet valve engines. This invention phases shifts a rotary valve with both inlet and exhaust ports in the same valve in response to changes in engine operating conditions. Essentially the inlet and exhaust are simultaneously phase changed an equal

20 amount whilst maintaining their inlet and exhaust durations at their full throttle magnitude. This invention requires the use of large phase changes in certain operating situations. On a poppet valve engines such a strategy is not physically possible. For example if a poppet valve mechanism applied a simultaneous phase change of equal magnitude to both inlet and exhaust valves whilst

25 maintaining the same full throttle inlet and exhaust durations, either the inlet or exhaust valves would soon hit the piston, depending on whether the phase change was positive or negative. On a poppet valve engines only small phase changes of this type can occur before the valves hit the piston. The magnitude of the phase change that can occur prior to the valves hitting the piston will vary

30 with the design of the engine. However in modern high performance poppet

valve IC engines (twin overhead cam 4 valve engines with high compression ratios) this would generally be limited to less than 10°.

Throughout this specification, in arrangements where the duration of inlet and/or

5 exhaust is fixed, it is understood that a "large phase change" or a "large magnitude of phase change means a phase change greater than 15° and typically greater than 25°.

All known variable timing proposals for rotary valves have however adopted

10 strategies that mimic those used by poppet valve engine manufacturers. All prior art variable timing rotary valve proposals use arrangements with separate valves for the intake and exhaust ports. These arrangements have the advantage that the inlet and exhaust port timing can be varied independently and can thus mimic the poppet valve strategy of independently phase changing the inlet and exhaust

15 valve timing. US patent 5,205,251 (Conklin) is an example.

US Patent No. 5,205,251 (Conklin) describes a means of varying the valve timing of a rotary valve engine fitted with two rotary valves per cylinder. One rotary valve contains an inlet port and the other rotary valve contains an exhaust port.

20 The rotary valves are housed inside sleeves and are able to rotate within these sleeves. The sleeves are rotatably disposed within the cylinder head. Timing variation of the inlet or exhaust events is achieved by a combination of rotation of the sleeves and variation of the rotary valve's angular velocity during the cycle. In this arrangement the variation in the rotary valve's angular velocity during the

25 cycle varies either the inlet and / or the exhaust duration. The rotation of the sleeve varies the location of the inlet and / or the exhaust events relative to the crankshaft or the phase of these events relative to the crankshaft. The combination of variations in the angular velocity of the rotary valves and rotation of the sleeves allows independent movement of the inlet open, inlet close, exhaust open, and exhaust close points.

30

The provision of a sleeve and an additional mechanism to vary its location is an additional complication and also introduces additional gas sealing difficulties. US Patent No. 5,205,251 remains silent on how gas sealing is achieved. However it is clear that gas sealing will be required between the combustion chamber and the sleeve and between the sleeve and the rotary valve. There is no known practical solution for this arrangement and the requirement to seal in two places merely increases the complexity.

The drive mechanism disclosed in US patent 5,205,251 to vary the angular velocity of the rotary valve during the cycle is complicated and would be difficult to implement in practice. The eccentric gear must have provision to vary the eccentricity while it rotates and the idler that this gear engages must be able to move its centre continuously throughout the cycle. A separate mechanism is required for each valve.

Any arrangement that varies the timing by use of a sleeve requires a window in the cylinder head that is wider than the opening in the valve. This is well illustrated in Figures 2 and 5 in US Patent No. 5,205,251. As the breathing capacity of the rotary valve is determined in part by the width of the opening in the rotary valve, there is no practical requirement for the window in the head to be wider than the rotary valve opening apart from that introduced by the use of the sleeve. Consequently the breathing capacity of the rotary valve is unnecessarily limited. The wider window in the cylinder head also has the following additional problems. Firstly, the gas loads imposed on the rotary valve during combustion are directly proportional to the cylinder head window width and are therefore unnecessarily high in the case of applications using sleeves to vary timing. Secondly, the volume occupied by these windows is unnecessarily high and makes design of combustion chambers having the required compression ratios difficult.

A single rotary valve incorporating both inlet and exhaust ports in the same valve is a substantial improvement over arrangements requiring separate valves for the inlet and exhaust ports. The following considerations make this clear.

- 5 Two important features relevant to all valve mechanisms for internal combustion engines are the rate at which the valve opens and closes, and the maximum breathing capacity of the valve system. In the case of rotary valves the length of the window in the cylinder head and the valve diameter determine the rate at which the valve opens and closes. The length of the window is geometrically
- 10 constrained by the requirement to have it located within the bore of the cylinder and can be made a similar length whether there are one or two valves per cylinder. The maximum breathing capacity is determined by the valve diameter. Thus, for the same maximum breathing capacity, the valve diameter for the rotary valve with a single inlet port must be the same as the valve diameter for a valve
- 15 with both inlet and exhaust ports in the same valve. Consequently, a single valve incorporating both the inlet and exhaust ports in the same valve will have the same maximum breathing capacity and open and close rates (i.e. the same breathing capacity) as will two rotary valves incorporating inlet and exhaust ports in separate valves but with half the number of components.

20 In arrangements where maximum breathing capability is required it is necessary to make the diameter of the rotary valve as large as possible. Physical packaging constraints allow single rotary valves of much greater diameter than is possible with twin rotary valves. The ultimate breathing capacity of an

- 25 arrangement with a single rotary valve incorporating inlet and exhaust ports in the same valve is therefore much greater than that of an arrangement with two rotary valves each of which contain a single port.

In addition, a twin rotary valve incorporating inlet and exhaust ports in separate

- 30 valves will have twice the number of bearings and seals as required with a single valve incorporating both inlet and exhaust ports in the same valve.

Consequently, friction losses in the two-valve arrangement are potentially double those in the single valve arrangement with both inlet and exhaust ports in the same valve.

- 5 In the event other considerations require the use of two valves per cylinder, two rotary valves incorporating both inlet and exhaust ports in the same valve will have twice the opening and closing rate for the same window length as will two rotary valves of the same incorporating only a single port in each valve. This assumes the diameter of both types of valves is the same. In this case the
- 10 arrangement with both inlet and exhaust ports in the same valve will have twice the maximum breathing capacity. Consequently two valves incorporating both inlet and exhaust ports in the same valve will have twice the breathing capacity of two valves of the same diameter incorporating the inlet and exhaust valves in separate rotary valves.

15

- Whilst attempts have been made to address the issue of variable valve timing in rotary valve arrangements where the inlet port and exhaust port are accommodated in separate rotary valves, no attempts have been made to address the inherently more difficult arrangement where both the inlet and
- 20 exhaust ports are accommodated in the same rotary valve.

This added difficulty arises because, in this arrangement, the phasing between the exhaust events and the inlet events are fixed by the geometry of the rotary valve. A simple phase change between a rotary valve incorporating both inlet and

- 25 exhaust ports and the crankshaft cannot therefore effect a change in the location of the inlet and exhaust relative to each other. By way of comparison, the use of separate rotary valves for the inlet port and the exhaust port means a simple phase change between one or both of the rotary valves and the crankshaft will change the phasing between the inlet and exhaust and will alter the overlap.

30

In addition on a single rotary valve incorporating both inlet and exhaust ports in the same valve there is no known way of changing the overlap duration.

In a single rotary valve arrangement the overlap duration is physically determined

5 by the width of the bridge between the inlet and exhaust ports on the rotary valve and the width of the window in the cylinder head. Typically the width of the bridge is smaller than the width of the window as shown in Figure 6. This arrangement produces overlap. As the magnitude of the overlap is physically determined by the details machined into the rotary valve and cylinder head, there

10 is no way of varying the magnitude of the overlap. Consequently, the conventional valve timing strategies used on poppet valves and twin rotary valves are not available to engines fitted with a single rotary valve. This is an inherent limitation of any rotary valve incorporating both inlet and exhaust ports in the same valve.

15 There are two instances in the patent literature where timing variation is mentioned in relation to rotary valves incorporating both inlet and exhaust ports in the same valve. GB patent 2 072 264 (Williams) describes a rotary valve engine incorporating both inlet and exhaust ports in the same valve. This single valve is

20 connected to two or more cylinders. The arrangement as described is not capable of satisfactorily functioning as an IC engine. This can be ascertained by the following considerations. Figure 5A of GB patent 2 072 264 and the text describe a rotary valve where the openings in the periphery of the rotary valve subtends an angle (centred on the rotational axis of the rotary valve) of 60°. The

25 cylinder opening 101 communicating between the openings in the valve periphery and the cylinder subtend an angle of 45°. As the cylinder openings are 90° apart, the angle subtended between closing edge of one cylinder opening and the opening edge of the adjacent cylinder opening is 45°. It is clear that when the valve is rotated 45° clockwise from the position shown in Figure 5 of

30 GB patent 2 072 264 that the inlet port will be simultaneously open to both cylinder 50 and cylinder 52. As cylinder 52 is on the exhaust stroke and cylinder

50 is on the inlet stroke, the inlet port is now open to two cylinders on different strokes. This is clearly unworkable.

