

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2008/0227966 A1 Barry et al.

(43) Pub. Date:

Sep. 18, 2008

(54) GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE **SYNTHASES**

(75) Inventors:

Gerard Francis Barry, St. Louis, MO (US); Ganesh Murthy Kishore, Creve Coeur, MO (US); Stephen Rogers Padgette, Wildwood, MO (US); William Carlton Stallings, Wildwood, MO

Correspondence Address:

HOWREY LLP C/O IP DOCKETING DEPARTMENT, 2941 **FAIRVIEW PARK DRIVE SUITE 200** FALLS CHURCH, VA 22042 (US)

Monsanto Technology LLC, St. (73) Assignee:

Louis, MO (US)

(21)Appl. No.: 11/526,170

(22) Filed: Sep. 22, 2006

Related U.S. Application Data

Continuation of application No. 09/464,099, filed on Dec. 16, 1999, now Pat. No. 7,183,110, which is a

division of application No. 09/137,440, filed on Aug. 20, 1998, now Pat. No. 6,248,876, which is a continuation of application No. 08/833,485, filed on Apr. 7, 1997, now Pat. No. 5,804,425, which is a continuation of application No. 08/306,063, filed on Sep. 13, 1994, now Pat. No. 5,633,435, which is a continuation-inpart of application No. 07/749,611, filed on Aug. 28, 1991, now abandoned, which is a continuation-in-part of application No. 07/576,537, filed on Aug. 31, 1990, now abandoned.

Publication Classification

(51) Int. Cl. C07H 21/04 (2006.01)

(52) U.S. Cl. 536/23.2

(57)**ABSTRACT**

Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.

SspI 6417 6358 ACTTTATTCAAATTGGTATCGCCAAAACCAAGAAGGAACTCCCATCCTCAAAGGTTTGTA 6477 6418 TGAAATAAGTTTAACCATAGCGGTTTTGGTTCTTCCTTGAGGGTAGGAGTTTCCAAACAT AGGAAGAATTCTCAGTCCAAAGCCTCAACAAGGTCAGGGTACAGAGTCTCCAAACCATTA 6478 6537 TCCTTCTTAAGAGTCAGGTTTCGGAGTTGTTCCAGTCCCATGTCTCAGAGGTTTGGTAAT 6597 6538 CATGCATCATGGTCAGTAAGTTTCAGAAAAAGACATCCACCGAAGACTTAAAGTTAGTGG 6657 6598 GTACGTAGTACCAGTCATTCAAAGTCTTTTTCTGTAGGTGGCTTCTGAATTTCAATCACC

Sspi	
CA CAAAA A AGCAGCA CCAGA GGG CAA CAACAAGG ACGAGCCA A C	6417
AGTAGTTTTATAAATCGTCGTAAGGTCTAACCCAAGTTAGTT	3
ACTTTATTCAAATTGGTATCGCCAAAACCAAGAAGGAACTCCCATCCTCAAAGGTTTGTA	7773
TGAAATAAGTTTAACCATAGCGGTTTTTGGTTCTTCCTTGAGGGTAGGAGTTTCCAAACAT	\ \ \ \
AGGAAGAATTCTCAGTCCAAAGCCTCAACAAGGTCAGGGTACAGAGTCTCCAAACCATTA	7033
TCCTTCTTAAGAGTCAGGTTTCGGAGTTGTTCCAGTCCCATGTCTCAGAGGTTTGGTAAT	/200
GCCAAAAGCTACAGGAGATCAATGAAGAATCTTCAATCAA	6607
CGGTTTTCGATGTCCTCTAGTTACTTCTTAGAAGTTAGTT	600
CATGCATCATGGTCAGTAAGTTTCAGAAAAAGACATCÇACCGAAGACTTAAAGGTTAGTGG	7333
GTACGTAGTACCAGTCATTCAAAGTCTTTTTCTGTAGGTGGCTTCTGAATTTCAATCACC	/000

7173		7777			7690 11	7 10 0	9000 4000
GCATCTTTGAAAGTAATCTTGTCAACATCGAGCAGCTGGCTTGTGGGGACCAGACAAAA	, CGTAGAAACTTTCATTAGAACAGTTGTAGCTCGTCGACCGAACACCCCCTGGTCTGTTTTT	AGGAATGGTGCAGAATTGTTAGGCGCACCTACCAAAAGCATCTTTGCCTTTATTGCAAAG	, TCCTTACCACGTCTTAACAATCCGCGTGGATGGTTTTCGTAGAAACGGAAATAACGTTTTC	ATAAAGCAGATTCCTCTAGTACAAGTGGGGAACAAAATAACGTGGAAAAAGAGCTGTCCTG	3 TGTCGGGTGAGTGATTTACGCATACTGCTTGCGTCACTGCTGGTGTTTTCTTAAGGGAGAT	SS <u>pi</u> TATAAGAAGGCATTCCCATTTGAAGGATCATCAGATACTAACCAATATTTCTC	ATATTCTTCCGTAAGTAAGGGTAAACTTCCTAGTAGTCTATGATTGGTTATAAAGAG
	0000	017	01/0		0000	0009	000

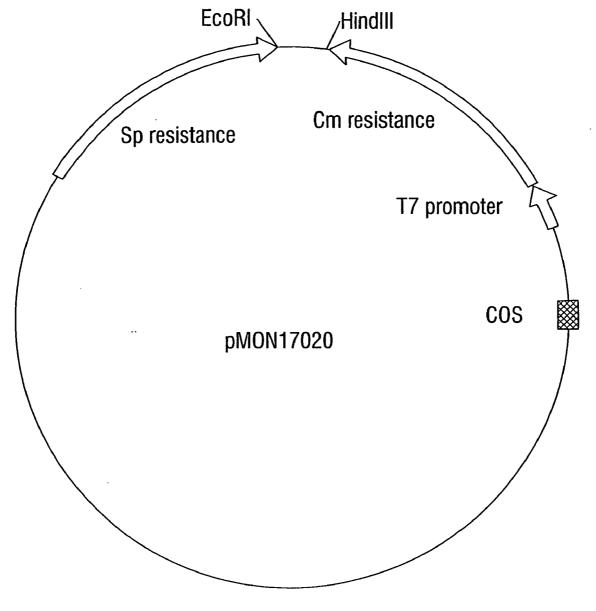


FIG. 2

. 09	106	154	202	250	298	346
AAGCCCGCGT TCTCTCCGGC GCTCCGCCCG GAGAGCCGTG GATAGATTAA GGAAGACGCC	C ATG TCG CAC GGT GCA AGC AGC CGG CCC GCA ACC GCC CGC AAA TCC Met Ser His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser 1	TCT GGC CTT TCC GGA ACC GTC CGC ATT CCC GGC GAC AAG TCG ATC TCC Ser Gly Leu Ser Gly Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser 20 25 30	CAC CGG TCC TTC ATG TTC GGC GGT CTC GCG AGC GGT GAA ACG CGC ATC His Arg Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile 35	ACC GGC CTT CTG GAA GGC GAG GAC GTC ATC AAT ACG GGC AAG GCC ATG Thr Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys Ala Met 50 55	CAG GCC ATG GGC GCC AGG ATC CGT AAG GAA GGC GAC ACC TGG ATC ATC Gln Ala Met Gly Ala Arg Ile Arg Lys Glu Gly Asp Thr Trp Ile Ile 65	GAT GGC GTC GGC AAT GGC GGC CTC CTG GCG CCT GAG GCG CCG CTC GAT Asp Gly Val Gly Asn Gly Gly Leu Leu Ala Pro Glu Ala Pro Leu Asp 80 85 FIG 3A

394	442	490	538	586	634	682	
C GGG 1 Gly 0	A AAG r Lys	G CAG 1 G1n	ig CCG y Pro	A CAG a Gln 175	C ACG e Thr 10	G CTG	
GTC Val	ACA	CTG Val	. GGG 1 G1y	GCA Ala	, ATC 11e 190	ATG Met	
CTC	CTC Leu 125	66C 61y	CGC Arg	TCC	66C 61y	AAG Lys 205	
66C 61y	TCG Ser	ATG Met 140	TTG Leu	GCC Ala	CCC Pro	GAA Glu	
ATG Met	GCC Ala	GAA Glu	ACC Thr 155	ATG Met	ACG Thr	ACG Thr	
ACC Thr	GAC Asp	CGC Arg	GTT Val	CCG Pro 170	AAC Asn	CAT His	
CTG Leu 105	GGC G1y	CTG Leu	CCC Pro	GTG Val	CTC Leu 185	GAT Asp	. 38
CGC Arg	ATC Ile 120	CCG Pro	CTT	CGC Arg	66C 61y	CGC Arg 200	FIG
TGC Cys	TTC Phe	AAC Asn 135	CGT Arg	TAC Tyr	GCC Ala	ACG Thr	
GGC Gly	ACC Thr	TTG Leu	GAC Asp 150	ACC Thr	CTC	ATG Met	
ACG Thr	AGC Ser	GTG Val	GGT Gly	ATC Ile 165	CTG	ATC Ile	
GCC Ala 100	GAC Asp	CGC Arg	GAC Asp	CCG Pro	GTG Val 180	CCG Pro	
GCC Ala	TTC Phe 115	66C 61y	GAA G1u	ACG Thr	GCC Ala	GAG Glu 195	
	GAT Asp	ATG Met 130			TCC Ser	ATC Ile	
	TAC	CCG Pro	AAA Lys 145	ACG Thr		GTC Val	
TTC	GTC Val	CGC Arg	GTG Val	AAG Lys 160	GTG Val	ACG Thr	

730	778	826	874	922	970	1018
GTG Val	ATC Ile	GCC Ala 255	AAC Asn	GAC Asp	GAC Asp	GAC Asp
66C 61y	GTC Val	GCG Ala	ATG Met 270	GCC Ala	GCG Ala	GAA G1u
GAC Asp	CAA Gln	GTT Val	CTG Leu	66C 61y 285	GTG Val	CCG Pro
GCG Ala 220	66C 61y	CTG	GTG Val	ATG Met	GAC Asp 300	GTG Val
GAT Asp	ACC Thr 235	CCG Pro	AAC Asn	GAA G1u	GAA G1u	ACG Thr 315
ACG Thr	CTC	TTC Phe 250	CTC	CAG Gln	GGC Gly	GTC Val
GAG G1u	AAG Lys	GCC Ala	ATC Ile 265	CTG Leu	66C 61y	66C 61y
GTC Val	66C 61y	ACG Thr	ACC Thr	ACG Thr 280	GCC Ala	AAG Lys
ACC Thr 215	CGC Arg	TCG Ser	GTC Val	CTG Leu	CTT Leu 295	CTG Leu
CTT	GGC G1y 230	TCC Ser	GAC Asp	ATC Ile	CGC Arg	ACG Thr 310
AAC Asn	GAA G1u	CCG Pro 245	TCC Ser	CTC Leu	CCG Pro	TCC
GCC Ala	CTG	GAC Asp	66C 61y 260	GGC Gly	AAG Asn	TCC Ser
<u>660</u> 61y	CGC Arg	66C 61y	CCG Pro	ACC Thr 275	ATC Ile	CGC Arg
TTT Phe 210	ATC Ile	CCG Pro	GTT Val	CGC Arg	GTC Val 290	GTT Val
	ACC Thr 225	GTG Val	CTT Leu	ACC Thr	GAA	CGC Arg 350
CAG Gln	CGC Arg	GAC Asp 240	CTG Leu	CCC	ATC Ile	CTG

FIG. 30

1066	1114	1162	1210	1258	1306	1354
GCC Ala 335	CGC Arg	CTC	GGC Gly	GCC Ala	CTC Leu 415	ACG Thr
GCC Ala	CTC Leu 350	AAG Lys	CGC Arg	GTC Val	66C 61y	GCC Ala 430
GTC Val	GAA G1u	CTC Leu 365	GTG Val	GCC Ala	ATG Met	ATC Ile
GCT GTC Ala Val	GAA Glu	GGC Gly	GTC Val 380	GCC Ala	GTC Val	ATG Met
CTC Leu	CTG Leu	AAT Asn	CTC	66C 61y 395	CTC	ACG Thr
ATT 11e 330	GGT Gly	GCC Ala	TCG Ser	TCG Ser	TTC Phe 410	GCC Ala
CCG Pro	AAC Asn 345	GTC Val	ACG Thr	GCC Ala	AGC Ser	GAT Asp 425
TAT Tyr	ATG Met	GCC Ala 360	GAG G1u	AAC Asn	ATG Met	GAC Asp
GAA G1u	GTG /	TCG Ser	GGC G1y 375	66C 61y	GCC Ala	GTG Val
GAC Asp	ACC Thr	CTC	GAG G1u	CTC Leu 390	ATC Ile	ACG Thr
ATC 11e 325	GCG Ala	CGC Arg	GAT Asp	666 61y	CGC Arg 405	GTC Val
ATG Met	666 61y 340	GAC Asp	TGC	AAG Lys	CAC His	CCT Pro 420
TCG Ser	GAA G1u	AGC Ser 355	GAT Asp	66C 61y	GAT Asp	AAC Asn
CCT Pro	GCG Ala	GAA G1u	GTG Val 370	GAC Asp	CTC	GAA G1u
		AAG Lys				TCG Ser
CGC Arg 320	GCC Ala	GTC Val	AAT Asn	CGC Arg	ACC Thr 400	GTG Val

GCCAAAATGT ATACTA TAGCTAGGAA GCCCGCTATC TCTCAATCCC GCGTGATCGC GCCAAAATGT GACTGTGAAA AATCC ATG TCC CAT TCT GCA TCC CCG AAA CCA TC CCC ATG TCC CCG CCA ATG Ser His Ser Ala Ser Pro Lys Pro 10 10 20 20 25 26 GLU Ala Leu Thr Gly Glu Ile Arg Ile Pro 20 25 30 30 35 40 40 40 40 40 40 40 40 40 40 40 40 40
GTAGCCACC ATAATTACTA TAGCTA GCCAAAATGT GACTGTGAAA AATCC GCA ACC GCC CGC CGC TCG GAG Ala Thr Ala Arg Arg Ser Glu 10 10 15 GGC GAC AAG TCC ATC TCG CAT Gly Asp Lys Ser Ile Ser His 30 TCG GGC GAA ACC CGC ATC ACC Ser Gly Glu Thr Arg Ile Thr 45 AAT ACA GGC CGC GCC ATG CAG ASn Thr Gly Arg Ala Met Gln 60 GGC GAT GTC TGG ATC AAC GGC GAT GTC TGG ATC ATC AAC Gly Asp Val Trp Ile Ile Asn 75

400	448	496	544	592	640	688
CTC Leu 105	ggc Gly	TTG	CCG Pro	GTG Val	CTC Leu 185	GAC Asp
CGC Arg	ATC I1e 120	CCG Pro	ATG Met	CGC Arg	GGT Gly	CGC Arg 200
GCG Ala	TTT Phe	AAC Asn 135	CGC Arg	TAT	GCC Ala	ACC Thr
66C 61y	TCC Ser	CTG Leu	GAC Asp 150	ACC Thr	CTC	ATG Met
ACC Thr	ACC Thr	GTG Val	66C 61y	ATC Ile 165	CTG Leu	GTC Val
GGA G1y 100	AAG Lys	CGC Arg	GAT Asp	CCG Pro	GTG Val 180	CCG Pro
GCC Ala	ATG Met 115	960 61y	GCC Ala	AAT Asn	GCC Ala	GAG Glu 195
AAT Asn	GAC Asp	ATG Met 130	GCA Ala	GCC Ala	TCC Ser	ATC Ile
66C 61y	TAT Tyr	CCG Pro	GAA Glu 145	ACG Thr	AAA Lys	GTC Val
TTC Phe	ACC Thr	CGC Arg	GTG Val	AAG Lys 160	GTA Val	ACC Thr
GAT Asp 95	660 61y	AAG Lys	CAG G1n	CCG Pro	CAG Gln 175	ACC Thr
CTC	GTC Val 110	TCG Ser	GTT Val	660 61y	GCG Ala	GTC Val 190
GCG Ala	CTT Leu	CTG Leu 125	66C 61y	ATC Ile	TCC Ser	66C 61y
GCT	66C 61y	TCG	ATG Met 140	CTG Leu	GCC Ala	CCG Pro
GAA G1u		GCC Ala	GAA Glu	ACG Thr 155	ATG Met	ACG Thr
CCC Pro 90	ACC Thr	GAC Asp	CGC Arg	CTG Leu	CCG Pro 170	AAC Asn

736	784	832	880	928	976	1024
GAG G1u	AAG Lys	GCC Ala	ATC Ile	TTG Leu	66C 61y	66C 61y
GTC Val	GGC Gly	ACC Thr	ACC Thr	ACC Thr 280	GCA Ala	AAG Lys
ACG Thr 215	CAG G1n	TCG	GTC Val	CTC	CTT Leu 295	CTC
CTC Leu	66C 61y 230	TCA Ser	GAC Asp	ATC Ile	CGT Arg	AAG Lys 310
GAC Asp	ACC Thr	CCG Pro 245	TCC Ser	CTC	GCC Ala	TCG Ser
GCC Ala	ATC Ile	GAT Asp	GGT G1y 260	660 61y	AAT Asn	GCT Ala
66C 61y	CGC Arg	66C 61y	GAA G1u	ACC Thr 275	CTC	AGG Arg
TTT Phe 210	ATC Ile	CCG Pro	GTG Val	CGT Arg	GTG Va1 290	GTC Val
66C 61y	CAT His 225	GTG Val	CTG Leu	ACC Thr	GAA G1u	CGC Arg 305
CAG G1n	CGC Arg	GAC Asp 240	CTT Leu	CCG Pro	ATC Ile	CTG Leu
CTG Leu	GTG Val	ATC Ile	GCC Ala 225	AAC Asn	GAT Asp	GAT Asp
ATG Met	66C 61y	ACC Thr	GCC Ala	ATG Met 270	GCC Ala	GCC Ala
AAG Lys 205	GAT Asp	CAG G1n	GTT	CTG Leu	66C 61y 285	GTC Val
GAA G1u	AAG Lys 220	GGC G1y	CTC	GTG Val	ATG Met	GAC Asp 300
ACC Thr	GAC Asp	GTC Val 235	CCG Pro	AAC Asn	GAA G1u	GAA G1u
CAC His	ACC Thr	CTT	TTC Phe 250	CGC Arg	CAG G1n	GGC Gly

1072	1120	1168	1216	1264	1312	1360
CCG Pro	GAC Asp 345	GTC	ATG Met	GGC Gly	GTG Val	ATG Met 425
TAT Tyr	ATG Met	GCG A1a 360	GAG G1u	660 61y	CTC	AAC Asn
GAA Glu	GTG Val	GCA Ala	GGC G1y 375	GGC Gly	TTC	AGT Ser
GAC Asp	ACC Thr	CTG Leu	GAA G1u	CTG Leu 390	AGC Ser	GAC Asp
ATC 11e 325	GAA G1u	CGT Arg	ACC Thr	GGA Gly	ATG Met 405	GAC Asp
ATG Met	GGC G1y 340	GAT Asp	TGC Cys	AAG Lys	GCG Ala	GTT Val 420
TCG Ser	GAA Glu	TCG Ser 355	GAT Asp	66C 61y	ATC Ile	ACG Thr
CCG Pro	GCG Ala	GAA G1u	GTC Val 370	GAC Asp	CGT Arg	GTG Val
GCG Ala	TTC Phe	AAG Lys	66C 61y	CCC Pro 385	CAT His	CCG Pro
CGT Arg 320	TCC	GTC Val	AAC Asn	CGC Arg	GAT Asp 400	AAG Lys
GAA G1u	GCC Ala 335	CGC Arg	GCC Ala	66C 61y	CTC	GAA Glu 415
CCG Pro	ATT GCC Ile Ala	CTG Leu 350	GAA G1u	CGC Arg	CAT His	GCG Ala
CCG Pro	ATT Ile	GAA G1u	CTT Leu 365	GTT Val	ACC Thr	GCG Ala
GTT Val	GCG Ala	GAC Asp	66C 61y	ACG Thr 380	GCA Ala	CTT
GTC Val 315	CTG	CTC	CGC Arg	CTG Leu	GTT Val 395	66C 61y
GTC Val	GTC Val 330	666 61y	GCA Ala	TCG Ser	ACG Thr	ATG Met 410

	Sep.	18.	2008	Sheet 13	of 70
--	------	-----	------	----------	-------

US 2008/0227966 A1

1408	1462	1522	1582	1642	1673
ATC GCC ACG TCC TTC CCC GAA TTC ATG GAC ATG ATG CCG GGA TTG GGC Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly Leu Gly 435	GCA AAG ATC GAG TTG AGC ATA CTC TAGTCACTCG ACAGCGAAAA TATTATTTGC Ala Lys Ile Glu Leu Ser Ile Leu 445	GAGATTGGGC ATTATTACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT CTTCCATACG	TAACAGCATC AGGAAATATC AAAAAAGCTT TAGAAGGAAT TGCTAGAGCA GCGACGCCGC	CTAAGCTTTC TCAAGACTTC GTTAAAACTG TACTGAAATC CCGGGGGGTC CGGGGATCAA	ATGACTICAT TICTGAGAAA TTGGCCTCGC A

FIG. 4E

54	102	150	198	246	294	342	
GTGATCGCGC CAAAATGTGA CTGTGAAAAA TCC ATG TCC CAT TCT GCA TCC CCG	AAA CCA GCA ACC GCC CGC CGC TCG GAG GCA CTC ACG GGC GAA ATC CGC	ATT CCG GGC GAC AAG TCC ATC TCG CAT CGC TCC TTC ATG TTT GGC GGT	CTC GCA TCG GGC GAA ACC CGC ATC ACC GGC CTT CTG GAA GGC GAG GAC	GTC ATC AAT ACA GGC CGC GCC ATG CAG GCC ATG GGC GCG AAA ATC CGT	AAA GAG GGC GAT GTC TGG ATC ATC AAC GGC GTC GGC AAT GGC TGC CTG	TTG CAG CCC GAA GCT GCG CTC GAT TTC GGC AAT GCC GGA ACC GGC GCG	FIG. 5A
Met Ser His Ser Ala Ser Pro	Lys Pro Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg	Ile Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly	Leu Ala Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp	Val Ile Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg	Lys Glu Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu	Leu Gln Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala	
1	10	25	40 55	60 70	80	90	

390	438	486	534	585	630	678
TTT	AAC Asn 135	CGC Arg	TAT Tyr	GCC Ala	ACC Thr	ACG Thr 215
TCC Ser	CTG Leu	GAC Asp 150	ACC	CTC	ATG Met	CTC Leu
ACC	GTG Val	66C 61y	ATC Ile 165	CTG Leu	GTC Val	GAC Asp
AAG Lys	CGC Arg	GAT Asp	CCG Pro	GTG Val 180	CCG Pro	GCC Ala
ATG Met 115	66C 61y	GCC Ala	AAT Asn	GCC Ala	GAG Glu 195	66C 61y
GAC Asp	ATG Met 130	GCA Ala	GCC Ala	TCC Ser	ATC Ile	TTT Phe 210
TAT Tyr	CCG Pro	GAA Glu 145	ACG Thr	AAA Lys	GTC Val	66C 61y
ACC Thr	CGC Arg	GTG Val	AAG Lys 160	GTA Val	ACC Thr	CAG Gln
66C 61y	AAG Lys	CAG G1n	CCG Pro	CAG G1n 175	ACC Thr	CTG Leu
GTC Val 110	TCG Ser	GTT Val	66C 61y	GCG Ala	GTC Val 190	ATG Met
CTT Leu	CTG Leu 125	66C 61y	ATC Ile	TCC Ser	66C 61y	AAG Lys 205
66C 61y	TCG Ser	ATG Met 140	CTG Leu	GCC Ala	CCG Pro	GAA Glu
ATG Met	GCC Ala	GAA G1u	ACG Thr 155	ATG Met	ACG Thr	ACC Thr
ACC Thr	GAC Asp	CGC Arg	CTG Leu	CCG Pro 170	AAC Asn	CAC His
CTC Leu 105	66C 61y	TTG Leu	CCG Pro	GTG Val	CTC Leu 185	GAC Asp
CGC Arg	ATC Ile 120	CCG Pro	ATG Met	CGC Arg	GGT Gly	CGC Arg 200

Patent	App.	lication	Publica	ation

	G TCA TCG 774 o Ser Ser 5	C GAC GTC 822 r Asp Val	C ATC CTC 870 u Ile Leu	C CGT CTT 918 a Arg Leu 295	G AAG CTC 966 r Lys Leu 310	C GAC GAA 1014 e Asp Glu 5	
<u>ש</u> ש	GAT CCG Asp Pro 245	GGT TCC Gly Ser 260	GGC CTC Gly Leu	AAT GCC Asn Ala	GCT TCG Ala Ser	ATG ATC Met Ile 325	
Arg I	66C 6	GAA Galu	ACC (Thr (275)	CTC / Leu /	AGG (Arg A	TCG / Ser N	
<u> </u>	CCG Pro	GTG Val	CGT Arg	GTG Val 290	GTC Val	CCG Pro	
His 225	GTG Val	CTG Leu	ACC Thr	GAA G1u	CGC Arg 305	GCG Ala	בוכ צע
Arg	GAC Asp 240	CTT	CCG Pro	ATC Ile	CTG Leu	CGT Arg 320	
Va]	ATC Ile	GCC Ala 255	AAC Asn	GAT Asp	GAT Asp	GAA Glu	
G13	ACC Thr	GCC Ala	ATG Met 270	GCC Ala	GCC Ala	CCG Pro	
Asp	CAG G1n	GTT Val	CTG Leu	66C 61y 285	GTC Val	CCG Pro	
Lys 220	66C 61y	CTC	GTG Val	ATG Met	GAC Asp 300	GTT Val	
Asp	GTC Val 235	CCG Pro	AAC Asn	GAA G1u	GAA G1u	GTC Val 315	
Thr	CTT	TTC Phe 250	CGC Arg	CAG G1n	66C 61y	GTC Val	
0 1 1	AAG Lys	GCC Ala	ATC Ile 265	TTG Leu	66C 61y	66C 61y	
Val	GGC G1y	ACC Thr	ACC	ACC Thr 280	GCA Ala	AAG Lys	

1062	1110	1158	1206	1254	1302	1350
cce grc crc gcg Att gcc gcc rcc trc gcg gAA ggc gAA Acc GTG Pro Val Leu Ala Ile Ala Ala Ser Phe Ala Glu Gly Glu Thr Val 330	GAC GGG CTC GAC GAA CTG CGC GTC AAG GAA TCG GAT CGT CTG GCA 11 Asp Gly Leu Asp Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala 345	GTC GCA CGC GGC CTT GAA GCC AAC GGC GTC GAT TGC ACC GAA GGC 13 Val Ala Arg Gly Leu Glu Ala Asn Gly Val Asp Cys Thr Glu Gly 375	ATG TCG CTG ACG GTT CGC GGC CGC CCC GAC GGC AAG GGA CTG GGC 12 Met Ser Leu Thr Val Arg Gly Arg Pro Asp Gly Lys Gly Leu Gly 380	GGC ACG GTT GCA ACC CAT CTC GAT CAT CGT ATC GCG ATG AGC TTC 12 Gly Thr Val Ala Thr His Leu Asp His Arg Ile Ala Met Ser Phe 395	GTG ATG GGC CTT GCG GCG GAA AAG CCG GTG ACG GTT GAC GAC AGT 13 Val Met Gly Leu Ala Ala Glu Lys Pro Val Thr Val Asp Asp Ser 410	ATG ATC GCC ACG TCC TTC CCC GAA TTC ATG GAC ATG ATG CCG GGA 13 Met Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly 425
TAT Tyr	ATG Met	GCG A1a 360	GAG G1u	GGC Gly	CTC Leu	AAC Asn

Patent	App]	lication	Publi	cation

San	12	2008	Sheet 18 of 70	
Sep.	10,	4 000	Sheet to of /o	

US 2008/0227966 A1

1400	1460	1500	
lle Gec GCA AAG AIC GAG IIG AGC AIA CIC IAGICACICG ACAGCGAAAA Leu Gly Ala Lys Ile Glu Leu Ser Ile Leu 440	TATTATTIGC GAGATTGGGC ATTATTACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT 1460	CTTCCATACG TAACAGCATC AGGAAATATC AAAAAAGCTT	

20	44	98	94	147	144	197	194	247	244
	1MESL†LQPIARVDG†INLÞGSKTVSNRÁLLLAALAHGK†VL†NL		5 LDSDDVRHMLNALTALGVSYTLSADRTRCEIIGNGGPLHAEGALELFLGN		5 AGTAMAPLAAALCLGSNDIVLTGEPRMKERPIGHLVDALALGGAKITYLE 144	DGDR	5 GENYPPLRLGGGFTGGNVDVDGSVSSGFLTALLMTAPLAPEDTVIRIKGD 194	3 MTRDHTEKMLQGFGANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPS\$ 247	5 LVSKPYIDITLNLMKTFGVEIENQHYQQFVVKGGQSYQSPGTYLVEGDAS 244
 1	, ,	51	45	66	95	148	145	198	195

248 TAFPLVAALLVPGSDVTILNVLMNPTRTGLILTLQEMGADIEVINPRL 295
245 SASYFLAAAIKGGTVKVTGIGRNSMQGDIRFADVLEKMGATI 287
296 AGGEDVADLRVRSSTLKGVTVPEDRAPSMIDEYPILAVAAAFAEGATVMN 345
288 CWGDDYISCTRGELNAIDMDMNHIPDAAMTIATAALFAKGTTRLR 332
346 GLEELRVKESDRLSAVANGLKINGVDCDEGETSLVVRGRPDGKGLGNASG 395
333" NIYNWRVKETDRLFAMATELRKVGAEVEEGHDYIRI.TPPEKLNF 376
396 AAVATHLDHRIAMSFLVMGLVSENPVTVDDATMIATSFPEFMDLMAGLGA 445
377 AEIATYNDHRMAMCFSLVAL.SDTPVTILDPKCTAKTFPDYFEQLARISQ 425
446 KIELSDTKAA* 456

FIG. 6B

T M	MSHGASSRPATARKSSGLSGTVRIPGDKSISHRSFMFGGLASGETRITGL 5	00
\leftarrow	MSHSASPKPATARRSEALTGEIRIPGDKSISHRSFMFGGLASGETRITGL	2(
51	LEGEDVINTGKAMQAMGARİRKEGDTWIIDGVGNGGLLAPEAPLDFGNAA	10(
51	LEGEDVINTGRAMQAMGAKIRKEGDVWIINGVGNGCLLOPEAALDFGNAG	10(
101	TGCRLTMGLVGVYDFDSTFIGDASLTKRPMGRVLNPLREMGVQVKSEDGD	15(
101	TGARLTMGLVGTYDMKTSFIGDASLSKRPMGRVLNPLREMGVQVEAADGD	15(
151	RLPVTLRGPKTPTPITYRVPMASAQVKSAVLLAGLNTPGITTVIEPIMTR	20(
151	KMPLTLIGPKTANPITYRVPMASAQVKSAVLLAGLNTPGVTTVIEPVMTR	20(
201	DHTEKMLQGFGANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPSSTAF	25(
201	DHTEKMLQGFGADLTVETDKDGVRHIRİTGQGKLVGQTIDVPGDPSSTAF	25(
251	PLVAALLVPGSDVTILNVLMNPTRTGLILTLQEMGADIEVINPRLAGGED 300	30(
251	PLVAALLVEGSBVTIRNVLMNPTRTGLILTLQEMGABIEVLNARLAGGEB	30(

		0 7 7
	DTKAA* 456	451
44	HLDHRIAMSFLVMGLAAEKPVTVDDSNMIATSFPEFMDMMPGLGAKIELS	398
45(HLDHRIAMSFLVMGLVSENPVTVDDATMIÄTSFPEFMDLÄAGLGAKIELS 450	401
397	RVKESDRLAAVARGLEANGVDCTEGEMSLTVRGRPDGKGLGGGTVAT 397	351
40(RVKESDRLSÁVANGLKLNGVDCDEGETSLVVRGRPDGKGLGNASGAAVAŤ	351
35(VADLRVRASKLKGVVVPPERAPSMIDEYPVLAIAASFAEGETVMDGLDEL	301
32(VADLRVRSSTLKGVTVPEDRAPSMIDEYPILAVAAAFAEGATVMNGLEEL	301

AGGT GACAAGTCTA TCTCCCACAG TCGT ATCACCGGTC TTTTGGAAGG TATG GGTGCCAGAA TCCGTAAGGA TGGA CTCCTTGCTC CTGAGGCTCC GACT ATGGGTCTTG TTGGTGTTTA CACT AAGCGTCCAA TGGGTCGTGT CACC TACAGGGTAC CTATGGCTTC CACC TACAGGGTAC CTATGGCTTC CAAC ACCCCAGGTA TCACCCACTGT GATG CTTCAAGGTT TTGGTGCTAA CATC CGTCTTGAAG GTCCATTGGT CTCC TCTACTGCTT TCCCATTGGT CTCC TCTACTGCTT TCCCATTGGT		STCCTTCATG TTTGGAGGTC 120	IGAAGATGTT ATCAACACTG 180	AGGTGATACT TGGATCATTG 240	ICTCGATTTC GGTAACGCTG 300	SGATTTCGAT AGCACTTTCA 360	STTGAACCCA CTTCGCGAAA 420	AGTTACCTTG CGTGGACCAA 480	SECTCAAGTG AAGTCCGCTG 540	TATCGAGCCA ATCATGACTC 600	SCTTACCETT GAGACTGATG 660	SCTCACCGGT CAAGTGATTG 720	TGCTGCCTTG CTTGTTCCAG 780	SCGTACTGGT CTCATCTTGA 840
GECTICA CGGTGCAAGC ACGETCCG TATTCCAGGT GAACTCGT ATGCTAT GCAAGCTATG GCTTGG TAACGGTGGA CTGACGC TTCTCTCACT AACGGTGCA CCAACG GCCAATCACC TAACGGTGC CCAAC GCCAATCCAAC ACGTGC TGAAAAGATG CTGCAGG TGATCCTT AACGGTGCT CACCAGG TGATCCTT AACGATCCTT AACGATCCTT AACGATCCTT AACGATCCTT AACGATCCTT AACCATCCTT	AAGC AGCCGICCAG CAACIGCICG IAAGICCICI GGICIIICIG	ACAAGTCTA TCTCCCACAG G	TCACCGGTC TTTTGGAAGG TGAAGATGTT	STGCCAGAA TCCGTAAGGA A	TCCTTGCTC CTGAGGCTCC T	TGGGTCTTG TTGGTGTTTA C	AGCGTCCAA TGGGTCGTGT G	AGACGGTG ATCGTCTTCC A	ACAGGGTAC CTATGGCTTC C		TTCAAGGTT TTGGTGCTAA CCTTACCGTT	STCTTGAAG GTCGTGGTAA 6	TCCCATTGGT	ACGTTTTGA TGAACCCAAC C
5	CCATGGCTCA CGGTGCAAGC AG	GAACCGTCCG TATTCCAGGT GA		GGCTAT GCAAGCTATG GE	TGTTGG TAACGGTGGA CT	CAACTGGTTG CCGTTTGACT AT	TTGGTGACGC TTCTCTCACT AA	TGGGTGTGCA GGTGAAGTCT GA	AGACTCCAAC GCCAATCACC TA	TTCTGCTTGC TGGTCTCAAC AC	GTGACCACAC TGAAAAGATG CT	CGGTGT GCGTACCATC CE	TCCAGG TGATCCCTCC TC	CGACGT CACCATCCTT AA

1377	TGAGCTC	ATCGAACTCT CCGACACTAA GGCTGCTTGA TGAGCTC	CCGACACTAA		TGGCTGGTCT TGGAGCTAAG	TGGCTGGTCT
1320	ATGGATTTGA	CCCAGAGTTC ATGGATTTGA	CTACTAGCTT	ACTATGATCG	CTGTTACTGT TGATGATGCT	CTGTTACTGT
1260	TCTGAAAACC	GGGTCTCGTT	TCCTCGTTAT	GCTATGAGCT	CCCACCTCGA TCACCGTATC	CCCACCTCGA
1200	GCTGTCGCTA	TTCTGGAGCA	TCGGTAACGC	GGTAAGGGTC	TCGTGCGTGG TCGTCCTGAC	TCGTGCGTGG
1140	ACTTCTCG	TGAAGGTGAG	TTGATTGCGA	CTCAACGGTG	CTGTCGCAAA CGGTCTCAAG	CTGTCGCAAA
1080	CGTCTTTCTG	GGAAAGCGAC	TCCGTGTTAA	TTGGAAGAAC	GTGCTACCGT TATGAACGGT	GTGCTACCGT
1020	TTCGCTGAAG	TGCAGCTGCA	TTCTCGCTGT	GAGTATCCAA	GTGCTCCTTC TATGATCGAC	GTGCTCCTTC
096	CCAGAAGACC	TGTTACTGTT	CTTTGAAGGG	CGTTCTTCTA	ACGTGGCTGA CTTGCGTGTT	ACGTGGCTGA
900	GGTGGAGAAG	ACGTCTTGCT		GACATCGAAG TGATCAACCC	CTCTGCAGGA AATGGGTGCC	CTCTGCAGGA

FIG. 8B

006	096	.020	080	.140	.200	.260	1320	1377
GGTGGAGAAG	CCAGAAGACC	GAGTATCCAA TTCTCGCTGT TGCAGCTGCA TTCGCTGAAG 1020	TTGGAAGAAC TCCGTGTTAA GGAAAGCGAC CGTCTTTCTG 1080	CTCAACGGTG TTGATTGCGA TGAAGGTGAG ACTTCTCTCG 1140	GGTAAGGGTC TCGGTAACGC TTCTGGAGCA GCTGTCGCTA 1200	GCTATGAGCT TCCTCGTTAT GGGTCTCGTT TCTGAAAACC 1260	ACTATGATCG CTACTAGCTT CCCAGAGTTC ATGGATTTGA 1320	
ACGTCTTGCT	TGTTACTGTT	TGCAGCTGCA	GGAAAGCGAC	TGAAGGTGAG	TTCTGGAGCA	GGGTCTCGTT	CCCAGAGTTC	GGCTGCTTGA
GACATCGAAG TGATCAACCC ACGTCTTGCT GGTGGAGAAG	CGTTCTTCTA CTTTGAAGGG TGTTACTGTT	TTCTCGCTGT	TCCGTGTTAA	TTGATTGCGA	TCGGTAACGC	TCCTCGTTAT	CTACTAGCTT	ATCGAACTCT CCGACACTAA GGCTGCTTGA TGAGCTC
GACATCGAAG	CGTTCTTCTA	GAGTATCCAA	TTGGAAGAAC	CTCAACGGTG	GGTAAGGGTC	GCTATGAGCT	ACTATGATCG	ATCGAACTCT
CTCTGCAGGA AATGGGTGCC	ACGTGGCTGA CTTGCGTGTT	GTGCTCCTTC TATGATCGAC	GTGCTACCGT TATGAACGGT	CTGTCGCAAA CGGTCTCAAG	TCGTGCGTGG TCGTCCTGAC	CCCACCTCGA TCACCGTATC	CTGTTACTGT TGATGATGCT	TGGCTGGTCT TGGAGCTAAG

09	113	161	209	257
AGATCTATCG ATAAGCTTGA TGTAATTGGA GGAAGATCCA AATTTTCAAT CCCCATTCTT	CGATTGCTTC AATTGAAGTT TCTCCG ATG GCG CAA GTT AGC AGA ATC TGC AAT	GGT GTG CAG AAC CCA TCT CTT ATC TCC AAT CTC TCG AAA TCC AGT CAA	CGC AAA TCT CCC TTA TCG GTT TCT CTG AAG ACG CAG CAG CAT CCA CGA	GCT TAT CCG ATT TCG TCG TCG TGG GGA TTG AAG AAG AGT GGG ATG ACG
	Met Ala Gln Val Ser Arg Ile Cys Asn	Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln	Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg	Ala Tyr Pro Ile Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr
	1	10	30	50

402	· · ·
401	TCC GGT CTT ATT AAG TTG CCT GGC TCC AAG TCT CTA TCA AAT AGA ATT Ser Gly Leu Ile Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile 90
353	ACG GCG GAG AAA GCG TCG GAG ATT GTA CTT CAA CCC ATT AGA GAA ATC Thr Ala Glu Lys Ala Ser Glu Ile Val Leu Gln Pro Ile Arg Glu Ile 80
305	TTA ATT GGC TCT GAG CTT CGT CCT CTT AAG GTC ATG TCT TCT GTT TCC Leu Ile Gly Ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser 65

Patent	Anı	plication	ո P ուհ	dication
1 attilit	$\Delta \mathbf{p}$	piicativi	ııuı	meanon

Sen	18	2008	Sheet 28	of 70
թեր.	10,	∠ 000	SHEEL 20	UI /U

US 2008/0227966 A1

49	97	145	193	233
AGATCTTTCA AGA ATG GCA CAA ATT AAC AAC ATG GCT CAA GGG ATA CAA Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln 1	ACC CTT AAT CCC AAT TCC CAT AAA CCC CAA GTT CCT AAA TCT Thr Leu Asn Pro Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser 25	TCA AGT TTT CTT GTT TTT GGA TCT AAA AAA CTG AAA AAT TCA GCA AAT Ser Ser Phe Leu Val Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn 30	TCT ATG TTG GTT TTG AAA AAA GAT TCA ATT TTT ATG CAA AAG TTT TGT Ser Met Leu Val Leu Lys Lys Asp Ser Ile Phe Met Gln Lys Phe Cys 50 55	TCC TTT AGG ATT TCA GCA TCA GTG GCT ACA GCC TGC ATG C Ser Phe Arg Ile Ser Ala Ser Val Ala Thr Ala Cys Met 65