GB patent 2 072 264 seeks to make a virtue of this fact. It asserts that as a 5 result of the angle subtended by the opening in the periphery of the valve being greater than the angle subtended by the cylinder opening it is possible to vary the length of time that the valve has full opening because of the mechanism that can vary the timing of the valve while the engine is running. The patent makes no disclosure as to how this variation in the length of time that the valve is fully open, 10 is achieved. Further there is no known means of varying the timing to achieve such a result. The result cannot be achieved by introducing a phase change (the subject of this invention) as this will merely change the valve's timing but not the length of time the valve is fully open. The concept of varying the length of time the valve is fully opened has little merit in light of the following issue.

15 In any rotary valve engine the maximum breathing capacity is obtained by making the opening in the periphery of the valve and the window as large as possible. For any given duration the optimum breathing capacity is obtained when the width of the opening in the periphery of the valve and the width of the 20 window are the same. When as disclosed in GB patent 2 072 264 the width of the window is deliberately made narrower than the width of the opening in the periphery, the maximum breathing capacity of the arrangement is reduced by virtue of the smaller window opening than would be available if both were the same size. The concept of then introducing some undisclosed method of 25 increasing the time the valve is in the fully open condition (presumably to increase breathing capacity) has little merit given that it will never achieve the breathing capacity that a simple change to the geometry of the part will achieve.

These issues are all addressed in JP patent 9-32518 (Sakochi). In this patent a 30 single rotary valve incorporating an inlet and exhaust port in the same valve is disclosed. This valve is shared between two cylinders. Figure 11 of JP patent 9-

32518 shows that the openings in the periphery of the valve and the window all have the same width and all subtend an angle of 45°. Further the angle subtended by the closing edge of one window and the opening edge of the adjacent window is also 45°. This overcomes the problem of GB patent 2 072

5 264 where the inlet (or exhaust) port can simultaneously be open to adjacent cylinders on different strokes. However this arrangement has a bridge between the inlet port and the exhaust port that subtends 45°. When this bridge is positioned directly over the window, the window is completely blocked. Hence this arrangement has zero overlap.

10

Zero overlap is a necessary restraint on any design where a single rotary valve feeds two or more adjacent cylinders.

15

Further the inlet (or exhaust) duration is $2(A + B)$ where A is the angle subtended by the opening in the periphery of the valve and B is the angle subtended by the window. As both these angles are 45° in the case of JP patent 9-32518 the duration of the inlet or exhaust is restrained to be 180°.

20

Maximum inlet and exhaust duration of 180° is a necessary restraint on any design where a single rotary valve feeds two or more adjacent windows.

25

Both the zero overlap and maximum inlet and exhaust duration of 180° are formidable restraints on the design of any IC engine. While an engine with these restraints will work it will have a considerable maximum power disadvantage compared to modern IC engines which typically have 30° of overlap and 230° of duration.

30

A method of varying the phase between the valve and the crankshaft is also disclosed in JP patent 9-32518. This disclosure is for a device to make fine adjustments to the phase of the valve such that the valve can be maintained with the inlet port opening precisely at tdc on the induction stroke, and the exhaust

opens precisely at bdc of the exhaust stroke. It is an adjustment mechanism to maintain the phase rather than a mechanism to vary the phase.

The essence of the present invention is the recognition that despite the fact a 5 rotary valve incorporating both inlet and exhaust ports in the same valve, imposes considerable physical restraints on how the timing may be varied, other features unique to the rotary valve (in particular lack of valve protrusion into the combustion chamber) mean that advantages can be obtained by the use of an alternative strategy that makes use of these unique features. By dynamically 10 changing the phase in response to the operating conditions of the engine improvements in load and emissions may be obtained. Further if changes in phase are combined with management of the throttle, smaller pumping losses will improve part throttle efficiency and improvements in NOx emissions will result.

15 SUMMARY OF INVENTION

According to a first aspect the present invention consists in a rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, and at least one rotary valve, 20 said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism 25 driving said rotary valve, **characterised in that** said at least two ports comprise an inlet port and an exhaust port, and said phase change means applies a phase change in response to change in the operating conditions of said engine, said phase change occurring over at least one engine cycle of said engine.

Preferably said phase change means also applies a phase change in response to change at least one demand value sent to said engine, said phase change occurring over at least one engine cycle of said engine.

5 Preferably the maximum allowable magnitude of said phase change is large.

Preferably when said engine is operating at or near full load and said phase change is negative as speed of said engine decreases and said phase change is positive when speed of said engine is increasing.

10

Preferably said phase change is positive when said engine is cold and said phase change is negative when said engine has reached its operating temperature.

15 Preferably said drive mechanism is driven from said crankshaft.

Preferably said drive mechanism is an electric motor.

20 In one embodiment said phase change means comprises a source of hydraulic pressure, a hydraulic piston incorporating at least one helical spline, a first drive member with a mating helical spline slidably meshed with said hydraulic piston, a second drive member with a second mating helical spline of opposite hand to said mating helical spline slidably meshed with said hydraulic piston, at least one of either said mating helical spline or said second mating helical spline having a

25 non zero helix angle, said first drive member driven by said crankshaft, said second drive member driving said rotary valve, said hydraulic piston moving axially in response to supply of pressure from said source of hydraulic pressure, said axial movement rotating said first drive member relative to said second drive member.

30

In another embodiment said phase change means comprises a source of hydraulic pressure, a first drive member incorporating a first set of radially extending vanes, a second drive member incorporating a second set of radially extending vanes, said second drive member mounted concentrically to said first drive member, said first set of radially extending vanes slidingly sealing against said second drive member, said second set of radially extending vanes slidingly sealing against first drive member such that a series of sealed hydraulic cavities are formed between said first set of radially extending vanes and said second set of radially extending vanes, said sealed hydraulic cavities connected to said 10 source of hydraulic pressure, said primary drive member driven by said crankshaft, said secondary drive member driving said rotary valve, said primary drive member rotating relative to said secondary drive member in response to the application of hydraulic pressure from said source of hydraulic pressure to alternate said series of sealed hydraulic cavities.

15

Preferably said phase change means is operably connected to an electronic control unit which controls said phase.

20

Preferably said throttle actuator is operably connected to said electronic control unit which controls position of said throttle.

25

In another embodiment said drive mechanism comprises a primary drive means for transmitting motion between the crankshaft and said rotary valve, said primary drive means having at least one epicyclic gear set, and a secondary drive means driving a sun gear of said epicyclic gear set.

Preferably said secondary drive means is an electric motor.

30

Preferably said secondary drive means is operably connected to an electronic control unit which controls said phase.

Preferably said throttle is operably connected to said electronic control unit which controls position of said throttle.

In another embodiment said drive mechanism comprises an electric motor
5 directly coupled to said rotary valve.

In another embodiment said drive mechanism comprises an electric motor driving
at least one intermediate drive member operably engaged with said rotary valve.
Preferably said at least one intermediate drive member comprises any one of a
10 gear, gear train, chain drive assembly or belt drive assembly.

Preferably said electric motor is operably connected to an electronic control unit
which controls said phase.

15 Preferably said throttle is operably connected to said electronic control unit
which controls position of said throttle.

According to a second aspect the present invention consists in a rotary valve
internal combustion engine, said engine comprising a crankshaft, a throttle, a
20 throttle actuator, a cylinder head, a combustion chamber, and at least one rotary
valve, said rotary valve having at least two ports terminating as openings in its
periphery, said cylinder head having a bore in which said rotary valve rotates, a
window in said bore communicating with said combustion chamber, said
openings successively aligning with said window by virtue of said rotation, and a
25 drive mechanism comprising a phase change means, said drive mechanism
driving said rotary valve, **characterised in that** said at least two ports comprise
an inlet port and an exhaust port, and said phase change means applies a phase
change in response to change in at least one demand value sent to said engine,
said phase change occurring over at least one engine cycle of said engine.

30 Preferably the maximum allowable magnitude of said phase change is large.

Preferably when said engine is operating at or near full load and said phase change is negative as speed of said engine decreases and said phase change is positive when speed of said engine is increasing.

5

Preferably said phase change is negative when said engine is cold and said phase change is positive when said engine has reached its operating temperature.