FIG. 11

57	105	153	201
AGATCTGCTA GAAATAATTT TGTTTAACTT TAAGAAGGAG ATATATCC ATG GCA CAA Met Ala Gln 1	CAA GGG ATA CAA ACC CTT AAT CCC AAT TCC AAT Gln Gly Ile Gln Thr Leu Asn Pro Asn Ser Asn 10	CCT AAA TCT TCA AGT TTT CTT GTT TTT GGA Pro Lys Ser Ser Phe Leu Val Phe Gly 30	AAA AAA Lys Lys 50
T TGTTTAACTT TAAGAA	CAA GGG ATA CAA ACO Gln Gly Ile Gln Tho 10	GTT Val 25	AAT TCA GCA AAT TCT ATG TTG GTT TTG Asn Ser Ala Asn Ser Met Leu Val Leu 45
AGATCTGCTA GAAATAAT	ATT AAC AAC ATG GCT Ile Asn Asn Met Ala 5	TTC CAT AAA CCC CAA Phe His Lys Pro Gln 20	TCT AAA AAA CTG AAA A Ser Lys Lys Leu Lys A

Patent.	Applie:	ation I	Publica	tion
I acciic.	ZPDDIIC	utivii i	uvnca	

249	297	345	352
TCA GCA TCA Ser Ala Ser 65	CCC ATT AAA Pro Ile Lys	TTA TCT AAT Leu Ser Asn	·
AGG ATT TO Arg Ile So	TTG CAA CO Leu G1n Pi 80	AAA TCA T Lys Ser Le 95	•
TCC TTT A	a ATA GTG T i Ile Val L	GGC TCT A Gly Ser L	
TTT TGT To Phe Cys So 60	TCT GAG A'Ser Glu I	TTG CCT G Leu Pro G	
CAA AAG T G1n Lys Pl	AAG CCT TI Lys Pro Si	GTT AAA T Val Lys Lu 90	
T ATG C/ ie Met G 55	GCA CAG A Ala Gln Ly	ACT Thr	
ATT Ile	ACA Thr 70	T TCA GGC e Ser Gly 5	∪ ⊢ ⊕
GAT TCA Asp Ser	GTG GCT Val Ala	GAG ATT Glu Ile 85	AGA AT Arg Ile

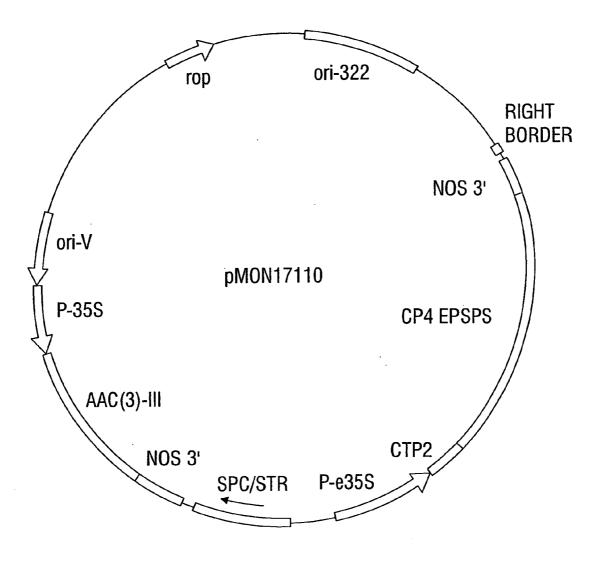


FIG. 13

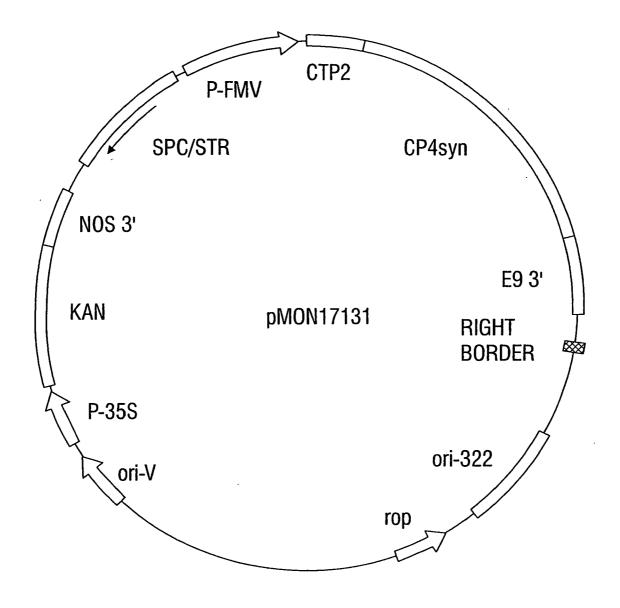


FIG. 14

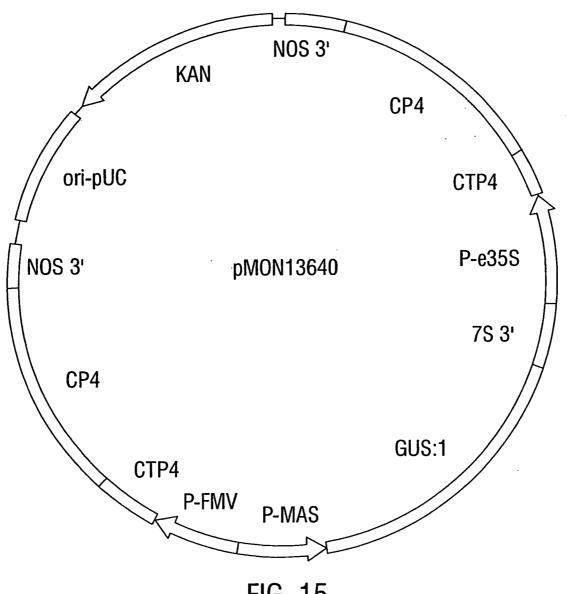


FIG. 15

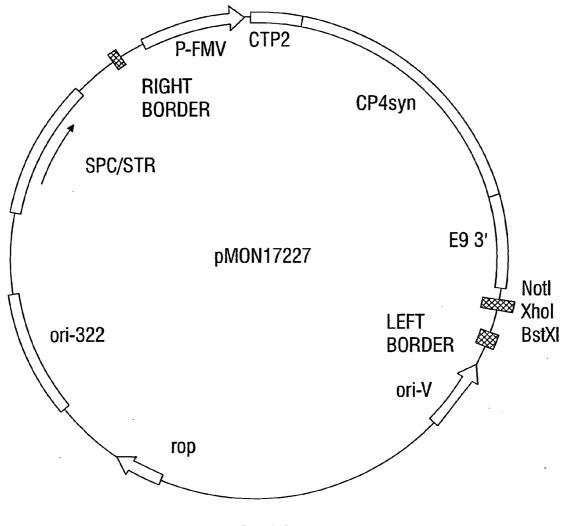


FIG. 16

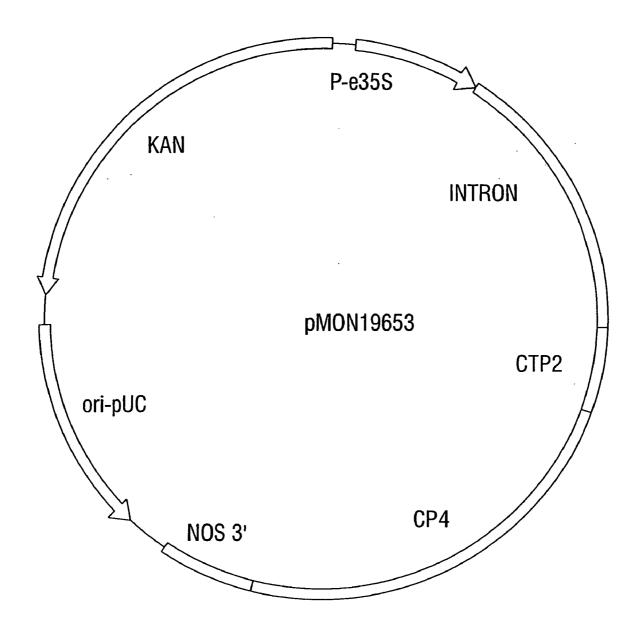


FIG. 17

48	96	144	192	240	288	336
CAT GGA GAA ATA CAT ATT CCC	GTT ATG TTT GGC GCG CTA GCG	CTG CCG GGA GCA GAT TGT CTG	GGT GTT CAC ATT GAG CAA AGC	GGA ATC GAT GCC CTG AAA GAG	TCA GGT ACA ACG ATT CGC CTG	TTT TAC AGC GCG GTA GCC GGA
His Gly Glu Ile His Ile Pro	Val Met Phe Gly Ala Leu Ala	Leu Pro Gly Ala Asp Cys Leu	Gly Val His Ile Glu Gln Ser	Gly Ile Asp Ala Leu Lys Glu	Ser Gly Thr Thr Ile Arg Leu	Phe Tyr Ser Ala Val Ala Gly
10	30	45	60	75	90	110
CGA GAT AAG GTG CAG ACC TTA	AAA TCC ATT TCT CAC CGC TCT	ACA ACA GTT AAA AAC TTT	ATC GAT TGC TTT AGA AAA ATG	GAT GTC GTG ATT CAC GGA AAA	AGC CTT TTA GAT GTC GGA AAT	GGA ATA TTG GCG GGC CGT CCT
Arg Asp Lys Val Gln Thr Leu	Lys Ser Ile Ser His Ang Ser	Thr Thr Val Lys Asn Phe	Ile Asp Cys Phe Arg Lys Met	Asp Val Val Ile his Gly Lys	Ser Leu Leu Asp Val Gly Asn	Gly lle Leu Ala Gly Arg Pro
5	20	35	55	70	85	100
ATG AAA Met Lys	GGT GAT Gly Asp	GCA GGC Ala Gly	AGC ACG Ser Thr 50	AGC AGC Ser Ser 65	CCA GAA Pro Glu	ATG CTC (Met Leu (

384	432	480	528	576	624	672
GAG CCT TTG Glu Pro Leu	GAG TTT ACA Glu Phe Thr	TAT GTA TCA Tyr Val Ser 160	GCC GGA TTA Ala Gly Leu 175	TCT CGG GAC Ser Arg Asp 190	TCT GAA GAT Ser Glu Asp	GCT GCT GAT Ala Ala Asp
GTG ACT G Val Thr G 125	GGC GGA G Gly Gly G 140	ATT GAT T Ile Asp T	TTG CTG G Leu Leu A	CAT AAA T His Lys S		CTG ACA G Leu Thr A 220
AAG CGT Lys Arg	AGA GCC Arg Ala	AAA GGA Lys Gly 155	GCT GTT Ala Val 170	GAG CCC Glu Pro	GGC GTT Gly Val	CAG AAA Gln Lys
ATG Met	66C 61y	TTA	TCT Ser	ACA Thr 185	Phe	66C 61y
CGC CCA Arg Pro 120	ATC GAC Ile Asp 135	GCT TCA Ala Ser	ATT AAA Ile Lys	ACT GTA Thr Val	TCT GCT Ser Ala 200	GCT GGT Ala Gly 215
GCG AAA Ala Lys	GCT AAA Ala Lys	3C GGC 2r GJy 150	GCG CAA Ala Gln 165	ACA ACA Thr Thr	ATG CTT Met Leu	C ATT
ATT GO Ile Al	666 60 61y A1	GTG AGC Val Ser	AGC GC Ser Al	GGC AC Gly Th 180	CGG AT Arg Me	GTT TCC Val Ser
G AGC u Ser 115	A ATG s Met 0	G TCA u Ser	T GCA 1 Ala	T GAG a Glu	r GAG r Glu 195	a AGT r Ser o
GAT GAG Asp Glu	AAA AAA Lys Lys 130	CCG CTG Pro Leu 145	CCT GTT Pro Val	CAG GCT Glm Ala	CAC ACT His Thr	CAA ACG Gln Thr 210

720	768	816	864	912	096	1008
TTT TTC CTT GCT GCT Phe Phe Leu Ala Ala 240	AAA AAC GTA GGT TTA Lys Asn Val Gly Leu 255	CAA AAC ATG GGG GCA Gln Asn Met Gly Ala 270	GCA GAG CCT TAT GGA Ala Glu Pro Tyr Gly 285	GTT GAA ATC GGA GGA Val Glu Ile Gly Gly 300	ATC ATC GCG CTT CTT Ile Ile Ala Leu Leu 320	GAC GCG GCA GAG CTA Asp Ala Ala Glu Leu 335
TCA GCC GCG Ser Ala Ala 235	ATT GTA TTG Ile Val Leu 250	GAT GTC CTT Asp Val Leu 265	GAT AGC GGT Asp Ser Gly	CTA AAG GCA Leu Lys Ala	GAG ATC CCT Glu Ile Pro 315	GTT ATT AAG Val Ile Lys 330
A GAC ATT TCT y Asp Ile Ser 230	'A AAC AGC AGA 'o Asn Ser Arg t5	A GGT ATT ATT Ir Gly Ile Ile	W CCA TCT GCT 's Pro Ser Ala 280	A ACG TCA TCT u Thr Ser Ser 295	it TTA ATT GAT og Leu Ile Asp 310	GAA GGA ACC ACC Glu Gly Thr Thr 325
ATT TTT GTT CCT GGA Ile Phe Val Pro Gly 225	GGC GCG ATG GTT CCA Gly Ala Met Val Pro 245	AAT CCG ACT CGG ACA Asn Pro Thr Arg Thr 260	AAA CTT GAA ATC AAA Lys Leu Glu Ile Lys 275	GAT TTG ATT ATA GAA Asp Leu Ile Ile Glu 290	GAT ATC ATT CCG CGT ASP Ile Ile Pro Arg 305	GCG ACT CAG GCG GA Ala Thr Gln Ala G1 32

1056	1104	1152	1200	1248	1287
CGC Arg	TAT Tyr	GAT Asp	GAG G1u 400	ACC Thr	
CTT Leu	GTT Val	GGA G1y	TGT ATA ACG GAG G Cys Ile Thr Glu G	CCA Pro 415	
GAG G1u 350	AAG (Lys	CAC GGA His Gly	ACG Thr	TAT Tyr	
TCT Ser	ATG Met 365	AGC Ser	ATA Ile	TCT Ser	TGA
GTT GTT Val Val	GCA GAT GGA Ala Asp Gly	TCC Ser 380	TGT Cys	CAC GTT His Val	TCC Ser
GTT Val	GAT Asp	GTG Val	TCC Ser 395	CAC His	AAA Lys
ACT Thr	GCA Ala	GCA (Ala	CTT GGT ATT GCT Leu Gly Ile Ala	ACG GAT GCC ATT Thr Asp Ala Ile 410	AAA Lys
GAT Asp 345	ACA Thr	GCT Ala	ATT Ile	GCC Ala	TCG Ser 425
CGT ATT Arg Ile	CCG Pro 360	66C 61y	GGT Gly	GAT Asp	CTT
CGT Arg	ATT GAA (Ile Glu	GGC G1y 375	CTT Leu	ACG Thr	AAG (Lys)
ACA AAC Thr Asn	ATT Ile	AAA Lys	ATG Met 390	CAC His	TTA AAT Leu Asn
ACA Thr	GAA , Glu	TTG Leu	ATG Met	GAG G1u 405	TTA Leu
GAA G1u 340	GCT Ala	ACG Thr	GGA Gly	ATC Ile	CAT His 420
AAA	GGT G1y 355	CAA G1n	ATC I le	GAA G1u	GAG Glu
AAA GTG Lys Val	CTG Leu	GGC AAA Gly Lys 370	CGA Arg	ATT GAA ATC Ile Glu Ile	TTC Phe
AAA Lys	AAG Lys	66C 61y	CAT His 385	CCG Pro	TTC

425 FIG. 18D

48	96	144	192	240	288	336	
ATG GTA AAT GAA CAA ATC ATT GAT ATT TCA GGT CCG TTA AAG GGC GAA Met Val Asn Glu Gln Ile Ile Asp Ile Ser Gly Pro Leu Lys Gly Glu 10	ATA GAA GTG CCG GGC GAT AAG TCA ATG ACA CAC CGT GCA ATC ATG TTG Ile Glu Val Pro Gly Asp Lys Ser Met Thr His Arg Ala Ile Met Leu 20	GCG TCG CTA GCT GAA GGT GTA TCT ACT ATA TAT AAG CCA CTA CTT GGC Ala Ser Leu Ala Glu Gly Val Ser Thr Ile Tyr Lys Pro Leu Leu Gly 35	GAA GAT TGT CGT CGT ACG ATG GAC ATT TTC CGA CAC TTA GGT GTA GAA Glu Asp Cys Arg Arg Thr Met Asp Ile Phe Arg His Leu Gly Val Glu 50	ATC AAA GAA GAT GAT GAA AAA TTA GTT GTG ACT TCC CCA GGA TAT CAA Ile Lys Glu Asp Asp Glu Lys Leu Val Val Thr Ser Pro Gly Tyr Gln 65	GTT AAC ACG CCA CAT CAA GTA TTG TAT ACA GGT AAT TCT GGT ACG ACA Val Asn Thr Pro His Gln Val Leu Tyr Thr Gly Asn Ser Gly Thr Thr 90 95	ACA CGA TTA TTG GCA GGT TTG TTA AGT GGT TTA GGT AAT GAA AGT GTT Thr Arg Leu Leu Ala Gly Leu Leu Ser Gly Leu Gly Asn Glu Ser Val 100	FIG. 19A

384	432	480	528	576	624	672	
TTG Len	AAT Asn	TAT Tyr 160	GCA Ala	AGT Ser	GAA G1u	ATT Ile	
GTC Val	GAT Asp	AAT Asn	TTT Phe 175	GTA Val	ATT Ile	TAC Tyr	
CGT Arg	GAA G1u	ATA Ile	TTA Leu	GAT Asp 190	CCA Pro	CGA Arg	
GAT Asp 125	ATT Ile	GGT Gly	ATT Ile	TTA Leu	ATT I1e 205	ATT Ile	
ATĞ Met	GGT G1y 140	AAA Lys	GCC Ala	GAA G1u	AAT Asn	GCA Ala 220	
CCA Pro	GAA G1u	ATA 11e 155	AGT Ser	AAA Lys	TTT Phe	GAA G1u	
AGG Arg	ATT Ile	GTC Val	AAA Lys 170	ATT I 1e	CAT His	CCT Pro	19B
AAA Lys	AAT Asn	TCT Ser	GTA Val	ATC 11e 185	AAA Lys	ACC Thr	FIG.
GGT G1y 120	GCG Ala	CCA Pro	CAA G1n	ACC Thr	TTC Phe 200	ACA Thr	ட
ATT Ile	GAT Asp 135	AAG Lys	GCA Ala	CCG Pro	ATG Met	AAT Asn 215	
TCA Ser	ATG Met	ATT 11e 150	AGT Ser	GAA G1u	ACG Thr	ATT Ile	
GTT Val	CTT Leu	ATT Ile	GCA Ala 165	AAG Lys	GAG Glu	TCA Ser	
GAT Asp	AAA Lys	TTA Leu	GTT Val	TCT Ser 180	ACT Thr	TTA Leu	
66C 61y 115	TTG Leu	CCA Pro	GAA G1u	Phe	CAT His 195	666 G1y	
TCT Ser	CCA Pro 130	ACA Thr	ATG Met	TTG	AAT Asn	GAA G1u 210	
TTG Leu	AGA Arg	TAT Tyr 145	CAA Gln	AGT Ser	CGA Arg	GCA Ala	

720	768	816	864	912	096	1008	
TTC Phe 240	CAT His	GAA Glu	GAA G1u	ATA Ile	GTA Val 320	GAT Asp	
GCG Ala	ATT Ile 255	GTT Val	GCT Ala	CCA Pro	CCT Pro	AAA Lys 335	
GCA Ala	ACA Thr	ATT 11e 270	GGT Gly	CAA G1n	CTG Leu	ATT Ile	
TCT Ser	GTA Val	GAT Asp	ACT Thr 285	CTT	GAA G1u	ACA Thr	
TCA Ser	GAT Asp	ATT Ile	ACA Thr	ATG Met 300	GAT Asp	AGT Ser	
ATT Ile 235	AGT Ser	ATT Ile	CAA G1n	CCA Pro	ATT Ile 315	ACG Thr	•
GAT Asp	GGA G1y 250	GGT Gly	AAT Asn	ACA Thr	GCA Ala	66C 61y 330	
GGC G 1y	CCA Pro	TCA Ser 265	TTC Phe	TAC Tyr	AAA Lys	GTT Val	
CCT Pro	ACA Thr	CGT Arg	CTT Leu 280	CAA G1n	CCA Pro	GCA Ala	
GTT Val	ATC Ile	ACA Thr	CAA G1n	ATT 11e 295	GTT Val	CAA Gln	
CAT His 230	CTT	CAA Gln	ATC Ile	CGT Arg	TTA Leu 310	ACA Thr	
TTT Phe	GCA Ala 245	AAT Asn	AAT Asn	ATT Ile	GAA G1u	TGT Cys 325	
GAT Asp	GCA Ala	ATC Ile 260	GGT Gly	TCT Ser	GGA Gly	CTT	
GCA Ala	GTT Val	GGA Gly	66C 61y 275	GCT Ala	GAA G1u	TTA	
CCT Pro	ATT Ile	GTT Val	ATG Met	ACT Thr 290	ATC Ile	GCA Ala	
AAA Lys 225	TTT Phe	AAT Asn	AAA Lys	CCT Pro	ACA Thr 305	ATA I1e	

1056	1104	1152	1200	1248	1293
GCT Ala	GGA Gly	TTA Leu	TCA Ser 400	TTT Phe	
ACG Thr	GAT Asp	GAT ATT Asp Ile	CTT	TCA Ser 415	TAA
ACA Thr 350	AAT Asn	GAT Asp	GTA Val	GTA Val	GGA G1y 430
GAT Asp	ACT Thr 365	ACA Thr	TGT GTA Cys Val	AAT GTA Asn Val	GAG G1u
AAT AGA ATT GAT Asn Arg Ile Asp	CAA CCA Gln Pro	ACA AAT GCA Thr Asn Ala 380	GCT Ala	GCT GTA Ala Val	AAT Asn
AGA Arg	CAA G1n	AAT Asn	GCA GTT Ala Val 395	GCT Ala	CAA Gln
	TTA Leu	ACA Thr	GCA Ala	GAT Asp 410	TTA Leu
ACA Thr 345	GAA G1u	AAA Lys	CTT	TTT Phe	CTT Leu 425
GAA G1u	TTT Phe 360	TTT Phe	ATG Met	CAA TTT Gln Phe	AAG Lys
GTA AAA Val Lys	TTA GGG Leu Gly	GAA Glu 375	ATG Met	ATC AAA (Ile Lys (CTA Leu
GTA Val	TTA Leu	CCG TCA (Pro Ser (ATA GGA Ile Gly 390	ATC Ile	CCA AAA Pro Lys
AAA Lys	TTG	CCG Pro	ATA Ile	AAA Lys 405	CCA Pro
TTA Leu 340	AAC Asn	CAT His	CGA Arg	GTC Val	TTA Leu 420
GAA Glu	TTA Leu 335	ATT Ile	CAT His	CCT Pro	TTT Phe
GCC GAG (Ala Glu (ATG Met	ATT I1e 370	GAT Asp	GAG G1u	GGA Gly
GCC Ala	GAT Asp	TTG	ACT Thr 385	AGC (CCA Pro

MSHSASPKPA TARRSEALTG MSHSASPKPA TARRSEALTG MSHGASSRPA TARKSSGLSG MSHGASSRPA TARKSSGLSG MSHGASSRPA TARKSSGLSG MSHGASSRPA TARKSSGLSG MVNEQ IIDISGPLKG MVNNEQ IIDISGPLKG MVNNEQ IIDISGPLKG MVNNEQ IIDISGPLKG MESL VLQPIKEISG MESL TLQPIARVDG MIKDATAI TLNPISYIEG MSGLAYL DLPAARLARG	
	FIG 20∆
PG2982 LBAA Agrobacterium CP4 B. subtilis S. aureus S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum L. esculentum P. hybrida Z. mays S. gallinarum S. gallinarum S. typhimurium S. typhimurium H. influenzae P. multocida A. salmonicida B. pertussis Consensus)

100 EGEDVINTG RAMQAM.GAK EGEDVINTG RAMQAM.GAK EGEDVINTG KAMQAM.GAR	PGADCLSTI DCFRKM.GVH LGEDCRRTM DIFRHL.GVE HSDDTKHML TAVHELKGAT	HSDDTEVML NALERLGAAT NSDDINYML DALKKL.GLN NSDDINYML DALKRL.GLN	SSDDIHYML GALKTL.GLH SSDDIHYML GALKTL.GLH SSDDIHYML GALKTL.GLH	-NSEDVHYML GALKIL.GLS -DSDDVRHML NALSAL.GIN -DSDDVRHML NALSAL.GIN -DSDDVRHML NALSAL.GIN	LDSDDVRHML NALTAL.GVS LDSDDVRHML NALSAL.GVH LDSDDIRHML NALQAL.GVK LDSDDIRHML NALKAL.GVR	DSDDVRHML NALKEL.GVI DSDDIRHML AALTQL.GVK DSDDTRVML AALRQL.GVS
ASGETRITGL 1 ASGETRITGL 1 ASGETRITGL 1	AAGTTTVKNF I AEGVSTIYKP I GEGOCKIKNL I	GSGTCRIKNL SEGTTVVDNL SEGTTVVDNL	SKGRTVVDNL SEGRTVVDNL SEGTTVVDNL S	SEGIIVUNL ACGKTVLTNL PCGKTALTNL ACGKTVLTNL	AHGKTVLTNL ARGTTVLTNL AEGTTQLNNL AKGTTKVTNL	AKGKIILINL ARGTTRLTNL AEGSTEITGL G
SHRSFMFGGL SHRSFMFGGL SHRSFMFGGL	SHRSVMFGAL THRAIMLASL SNRALILAAL	SNRALVLAAL SNRILLLAAL SNRILLLAAL	SNRILLLAAL SNRILLLAAL SNRILLLAAL	SNKILLLAAL SNRALLLAAL SNRALLLAAL SNRALLLAAL	SNRALLLAAL SNRALLLAAL SNRALLLAAL SNRALLLAAL	SNKALLLSAL SNKALLLAAL SNKVLLLAAL RL
51 EIRIPGDKSI EIRIPGDKSI TVRIPGDKSI	EIHIPGDKSI EIEVPGDKSM VVIPPGSKSI	ICAPPGSKSI LIKLPGSKSL LIKLPGSKSL	TVKLPGSKSL TVKLPGSKSL TVKLPGSKSL	AINLPGSKSV AINLPGSKSV AINLPGSKSV AINLPGSKSV	TINLPGSKTV TVNLPGSKSV TVNLPGSKSV TINLPGSKSL	EVALPGSKSV EVALPGSKSV PG-K
PG2982 LBAA Agrobacterium CP4		A. nidulans B. napus A. thaliana	N. tabacum L. esculentum P. hybrida	CEE	E. coli K. pneumoniae Y. entoercolitica H. influenzae	A. salmonicida B. pertussis Consensus

150 RLTMGLVGTY RLTMGLVGTY RLTMGLVGVY RLMLGILAGR RLLAGLLSGL RFLTSLAALV RFLTTVATLA	RPLTAAVTAA RPLTAAVTVA RPLTAAVTVA RPLTAAVTAA RPLTAAVTAA	RPLAAALCL. RPLAAALCL. RPLAAALCL. RPLAAALCL. RPLAAALCL. RPLTAALCL RPLTAALCLS RPLTAALCLS
LDFGNAGTGA LDFGNAGTGA LDFGNAATGC LDVGNSGTTI LYTGNSGTTT LYLGNAGTAS LYLGNAGTAS	LYLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM	LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM LFLGNAGTAM
PEAA PEAA PEAP PEACADP STLSACADP STLSACADP NLQASSSP	ASIDSKSDIE VGKKSEEEIQ VGKKSEEEIQ VGKESKEEIQ VE. DAKEEVQ APGALE	APGALE ASGALE AGGALE AGGALE IQGALE VSGALE VSGALE
NGVGNGCL NGVGNGCL DGVGNGGL HGKGIDAL TSPGYQ.V VVEGHGG.	VVEGCGGI IVEGCGGQ IVEGCGGQ VVEGCGGK VVVGCGGK	DITGNGGALR DITGNGGPLR EIIGNGGPLH EVTGTGGPLQ EVDGLGGKLV EIEGLGGAFN VTIEGVARFP
101 IRKEGDVWII IRKEGDVWII IEQSSSDVVI IKEDDEKLVV ISWEEEGEVL VERDSVNIRA	VETDSENNRA VEDDNENGRA VEDDNENGRA VEEDSANGRA VEADKAAKRA YTLSADRTRC	YTLSADRTRC YTLSADRTRC YTLSADRTRC YVLSSDRTRC YQLSDDKTIC YQLSDDKTIC YQLSDDKTIC YQLSADKTEC YQLSADKTEC
PG2982 LBAA Agrobacterium CP4 B. subtilis S. aureus S. cerevisiae A. nidulans B. napus	A. thaliana N. tabacum L. esculentum P. hybrida Z. mays S. gallinarum	S. typhimurium S. typhi E. coli K. pneumoniae Y. entoercolitica H. influenzae P. multocida A. salmonicida B. pertussis Consensus

0	202222	>>>>>	7727 :
DGDRMP DGDRMP DGDRLP AGGEFT IEDNYT	NNEGSL KGRASL LGTNCP LGTNCP LGTNCP LGTNCP	LGTDCPPVRV EQENYPPLRL EQENYPPLRL EQENYPPLRL EQENYPPLRL EQENYRPLRL EQENYRR. CI	ENEGYP EQEGYP KKDGYP GQAGYP
REMGVQVEAA REMGVQVEAA REMGVQVKSE KKMGAKIDGR KLMDANIEG.	KANGIKIEYL TANVLPLNTS KQLGADVECT KQLGAEVDCF KQLGAEVDCF KQLGAEVDCS	KÖLGADVDCF ROGGANIDYL ROGGANIDYL ROGGANIDYL RUGGAKITYL ROGGAQIDYL ROGGAQIDYL	RQAGADIRYL CQAGAEIQYL ALKGAHIQYL RQFGAGIEYL
PMGRVLNPL PMGRVLNPL PMGRVLNPL PMCRVTEPL	PIAPLVOSL PIGDLVOAL PIGDLVVGL PIGDLVVGL PIGDLVDGL	RPIGDLVVGL RPIGHLVDSL RPIGHLVDSL RPIGHLVDSL RPIGHLVDAL RPIGHLVDAL RPIGHLVDAL	PILHLVDAL PIQHLVDAL PIGHLVDCL PIGDLVDAL
JASLS JASLS JASLT JESIA JVSIG	AKMO NPRMR PRMR PRMR PRMR	VLDGVPRMRE VLTGEPRMKE VLTGEPRMKE VLTGEPRMKE VLTGEPRMKE VLTGEPRMKE	PRMK /PRME
		GGONET GONET GONET GSNDT GKNDT	G.NHEV.EI TPNREGKENI GSGEY GGDY
PG2982 LBAA Agrobacterium CP4 B. subtilis S. aureus	S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum L. esculentum P. hybrida	Z. mays S. gallinarum S. typhimurium S. typhi E. coli K. pneumoniae	H. influenzaeP. multocidaA. salmonicidaB. pertussisConsensus

TPG TPG TPG EPVTLA EPVTLR LGDVEI LGDVEI LGDVEI	
LLAGLN LLAGLN LLAGLQ LMCAPY LMAAP. LMAAP.	
MASAQVKSAV VASAQVKSAV VASAQVKSAV VASAQVKSAI TVSSQYVSSI SISSQYLTAL SISSQYLTAL SISSQYLTAL SISSQYLTAL SISSQYLTAL SISSQYLTAL	
TANPIT TANPIT SLKGID VIKGIN VIGKV	GOVEV GO
201LIGPKSVSGASVSGA YTDSVFKG NANGGLPG NANGGLPG VSKGGLPG VSKGGLPG	NG1GGLPG RGGFIG RGGFIG QGGFTG AGGFRG RNKGIKG RNTGLKG GGGSIRVD
	2. mays S. gallinarum S. typhimurium S. typhi E. coli K. pneumoniae H. influenzae P. multocida A. salmonicida B. pertussis Consensus

300 KLVGQ.TIDV KLVGQ.TIDV	KLTGQ.VIDV KLTAA.DIFV	RYIKPADFHV	HYINPSEYVI	RYVNPAEYVI	KYKSPGNAYV	KYKSPGNAYV	KYKSPGKAYV	KYKSPGKAFV	KYKSPGKAFV	KYKSPKNAYV	QYHSPGRYLV	QYHSPGRYLV	QYHSPGRYLV	SYQSPGTYLV	QYQSPGDYLV	TYRSPGIYLV	SYISPNKYLV	QYQSPHRFLV	SIVSPGDFLV	VYRGPGRMAI	1 1 1 1 1 1 1
VRHIRITGQG VRHIRITGQG	TIRLEGRG .VSIAGGQ	NTTPEAI	TYYIPKG	EEHTYHIPQG	FVKGGQ	-FVKGG0	-LVRGGQ	-LVKGGQ	FVRGGQ	FYIKGGQ	-VVKGGQ	-VVKGGQ	-VVKGGQ	-VVKGGQ	FIVRGNQ	-HIKGGO	-QVKGNQ	-LVKGHQ	-YIKGNO	TIARDA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
├ ─	/ETDA EDQTS	EAEGLS	.VET.S	-:	. AEHS	. VEHS	. VEHT	. VEKS	. VEHS	AEHS	. IAN.	. IAN.	. IAN.	. IEN.	. VEN.	. VWH.	. VEN.	. VEN.	. IEH.	V . RR	t : : : : : : : : : : : : : : : : : : :
H TEKMLQGFGA DH TEKMLQGFGA D																				TLNLMARFG	1 1 1 1 1 1 1 1
251 VIEPVMTRDH VIEPVMTRDH	IEPIMTRDI TEPHKSRDI	KELDVSRN	KPISKLYVI	(PISQPYII	(LISVPYVI	CLISVPYVE	<pre></pre>	(LISVPYVE	(LISVPYVE	(LISIPYVE	ELVSKPYI[ELVSKPYI [-LVSKPYI[JLVSKPYII	ELVSRPY I [:LVSKPYI[-LVSKPYI[ELVSKPYII	ELVSKPYI	ELISKPYI	1 1 1 1 1 1 1 1 1 1 1 1
PG2982 LBAA	Agrobacterium CP4 B. subtilis	S. aureus	S. cerevisiae	A. nidulans	B. napus	A. thallana	N. tabacum	L. esculentum	P. hybrida	Z. mays	S. gallinarum	S. typhimurium	S. typhi	E. COli	K. pneumoniae	entoercolitica	influer	J. multoc	salmonic	B. pertussis	Consensus
<	Ā														;	>-					

350 LTLQEMGADI LTLQEMGADI LTLQEMGADI DVLQNMGAKL DVLKPMGAKL EVLEKMGAKL EVLEKMGAKL EVLEKMGAKL	AMMGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
PTRTGLI PTRTGLI PTRTGLI OTRSGII SLQGDARFAR SLQGDVKFA. SLQGDVKFA. SLQGDVKFA. SLQGDVKFA.	SLGGDVKFA. SMGGDIRFA. SMGGDIRFA. SMGGDIRFA. SVGGDIRFA. SVGGDTKFA. SVGGDTKFA. SIGGDKLFA. SIGGDVAFA. SIGGDVAFA.
DVTIRNVLMN DVTIRNVLMN DVTILNVLMN RIVLKNVGLN TVTVEGCGTT TVTVEGCGTT TVTVEGCGTS TVTVEGCGTS	TVTVEGCGTT TVKVTGIGRK TVKVTGIGRK TVKVTGIGRN TVKVTGIGRN KVKVTGIGRN KVKVTGIGKN KVKVTGIGKH
LVAALLVEGS LVAALLVEGS LVAALLVPGS LAAGAMVPNS IVAALITPGS LAFAA. VTGT LAGAA. ITGE LAGAA. ITGE LAGAA. VTGG LAGAA. VTGG	THE STANDARD
301 PGDPSSTAFP PGDPSSTAFP PGDISSAAFF ESDASSATYP EGDASSASYF EGDASSASYF EGDASSASYF EGDASSASYF EGDASSASYF	DASSAS DASSAS DASSAS DASSAS DASSAS DASSAS DASSAS DASSAS
PG2982 LBAA LBAA Agrobacterium CP4 B. subtilis S. aureus S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum L. esculentum	S. gallinarum S. gallinarum S. typhimurium S. typhi E. coli K. pneumoniae Y. entoercolitica H. influenzae P. multocida A. salmonicida B. pertussis Consensus

PG2982 EVLNARLAGG EDVADLRVR. ASKLKGVVVP LBAA EVLNARLAGG EDVADLRVR. ASKLKGVVVP B. subtilis EIKPSADSGA EPYGDLIIE. TSSLKGVTVP S. aureus QL.FNQTTGA EPTASIRIQY TPMLQPITIE S. cerevisiae TQTETS TTVSGPPVGTLKPLK AV. EQTETS TTVTGPSDAGILRATS A. thaliana SWTENS VTVTGPSRDA FGMRHLRAV. EQTETS TTVTGPPRDA FGMRHLRAVI. S. gallinarum TWTENS VTVTGPPRDS FGRKHLRAI. Z. mays SWTENS VTVTGPPRS SGRKHLRAI. Z. mays TWTETS VTVTGPPRS SGRKHLRAI. S. typhimurium TWGDDF I A CTRGELHAI. E. coli CWGDDY I A CTRGELHAI. CWGDDY I A CTRGELHAI. CWGDDY I A CTRGELHAI. CWGDDY I A CTRGELNAI. H. influenzae SWGDDY I A CTRGELNAI. P. multocida TWGEDF I A CTRGELNAI. P. multocida TWGEDF I A CTRGELNAI. P. multocida TWGEDF I A CTRGELNAI. CONSENSUS RYGPGW IETRGVRVAE GGR. LKAF. CONSENSUS RYGPGW IETRGVRVAE
LBAA ELBAA E

450 TILLEGEMSIT	22	吕			\succeq		≥	\geq	≥	\geq	\geq	S	\subseteq	\geq	\geq	\geq	\geq	\geq	\mathbf{E}	E^{A}	3	3	1
VADCI EANICV	VARGLEANGV	VANGLKLNGV	VVSELRKLGA	TADMLNLLGF	MATELAKFGV	MKDELAKFGV	ICTELRKLGA	ICTELRKLGA	ICTELRKLGA	ICTELRKLGA	ICTELRKLGA	IRTELTKLGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	MATELRKVGA	CTHGHRRAQA	MHTELEKLGA	1 1 1 1 1 1 1 1
VV 10U3	RVKESDRLAA	SDRLSA	TINKIDT	TURIDI	ECNRILA	CNRIKA	ETERMIA	ETERMIA	ETERMIA	ETERMIA	ETERMIA	ETERMVA	ETDRLFA	ETDRLFA	ETDRLFA	ETDRLFA	ETDRLFA	ETDRLSA	ETDRLTA	ETDRLTA	D. DRCTP	ETDRIHA	- / K
IDO IOUMALE	ETVMDGLDEL	ATVMNGLEEL	TTVIKDAAEL	TSTIKDAEEL	TTTIEGIANO	PPVSSGIANQ	PTTIRDVASW	PTTIRDVASW	PTAIRDVASW	PTTIRDVASW	PTAIRDVASW	PTAIRDVASW	TTTLRNIYNW	TTTLRNIYNW	TTTLRNIYNW	TTRLRNIYNW	TTTLRNIYNW	PTVIRNIYNW	ETVIRNIYNW	ETVIRNIYNW	VPPHSQHLQL	PCRLRNIGSW	1 1 1 1 1 1 1 1
401 AFC	AEG	AET	AEG	•	M		•	:	:	:	ADG	:	AKG	AKG	AKG		ARG		SNG	.AEG	LPR.	ADG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600670	LBAA	Agrobacterium CP4	-	S. aure		A. nidulans	B. nap	<u>a</u>	2	¥	P. hybrida	Z. mays	S. gallinarum	S. typhimurium	S. typhi	\aleph	K. pneumoniae		influenz	P. multoci	lmonici	B. pertussis	COLISEUSUS