According to a third aspect the present invention consists in a rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, and at least one rotary valve, said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said 10 openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism driving said rotary valve, **characterised in that** said at least two ports comprise an inlet port and an exhaust port, and said phase change means applies a phase change in response to change in at least one demand value sent to said engine 15 and said throttle actuator maintains position of said throttle unchanged, said 20 and said phase change occurring over at least one engine cycle of said engine.

Preferably in one operating configuration said throttle actuator maintains said throttle fully open.

25

Preferably said change in said at least one demand value requires said engine to operate at part or low load.

Preferably the maximum allowable magnitude of said phase change is large.

30

Preferably said phase change is negative when said change in said at least one demand value requires reduction in load of said engine and said phase change is positive when said change in said at least one demand value requires an increase in load of said engine.

5

Preferably said drive mechanism is driven from said crankshaft.

Preferably said drive mechanism is an electric motor.

- 10 According to a fourth aspect the present invention consists in a rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, an electronic control unit and at least one rotary valve, said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in
- 15 which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism driving said rotary valve, **characterised in that** said at least two ports comprise an inlet port and an exhaust port, and said phase
- 20 change means applies a phase change in response to a change in at least one demand value sent to said engine where said phase change is calculated by said electronic control unit as the maximum allowable phase change for the changed demand value and said throttle actuator changes position of said throttle to achieve said changed demand value, said phase change and said throttle
- 25 change occurring over at least one engine cycle of said engine.

Preferably said electronic control unit calculates said maximum allowable phase change to achieve the maximum allowable internal exhaust gas recirculation at said changed demand value.

30

Preferably the maximum allowable magnitude of said phase change is large.

Preferably said throttle actuator maintains said throttle at or near full open when said at least one demand value require said engine to operate at low or part load.

5 Preferably said phase change means also applies a phase change in response to change in the operating conditions of said engine over at least one engine cycle of said engine.

Preferably said drive mechanism is driven from said crankshaft.

10

Preferably said drive mechanism is an electric motor.

Preferably said phase change means comprises a source of hydraulic pressure, a hydraulic piston incorporating at least one helical spline, a first drive member 15 with a mating helical spline slidably meshed with said hydraulic piston, a second drive member with a second mating helical spline of opposite hand to said mating helical spline slidably meshed with said hydraulic piston, at least one of either said mating helical spline or said second mating helical spline having a non zero helix angle, said first drive member driven by said crankshaft, said second drive 20 member driving said rotary valve, said hydraulic piston moving axially in response to supply of pressure from said source of hydraulic pressure, said axial movement rotating said first drive member relative to said second drive member.

BRIEF DESCRIPTION OF DRAWINGS

25

Fig. 1 is a cross sectional view of a first embodiment of a rotary valve engine having a variable valve timing mechanism in accordance with the present invention.

Fig. 2 is an isometric view of the first embodiment of a rotary valve engine having a variable valve timing mechanism in accordance with the present invention.

5 Fig. 3 is an isometric view of a second embodiment of a rotary valve engine having a variable valve timing mechanism in accordance with the present invention.

10 Fig. 4 is an isometric view of a fourth embodiment of a rotary valve engine having a variable valve timing mechanism in accordance with the present invention.

Fig. 5 is an exploded isometric view of Fig. 4.

15 Fig. 6 is a sectional view on line AA of Fig. 1.

Fig. 7 is the sectional view of Fig. 5 but with the rotary valve phase shifted.

Fig. 8 is a block diagram showing the operation of the ECU.

20 Fig. 9 is an cross sectional view of a fifth embodiment a rotary valve engine having a variable valve timing mechanism in accordance with the present invention.

25 Fig.10 is an isometric view of a sixth embodiment a rotary valve engine having a variable valve timing mechanism in accordance with the present invention.

Fig.11 is a chart used to define the meaning of "phase" and "phase change"

MODE OF CARRYING OUT INVENTION

Figures 1 and 2 depicts a first embodiment of the present invention in which rotary valve 1 has an inlet port 2 at one end and exhaust port 3 at the other end.

- 5 These ports respectively connect with openings 4 and 5 in the periphery of the central cylindrical portion of rotary valve 1. As rotary valve 1 rotates, openings 4 and 5 periodically align with a similar shaped window 6 in cylinder head 7 opening directly into combustion chamber 8 at the top of cylinder 9. This alignment allows the passage of gases to and from cylinder 9. During the
- 10 compression and power strokes, the periphery of rotary valve 1 covers window 6 in cylinder head 7 preventing escape of gases from combustion chamber 8.

- 15 Rotary valve 1 is supported by two bearings 10 and has a small radial clearance to bore 11 of cylinder head 7. These bearings 10 allow the rotary valve 1 to rotate in bore 11 of cylinder head 7. A throttle actuator controls the position of throttle 23 that regulates the passage of air to cylinder 9.

- 20 Crankshaft sprocket 13 drives rotary valve sprocket 14 by chain 12. Rotary valve sprocket 14 drives rotary valve 1 through phase change means 18. Phase change means 18 consists of hub 15, outer sleeve 16 and hydraulic piston 17, as shown in Figure 2. Hydraulic piston 17 has an external helical spline 19 that slidingly engages with a mating internal helical spline 21 in outer sleeve 16. Hydraulic piston 17 has an internal helical spline 20, of opposite hand to helical splines 19 and 21, that slidingly engages with a mating external helical spline 22
- 25 on hub 15. If desired either external helical spline 19 or internal helical spline 20 may have a zero helix angle.

- 27 Hydraulic fluid is supplied under pressure to either front cavity 24 or rear cavity 27 depending on the required direction of phase change. Supply of high pressure hydraulic fluid to front cavity 24 pushes hydraulic piston 17 in the direction away from cylinder 9 effecting a rotation of rotary valve 1 via hub 15
- 30

relative to sprocket 14 via outer sleeve 16, thus effecting a phase change between rotary valve 1 and crankshaft 25.

This embodiment provides a means whereby the valve timing of a rotary valve assembly for an internal combustion engine may be varied continuously. The present invention provides a means of varying the valve timing whilst maintaining the inlet duration, the exhaust duration and the overlap duration all constant. The variation in valve timing is achieved by effecting phase changes.

10 By "continuously" it is meant that the rotary valve timing may be altered from one cycle to the next cycle continuously.

Whilst the overlap duration of a single rotary valve 1 is fixed, its phase can easily be altered by mechanisms that are well known in the poppet valve technology.

15 The mechanism shown in Figure 2 is a typical example. The benefits arising from dynamically changing the phase may be appreciated by the following considerations.

20 At full throttle maximum power is generally obtained when the inlet open and the exhaust close points are symmetrical about tdc i.e. the bridge 57 of the rotary valve 1 is located in the centre of the window 6 at tdc (see Figure 6). This allows the simultaneous discharge of burnt gas to the exhaust port 3 and the intake of fresh charge from inlet port 2 into the cylinder 9. This flow is maintained as a result of a positive pressure gradient between the inlet port 2 and the exhaust port 3. The exhaust and inlet systems can generally be designed such that at full throttle a negative pressure is obtained in the exhaust port 3 and positive pressure is obtained in the inlet port 2 at tdc overlap. This ensures the correct direction of flow of exhaust and inlet charge.

25

30 Modern IC engines generally have their inlet tract length adjusted such that at the design speed for maximum torque / power the pressure wave that traverses the

inlet tract reach a maximum adjacent the entry point to the combustion chamber 8 at the instant the inlet valve closes. This ensures maximum supercharge of the air in the cylinder 9 and maximum power. At speeds lower than this design speed the positive pressure wave arrives at the entry point to the combustion chamber 8 prior to the inlet valve closing and thereafter decreases in magnitude. By the time the inlet valve closes the pressure will be lower than that achieved at the design speed. The further the engine speed is from the design operating speed the lower the pressure will be at the point of inlet valve closure. This reduces the pressure of the cylinder contents and the mass of fresh charge available for combustion.

In the event the inlet valve close point is retarded (i.e. the inlet closes earlier) with decreasing engine speed such that the valve closure more closely coincides with the occurrence of peak pressure at the entry point to the combustion chamber 8, (i.e. the valve head in the case of the poppet valve or the window 6 in the case of the rotary valve) maximum cylinder charging will continue to occur.

As both inlet port 2 and exhaust port 3 are on the same rotary valve 1, closing the inlet earlier will also result in the exhaust and overlap occurring earlier. Generally the earlier opening of the exhaust is detrimental as it reduces the amount of expansion work. However, the magnitude of this loss is small compared to the gains made by earlier closing of the inlet.

In the case of a cold engine, earlier opening of the exhaust is a benefit, as it will heat up the exhaust system and the catalyst faster. Consequently the catalyst will work sooner after start up from cold with reduced emissions.