t 1 1 1 1 1 1	
· \ \	
1 1 1 1 1 1 1 1 1 1 1 1	- C
] 	
consensus	

PG2982 VRGRPDGKGL GGG. TVATHLDHRI AMSFLVMGLA LBAA VRGRPDGKGL GGG. TVATHLDHRI AMSFLVMGLA LBAA VRGRPDGKGL GGG. TVATHLDHRI AMSFLVMGLA Subtilis VYGKQTLKG. GA. AVATHLDHRI AMSFLVMGLV Subtilis VYGKQTLKG. GA. AVSSHGDHRI GMMLGLASCI aureus IHPSEKTN. AT. DILTDHRI GMMLGLASCI TOGIDR.SNL KVPSDSSGPV GVCTYDDHRV AMSFSLLAGM VNSQNERDEV THAIlans INTP. PAKV KPA. EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A Lubacum IITP. PEKL NVT. EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYDDHRW AMAFSLAAC. A EIDTYNDHRW AMCFSLVAL. S ECOI itica RVVP. PAQL IAA. EIGTYNDHRW AMCFSLVAL. S EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDHRW EIGTYNDH	·	
451 CP4 VRGRPDGKGL GGG TVATHLDHRI CP4 VRGRPDGKGL GGG TVATHLDHRI CP4 VRGRPDGKGL GNASGA AVATHLDHRI ilis VYGKQTLKGGA AVSSHGDHRI siae VHGLNSIKDL KVPSDSSGPV GVCTYDDHRW Jans VITPPRKV KPA EIDTYDDHRM JANS VITPPRKV KTA EIDTYDDHRM TIMM IITPPEKL NVT EIDTYDDHRM TIUM IITPPEKL NVT EIDTYDDHRM TIUM RITPPEKL NVT EIDTYDDHRM TIUM RITPPEKL NVT DIGTYNDHRM TIUM RITPPEKL NVT EIGTYNDHRM TIUM RITPPEKL NVT EIGTYNDHRM TICA NVPPAKL QHA DIGTYNDHRM TICA RVPPAKL QHA EIGTYNDHRM TICA RVPPAQL IAA HIGTWDDHRM TSSIS EVAPPEPGGW RDA HIGTWDDHRM TNSUS	500 	440000000000
451 CP4 VRGRPDGKGL GGG TVATHLDHRI CP4 VRGRPDGKGL GGG TVATHLDHRI CP4 VRGRPDGKGL GNASGA AVATHLDHRI ilis VYGKQTLKGGA AVSSHGDHRI siae VHGLNSIKDL KVPSDSSGPV GVCTYDDHRW Jans VITPPAKV KPA EIDTYDDHRM Jans VITPPEKL NVT EIDTYDDHRM TIUM IITPPEKL NVT EIDTYDDHRM TIUM IITPPEKL NVT EIDTYDDHRM TIUM RITPPEKL NVT EIDTYDDHRM TIUM RITPPEKL NVT EIGTYNDHRM TIUM RITPPEKL NVT EIGTYNDHRM TIUM RITPPEKL NVT EIGTYNDHRM TICA NVPPAKL QHA DIGTYNDHRM TICA RVPPAKL QHA EIGTYNDHRM TICA RVPPAGL IAA EIGTYNDHRM TICA RVPPAGL RAD HIGTWDDHRM TSSIS EVAPPEPGGW RDA HIGTWDDHRM TNSUS	AMSFLVMGLA AMSFLVMGLV GMMLGIASCI GMMLAVACVL AMSFSLLAGM AMAFSLAAC. AMAFSLAAC. AMAFSLAAC.	AMAFSLAAC. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL.
451 VRGRPDGKGL GGG LBAA VRGRPDGKGL GGG CP4 VRGRPDGKGL GGG ilis VYGKQTLKG AT Siae VHGLNSIKDL KVPSDSSGPV lans IHPSEFKTN AT AD A	TVATHLDHRI TVATHLDHRI AVSSHGDHRI DILTDHRI GVCTYDDHRV GVFCYDDHRW EIDTYDDHRM EIDTYDDHRM EIDTYDDHRM	AIDTYDDHRM DIGTYNDHRM EIGTYNDHRM EIGTYNDHRM EIGTYNDHRM NIETYNDHRM ELNI.HDHRM HIGTWDDHRM
LBAA LBAA CP4 ilis reus siae apus iana acum ntum rida arum rida arum rida coli coli cida cida cida cida	GGG GGG GNASGA AT KVPSDSSGPV RQPVG KPA KTA	NVT OHAA OHAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA OFFAA
LBAA LBAA CP4 ilis reus siae apus iana acum ntum rida arum rida arum rida coli coli cida cida cida cida	451 VRGRPDGKGL VRGRPDGKGL VYGKQTLKG. IHPSEFKTN. VHGLNSIKDL IDGIDR. SNL VITP. PAKV VITP. PKKV IITP. PEKL IITP. PEKL	IITPPEKL RITPPAKL RITPPAKL RITPPEKL RITPPLTL RVVPPAQL RIQPLNQF RIQPLNQF TRDAADPAQA TRDAADPAQA
grobacter S. Cer S. Cer S. typle S. typle K. pne H. in: A. sall	PG2982 LBAA Agrobacterium CP4 B. subtilis S. aureus S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum L. esculentum P. hybrida	y x x x x x x x x x x x x x x x x x x x

09	120	180	240	292	340	388	436	484
ACGGGCTGTA ACGGTAGTAG GGGTCCCGAG CACAAAGCG GTGCCGGCAA GCAGAACTAA	TTTCCATGGG GAATAATGGT ATTTCATTGG TTTGGCCTCT GGTCTGGCAA TGGTTGCTAG	GCGATCGCCT GTTGAAATTA ACAAACTGTC GCCCTTCCAC TGACCATGGT AACGATGTTT	TITACTICCI IGACTAACCG AGGAAATTT GGCGGGGGC AGAAATGCCA ATACAATTTA	GTTGGTCTT CCCTGCCCCT AATTTGTCCC CTCC ATG GCC TTG CTT.TCC CTC Met Ala Leu Leu Ser Leu 1	AAC AAT CAT CAA TCC CAT CAA CGC TTA ACT GTT AAT CCC CCT GCC CAA Asn Asn His Gln Ser His Gln Arg Leu Thr Val Asn Pro Pro Ala Gln 10	GGG GTC GCT TTG ACT GGC CGC CTA AGG GTG CCG GGG GAT AAA TCC ATT Gly Val Ala Leu Thr Gly Arg Leu Arg Val Pro Gly Asp Lys Ser Ile 25	TCC CAT CGG GCC TTG ATG TTG GGG GCG ATC GCC ACC GGG GAA ACC ATT Ser His Arg Ala Leu Met Leu Gly Ala Ile Ala Thr Gly Glu Thr Ile 40	ATC GAA GGG CTA CTG TTG GGG GAA GAT CCC CGT AGT ACG GCC CAT TGC Ile Glu Gly Leu Leu Gly Glu Asp Pro Arg Ser Thr Ala His Cys 55

532	580	628	9/9	724	772	820	
ATC Ile	GTT Val	TTG Leu	TCC Ser	ATG Met 150	GCA Ala	GCT Ala	
AAA Lys 85	ACC Thr	66C 61y	GAT Asp	CAA G1n	CTG Leu 165	ATT Ile	
GAA G1u	AGT Ser 100	TTG Leu	GAT Asp	CAA G1n	CCG Pro	CCC Pro 180	
TCA Ser	CCC Pro	ATG Met 115	66C 61y	TTG	GCG Ala	TCC Ser	
AAT Asn	GAA G1u	TTA Leu	ACC Thr 130	CCC Pro	Phe	CAT His	
CTA Leu	CAG G1n	CGC Arg	GTC Val	CAA G1n 145	AAG Lys	TAC Tyr	
GAA G1u 80	TTG Leu	ATG Met	ACC Thr	ATT Ile	GGC Gly 160	CAT His)
AGC Ser	CAG G1n 95	ACC Thr	TTC Phe	GTA Val	AAC Asn	G ATC CATO ITE HIS 175 FIG. 218] 5
ATC Ile	GGA G1y	ACC Thr 110		CGG Arg	AGT Ser	CCG Pro	-
GAA G1u	CTG Leu	66C 61y	TGT Cys 125	TCC Ser	CGG Arg	AAA Lys	
GCA Ala	GGT G1y	TCT Ser	GAT Asp	ATG Met 140	GCC Ala	TTA Leu	
66A 61y 75	CGG Arg	AAC Asn	AAA Lys	CCC Pro	766 7rp 155	CAA G1n	
ATG Met	GGT G1у 90	GGG G1y	CAA G1n	CGC Arg	ATT Ile	AGC Ser 170	
GCC Ala	CAG G1n	GCG Ala 105	666 G1y	CAC His	AAA Lys	GGT Gly	
CGG Arg	GTT Val	GAT Asp	GCC Ala 120	CGT Arg	GCA Ala	CAG G1n	
TTT Phe	ATC Ile	TTG	CTA Leu	CTC Leu 135	666 G1y	GTC Val	

. 898	916	964	1012	1060	1108	1156	
TCA GCC CAG GTA AAG TCC TGC CTG TTG CTA GCG GGG TTA ACC ACC GAG Ser Ala Gln Val Lys Ser Cys Leu Leu Leu Ala Gly Leu Thr Thr Glu 185 185 190 190 190 190 190 195 195 195 195 195 195 195 195 195 190 190 190 190 190 190 190 190 190 190	GGG GAC ACC ACG GTT ACA GAA CCA GCT CTA TCC CGG GAT CAT AGC GAA 9 Gly Asp Thr Thr Val Thr Glu Pro Ala Leu Ser Arg Asp His Ser Glu 200 200	CGC ATG TTG CAG GCC TTT GGA GCC AAA TTA ACC ATT GAT CCA GTA ACC Ang Met Leu Gln Ala Phe Gly Ala Lys Leu Thr Ile Asp Pro Val Thr 215	CAT AGC GTC ACT GTC CAT GGC CCG GCC CAT TTA ACG GGG CAA CGG GTG 10 His Ser Val Thr Val His Gly Pro Ala His Leu Thr Gly Gln Arg Val 240	GTG GTG CCA GGG GAC ATC AGC TCG GCG GCC TTT TGG TTA GTG GCG GCA 10 Val Val Pro Gly Asp Ile Ser Ser Ala Ala Phe Trp Leu Val Ala Ala 250	TCC ATT TTG CCT GGA TCA GAA TTG TTG GTG GAA AAT GTA GGC ATT AAC 11 Ser Ile Leu Pro Gly Ser Glu Leu Leu Val Glu Asn Val Gly Ile Asn 270	CCC ACC AGG ACA GGG GTG TTG GAA GTG TTG GCC CAG ATG GGG GCG GAC 11 Pro Thr Arg Thr Gly Val Leu Glu Val Leu Ala Gln Met Gly Ala Asp	FIG. 21C

1204	1252	1300	1348	1396	1444	1492	
ATT ACC CCG GAG AAT GAA CGA TTG GTA ACG GGG GAA CCG GTA GCA GAT	CTG CGG GTT AGG GCA AGC CAT CTC CAG GGT TGC ACC TTC GGC GGC GAA	ATT ATT CCC CGA CTG ATT GAT GAA ATT CCC ATT TTG GCA GTG GCG GCG	GCC TTT GCA GAG GGC ACT ACC CGC ATT GAA GAT GCC GCA GAA CTG AGG	GTT AAA GAA AGC GAT CGC CTG GCG GCC ATT GCT TCG GAG TTG GGC AAA	ATG GGG GCC AAA GTC ACC GAA TTT GAT GAT GGC CTG GAA ATT CAA GGG	GGA AGC CCG TTA CAA GGG GCC GAG GTG GAT AGC TTG ACG GAT CAT CGC	FIG 21D
Ile Thr Pro Glu Asn Glu Arg Leu Val Thr Gly Glu Pro Val Ala Asp	Leu Arg Val Arg Ala Ser His Leu Gln Gly Cys Thr Phe Gly Gly Glu	Ile Ile Pro Arg Leu Ile Asp Glu Ile Pro Ile Leu Ala Val Ala Ala	Ala Phe Ala Glu Gly Thr Thr Arg Ile Glu Asp Ala Ala Glu Leu Arg	Val Lys Glu Ser Asp Arg Leu Ala Ala Ile Ala Ser Glu Leu Gly Lys	Met Gly Ala Lys Val Thr Glu Phe Asp Asp Gly Leu Glu Ile Gln Gly	Gly Ser Pro Leu Gln Gly Ala Glu Val Asp Ser Leu Thr Asp His Arg	
295	325	330	345	360	375	395	

1540	1588	1635	1695	1755	1815	1875	1894
ATT GCC ATG GCG TTG GCG ATC GCC GCT TTA GGT AGT GGG GGG CAA ACA Ile Ala Met Ala Leu Ala Ile Ala Ala Leu Gly Ser Gly Gly Gln Thr 410	ATT ATT AAC CGG GCG GAA GCG GCC GCC ATT TCC TAT CCA GAA TTT TTT Ile Ile Asn Arg Ala Glu Ala Ala Ala Ile Ser Tyr Pro Glu Phe 430	GGC ACG CTA GGG CAA GTT GCC CAA GGA TAAAGTTAGA AAAACTCCTG Gly Thr Leu Gly Gln Val Ala Gln Gly 440	GGCGGTTTGT AAATGTTTTA CCAAGGTAGT TTGGGGTAAA GGCCCCAGCA AGTGCTGCCA	GGGTAATTTA TCCGCAATTG ACCAATCGGC ATGGACCGTA TCGTTCAAAC TGGGTAATTC	TCCCTTTAAT TCCTTAAAAG CTCGCTTAAA ACTGCCCAAC GTATCTCCGT AATGGCGAGT	GAGTAGAAGT AATGGGGCCA AACGGCGATC GCCACGGGAA ATTAAAGCCT GCATCACTGA	CCACTTATAA CTTTCGGGA

Patent Application Publication	Sep. 18, 2008	Sheet 60 of 70
i atent ripplication i abheation	5cp. 10, 2000	Sheet oo of 70

09	115	. 163	211	259	307	355
ATGAGTTAAA AAATTATTTT TCTGGCACAC GCGCTTTTTT TGCATTTTTT	TCCGGCACAA TAACGTTGGT TTTATAAAAG GAAATG ATG ATG ACG Met Met Thr 1	CAC ACC GCG CCC GTC TCT GCG CTT TCC GGC GAA ATA ACG His Thr Ala Pro Val Ser Ala Leu Ser Gly Glu Ile Thr 10	GAT AAA ICA ATG TCG CAT CGC GCC TTA TTA TTA GCA GCG Asp Lys Ser Met Ser His Arg Ala Leu Leu Leu Ala Ala 30	GGA CAÁ ACG GAA ATC CGC GGC TTT TTA GCG TGC GCG GAT Gly Gln Thr Glu Ile Arg Gly Phe Leu Ala Cys Ala Asp 40	CG CGG CAA GCA TTG CGC GCA TTA GGC GTT GAT ATT CAA hr Arg Gln Ala Leu Arg Ala Leu Gly Val Asp Ile Gln 55	AAA ATA GTG ACG ATT CGC GGT GTG GGA TTT CTG GGT TTG Ilu Ile Val Thr Ile Arg Gly Val Gly Phe Leu Gly Leu 75
TTTAAAAACA	СТСССАТТТТ	AAT ATA TGG Asn Ile Trp 5	ATA TGC GGC Ile Cys Gly 20	TTA GCA GAA Leu Ala Glu	TGT TTG GCG Cys Leu Ala	AGA GAA AAA G Arg Glu Lys G

FIG. 22A

US 2008/0227966 A1

	195					190	ככ	<u> </u>			185					ΛΩΤ
691	CGC Arg	AGT Ser	ATC Ile	GGC Gly	TGC Cys	ACT	CAT His	CTG Leu	CGG Arg	ACG Thr	ACC Thr	GGT Gly	GAC Asp	GCT Ala	TTG Leu	TTA
643	GGA G1y	GCA Ala	TTG Leu	ATT Ile	CTT Leu 175	TGC Cys	AGT Ser	AAA Lys	TTA Leu	CAA G1n 170	GCG Ala	AGC Ser	CCC Pro	CTT Leu	CCG Pro 165	TTA Leu
595	GCG Ala	TAC Tyr	GAT Asp	ATT 11e 160	66C 61y	ACC Thr	CTG Leu	CCG Pro	CGC Arg 155	GGA Gly	TCA Ser	ATT Ile	CAT His	TTA Leu 150	CCG Pro	GCG Ala
547	ACG Thr	TTT Phe	AAT Asn 145	AGC Ser	CAC His	AGT Ser	GTC Val	-		GCA Ala	666 61y	ATG Met	CAA Gln 135	GTG Val	CTT Leu	CCG Pro
499	ACG Thr	ATT Ile 130	ATT I1e	CGC Arg	CAG Gln	ATG Met	CCG Pro 125	CGT Arg	AAA Lys	GAA G1u	TTA Leu	TCA Ser 120	GAA Glu	GAT Asp	660 61y	TGC Cys
451	TTA Leu	GTG Val	AGC Ser	GAG G1u	TTT Phe	CGC Arg 110	CAG G1n	GCG Ala	GCA Ala	TTG Leu	ATT 11e 105	GGA G1y	GCA Ala	TTG	TTA Leu	CGT Arg 100
403	ATG Met	AGC	ACT Thr	GGC Gly	AGT Ser 95	AAC Asn	CAA G1n	ATG Met	AAT Asn	Leu 90	CCG Pro	GCA Ala	AAA Lys	CCG Pro	CCG Pro 85	CAG G1n

739	787	835	883	931	979	1027	
GGT GGC GCA CTT GAG ATC	CAA AAA TTG CAC GGT TGC	GCG GCG TTT TTT ATG GTT	GTT ATT CGT AAT GTC GGC	TTG TTG CAA AAA ATG GGC	TGG GGC GCC GAA CCG GTG	CGC GGC ATT ACG GTG GCG	
Gly Gly Ala Leu Glu Ile	Gln Lys Leu His Gly Cys	Ala Ala Phe Phe Met Val	Val Ile Arg Asn Val Gly	Leu Leu Gln Lys Met Gly	Trp Gly Ala Glu Pro Val	Arg Gly Ile Thr Val Ala	
210	225	240	255	270	290	305	
GAC CAC ACG GAA CGC ATG TTG CCG CTT TTT GG	AAG AAA GAG CAA ATA ATC GTC ACC GGT GGA CA	GTG CTT GAT ATT GTC GGC GAT TTG TCG GCG GC	GCG GCT TTG ATT GCG CCG CGC GCG GAA GTC G1	ATT AAT CCG ACG CGG GCA ATC ATT ACT TI	GGA CGG ATT GAA TTG CAT CAT CAG CGC TTT TG	GCA GAT ATT GTT GTT TAT CAT TCA AAA TTG CC	FIG. 22C
Asp His Thr Glu Arg Met Leu Pro Leu Phe Gl	Lys Lys Glu Gln Ile Ile Val Thr Gly Gly Gl	Val Leu Asp Ile Val Gly Asp Leu Ser Ala Al	Ala Ala Leu Ile Ala Pro Arg Ala Glu Val Va	Ile Asn Pro Thr Arg Ala Ala Ile Ile Thr Le	Gly Arg Ile Glu Leu His His Gln Arg Phe Tr	Ala Asp Ile Val Val Tyr His Ser Lys Leu Ar	
200	215	236	245	260	280	295	

1075	1123	1171	1219	1267	1315	1363
ATT	GAA G1u	TTA Leu 355	ATA Ile	TH	GCG Ala	ATG Met
TTT Phe	TCA Ser	AAT Asn	CAT His 370	AGT Ser	CGC Arg	TCT Ser
TTT Phe	TTG Leu	CAA Gln	ATT Ile	AAC Asn 385	GTG Val	GTT Val
ATT I1e 320	AAT Asn	GCG Ala	TTT	GTG Val	GGT G1y 400	GCG Ala
CCG Pro	66C 61y 335	ATG Met	GAT Asp	CGG Arg	GCA Ala	GCG Ala 415
TTG	GTG Val	GCG Ala 350	GCC Ala	GCG Ala	GTG Val	GTG Val
GAA G1u	TTT Phe	GCG Ala	66C 61y 365	CCG Pro	GCG Ala	GCG Ala
GAT Asp	ACT Thr	TTA Leu	GTT Val	TTA Leu 380	TTG Leu	GGC G 1y
ATT Ile 315	ACG Thr	CGT Arg	GAC Asp		AGT Ser 395	GAC Asp
GCG Ala	666 61y 330	GAT Asp	TGC Cys	CAA G1n	ATG Met	GAT Asp 410
AAC Asn	GAA Glu	TCG Ser 345	GCG Ala	CGG Arg	GCG Ala	ATT Ile
GCC Ala	GCG Ala	GAA G1u	GTG Val 360	GAT Asp	ATT Ile	TTG Leu
ATT Ile	TGC Cys	AAA Lys	66C 61y	AGC Ser 375	CGG Arg	TTA Leu
766 7rp 310	GCT Ala	GTG Val	TTG Leu	AGA Arg	CAT His 390	GAA G1u
GAA Glu	GCA Ala 325	CGT Arg	ACT Thr	GGA Gly	GAT Asp	GGT G1y 405
CCG Pro	GCG Ala	TTG Leu 340	CAA G1n	TAT Tyr	96C 61y	GCA Ala

Patent	Application	on Publi	ication
1 attit	<i>ι</i> χρμπτατι	VII I UVI	Cation

Con	10	2000	Choot 64	of 70
Sep.	10,	4 000	Sheet 64	+ O1 / U

US 2008/0227966 A1

	FIG 20E
14/9	ממוממכמכא מכון
7	TTO VV COTT
- - - - -	Lys Asp Ala Lys Asn Cys His Asp 440
1465	AAA AAT
1411	uca cha iii cac gai iii gcc gcc gca aii ggi aig Aaf gia gaa gaa Pro Gln Phe Arg Asp Phe Ala Ala Ala Ile Gly Met Asn Val Gly Glu 420
1411	TTT CGC GAT

FIG. 23A

```
RIPGDKSISH
RIPGDKSISH
RVPGDKSISH
HVPGDKSISH
TICGDKSMSH
EVPGDKSMSH
                                                                                      80
MQAMGAKI.R
MQAMGAKI.R
MQAMGARI.R
FRAMGAEISE
FRKMGVHI.E
LRALGVDI.Q
                                                                                                                                                                                                                   GCRLTMGLVG
TMRLMLGLLA
TIRLMLGILA
                                                                                                                                                                                       120
TMGLVG
                                                                                                                                                                                                          GARLTMGLVG
                                                                                                                                      FRKMGVHI.
LRALGVDI.
FRHLGVEI.
---MG--I
                                                                                                GEDVINTGRA
GEDVINTGRA
GEDPRSTAHC
GADCLSTIDC
CADCLATRQA
GEDCRTMDI
RRSEALTGEI
RRSEALTGEI
RKSSGLSGTV
AQGVALTGRL
DKVQTLHGEI
APVSALSGEI
                                                                                                                                                                                               AALDFGNAGT
AALDFGNAGT
APLDFGNAAT
TVLDAGNSGT
                                                                                                                                                                                                                                     SLLDVGNSGT
APLNMQNSGT
QVLYTGNSGT
 HSASPKPATA
HSASPKPATA
HGASSRPATA
SHQRLTVNPP
SHQRLTVNPP
...MWR
                                                                                               GETRITGLLE
GETRITGLLE
GETIIEGLLL
GTTVKNFLP
GOTEIRGFLA
GVSTIYKPLL
                                                                                                                                                                                                        VGNGCLLQPE
VGNGCLLQPE
RGLGQLQEPS
KGIDALKEPE
VGFLGLQPPK
PGYQ. VNTPH
-G-----P-
                                                                                     41
RSFMFGGLAS
RSFMFGGLAS
RSFMFGGLAS
RALMLGAIAT
RSVMFGALAA
RALLLAALAE
RAIMLASLAE
          81
KEGDVWIING
KEGDVWIING
KEGDTWIIDG
LNSEKIIVQG
QSSSDVVIHG
REKEIVTIRG
EDDEKLVVTS
                                                              . . . . . . . . . . . . .
                                                                                                      LBAA
Agrobacterium CP4
Synechocystis sp. PCC6803
B. subtilis
D. nodosus
S. aureus
Consensus
                 Agrobacterium CP4
ocystis sp. PCC6803
B. subtilis
D. nodosus
S. aureus
Consensus
                                                                                                                                                                                             PG2982
LBAA
Agrobacterium CP4
Ocystis sp. PCC6803
B. subtilis
D. nodosus
                                                                                                                                                                                                                                                                 Consensus
```

160 GVQVEAADGD GVQVKSEDGD GVQVKSEDGD GAKIWARSNG GAKIDGRAGG GAKIVSHSNF	200 LLAGLNTPGV LLAGLNTPGI LLAGLTTEGD LLAGLTTEGD LLAGLTAGGT TAGLLADGT LFASLFSKEP -LA-L	240 VETDKDGVRH VETDKDGVRH VETDADGVRT IDPVTHSV EDQTSV IKKEQI IKKEQI
GRVLNPLREM GRVLNPLREM GRVLNPLREM SRVIQPLQQM KRVTEPLKKM QRIITPLVQM DRVLRPLKLM	MASAQVKSAV MASAQVKSAV IASAQVKSAV VASAQVKSCL VASAQVKSCL VASAQVKSAI	GADLT GADLT GANLT GANLT GAKLT GAMT GAMT GAMT GAMT GAMT GAMT GAMT GAM
GDASLSKRPM GDASLSKRPM GDASLTKRPM GDDSLRHRPM GDESLEKRPM GDESLEKRPM GD-SRPM	TANPITYRVP TANPITYRVP TPTPITYRVP QLKPIHYHSP SLKGIDYVSP PLTGIDYALP VIKGINYQME	DHTEKMLQGF DHTEKMLQGF DHTEKMLQGF DHSERMLQAF DHTERMLSAF DHTERMLPLF -H-E-MLF
121 TY.DMKTSFI TY.DMKTSFI VY.DFDSTFI GQKDCLFTVT G.RPFYSAVA AQR.FESVLC GLGN.ESVLS	161 RMPLTLIGPK RMPLTLIGPK RLPVTLRGPK KFAPLAVQGS EFTPLSVSGA T.APLHISGR .YTPLIIKPS	201 TTVIEPVMTR TTVIEPVMTR TTVIEPIMTR TTVTEPHKSR TTVTEPHKSR TIVTECISR TILHTCGISR TILHTCGISR
PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis D. nodosus S. aureus Consensus	PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis D. nodosus S. aureus Consensus	PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis D. nodosus S. aureus Consensus

1G. 23C

```
AGGEDVADLR
AGGEDVADLR
VTGEPVADLR
                                                                                                                                                                                                                                                                                                                                                                                                                                                     SGAEPYGDLI
WGAEPVADIV
TGAEPTASIR
                                 LLVEGSDVTI
LLVPGSDVTI
SILPGSELLV
AMVPNSRIVL
LIAPRAEVVI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ATQAEGTTVI
AACAEGTTFV
                                                                                                                             SSAAFFLAAG
SAAAFFMVAA
SSAAFFIVAA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                IDEYPVLAIA / IDEYPVLAIA / IDEYPVLAVA / IDEIPILAVA / IDEIPIIALL / IDELPIFFIA / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELPVIALL / IDELP
                                                                                                                                                                                                                                                                                                                        ADIEVLNARL
ADIEVLNARL
ADIEVINPRL
ADITPENERL
                                                                                                SSAAFWLVAA
                                                                                                                                                                                                                            --AF---A-
                                 GQTIDVPGDP
GQVIDVPGDP
GQRVVVPGDI
AADIFVPGDI
                                                                                                                                                                                                                                                                                                                                                     GLILTLOEMG
GLILTLOEMG
GVLEVLAQMG
GIIDVLQNMG
AIITLLQKMG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           VVPPERAPSM
TVPEDRAPSM
TFGGEIIPRL
EIGGDIIPRL
TVAPEWIANA
TIEGELVPKA
                                                                                                                                                             GCVLDIVGDL
...FHVPGDI
IRITGGGKLV
IRITGGGKLV
IRLEGRGKLT
TVHGPAHLT
SIAGGOKLT
IVTGGOKLH
IKPAD....
                                                                                                                                                                                                                                                                                                                                                                                                                                                KNVGLNPTRT
RNVGINPTRA
HNVGINQTRS
-NV - N-TR-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            321
VR. ASKLKGV
VR. ASKLKGV
VR. SSTLKGV
VR. ASHLQGC
IE. TSSLKAV
VY. HSKLRGI
                                                                                                                                                                                                                                                                                                                    RNVLMNPTRT
RNVLMNPTRT
LNVLMNPTRT
ENVGINPTRT
                            Agrobacterium CP4
Synechocystis sp. PCC6803
B. subtilis
D. nodosus
S. aureus
Consensus
                                                                                                                                                                                                                                                                                                                                                                                                             Synechocystis sp. PCC6803
B. subtilis
D. nodosus
S. aureus
Consensus
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Agrobacterium CP4
Synechocystis sp. PCC6803
B. subtilis
D. nodosus
S. aureus
Consensus
                                                                                                                                                                                                                                                                                                                 PG2982
LBAA
Agrobacterium CP4
```

FIG. 23D

GEMSLTVRGR GETSLVVRGR FDDGLEIQGG TADGMKVYGK GADFIHIYGR TNDGLIIHPS	440 LAAEKPVTVD LVSENPVTVD LGSGGQTIIN CITEEPIEIE VRAAGELLID VLSSEPVKIK	437 A CHD
LEANGYDCTE LEANGYDCTE LKLNGYDCDE LGKMGAKYTE LRKLGAEIEP LQTLGYACDY LNLLGFELQP L~G	RIAMSFLVMG RIAMSFLVMG RIAMSFLVMG RIAMALAIAA RIGMMLGIAS RIGMMLAVAG RI-M-L-V	AKIELSIL AKIELSIL AKIELSDTKA A QG* KKS
SDRLAAVARG SDRLAAVARG SDRLSAVANG SDRLAAIASE TNRIDTVVSE SDRLAAMAQN TNRIDTTADM	GGTVATHLDH GGAVATHLDH GAAVATHLDH GAEVDSLTDH GAAVSSHGDH TNATDILTDH	EFMDMMPGLG EFMDLMAGLG EFFGTLGQVA TFFEHLNKLS QFRDFAAIG GFLPKLKLLQ
DGLDELRYKE DGLDELRYKE NGLEELRYKE EDAAELRYKE KDAAELKYKE GNLSELRYKE KDAEELKYKE	401 PDGKGLG PDGKGLG PDGKGLGNAS SPLQ QTLK.G SDRQFL EFK	441 DSNMIATSFP DSNMIATSFP DATMIATSFP RAEAAAISYP HTDAIHVSYP QFDAVNVSFP
Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis D. nodosus S. aureus Consensus	PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis D. nodosus S. aureus Consensus	PG2982 LBAA Agrobacterium CP4 Synechocystis sp. PCC6803 B. subtilis D. nodosus S. aureus Consensus

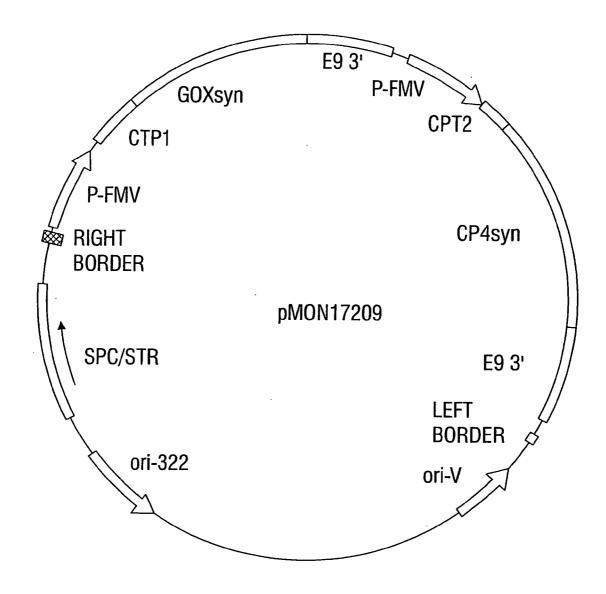


FIG. 24

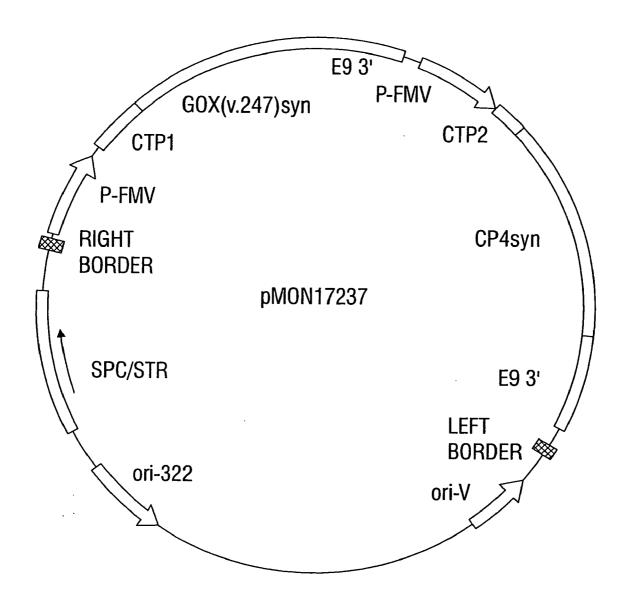


FIG. 25

GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASES

[0001] This application is a continuation of copending U.S. patent application Ser. No. 09/464,099; which is a divisional of U.S. patent application Ser. No. 09/137,440, filed Aug. 20, 1998, now issued as U.S. Pat. No. 6,248,876; which is a continuation of U.S. patent application Ser. No. 08/833,485, filed Apr. 7, 1997, now issued as U.S. Pat. No. 5,804,425; which is a continuation of U.S. patent application Ser. No. 07/306,063, filed Sep. 13, 1994, now issued as U.S. Pat. No. 5,633,435; which is a continuation-in-part of U.S. patent application Ser. No. 07/749,611, filed Aug. 28, 1991, now abandoned; which is a continuation-in-part of U.S. patent application Ser. No. 07/576,537, filed Aug. 31, 1990, now abandoned.

BACKGROUND OF THE INVENTION

[0002] This invention relates in general to plant molecular biology and, more particularly, to a new class of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases.

[0003] Recent advances in genetic engineering have provided the requisite tools to transform plants to contain foreign genes. It is now possible to produce plants which have unique characteristics of agronomic importance. Certainly, one such advantageous trait is more cost effective, environmentally compatible weed control via herbicide tolerance. Herbicide-tolerant plants may reduce the need for tillage to control weeds thereby effectively reducing soil erosion.

[0004] One herbicide which is the subject of much investigation in this regard is N-phosphonomethylglycine commonly referred to as glyphosate. Glyphosate inhibits the shikimic acid pathway which leads to the biosynthesis of aromatic compounds including amino acids, plant hormones and vitamins. Specifically, glyphosate curbs the conversion of phosphoenolpyruvic acid (PEP) and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (hereinafter) referred to as EPSP synthase or EPSPS). For purposes of the present invention, the term "glyphosate" should be considered to include any herbicidally effective form of N-phosphonomethylglycine (including any salt thereof) and other forms which result in the production of the glyphosate anion in planta.

[0005] It has been shown that glyphosate-tolerant plants can be produced by inserting into the genome of the plant the capacity to produce a higher level of EPSP synthase in the chloroplast of the cell (Shah et al., 1986) which enzyme is preferably glyphosate-tolerant (Kishore et al. 1988). Variants of the wild-type EPSPS enzyme have been isolated which are glyphosate-tolerant as a result of alterations in the EPSPS amino acid coding sequence (Kishore and Shah, 1988; Schulz et al., 1984; Sost et al., 1984; Kishore et al., 1986). These variants typically have a higher K, for glyphosate than the wild-type EPSPS enzyme which confers the glyphosate-tolerant phenotype, but these variants are also characterized by a high K_m for PEP which makes the enzyme kinetically less efficient (Kishore and Shah, 1988; Sost et al., 1984; Schulz et al., 1984; Kishore et al., 1986; Sost and Amrhein, 1990). For example, the apparent K_m for PEP and the apparent K_i for glyphosate for the native EPSPS from E. coli are 10 µM and 0.5 μM while for a glyphosate-tolerant isolate having a single amino acid substitution of an alanine for the glycine at position 96 these values are 220 μ M and 4.0 mM, respectively. A number of glyphosate-tolerant plant variant EPSPS genes have been constructed by mutagenesis. Again, the glyphosate-tolerant EPSPS was impaired due to an increase in the K_m for PEP and a slight reduction of the V_{max} of the native plant enzyme (Kishore and Shah, 1988) thereby lowering the catalytic efficiency (V_{max}/K_m) of the enzyme. Since the kinetic constants of the variant enzymes are impaired with respect to PEP, it has been proposed that high levels of overproduction of the variant enzyme, 40-80 fold, would be required to maintain normal catalytic activity in plants in the presence of glyphosate (Kishore et al., 1988).

[0006] While such variant EPSP synthases have proved useful in obtaining transgenic plants tolerant to glyphosate, it would be increasingly beneficial to obtain an EPSP synthase that is highly glyphosate-tolerant while still kinetically efficient such that the amount of the glyphosate-tolerant EPSPS needed to be produced to maintain normal catalytic activity in the plant is reduced or that improved tolerance be obtained with the same expression level.

[0007] Previous studies have shown that EPSPS enzymes from different sources vary widely with respect to their degree of sensitivity to inhibition by glyphosate. A study of plant and bacterial EPSPS enzyme activity as a function of glyphosate concentration showed that there was a very wide range in the degree of sensitivity to glyphosate. The degree of sensitivity showed no correlation with any genus or species tested (Schulz et al., 1985). Insensitivity to glyphosate inhibition of the activity of the EPSPS from the *Pseudomonas* sp. PG2982 has also been reported but with no details of the studies (Fitzgibbon, 1988). In general, while such natural tolerance has been reported, there is no report suggesting the kinetic superiority of the naturally occurring bacterial glyphosate-tolerant EPSPS enzymes over those of mutated EPSPS enzymes nor have any of the genes been characterized. Similarly, there are no reports on the expression of naturally glyphosate-tolerant EPSPS enzymes in plants to confer glyphosate tolerance.

[0008] For purposes of the present invention the term "mature EPSP synthase" relates to the EPSPS polypeptide without the N-terminal chloroplast transit peptide. It is now known that the precursor form of the EPSP synthase in plants (with the transit peptide) is expressed and upon delivery to the chloroplast, the transit peptide is cleaved yielding the mature EPSP synthase. All numbering of amino acid positions are given with respect to the mature EPSP synthase (without chloroplast transit peptide leader) to facilitate comparison of EPSPS sequences from sources which have chloroplast transit peptides (i.e., plants and fungi) to sources which do not utilize a chloroplast targeting signal (i.e., bacteria).

[0009] In the amino acid sequences which follow, the standard single letter or three letter nomenclature are used. All peptide structures represented in the following description are shown in conventional format in which the amino group at the N-terminus appears to the left and the carboxyl group at the C-terminus at the right. Likewise, amino acid nomenclature for the naturally occurring amino acids found in protein is as follows: alanine (Ala;A), asparagine (Asn;N), aspartic acid (Asp;D), arginine (Arg;R), cysteine (Cys;C), glutamic acid (Glu;E), glutamine (Gln;Q), glycine (Gly;G), histidine (His;H), isoleucine (Ile;I), leucine (Leu;L), lysine (Lys;K), methionine (Met;M), phenylalanine (Phe;F), proline (Pro;P), serine (Ser;S), threonine (Thr;T), tryptophan (Trp;W),

tyrosine (Tyr;Y), and valine (Val;V). An "X" is used when the amino acid residue is unknown and parentheses designate that an unambiguous assignment is not possible and the amino acid designation within the parentheses is the most probable estimate based on known information.

[0010] The term "nonpolar" amino acids include alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, and methionine. The term "uncharged polar" amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The term "charged polar" amino acids includes the "acidic" and "basic" amino acids. The term "acidic" amino acids includes aspartic acid and glutamic acid. The term "basic" amino acid includes lysine, arginine and histidine. The term "polar" amino acids includes both "charged polar" and "uncharged polar" amino acids.

[0011] Deoxyribonucleic acid (DNA) is a polymer comprising four mononucleotide units, dAMP (2'-Deoxyadenosine-5-monophosphate), dGMP (2'-Deoxyguanosine-5monophosphate), **dCMP** (2'-Deoxycytosine-5monophosphate) and dTMP (2'-Deoxythymosine-5monophosphate) linked in various sequences by 3',5'phosphodiester bridges. The structural DNA consists of multiple nucleotide triplets called "codons" which code for the amino acids. The codons correspond to the various amino acids as follows: Arg (CGA, CGC, CGG, CGT, AGA, AGG); Leu (CTA, CTC, CTG, CTT, TTA, TTG); Ser (TCA, TCC, TCG, TCT, AGC, AGT); Thr (ACA, ACC, ACG, ACT); Pro (CCA, CCC, CCG, CCT); Ala (GCA, GCC, GCG, GCT); Gly (GGA, GGC, GGG, GGT); Ile (ATA, ATC, ATT); Val (GTA, GTC, GTG, GTT); Lys (AAA, AAG); Asn (AAC, AAT); Gln (CAA, CAG); His (CAC, CAT); Glu (GAA, GAG); Asp (GAC, GAT); Tyr (TAC, TAT); Cys (TGC, TGT); Phe (TTC, TTT); Met (ATG); and Trp (UGG). Moreover, due to the redundancy of the genetic code (i.e., more than one codon for all but two amino acids), there are many possible DNA sequences which may code for a particular amino acid sequence.

SUMMARY OF THE INVENTION

[0012] DNA molecules comprising DNA encoding kinetically efficient, glyphosate-tolerant EPSP synthases are disclosed. The EPSP synthases of the present invention reduce the amount of overproduction of the EPSPS enzyme in a transgenic plant necessary for the enzyme to maintain catalytic activity while still conferring glyphosate tolerance. The EPSP synthases described herein represent a new class of EPSPS enzymes, referred to hereinafter as Class II EPSPS enzymes. Class II EPSPS enzymes of the present invention usually share only between about 47% and 55% amino acid similarity or between about 22% and 30% amino acid identity to other known bacterial or plant EPSPS enzymes and exhibit tolerance to glyphosate while maintaining suitable K_m (PEP) ranges. Suitable ranges of K_m (PEP) for EPSPS for enzymes of the present invention are between 1-150 µM, with a more preferred range of between 1-35 µM, and a most preferred range between 2-25 μM. These kinetic constants are determined under the assay conditions specified hereinafter. An EPSPS of the present invention preferably has a K, for glyphosate range of between 15-10000 μ M. The K_i/K_m ratio should be between about 2-500, and more preferably between 25-500. The V_{max} of the purified enzyme should preferably be in the range of 2-100 units/mg (µmoles/minute.mg at 25° C.) and the K_m for shikimate-3-phosphate should preferably be in the range of 0.1 to 50 μ M.