Changing the overlap so that it occurs earlier opens the inlet earlier and closes the exhaust earlier. Overlap still occurs. The only difference is that instead of being centred about piston 26 at tdc, it is centred about piston 26 moving towards tdc. Provided that a suitable pressure gradient exists between the inlet port 2

and the exhaust port 3 the cylinder 9 will be suitably scavenged despite the fact the piston 26 is still rising, albeit slowly. Essentially any effects resulting from a phase change such that the overlap occurs earlier will be a second order effect at or near full load.

5

On an engine operating at full load the net effect of closing the inlet earlier as engine speed decreases, is to substantially increase the mass of fresh charge available for combustion against which must be subtracted small losses associated with earlier exhaust opening. The net effect is a gain in full load power at speeds below the design speed for maximum torque / power.

Whilst this strategy would not be considered optimum by designers of modern poppet valve engines or rotary valve engines with separate valves for the inlet or exhaust valves, where there is flexibility to vary the phase of the inlet and 15 exhaust valves independently, it is an important improvement to the operation of a rotary valve 1 with both inlet port 2 and exhaust port 3 in the same valve. Rotary valve 1 with both inlet port 2 and exhaust port 3 in the same valve has many advantages over the poppet valve, that make it a preferable commercial embodiment. It also has some perceived disadvantages of which restraints on 20 timing variation is one. This strategy addresses these concerns.

This invention seeks to further improve the operation of a rotary valve 1 with inlet port 2 and exhaust port 3 in the same valve by utilizing some of its unique features to change the way the engine operates at part load.

25

Conventional petrol IC engines regulate the engine load by way of the throttle. The throttle sets the demand values. There are two issues associated with the throttle. Firstly, at closed or part throttle air inducted into the engine has to be drawn in through a very small orifice (created by the closed throttle) resulting in 30 pumping losses (i.e. negative work by the crankshaft to draw the air through the orifice) that adversely affect the efficiency of the engine. As most vehicle

operation in cities occurs at part throttle this is a major issue as it leads to increased fuel consumption and CO₂ emissions. This problem has always been addressed on diesel IC engines where there is no throttle and the engine output is regulated by the amount of fuel that is injected.

5

Secondly, when the throttle is closed or partially closed it generates a vacuum in the inlet manifold. As a result, during overlap the pressure gradient is generally such that exhaust back flows into the cylinder and the inlet manifold. The magnitude of this back flow is difficult to control. Excessive back flow will result

10 in too much exhaust gas being trapped in cylinder 9. Exhaust gas that is trapped in cylinder 9 by such a mechanism is known as internal exhaust gas recirculation or internal EGR. Whilst a certain amount of exhaust gas is required at part throttle to regulate the NOx emissions, excessive amounts will adversely affect the combustion stability leading to a "rough running" engine with increased

15 Hydrocarbon (HC) emissions. Modern poppet valve engines control this by reducing the overlap and / or the valve lift when operating at part throttle.

The magnitude of the exhaust back flow is a function of the size of the overlap and the pressure gradient that exists between the inlet port 2 and the exhaust port 3 and the engine speed. At low engine speeds the time available for the back flow to occur is longer. On a rotary valve of the type described in US Patent 5,526,780, the inlet and exhaust opening rates are very high due to the absence of cam ramps. Consequently, the duration of the overlap required to achieve optimum performance can be small by conventional poppet valve standards.

20 25 Typically a satisfactory result may be obtained with an overlap of just 20° or less. This in part addresses the issue of back flow by reducing its magnitude.

However in modern engines controlled EGR is required to control NOx emissions that are tightly regulated in most countries. A problem that exists with a rotary

30 valve of the type described in US Patent 5,526,780 is not that internal EGR takes

place, but the fact that it is difficult to control, given the multitude of different operating conditions an engine will experience at part load.

The present invention improves the part load efficiency of the IC engine by 5 operating at or near full throttle for most engine part load conditions and minimizes exhaust NOx emissions by accurate control of internal EGR. It achieves this by a combination of phase change combined with management of the throttle position.

- 10 As discussed above, phase changes to the overlap will have little effect on the back flow of exhaust gas as the back flow is primarily determined by the overlap duration and the magnitude of the pressure gradient between inlet port 2 and exhaust port 3. Also as discussed above, rotary valve 1 allows the overlap duration to be substantially reduced compared to conventional poppet valves. By
- 15 setting the throttle to wide open or near wide open, the vacuum that exists in the inlet port of a conventional IC engine at part load is eliminated. The removal of this vacuum means inlet port 2 and exhaust port 3 are now at similar pressures, and there is no longer a large pressure gradient pushing exhaust back into inlet port 2. Consequently, overlap flows and their variations due to different operating
- 20 conditions can be reduced to level where they are no longer of consequence.

In the present invention control of the engine's load and speed is no longer primarily controlled by throttle 23, but by means of a phase change. The amount of fresh charge entering the engine can be controlled by selecting a suitable inlet 25 valve close point. In the event the inlet valve close point can be varied indefinitely, throttle 23 can be left wide open and the inlet close point selected such that the required amount of air was trapped in the cylinder 9. This is a considerable improvement as the pumping losses incurred by drawing air through a near closed throttle are eliminated. These have been replaced by the losses 30 incurred by pulling (during the induction stroke) the air through the orifice created between rotary valve 1 and window 6 and by pushing the air (during the

compression stroke) out through the same orifice. As the effective size of the orifice created by rotary valve 1 and window 6 is much greater than the orifice created by the near closed throttle, pumping losses will be lower than in the conventional arrangements.

5

In many IC engines the phase change has an additional function to that of controlling the engine output. It must also manage the internal EGR to minimize NOx emissions. This is achieved as follows.

10 Figure 6 shows piston 26 at tdc on the inlet stroke. Overlap is phased to achieve an optimum performance result at high engine speed and load. Typically inlet open occurs at 10° before tdc, and exhaust closes 10° after tdc. Typically the inlet close point would be arranged to occur 50° after bdc and the exhaust open point at 50° before bdc for optimum performance at high speed and high load.

15

When the engine demand values change to low speed / low load, the present invention effects a phase change to manage both the required internal EGR during overlap and the engine's load and speed. Typically a 45° phase change may be introduced. Figure 7 shows the relative position of piston 26 and rotary valve 1 when piston 26 is at tdc on the inlet stroke, and rotary valve 1 has been given a negative phase change of 45°. As piston 26 starts to descend after tdc, exhaust gas is drawn into cylinder 9 from exhaust port 3 while inlet port 2 remains closed. Later, when inlet port 2 opens and in the absence of a significant pressure gradient between inlet port 2 and exhaust port 3, (due to the wide open throttle) a fresh air fuel mixture is drawn from inlet port 2 into cylinder 9 simultaneously with flow from exhaust port 3 into cylinder 9. When exhaust port 3 closes, air and fuel continue to be drawn into cylinder 9 from inlet port 2. In this process the amount of internal EGR can be closely controlled by the magnitude of the phase change. The greater the phase change the greater the amount of internal EGR. During the remainder of the inlet stroke the internal EGR and the fresh air / fuel mixture are well mixed.

20

25

30

The inlet close point now occurs 95° after bdc. At high engine speed / high load, the inlet close point is arranged to occur after bdc to maximize the volume of fresh charge trapped in cylinder 9. It uses the momentum of the incoming air

- 5 stream to continue to push air into cylinder 9 after bdc despite the fact piston 26 is moving up cylinder 9 at the start of the compression stroke. At low engine speed / low load there is insufficient momentum in the incoming air stream to continue filling cylinder 9 after piston 26 commences the compression stroke.
- 10 The rising piston 26 reverses the flow of the incoming air stream and pushes it back out through inlet port 2. The conventional poppet valve strategy is to close the inlet valve earlier at low load / low speed operation to minimize the back flow of air and to maximize the volume of trapped air. Rather than producing an earlier inlet close point, the present invention produces a later inlet close point.
- 15 As piston 26 rises on the compression stroke the now mixed internal EGR and fresh air / fuel mixture is pushed out of cylinder 9 into inlet port 2 until inlet port 2 closes. During the following induction stroke this mixture of exhaust gas and fresh charge will be drawn back into cylinder 9 during the inlet stroke. The amount of exhaust gas pumped into inlet port 2 during the compression stroke is
- 20 well controlled and is primarily a function of the overlap timing and the inlet close timing.

The magnitude of the required phase change is determined by two factors.