[0013] Genes coding for Class II EPSPS enzymes have been isolated from five (5) different bacteria: Agrobacterium tumefaciens sp. strain CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis, and Staphylococcus aureus. The LBAA and PG2982 Class II EPSPS genes have been determined to be identical and the proteins encoded by these two genes are very similar to the CP4 protein and share approximately 84% amino acid identity with it. Class II EPSPS enzymes often may be distinguished from Class I EPSPS's by their inability to react with polyclonal antibodies prepared from Class I EPSPS enzymes under conditions where other Class I EPSPS enzymes would readily react with the Class I antibodies as well as the presence of certain unique regions of amino acid homology which are conserved in Class II EPSP synthases as discussed hereinafter.

[0014] Other Class II EPSPS enzymes can be readily isolated and identified by utilizing a nucleic acid probe from one of the Class II EPSPS genes disclosed herein using standard hybridization techniques. Such a probe from the CP4 strain has been prepared and utilized to isolate the Class II EPSPS genes from strains LBAA and PG2982. These genes may also optionally be adapted for enhanced expression in plants by known methodology. Such a probe has also been used to identify homologous genes in bacteria isolated de novo from soil.

[0015] The Class II EPSPS enzymes are preferably fused to a chloroplast transit peptide (CTP) to target the protein to the chloroplasts of the plant into which it may be introduced. Chimeric genes encoding this CTP-Class II EPSPS fusion protein may be prepared with an appropriate promoter and 3' polyadenylation site for introduction into a desired plant by standard methods.

[0016] To obtain the maximal tolerance to glyphosate herbicide it is preferable to transform the desired plant with a plant-expressible Class II EPSPS gene in conjunction with another plant-expressible gene which expresses a protein capable of degrading glyphosate such as a plant-expressible gene encoding a glyphosate oxidoreductase enzyme as described in PCT Application No. WO 92/00377, the disclosure of which is hereby incorporated by reference.

[0017] Therefore, in one aspect, the present invention provides a new class of EPSP synthases that exhibit a low K_m for phosphoenolpyruvate (PEP), a high V_{max}/K_m ratio, and a high K, for glyphosate such that when introduced into a plant, the plant is made glyphosate-tolerant such that the catalytic activity of the enzyme and plant metabolism are maintained in a substantially normal state. For purposes of this discussion, a highly efficient EPSPS refers to its efficiency in the presence of glyphosate.

[0018] More particularly, the present invention provides EPSPS enzymes having a K_m for phosphoenolpyruvate (PEP) between 1-150 μ M and a K_i (glyphosate)/ K_m (PEP) ratio between 3-500, said enzymes having the sequence domains: $-R-X-H-X_2-E-$ (SEQ ID NO:37), in which

[0019] X_1 is an uncharged polar or acidic amino acid,

[0020] X₂ is serine or threonine; and

-G-D-K—X₃— (SEQ ID NO:38), in which

[0021] X_3 is serine or threonine; and

 $-S-A-Q-X_4-K-$ (SEQ ID NO:39), in which

[0022] X_4 is any amino acid; and

 $-N-X_5$ -T-R- (SEQ ID:40), in which

[0023] X_5 is any amino acid.

[0024] Exemplary Class II EPSPS enzyme sequences are disclosed from seven sources: *Agrobacterium* sp. strain designated CP4, *Achromobacter* sp. strain LBAA, *Pseudomonas* sp. strain PG2982, *Bacillus subtilis* 1A2, *Staphylococcus aureus* (ATCC 35556), *Synechocystis* sp. PCC6803 and *Dichelobacter nodosus*.

[0025] In another aspect of the present invention, a double-stranded DNA molecule comprising DNA encoding a Class II EPSPS enzyme is disclosed. Exemplary Class II EPSPS enzyme DNA sequences are disclosed from seven sources: Agrobacterium sp. strain designated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

[0026] In a further aspect of the present invention, nucleic acid probes from EPSPS Class II genes are presented that are suitable for use in screening for Class II EPSPS genes in other sources by assaying for the ability of a DNA sequence from the other source to hybridize to the probe.

[0027] In yet another aspect of the present invention, a recombinant, double-stranded DNA molecule comprising in sequence:

[0028] a) a promoter which functions in plant cells to cause the production of an RNA sequence;

[0029] b) a structural DNA sequence that causes the production of an RNA sequence which encodes a Class II EPSPS enzyme having the sequence domains:

[0030] —R— X_1 —H— X_2 -E- (SEQ ID NO:37), in which

[0031] X_1 is an uncharged polar or acidic amino acid,

[0032] X₂ is serine or threonine; and

[0033] -G-D-K $-X_3$ —(SEQ ID NO:38), in which

[0034] X_3 is serine or threonine; and

[0035] —S-A-Q-X₄—K— (SEQ ID NO:39), in which X₄ is any amino acid; and

[0036] —N— X_5 -T-R— (SEQ ID:40), in which

[0037] X_5 is any amino acid; and

[0038] c) a 3' nontranslated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSP synthase polypeptide to enhance the glyphosate tolerance of a plant cell transformed with said DNA molecule.

[0039] In still yet another aspect of the present invention, transgenic plants and transformed plant cells are disclosed that are made glyphosate-tolerant by the introduction of the above-described plant-expressible Class II EPSPS DNA molecule into the plant's genome.

[0040] In still another aspect of the present invention, a method for selectively controlling weeds in a crop field is presented by planting crop seeds or crop plants transformed with a plant-expressible Class II EPSPS DNA molecule to confer glyphosate tolerance to the plants which allow for glyphosate containing herbicides to be applied to the crop to selectively kill the glyphosate sensitive weeds, but not the crops.

[0041] Other and further objects, advantages and aspects of the invention will become apparent from the accompanying drawing figures and the description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0042] FIGS. 1A and 1B show the DNA sequence (SEQ ID NO:1) for the full-length promoter of figwort mosaic virus (FMV35S).

[0043] FIG. 2 shows the cosmid cloning vector pMON17020.

[0044] FIGS. 3A, 3B, 3C, 3D and 3E show the structural DNA sequence (SEQ ID NO:2) for the Class II EPSPS gene from bacterial isolate *Achromobacterium* sp. strain CP4 and the deduced amino acid sequence (SEQ ID NO:3).

[0045] FIGS. 4A, 4B, 4C, 4D and 4È show the structural DNA sequence (SEQ ID NO:4) for the Class II EPSPS gene from the bacterial isolate *Achromobacter* sp. strain LBAA and the deduced amino acid sequence (SEQ ID NO:5).

[0046] FIGS. 5A, 5B, 5C, 5D and 5E show the structural DNA sequence (SEQ ID NO:6) for the Class II EPSPS gene from the bacterial isolate *Pseudomonas* sp. strain PG2982 and the deduced amino acid sequence (SEQ ID NO:7).

[0047] FIGS. 6A and 6B show the Bestfit comparison of the CP4 EPSPS amino acid sequence (SEQ ID NO:3) with that for the *E. coli* EPSPS (SEQ ID NO:8).

[0048] FIGS. 7A and 7B show the Bestfit comparison of the CP4 EPSPS amino acid sequence (SEQ ID NO:3) with that for the LBAA EPSPS (SEQ ID NO:5).

[0049] FIGS. 8A and 8B show the structural DNA Sequence (SEQ ID NO:9) for the synthetic CP4 Class II EPSPS gene.

[0050] FIG. 9 shows the DNA sequence (SEQ ID NO:10) of the chloroplast transit peptide (CTP) and encoded amino acid sequence (SEQ ID NO:11) derived from the *Arabidopsis thaliana* EPSPS CTP and containing a SphI restriction site at the chloroplast processing site, hereinafter referred to as CTP2

[0051] FIGS. 10A and 10B show the DNA sequence (SEQ ID NO:12) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:13) derived from the *Arabidopsis thaliana* EPSPS gene and containing an EcoRI restriction site within the mature region of the EPSPS, hereinafter referred to as CTP3.

[0052] FIG. 11 shows the DNA sequence (SEQ ID NO:14) of the chloroplast transit peptide and encoded amino sequence (SEQ ID NO:15) derived from the *Petunia hybrida* EPSPS CTP and containing a SphI restriction site at the chloroplast processing site and in which the amino acids at the processing site are changed to -Cys-Met-, hereinafter referred to as CTP4.

[0053] FIGS. 12A and 12B show the DNA sequence (SEQ ID NO:16) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:17) derived from the *Petunia hybrida* EPSPS gene with the naturally occurring EcoRI site in the mature region of the EPSPS gene, hereinafter referred to as CTP5.

[0054] FIG. 13 shows a plasmid map of CP4 plant transformation/expression vector pMON17110.

[0055] FIG. 14 shows a plasmid map of CP4 synthetic EPSPS gene plant transformation/expression vector pMON17131.

[0056] FIG. 15 shows a plasmid map of CP4 synthetic EPSPS free DNA plant transformation expression vector pMON13640.

[0057] FIG. 16 shows a plasmid map of CP4 plant transformation/direct selection vector pMON17227.

[0058] FIG. 17 shows a plasmid map of CP4 plant transformation/expression vector pMON19653.

[0059] FIGS. 18A, 18B, 18C and 18D show the structural DNA sequence (SEQ ID NO:41) for the Class II EPSPS gene from the bacterial isolate *Bacillus subtilis* and the deduced amino acid sequence (SEQ ID NO:42).

[0060] FIGS. 19A, 19B, 19C and 19D show the structural DNA sequence (SEQ ID NO:43) for the Class II EPSPS gene from the bacterial isolate *Staphylococcus aureus* and the deduced amino acid sequence (SEQ ID NO:44).

[0061] FIGS. 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J and 20K show the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. strain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Bacillus subtilis SEQ ID NO:42), and Staphylococcus aureus (SEQ ID NO:44) with that for representative Class I EPSPS amino acid sequences [Sacchromyces cerevisiae (SEQ ID NO:49), Aspergillus nidulans (SEQ ID NO:50), Brassica napus (SEQ ID NO:51), Arabidopsis thaliana (SEQ ID NO:52), Nicotina tobacum (SEQ ID NO:53), L. esculentum (SEQ ID NO:54), Petunia hybrida (SEQ ID NO:55), Zea mays (SEQ ID NO:56), Solmenella gallinarum (SEQ ID NO:57), Solmenella typhimurium (SEQ ID NO:58), Solmenella typhi (SEQ ID NO:65), E. coli (SEQ ID NO:8), K. pneumoniae (SEQ ID NO:59), Y. enterocolitica (SEQ ID NO:60), H. influenzae (SEQ ID NO:61), P. multocida (SEQ ID NO:62), Aeromonas salmonicida (SEQ ID NO:63), Bacillus pertussis (SEQ ID NO:64), and illustrates the conserved regions among Class II EPSPS sequences. To aid in a comparison of the EPSPS sequences, only mature EPSPS sequences were compared. That is, the sequence corresponding to the chloroplast transit peptide, if present in a subject EPSPS, was removed prior to making the sequence alignment.

[0062] FIGS. 21A, 21B, 21C, 21D and 21E show the structural DNA sequence (SEQ ID NO:66) for the Class II EPSPS gene from the bacterial isolate *Synechocystis* sp. PCC6803 and the deduced amino acid sequence (SEQ ID NO:67)

[0063] FIGS. 22A, 22B, 22C, 22D and 22E show the structural DA sequence (SEQ ID NO:68) for the Class II EPSPS gene from the bacterial isolate Dichelobacter nodosus and the deduced amino acid sequence (SEQ ID NO:69).

[0064] FIGS. 23A, 23B, 23C and 23D show the Bestfit comparison of the representative Class II EPSPS amino acid sequences *Pseudomonas* sp. strain PG2982 (SEQ ID NO:7), *Achromobacter* sp. strain LBAA (SEQ ID NO:5), *Agrobacterium* sp. strain designated CP4 (SEQ ID NO:3), *Synechocystis* sp. PCC6803 (SEQ ID NO:67), *Bacillus subtilis* (SEQ ID NO:42), Dichelobacter nodosus (SEQ ID NO:69) and *Staphylococcus aureus* (SEQ ID NO:44).

[0065] FIG. 24 a plasmid map of canola plant transformation/expression vector pMON17209.

[0066] FIG. 25 a plasmid map of canola plant transformation/expression vector pMON17237.

STATEMENT OF THE INVENTION

[0067] The expression of a plant gene which exists in double-stranded DNA form involves synthesis of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing

involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA.

[0068] Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA, and to initiate the transcription into mRNA using one of the DNA strands as a template to make a corresponding complementary strand of RNA. A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the cauliflower mosaic virus (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose bis-phosphate carboxylase (ss-RUBISCO, a very abundant plant polypeptide) and the fulllength transcript promoter from the figwort mosaic virus (FMV35S), promoters from the maize ubiquitin and rice actin genes. All of these promoters have been used to create various types of DNA constructs which have been expressed in plants; see, e.g., PCT publication WO 84/02913 (Rogers et al., Monsanto).

[0069] Promoters which are known or found to cause transcription of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant DNA viruses and include, but are not limited to, the CaMV35S and FMV35S promoters and promoters isolated from plant genes such as ssRUBISCO genes and the maize ubiquitin and rice actin genes. As described below, it is preferred that the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of a Class II EPSPS to render the plant substantially tolerant to glyphosate herbicides. The amount of Class II EPSPS needed to induce the desired tolerance may vary with the plant species. It is preferred that the promoters utilized have relatively high expression in all meristematic tissues in addition to other tissues inasmuch as it is now known that glyphosate is translocated and accumulated in this type of plant tissue. Alternatively, a combination of chimeric genes can be used to cumulatively result in the necessary overall expression level of the selected Class II EPSPS enzyme to result in the glyphosatetolerant phenotype.

[0070] The mRNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples, wherein the non-translated region is derived from both the 5' non-translated sequence that accompanies the promoter sequence and part of the 5' non-translated region of the virus coat protein gene. Rather, the non-translated leader sequence can be derived from an unrelated promoter or coding sequence as discussed above.

[0071] Preferred promoters for use in the present invention the full-length transcript (SEQ ID NO:1) promoter from the figwort mosaic virus (FMV35S) and the full-length transcript (35S) promoter from cauliflower mosaic virus (CaMV), including the enhanced CaMV35S promoter (Kay et al. 1987). The FMV35S promoter functions as strong and uniform promoter with particularly good expression in mer-

istematic tissue for chimeric genes inserted into plants, particularly dicotyledons. The resulting transgenic plant in general expresses the protein encoded by the inserted gene at a higher and more uniform level throughout the tissues and cells of the transformed plant than the same gene driven by an enhanced CaMV35S promoter. Referring to FIG. 1, the DNA sequence (SEQ ID NO:1) of the FMV35S promoter is located between nucleotides 6368 and 6930 of the FMV genome. A 5' non-translated leader sequence is preferably coupled with the promoter. The leader sequence can be from the FMV35S genome itself or can be from a source other than FMV35S.

[0072] For expression of heterologous genes in moncotyledonous plants the use of an intron has been found to enhance expression of the heterologous gene. While one may use any of a number of introns which have been isloated from plant genes, the use of the first intron from the maize heat shock 70 gene is preferred.

[0073] The 3' non-translated region of the chimeric plant gene contains a polyadenylation signal which functions in plants to cause the addition of polyadenylate nucleotides to the 3' end of the viral RNA. Examples of suitable 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylated signal of *Agrobacterium* tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene, and (2) plant genes like the soybean storage protein genes and the small subunit of the ribulose-1,5-bisphosphate carboxylase (ssRUBISCO) gene. An example of a preferred 3' region is that from the ssRUBISCO gene from pea (E9), described in greater detail below.

[0074] The DNA constructs of the present invention also contain a structural coding sequence in double-stranded DNA form which encodes a glyphosate-tolerant, highly efficient Class II EPSPS enzyme.

Identification of Glyphosate-Tolerant, Highly Efficient EPSPS Enzymes

[0075] In an attempt to identify and isolate glyphosate-tolerant, highly efficient EPSPS enzymes, kinetic analysis of the EPSPS enzymes from a number of bacteria exhibiting tolerance to glyphosate or that had been isolated from suitable sources was undertaken. It was discovered that in some cases the EPSPS enzymes showed no tolerance to inhibition by glyphosate and it was concluded that the tolerance phenotype of the bacterium was due to an impermeability to glyphosate or other factors. In a number of cases, however, microorganisms were identified whose EPSPS enzyme showed a greater degree of tolerance to inhibition by glyphosate and that displayed a low \mathbf{K}_m for PEP when compared to that previously reported for other microbial and plant sources. The EPSPS enzymes from these microorganisms were then subjected to further study and analysis.

[0076] Table I displays the data obtained for the EPSPS enzymes identified and isolated as a result of the above described analysis. Table I includes data for three identified Class II EPSPS enzymes that were observed to have a high tolerance to inhibition to glyphosate and a low K_m for PEP as well as data for the native Petunia EPSPS and a glyphosate-tolerant variant of the Petunia EPSPS referred to as GA101. The GA101 variant is so named because it exhibits the substitution of an alanine residue for a glycine residue at position 101 (with respect to Petunia). When the change introduced into the Petunia EPSPS (GA101) was introduced into a num-

ber of other EPSPS enzymes, similar changes in kinetics were observed, an elevation of the K_i for glyphosate and of the K_m for PEP.

TABLE I

Kinet	ic characterizati	on of EPSPS enzymes	<u>:</u>
ENZYME SOURCE	$\begin{array}{c} K_{\mathbf{m}}\operatorname{PEP} \\ (\mu M) \end{array}$	$\begin{array}{c} K_i Glyphosate \\ (\mu M) \end{array}$	K_i/K_m
Petunia	5	0.4	0.08
Petunia GA101	200	2000	10
PG2982	$2.1 - 3.1^{1}$	25-82	~8-40
LBAA	~7.3-8 ²	60 (est) ⁷	~7.9
CP4	12^{3}	2720	227
B. subtilis 1A2	13 ⁴	440	33.8
S. aureus	5 ⁵	200	40

 $^{^{1}}$ Range of PEP tested = 1-40 μ M

[0077] The Agrobacterium sp. strain CP4 was initially identified by its ability to grow on glyphosate as a carbon source (10 mM) in the presence of 1 mM phosphate. The strain CP4 was identified from a collection obtained from a fixed-bed immobilized cell column that employed Mannville R-635 diatomaceous earth beads. The column had been run for three months on a waste-water feed from a glyphosate production plant. The column contained 50 mg/ml glyphosate and NH₃ as NH₄Cl. Total organic carbon was 300 mg/ml and BOD's (Biological Oxygen Demand—a measure of "soft" carbon availability) were less than 30 mg/ml. This treatment column has been described (Heitkamp et al., 1990). Dworkin-Foster minimal salts medium containing glyphosate at 10 mM and with phosphate at 1 mM was used to select for microbes from a wash of this column that were capable of growing on glyphosate as sole carbon source. Dworkin-Foster minimal medium was made up by combining in 1 liter (with autoclaved H₂O), 1 ml each of A, B and C and 10 ml of D (as per below) and thiamine HCl (5 mg).

A. D-F Salts (1000× stock; per 100 ml; autoclaved):

H_3BO_3	1 mg	
$MnSO_4 \bullet 7H_2O$	1 mg	
ZnSO ₄ •7H ₂ O	12.5 mg	
CuSO ₄ •5H ₂ O	8 mg	
NaMoO ₃ •3H ₂ O	1.7 mg	

B. FeSO₄.7H₂O (1000× stock; per 100 ml; autoclaved) 0.1 g C. MgSO₄.7H₂O (1000× stock; per 100 ml; autoclaved) 20 g D. (NH₄)₂SO₄ (100× stock; per 100 ml; autoclaved) 20 g

[0078] Yeast Extract (YE; Difco) was added to a final concentration of 0.01 or 0.001%. The strain CP4 was also grown on media composed of D-F salts, amended as described above, containing glucose, gluconate and citrate (each at 0.1%) as carbon sources and with inorganic phosphate (0.2-1.0 mM) as the phosphorous source.

[0079] Other Class II EPSPS containing microorganisms were identified as *Achromobacter* sp. strain LBAA (Hallas et al., 1988), *Pseudomonas* sp. strain PG2982 (Moore et al., 1983; Fitzgibbon 1988), *Bacillus subtilis* 1A2 (Henner et al., 1984) and *Staphylococcus aureus* (O'Connell et al., 1993). It

²Range of PEP tested = 5-80 µM

 $^{^{3}}$ Range of PEP tested = 1.5-40 μ M

 $^{^4}$ Range of PEP tested = 1-60 μ M 5 Range of PEP tested = 1-50 μ M

⁷(est) = estimated

had been reported previously, from measurements in crude lysates, that the EPSPS enzyme from strain PG2982 was less sensitive to inhibition to glyphosate than that of $E.\ coli$, but there has been no report of the details of this lack of sensitivity and there has been no report on the K_m for PEP for this enzyme or of the DNA sequence for the gene for this enzyme (Fitzgibbon, 1988; Fitzgibbon and Braymer, 1990).

Relationship of the Class H EPSPS to those Previously Studied

[0080] All EPSPS proteins studied to date have shown a remarkable degree of homology. For example, bacterial and plant EPSPS's are about 54% identical and with similarity as high as 80%. Within bacterial EPSPS's and plant EPSPS's themselves the degree of identity and similarity is much greater (see Table II).

TABLE II

Comparison between exen protein sequ		PS
	similarity	identity
E. coli vs. S. typhimurium	93	88
P. hybrida vs. E. coli	72	55
P. hybrida vs. L. esculentum	93	88

¹The EPSPS sequences compared here were obtained from the following references: *E. coli*, Rogers et al., 1983; *S. typhimurium*, Stalker et al., 1985; *Petunia hybrida*, Shah et al., 1986; and tomato (*L. esculentum*), Gasser et al. 1988.

[0081] When crude extracts of CP4 and LBAA bacteria (50 μ g protein) were probed using rabbit anti-EPSPS antibody (Padgette et al., 1987) to the Petunia EPSPS protein in a Western analysis, no positive signal could be detected, even with extended exposure times (Protein A—¹²⁵I development system) and under conditions where the control EPSPS (Petunia EPSPS, 20 ng; a Class I EPSPS) was readily detected. The presence of EPSPS activity in these extracts was confirmed by enzyme assay. This surprising result, indicating a lack of similarity between the EPSPS's from these bacterial isolates and those previously studied, coupled with the combination of a low K_m for PEP and a high K_i for glyphosate, illustrates that these new EPSPS enzymes are different from known EPSPS enzymes (now referred to as Class I EPSPS).

Glyphosate-Tolerant Enzymes in Microbial Isolates

[0082] For clarity and brevity of disclosure, the following description of the isolation of genes encoding Class II EPSPS enzymes is directed to the isolation of such a gene from a bacterial isolate. Those skilled in the art will recognize that the same or similar strategy can be utilized to isolate such genes from other microbial isolates, plant or fungal sources. Cloning of the *Agrobacterium* sp. Strain CP4 EPSPS Gene(s) in *E. coli*

[0083] Having established the existence of a suitable EPSPS in *Agrobacterium* sp. strain CP4, two parallel approaches were undertaken to clone the gene: cloning based on the expected phenotype for a glyphosate-tolerant EPSPS; and purification of the enzyme to provide material to raise antibodies and to obtain amino acid sequences from the protein to facilitate the verification of clones. Cloning and genetic techniques, unless otherwise indicated, are generally those described in Maniatis et al., 1982 or Sambrook et al., 1987. The cloning strategy was as follows: introduction of a cosmid bank of strain *Agrobacterium* sp. strain CP4 into *E*.

coli and selection for the EPSPS gene by selection for growth on inhibitory concentrations of glyphosate.

[0084] Chromosomal DNA was prepared from strain Agrobacterium sp. strain CP4 as follows: The cell pellet from a 200 ml L-Broth (Miller, 1972), late log phase culture of Agrobacterium sp. strain CP4 was resuspended in 10 ml of Solution I; 50 mM Glucose, 10 mM EDTA, 25 mM Tris-CL pH 8.0 (Birnboim and Doly, 1979). SDS was added to a final concentration of 1% and the suspension was subjected to three freeze-thaw cycles, each consisting of immersion in dry ice for 15 minutes and in water at 70° C. for 10 minutes. The lysate was then extracted four times with equal volumes of phenol:chloroform (1:1; phenol saturated with TE; TE=10 mM Tris pH8.0; 1.0 mM EDTA) and the phases separated by centrifugation (15000 g; 10 minutes). The ethanol-precipitable material was pelleted from the supernatant by brief centrifugation (8000 g; 5 minutes) following addition of two volumes of ethanol. The pellet was resuspended in 5 ml TE and dialyzed for 16 hours at 4° C. against 2 liters TE. This preparation yielded a 5 ml DNA solution of 552 μg/ml.

[0085] Partially-restricted DNA was prepared as follows. Three 100 µg aliquot samples of CP4 DNA were treated for 1 hour at 37° C. with restriction endonuclease HindIII at rates of 4, 2 and 1 enzyme unit/µg DNA, respectively. The DNA samples were pooled, made 0.25 mM with EDTA and extracted with an equal volume of phenol:chloroform. Following the addition of sodium acetate and ethanol, the DNA was precipitated with two volumes of ethanol and pelleted by centrifugation (12000 g; 10 minutes). The dried DNA pellet was resuspended in 500 µl TE and layered on a 10-40% Sucrose gradient (in 5% increments of 5.5 ml each) in 0.5 M NaCl, 50 mM Tris pH8.0, 5 mM EDTA. Following centrifugation for 20 hours at 26,000 rpm in a SW28 rotor, the tubes were punctured and ~1.5 ml fractions collected. Samples (20 μl) of each second fraction were run on 0.7% agarose gel and the size of the DNA determined by comparison with linearized lambda DNA and HindIII-digested lambda DNA standards. Fractions containing DNA of 25-35 kb fragments were pooled, desalted on AMICON10 columns (7000 rpm; 20° C.; 45 minutes) and concentrated by precipitation. This procedure yielded 15 µg of CP4 DNA of the required size. A cosmid bank was constructed using the vector pMON17020. This vector, a map of which is presented in FIG. 2, is based on the pBR327 replicon and contains the spectinomycin/streptomycin (Sp^r;spc) resistance gene from Tn7 (Fling et al., 1985), the chloramphenicol resistance gene (Cm^r;cat) from Tn9 (Alton et al., 1979), the gene10 promoter region from phage T7 (Dunn et al., 1983), and the 1.6 kb BgIII phage lambda cos fragment from pHC79 (Hohn and Collins, 1980). A number of cloning sites are located downstream of the cat gene. Since the predominant block to the expression of genes from other microbial sources in E. coli appears to be at the level of transcription, the use of the T7 promoter and supplying the T7 polymerase in trans from the pGP1-2 plasmid (Tabor and Richardson, 1985), enables the expression of large DNA segments of foreign DNA, even those containing RNA polymerase transcription termination sequences. The expression of the spc gene is impaired by transcription from the T7 promoter such that only Cm^r can be selected in strains containing pGP1-2. The use of antibiotic resistances such as Cm resistance which do not employ a membrane component is preferred due to the observation that high level expression of resistance genes that involve a membrane component, i.e. β-lactamase and Amp resistance, give rise to a glyphosatetolerant phenotype. Presumably, this is due to the exclusion of glyphosate from the cell by the membrane localized resistance protein. It is also preferred that the selectable marker be oriented in the same direction as the T7 promoter.

[0086] The vector was then cut with HindIII and treated with calf alkaline phosphatase (CAP) in preparation for cloning. Vector and target sequences were ligated by combining the following:

Vector DNA (HindIII/CAP)	3 µg
Size fractionated CP4 HindIII fragments	1.5 μg
10 × ligation buffer	2.2 µl
T4 DNA ligase (New England Biolabs) (400 U/µl)	1.0 µl

and adding H₂O to 22.0 µl. This mixture was incubated for 18 hours at 16° C. 10× ligation buffer is 250 mM Tris-HCl, pH 8.0; 100 mM MgCl₂; 100 mM Dithiothreitol; 2 mM Spermidine. The ligated DNA (5 µl) was packaged into lambda phage particles (Stratagene; Gigapack Gold) using the manufacturer's procedure.

[0087] A sample (200 µl) of *E. coli* HB101 (Boyer and Rolland-Dussoix, 1973) containing the T7 polymerase expression plasmid pGP1-2 (Tabor and Richardson, 1985) and grown overnight in L-Broth (with maltose at 0.2% and kanamycin at 50 μg/ml) was infected with 50 μl of the packaged DNA. Transformants were selected at 30° C. on M9 (Miller, 1972) agar containing kanamycin (50 µg/ml), chloramphenicol (25 µg/ml), L-proline (50 µg/ml), L-leucine $(50 \,\mu\text{g/ml})$ and B1 $(5 \,\mu\text{g/ml})$, and with glyphosate at $3.0 \,\text{mM}$. Aliquot samples were also plated on the same media lacking glyphosate to titer the packaged cosmids. Cosmid transformants were isolated on this latter medium at a rate of $\sim 5 \times 10^5$ per µg CP4 HindIII DNA after 3 days at 30° C. Colonies arose on the glyphosate agar from day 3 until day 15 with a final rate of ~1 per 200 cosmids. DNA was prepared from 14 glyphosate-tolerant clones and, following verification of this phenotype, was transformed into E. coli GB100/pGP1-2 (E. coli GB100 is an aroA derivative of MM294 [Talmadge and Gilbert, 1980]) and tested for complementation for growth in the absence of added aromatic amino acids and aminobenzoic acids. Other aroA strains such as SR481 (Bachman et al., 1980; Padgette et al., 1987), could be used and would be suitable for this experiment. The use of GB100 is merely exemplary and should not be viewed in a limiting sense. This aroA strain usually requires that growth media be supplemented with L-phenylalanine, L-tyrosine and L-tryptophan each at 100 µg/ml and with para-hydroxybenzoic acid, 2,3dihydroxybenzoic acid and para-aminobenzoic acid each at 5 μg/ml for growth in minimal media. Of the fourteen cosmids tested only one showed complementation of the aroA- phenotype. Transformants of this cosmid, pMON17076, showed weak but uniform growth on the unsupplemented minimal media after 10 days.

[0088] The proteins encoded by the cosmids were determined in vivo using a T7 expression system (Tabor and Richardson, 1985). Cultures of E. coli containing PGP1-2 (Tabor and Richardson, 1985) and test and control cosmids were grown at 30° C. in L-broth (2 ml) with chloramphenicol and kanamycin (25 and 50 μg/ml, respectively) to a Klett reading of ~50. An aliquot was removed and the cells collected by centrifugation, washed with M9 salts (Miller, 1972) and resuspended in 1 ml M9 medium containing glucose at 0.2%, thiamine at 20 µg/ml and containing the 18 amino acids at 0.01% (minus cysteine and methionine). Following incubation at 30° C. for 90 minutes, the cultures were transferred to a 42° C. water bath and held there for 15 minutes. Rifampicin (Sigma) was added to 200 $\mu g/ml$ and the cultures held at 42° C. for 10 additional minutes and then transferred to 30° C. for 20 minutes. Samples were pulsed with 10 μCi of ³⁵S-methionine for 5 minutes at 30° C. The cells were collected by centrifugation and suspended in 60-120 µl cracking buffer (60 mM Tris-HCl 6.8, 1% SDS, 1% 2-mercaptoethanol, 10% glycerol, 0.01% bromophenol blue). Aliquot samples were electrophoresed on 12.5% SDS-PAGE and following soaking for 60 minutes in 10 volumes of Acetic Acid-Methanol-water (10:30:60), the gel was soaked in ENLIGHTNING™ (DU-PONT) following manufacturer's directions, dried, and exposed at -70° C. to X-Ray film. Proteins of about 45 kd in size, labeled with ³⁵S-methionine, were detected in number of the cosmids, including pMON17076.

Purification of EPSPS from Agobacterium sp. Strain CP4

[0089] All protein purification procedures were carried out at 3-5° C. EPSPS enzyme assays were performed using either the phosphate release or radioactive HPLC method, as previously described in Padgette et al., 1987, using 1 mM phosphoenol pyruvate (PEP, Boehringer) and 2 mM shikimate-3phosphate (S3P) substrate concentrations. For radioactive HPLC assays, 14C-PEP (Amersham) was utilized. S3P was synthesized as previously described in Wibbenmeyer et al. 1988. N-terminal amino acid sequencing was performed by loading samples onto a Polybrene precycled filter in aliquots while drying. Automated Edman degradation chemistry was used to determine the N-terminal protein sequence, using an Applied Biosystems Model 470A gas phase sequencer (Hunkapiller et al., 1983) with an Applied Biosystems 120A PTH analyzer.

[0090] Five 10-litre fermentations were carried out on a spontaneous "smooth" isolate of strain CP4 that displayed less clumping when grown in liquid culture. This reduced clumping and smooth colony morphology may be due to reduced polysaccharide production by this isolate. In the following section dealing with the purification of the EPSPS enzyme, CP4 refers to the "smooth" isolate —CP4-S1. The cells from the three batches showing the highest specific activities were pooled. Cell paste of Agrobacterium sp. CP4 (300 g) was washed twice with 0.5 L of 0.9% saline and collected by centrifugation (30 minutes, 8000 rpm in a GS3 Sorvall rotor). The cell pellet was suspended in 0.9 L extraction buffer (100 mM Tris Cl, 1 mM EDTA, 1 mM BAM (Benzamidine), 5 mM DTT, 10% glycerol, pH 7.5) and lysed by 2 passes through a Manton Gaulin cell. The resulting solution was centrifuged (30 minutes, 8000 rpm) and the supernatant was treated with 0.21 L of 1.5% protamine sulfate (in 100 mM Tris Cl, pH 7.5, 0.2% w/v final protamine sulfate concentration). After stirring for 1 hour, the mixture was centrifuged (50 minutes, 8000 rpm) and the resulting supernatant treated with solid ammonium sulfate to 40% saturation and stirred for 1 hour. After centrifugation (50 minutes, 8000 rpm), the resulting supernatant was treated with solid ammonium sulfate to 70% saturation, stirred for 50 minutes, and the insoluble protein was collected by centrifugation (1 hour, 8000 rpm). This 40-70% ammonium sulfate fraction was then dissolved in extraction buffer to give a final volume of 0.2 L, and dialyzed twice (Spectrum 10,000 MW cutoff dialysis tubing) against 2 L of extraction buffer for a total of 12 hours. [0091] To the resulting dialyzed 40-70% ammonium sul-

fate fraction (0.29 L) was added solid ammonium sulfate to

give a final concentration of 1 M. This material was loaded (2 ml/min) onto a column (5 cm×15 cm, 295 ml) packed with phenyl Sepharose CL-4B (Pharmacia) resin equilibrated with extraction buffer containing 1 M ammonium sulfate, and washed with the same buffer (1.5 L, 2 ml/min). EPSPS was eluted with a linear gradient of extraction buffer going from 1 M to 0.00 M ammonium sulfate (total volume of 1.5 L, 2 ml/min). Fractions were collected (20 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 36-50) were pooled and dialyzed against 3×2 L (18 hours) of 10 mM Tris Cl, 25 mM KCl, 1 mM EDTA, 5 mM DTT, 10% glycerol, pH $^{7.8}$

[0092] The dialyzed EPSPS extract (350 ml) was loaded (5 ml/min) onto a column (2.4 cm×30 cm, 136 ml) packed with Q-Sepharose Fast Flow (Pharmacia) resin equilibrated with 10 mM Tris Cl, 25 mM KCl, 5 mM DTT, 10% glycerol, pH 7.8 (O Sepharose buffer), and washed with 1 L of the same buffer. EPSPS was eluted with a linear gradient of Q Sepharose buffer going from 0.025 M to 0.40 M KCl (total volume of 1.4 L, 5 ml/min). Fractions were collected (15 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 47-60) were pooled and the protein was precipitated by adding solid ammonium sulfate to 80% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation (20 minutes, 12000 rpm in a GSA Sorvall rotor), dissolved in Q Sepharose buffer (total volume of 14 ml), and dialyzed against the same buffer (2×1 L, 18 hours).

[0093] The resulting dialyzed partially purified EPSPS extract (19 ml) was loaded (1.7 ml/min) onto a Mono Q 10/10 column (Pharmacia) equilibrated with Q Sepharose buffer, and washed with the same buffer (35 ml). EPSPS was eluted with a linear gradient of 0.025 M to 0.35 M KCl (total volume of 119 ml, 1.7 ml/min). Fractions were collected (1.7 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 30-37) were pooled (6 ml).

[0094] The Mono Q pool was made 1 M in ammonium sulfate by the addition of solid ammonium sulfate and 2 ml aliquots were chromatographed on a Phenyl Superose 5/5 column (Pharmacia) equilibrated with 100 mM Tris Cl, 5 mM DTT, 1 M ammonium sulfate, 10% glycerol, pH 7.5 (Phenyl Superose buffer). Samples were loaded (1 ml/min), washed with Phenyl Superose buffer (10 ml), and eluted with a linear gradient of Phenyl Superose buffer going from 1 M to 0.00 M ammonium sulfate (total volume of 60 ml, 1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions from each run with the highest EPSPS activity (fractions ~36-40) were pooled together (10 ml, 2.5 mg protein). For N-terminal amino acid sequence determination, a portion of one fraction (#39 from run 1) was dialyzed against 50 mM NaHCO₃ (2×1 L). The resulting pure EPSPS sample (0.9 ml, 77 µg protein) was found to exhibit a single N-terminal amino acid sequence of:

 $(SEQ\ ID\ NO:18)$ $XH(G)\ ASSRPATARKSS(G)\ LX(G)\ (T)\ V(R)\ IPG(D)\ (K)\ (M)\ .$

[0095] The remaining Phenyl Superose EPSPS pool was dialyzed against 50 mM Tris Cl, 2 mM DTT, 10 mM KCl, 10% glycerol, pH 7.5 (2×1 L). An aliquot (0.55 ml, 0.61 mg protein) was loaded (1 ml/min) onto a Mono Q 5/5 column (Pharmacia) equilibrated with Q Sepharose buffer, washed

with the same buffer (5 ml), and eluted with a linear gradient of Q Sepharose buffer going from 0-0.14 M KCl in 10 minutes, then holding at 0.14 M KCl (1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay and were subjected to SDS-PAGE (10-15%, Phast System, Pharmacia, with silver staining) to determine protein purity. Fractions exhibiting a single band of protein by SDS-PAGE (22-25, 222 μ g) were pooled and dialyzed against 100 mM ammonium bicarbonate, pH 8.1 (2×1 L, 9 hours).

Trypsinolysis and Peptide Sequencing of *Agrobacterium* sp Strain CP4 EPSPS

[0096] To the resulting pure Agrobacterium sp. strain CP4 EPSPS (111 µg) was added 3 µg of trypsin (Calbiochem), and the trypsinolysis reaction was allowed to proceed for 16 hours at 37° C. The tryptic digest was then chromatographed (1 ml/min) on a C18 reverse phase HPLC column (Vydac) as previously described in Padgette et al., 1988 for E. coli EPSPS. For all peptide purifications, 0.1% trifluoroacetic acid (TFA, Pierce) was designated buffer "RP-1-A" and 0.1% TFA in acetonitrile was buffer "RP-B". The gradient used for elution of the trypsinized Agrobacterium sp. CP4 EPSPS was: 0-8 minutes, 0% RP-B; 8-28 minutes, 0-15% RP-B; 28-40 minutes, 15-21% RP-B; 40-68 minutes, 21-49% RP-B; 68-72 minutes, 49-75% RP-B; 72-74 minutes, 75-100% RP-B. Fractions were collected (1 ml) and, based on the elution profile at 210 nm, at least 70 distinct peptides were produced from the trypsinized EPSPS. Fractions 40-70 were evaporated to dryness and redissolved in 150 µl each of 10% acetonitrile, 0.1% trifluoroacetic acid.

[0097] The fraction 61 peptide was further purified on the C18 column by the gradient: 0-5 minutes, 0% RP-B; 5-10 minutes, 0-38% RP-B; 10-30 minutes, 38-45% B. Fractions were collected based on the UV signal at 210 nm. A large peptide peak in fraction 24 eluted at 42% RP-B and was dried down, resuspended as described above, and rechromatographed on the C18 column with the gradient: 0-5 minutes, 0% RP-B; 5-12 min, 0-38% RP-B; 12-15 min, 38-39% RP-B; 15-18 minutes, 39% RP-B; 18-20 minutes, 39-41% RP-B; 20-24 minutes, 41% RP-B; 24-28 minutes, 42% RP-B. The peptide in fraction 25, eluting at 41% RP-B and designated peptide 61-24-25, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

APSM(I)(D)EYPILAV (SEQ ID NO:19)

[0098] The CP4 EPSPS fraction 53 tryptic peptide was further purified by C18 HPLC by the gradient 0% B (5 minutes), 0-30% B (5-17 minutes), 30-40% B (17-37 minutes). The peptide in fraction 28, eluting at 34% B and designated peptide 53-28, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

 ${\tt ITGLLEGEDVINTGK.} \quad ({\tt SEQ} \ {\tt ID} \ {\tt NO:20})$

[0099] In order to verify the CP4 EPSPS cosmid clone, a number of oligonucleotide probes were designed on the basis of the sequence of two of the tryptic sequences from the CP4 enzyme (Table III). The probe identified as MID was very low degeneracy and was used for initial screening. The probes identified as EDV-C and EDV-T were based on the same amino acid sequences and differ in one position (underlined

in Table III below) and were used as confirmatory probes, with a positive to be expected only from one of these two probes. In the oligonucleotides below, alternate acceptable nucleotides at a particular position are designated by a "/" such as A/C/T.

TABLE III

Selected CP4 EPSPS peptide sequences and DNA probes	
PEPTIDE 61-24-25 APSM(I)(D)EYPILAV (SEQ ID