Firstly, the amount of internal EGR required and secondly the demand values

- 25 dictating the required engine load and speed. It is unlikely that these two requirements will result in the same required phase change. In the event the phase change required to satisfy the engine output is achieved prior to reaching the maximum allowable level of internal EGR, the phase change is made to satisfy the engine output requirements and the throttle is left fully open. In the
- 30 event the maximum allowable level of internal EGR is achieved prior to sufficient phase change being made to accommodate the engine output, the phase change

is locked at the point required to deliver maximum allowable internal EGR. At this setting the engine will produce more load than required. In this event throttle 23 is partially closed to further reduce the amount of fresh air being drawn into cylinder 9 during the induction stroke. In this case, throttle 23 is used as a 5 trimming or fine tuning device.

In the event of very light load where minimum internal EGR is required to control the NOx emissions and smoothness of operation is paramount, the valve timing may be returned to its full throttle position and the throttle 23 is used in a 10 conventional manner.

The exhaust open point now occurs 5° before bdc. This is a desirable result when the engine is operating at low load / low speed conditions. Normally at high load / high speed operation the exhaust needs to be opened well before bdc to 15 ensure the exhaust pressure can be blown down before piston 26 reaches bdc and starts the compression stroke. If the exhaust hasn't blown down, excessive work will be done against the pressure remaining in cylinder 9 during the exhaust stroke. However this early exhaust open is at the sacrifice of some loss of work 20 on the power stroke. In the event the engine is operating at low speed / low load the mass of burnt gas that has to be exhausted is small and the time available to achieve the blow down high. Consequently, it is desirable to open the exhaust later in these circumstances as it increases the amount of work delivered to crankshaft 25 during the power stroke.

25 In order to function in the above manner throttle 23 can no longer be hard-wired to the accelerator pedal but is controlled by the throttle actuator 59 which is in turn controlled by engine ECU 60. The accelerator pedal produces the demand values for the engine.

30 Demand values are those values sent to ECU 60 that dictate the values that the engine is required to produce. These demand values must always dictate the

speed and load at which the engine is required to operate. The demand values may also dictate additional restraints on the operation of the engine. For example, a common additional restraint is the requirement for the engine to operate at a specific air fuel ratio. Demand values may be generated from

5 several sources depending on the application. Typically in the case of an automotive engine the load and speed demand values are generated by the driver positioning the accelerator pedal.

In this case the engine output and the required level of internal EGR can be
10 controlled by selecting a suitable combination of inlet close point and throttle position.

A feature of the present invention is that large phase changes are effected whilst maintaining fixed inlet and exhaust duration and fixed phasing of the inlet relative
15 to the outlet.

The operation of ECU 60 is shown in figure 8. Sensors monitoring engine and engine operating parameters such as engine speed, engine load, engine temperature, and air temperature send signals 48 to ECU 60. Signal 58 from the
20 accelerator pedal or some other input source sends the engine demand values to ECU 60. ECU 60 by means of either a look up table or calculation of algorithms or both determines the required phase and the required throttle position. ECU 60 outputs the control signals 61 and 62 to throttle actuator 59 and phase actuator 55 respectively. Phase actuator 55 drives phase change means 56 to the
25 desired phase. Throttle actuator 59 drives throttle 23 to required position.

An example of this mode of operation is as follows. Consider an engine operating at full load. Its valve timing is as shown in Figure 6 i.e. the overlap is centred in window 6 at tdc. In response to a change in the position of the
30 accelerator pedal (i.e. to a change in the engine's demand values) that signals the requirement for the engine to change from full load to 1/3 load at the same

engine speed. ECU 60 calculates the phase change that will allow the maximum allowable quantity of internal EGR for these engine operating conditions dictated by the demand values. ECU 60 also calculates the phase change required for the engine to run at 1/3 load with throttle 23 fully open. ECU 60 compares these 5 phase change requirements. If they are the same, ECU 60 sends the phase actuator 55 a signal to phase change the calculated amount. In the event the phase change required for maximum internal EGR is greater than the phase change required to run the engine at 1/3 load ECU 60 sends phase actuator 55 a signal to phase change the amount required to run the engine at 1/3 load and 10 fully open throttle. In the event the phase change required for maximum internal EGR is less than the phase change required to run the engine at 1/3 load and fully open throttle, ECU 60 sends the phase actuator 55 a signal to phase change the amount ECU 60 calculates, it will produce the maximum allowable internal EGR and sends throttle actuator 59 a signal to close throttle 23 sufficient for the 15 engine to run at 1/3 load.

Figure 3 depicts a second embodiment of the present invention in which crankshaft sprocket 13 drives rotary valve sprocket 14 by means of chain 12. Rotary valve sprocket 14 drives rotary valve 1 through phase change means 30. 20 Phase change means 30 consists of outer sleeve 32 with internal radially extending vanes 31 which slidingly seal against the outside diameter of hub 28 and hub 28 with external radially extending vanes 29 that slidingly seal against inner diameter of outer sleeve 32. Hydraulic cavities 33 and 34 are formed between the inner diameter of outer sleeve 32, its internal radially extending 25 vanes 31, the outer diameter of hub 28, its external radially extending vanes 29, the end face 35 of hub 28 and the end face 36 of outer sleeve 32.

Pressurized hydraulic fluid is fed to hydraulic cavities 33 and 34 via oil feed holes 38 and 37 respectively. Rotation of valve 1 via hub 28 relative to sprocket 14 is 30 achieved by feeding high pressure hydraulic fluid into either cavities 33 via holes 38 or into cavities 34 via holes 37.

In a third embodiment as shown in Figs. 4 and 5, crankshaft gear 43 drives ring gear 45 of epicyclic gear set 41. Planet gears 46 drive gear 44 that drive rotary valve gear 39 through idler gear 40. Electric servomotor 42 drives sun gear 47 of epicyclic gear set 41. In the event the electric servo motor 42 is stationary or locked out, motion is transferred from the crankshaft gear 43 to the rotary valve gear 39 where rotary valve gear 39 maintains a constant angular velocity ratio to the crankshaft gear 43. When electric servo motor 42 drives sun gear 47 it either increases or decreases the angular velocity ratio between rotary valve gear 39 and crankshaft gear 43, depending on which direction sun gear 47 is rotated.

In this arrangement the gear drive from crankshaft 25 provides the gross motion and electric servomotor 42 provides the variation in motion required to vary the phase.

15 A fourth embodiment involves a variation of the arrangement shown in Figs. 4 and 5, crankshaft gear 43 drives ring gear 45 of epicyclic gear set 41. Sun gear 47 drives gear 44 that drives rotary valve gear 39 through idler gear 40. Electric servomotor 42 drives planet gears 46 of epicyclic gear set 41. In the event the electric servo motor 42 is stationary or locked out, motion is transferred from the crankshaft gear 43 to the rotary valve gear 39 where rotary valve gear 39 maintains a constant angular velocity ratio to the crankshaft gear 43. When electric servo motor 42 drives planet gears 46 it varies the phase.

25 A fifth embodiment is shown in Figure 9. Rotary valve 1 is driven by hollow armature electric servomotor 49. Rotor 51 of hollow armature electric servomotor 49 is mounted on periphery of rotary valve 1 at the inlet end of rotary valve 1. Stator 50 of hollow armature electric servomotor 49 is mounted concentric to rotor 51.

In a sixth embodiment as shown in Figure 10 an electric servo motor 42 drives transfer gear 52 either directly or via a gear reduction box. Transfer gear 52 drives rotary valve gear 39 mounted on the periphery of the inlet end of rotary valve 1.

5

The term "comprising" as used herein is used in the inclusive sense of "including" or "having" and not in the exclusive sense of "consisting only of".

Claims

1. A rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, and at least one rotary valve, said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism driving said rotary valve,
characterised in that said at least two ports comprise an inlet port and an exhaust port, and said phase change means applies a phase change in response to change in the operating conditions of said engine, said phase change occurring over at least one engine cycle of said engine.
- 15 2. A rotary valve internal combustion engine as claimed in claim 1, wherein said phase change means also applies a phase change in response to change at least one demand value sent to said engine over at least one engine cycle of said engine.
- 20 3. A rotary valve internal combustion engine as claimed in claims 1 or 2, wherein the maximum allowable magnitude of said phase change is large.
- 25 4. A rotary valve internal combustion engine as claimed in any one of claims 1 to 3, wherein when said engine is operating at or near full load and said phase change is negative as speed of said engine decreases and said phase change is positive when speed of said engine is increasing.
- 30 5. A rotary valve internal combustion engine as claimed in anyone of claims 1 to 4, wherein said phase change is positive when said engine is cold and said

phase change is negative when said engine has reached its operating temperature.

6. A rotary valve internal combustion engine as claimed in anyone of claims 1 to 5, wherein said drive mechanism is driven from said crankshaft.
7. A rotary valve internal combustion engine as claimed in anyone of claims 1 to 5, wherein said drive mechanism is an electric motor.
- 10 8. A rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, and at least one rotary valve, said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism driving said rotary valve, **characterised in that** said at least two ports comprise an inlet port and an exhaust port, and said phase change means applies a phase change in response to change in at least one demand value sent to said engine, said phase change occurring over at least one engine cycle of said engine.
- 20 9. A rotary valve internal combustion engine as claimed in claim 8, wherein the maximum allowable magnitude of said phase change is large.
- 25 10. A rotary valve internal combustion engine as claimed in claims 8 or 9, wherein when said engine is operating at or near full load and said phase change is negative as speed of said engine decreases and said phase change is positive when speed of said engine is increasing.

11. A rotary valve internal combustion engine as claimed in anyone of claims 8 to 10, wherein said phase change is negative when said engine is cold and said phase change is positive when said engine has reached its operating temperature.

5

12. A rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, and at least one rotary valve, said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism driving said rotary valve, **characterised in that** said at least two ports comprise an inlet port and an exhaust port, and said phase change means applies a phase change in response to change in at least one demand value sent to said engine and said throttle actuator maintains position of said throttle unchanged, said phase change occurring over at least one engine cycle of said engine.

10 13. A rotary valve internal combustion engine as claimed in claim 12, wherein said throttle actuator maintains said throttle fully open.

15 14. A rotary valve internal combustion engine as claimed in claims 12 or 13, wherein said change in said at least one demand value requires said engine to operate at part or low load.

20 15. A rotary valve internal combustion engine as claimed in any one of claims 12 to 14, wherein the maximum allowable magnitude of said phase change is large.

30

16. A rotary valve internal combustion engine as claimed in any one of claims 12 to 15, wherein said phase change is negative when said change in said at least one demand value requires reduction in load of said engine and said phase change is positive when said change in said at least one demand value requires an increase in load of said engine.

5

17. A rotary valve internal combustion engine as claimed in anyone of claims 12 to 16, wherein said drive mechanism is driven from said crankshaft.

10 18. A rotary valve internal combustion engine as claimed in anyone of claims 12 to 16, wherein said drive mechanism is an electric motor.

15 19. A rotary valve internal combustion engine, said engine comprising a crankshaft, a throttle, a throttle actuator, a cylinder head, a combustion chamber, an electronic control unit and at least one rotary valve, said rotary valve having at least two ports terminating as openings in its periphery, said cylinder head having a bore in which said rotary valve rotates, a window in said bore communicating with said combustion chamber, said openings successively aligning with said window by virtue of said rotation, and a drive mechanism comprising a phase change means, said drive mechanism driving said rotary valve, **characterised in that** said at least two ports comprise an inlet port and an exhaust port, and said phase change means applies a phase change in response to a change in at least one demand value sent to said engine where said phase change is calculated by said electronic control unit

20 as the maximum allowable phase change for the changed demand value and said throttle actuator changes position of said throttle to achieve said changed demand value, said phase change and said throttle change occurring over at

25 least one engine cycle of said engine.

30 20. A rotary valve internal combustion engine as claimed in claim 19, wherein said electronic control unit calculates said maximum allowable phase change

to achieve the maximum allowable internal exhaust gas recirculation at said changed demand value.

- 21.A rotary valve internal combustion engine as claimed in claims 19 or 20
5 wherein the maximum allowable magnitude of said phase change is large.
- 22.A rotary valve internal combustion engine of as claimed in any one of claims
19 to 21, wherein said throttle actuator maintains said throttle at or near full
open when said at least one demand value require said engine to operate at
10 low or part load.
- 23.A rotary valve internal combustion engine as claimed in any one of claims 19
to 22 wherein said phase change means applies a phase change in response
to change in the operating conditions of said engine, said phase change
15 occurring over at least one engine cycle of said engine.
- 24.A rotary valve internal combustion engine as claimed in claims 19 to 23,
wherein said drive mechanism is driven from said crankshaft.
- 20 25.A rotary valve internal combustion engine as claimed in claims 19 to 23,
wherein said drive mechanism is an electric motor.
- 26.A rotary valve internal combustion engine of as claimed in claim 1, wherein
25 said phase change means comprises a source of hydraulic pressure, a
hydraulic piston incorporating at least one helical spline, a first drive member
with a mating helical spline slidingly meshed with said hydraulic piston, a
second drive member with a second mating helical spline of opposite hand to
said mating helical spline slidingly meshed with said hydraulic piston, at least
one of either said mating helical spline or said second mating helical spline
30 having a non zero helix angle, said first drive member driven by said
crankshaft, said second drive member driving said rotary valve, said hydraulic

piston moving axially in response to supply of pressure from said source of hydraulic pressure, said axial movement rotating said first drive member relative to said second drive member.

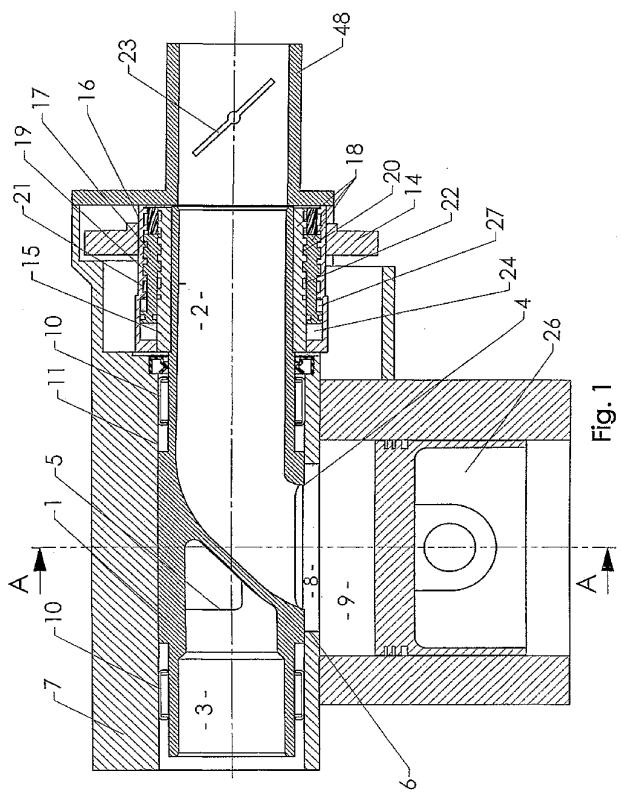
- 5 27. A rotary valve internal combustion engine of as claimed in claim 1, wherein
said phase change means comprises a source of hydraulic pressure, a first
drive member incorporating a first set of radially extending vanes, a second
drive member incorporating a second set of radially extending vanes, said
second drive member mounted concentrically to said first drive member, said
10 first set of radially extending vanes slidably sealing against said second drive
member, said second set of radially extending vanes slidably sealing against
first drive member such that a series of sealed hydraulic cavities are formed
between said first set of radially extending vanes and said second set of
radially extending vanes, said sealed hydraulic cavities connected to said
15 source of hydraulic pressure, said first drive member driven by said
crankshaft, said second drive member driving said rotary valve, said first drive
member rotating relative to said second drive member in response to the
application of hydraulic pressure from said source of hydraulic pressure to
alternate said series of sealed hydraulic cavities.
- 20 28. A rotary valve internal combustion engine of as claimed in claim 1, wherein
said phase change means is operably connected to an electronic control unit
which controls said phase.
- 25 29. A rotary valve internal combustion engine of as claimed in claim 1, wherein
said throttle actuator is operably connected to an electronic control unit which
controls position of said throttle.
- 30 30. A rotary valve internal combustion engine of as claimed in claim 1, wherein
said drive mechanism comprises a primary drive means for transmitting
motion between the crankshaft and said rotary valve, said primary drive

means having at least one epicyclic gear set, and a secondary drive means driving a sun gear of said epicyclic gear set.

31. A rotary valve internal combustion engine of as claimed in claim 30, wherein
5 said secondary drive means is an electric motor.

32. A rotary valve internal combustion engine of as claimed in claim 30, wherein
said secondary drive means is operably connected to an electronic control
unit which controls said phase.

10 33. A rotary valve internal combustion engine of as claimed in claim 30, wherein
said throttle is operably connected to an electronic control unit which controls
position of said throttle.


15 34. A rotary valve internal combustion engine as claimed in claim 1, wherein said
drive mechanism comprises an electric motor directly coupled to said rotary
valve.

20 35. A rotary valve internal combustion engine of as claimed in claim 1, wherein
said drive mechanism comprises an electric motor driving at least one
intermediate drive member operably engaged with said rotary valve.

25 36. A rotary valve internal combustion engine of as claimed in claim 35, wherein
said at least one intermediate drive member comprises any one of a gear,
gear train, chain drive assembly or belt drive assembly.

37. A rotary valve internal combustion engine of as claimed in claim 34 or 35,
wherein said electric motor is operably connected to an electronic control unit
which controls said phase.

38. A rotary valve internal combustion engine of as claimed in claim 34 or 35,
wherein said throttle is operably connected to an electronic control unit which
controls position of said throttle.

WO 02/097244

2/11

PCT/AU02/00687

Fig. 2

WO 02/097244

3/11

PCT/AU02/00687

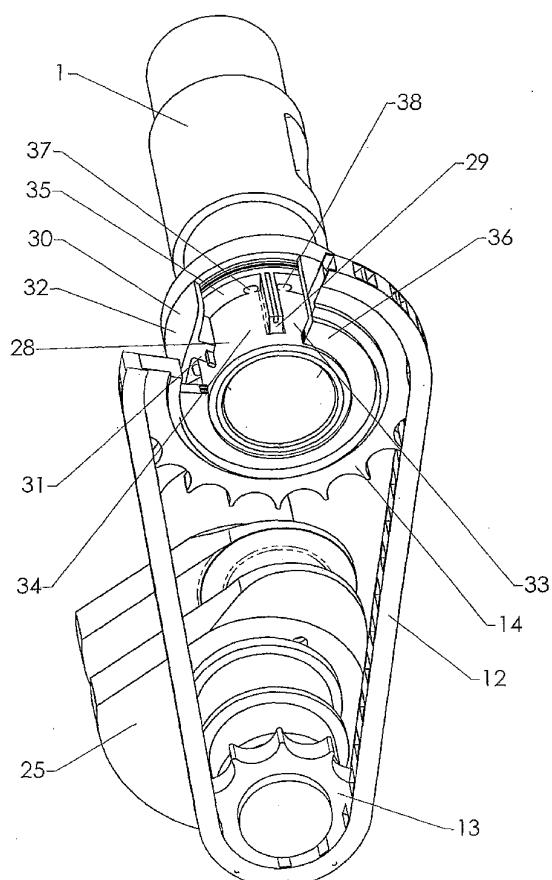
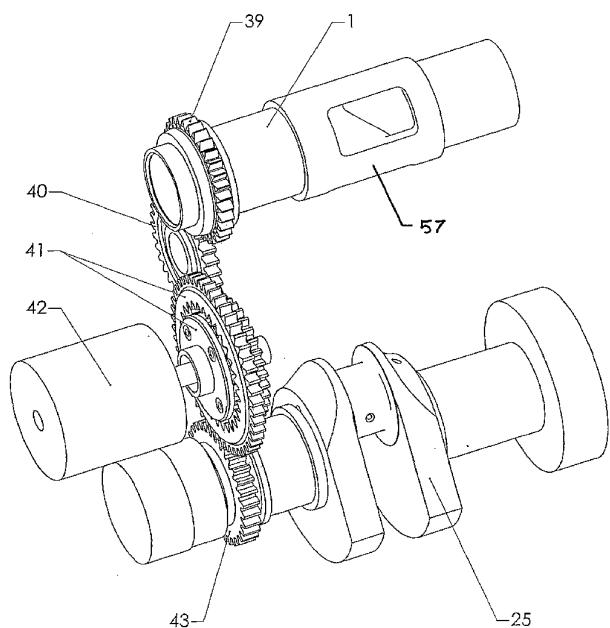


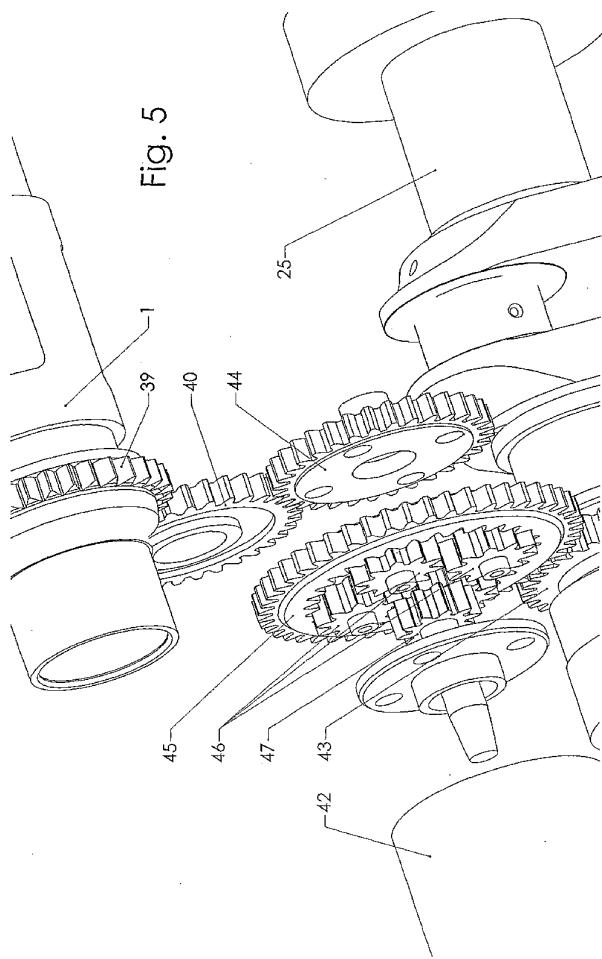
Fig. 3

WO 02/097244

4/11

PCT/AU02/00687




Fig. 4

WO 02/097244

5/11

PCT/AU02/00687

FIG. 5

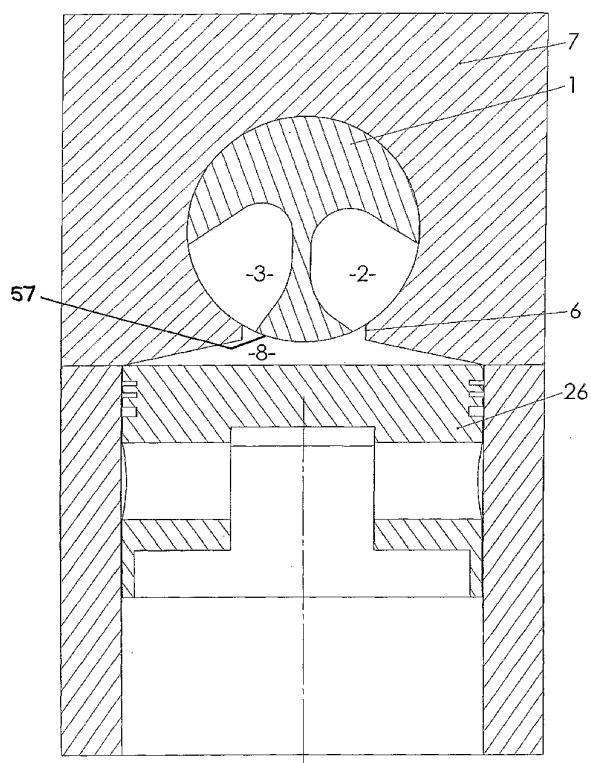


Fig. 6

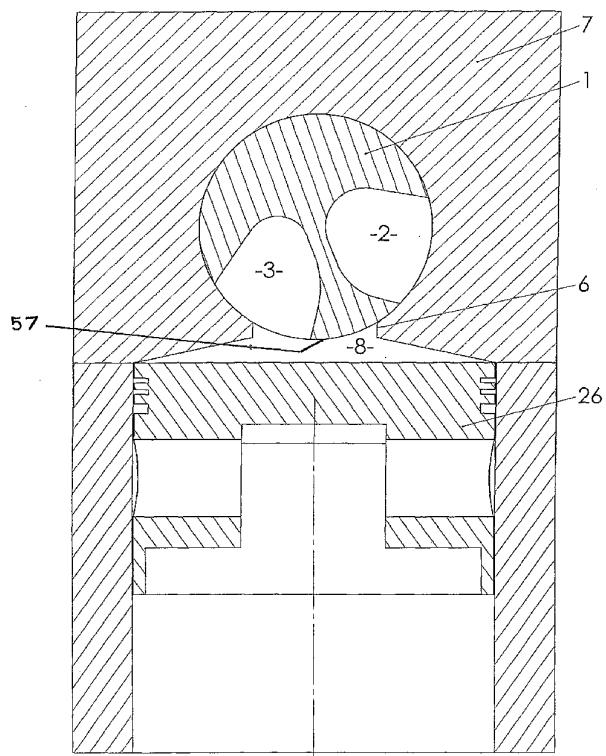


Fig. 7

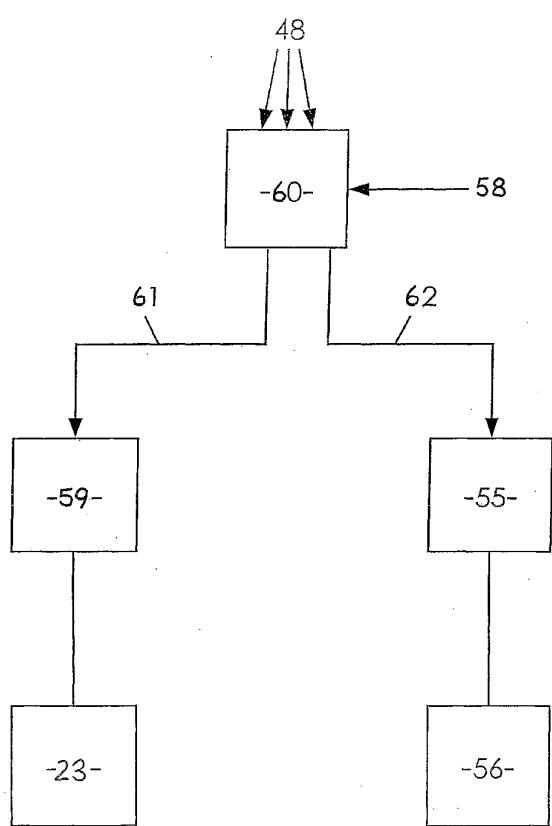


Fig. 8

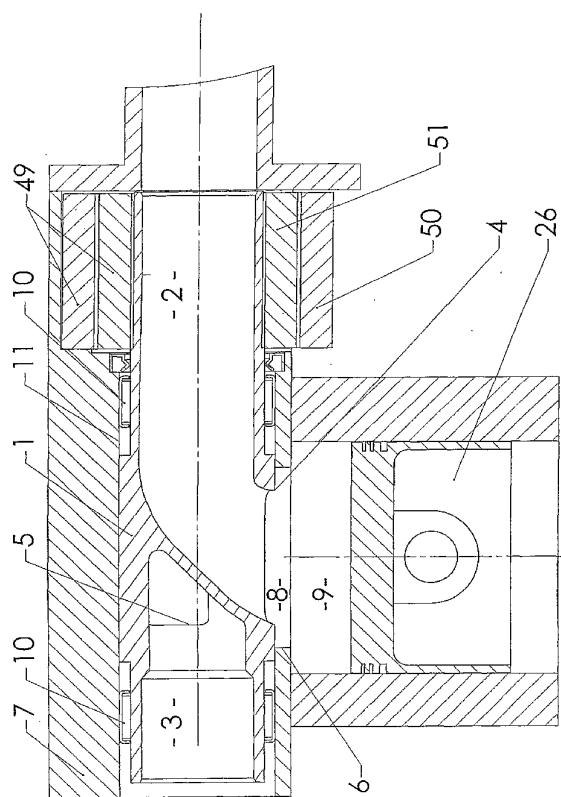
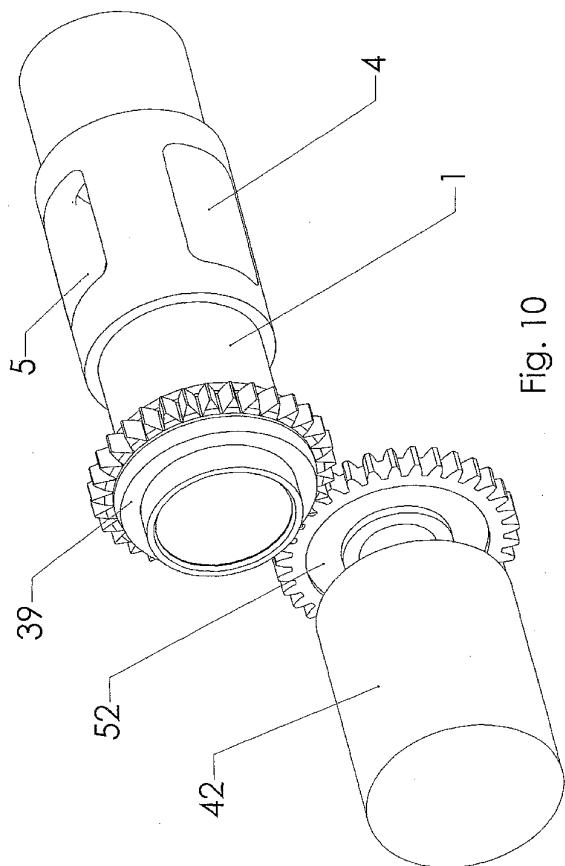
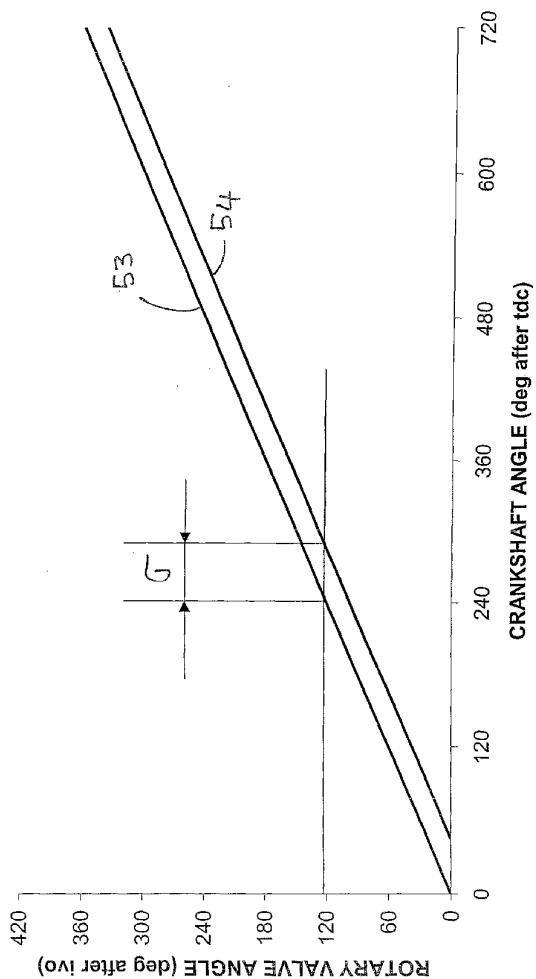


Fig. 9




Fig. 10

WO 02/097244

11/11

PCT/AU02/00687

Fig. 11

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/AU02/00687
A. CLASSIFICATION OF SUBJECT MATTER		
Int. Cl. 7: F01L 1/34, 7/02, 25/02, 25/08, 33/02, F02B 29/08, F02D 13/02 According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbol(s))		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) DWPI IPC: F01L, F02B, F02D with keywords (engine, rotary, valve, timing)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2072264 A (T.V.WILLIAMS) 30 September 1981 Whole document	1-25, 28-38
Y	Whole document	1-25, 28-38
Y	US 5526780 A (WALLIS) 18 June 1996 Whole document	1-25, 28-38
Y	US 5205251 A (CONKLIN) 27 April 1993 Whole document	1, 8, 12, 19
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C <input checked="" type="checkbox"/> See patent family annex		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
Date of the actual completion of the international search 14 June 2002	Date of mailing of the international search report 21 JUN 2002	
Name and mailing address of the IS/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaustralia.gov.au Facsimile No. (02) 6283 3929		
Authorized officer ZBIGNIEW BIELAWSKI Telephone No : (02) 6283 2218		

INTERNATIONAL SEARCH REPORT		International application No. PCT/AU02/00687
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5105784 A (DAVIS ET AL.) 21 April 1992 Whole document	1-25, 28-38
A	EP 579902 B1 (SCHIATTINO) 13 August 1997	
A	GB 2239901 A (USUI KOKUSAI SANGYO KAISHA LTD) 17 July 1991	
A	JP 9032518 A (SAKOUCHI) 4 February 1997 (& Derwent Abstract Accession No. 97-162776/15, Class X22, JP 9032518 A (SAKOUCHI) 4 February 1997)	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/AU02/00687

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report			Patent Family Member			
GB 2072264	AU	68651/81	CA	1158565	DE	3111040
	FR	2478741	IT	1142358	JP	56141010
	SE	8101848	US	4392460	US	4444161
US 5526780	AU	54121/94	EP	706607	WO	9411618
US 5205251	NONE					
US 5105784	EP	508508	US	5129367		
EP 579902	EP	579903	US	5309876	US	5355849
	US	5417188	EP	636768	EP	659982
	JP	7208131	JP	6081619	JP	6074009
GB 2239901	DE	4040415	FR	2656036	JP	3189322
	US	5230315				

END OF ANNEX

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU, ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW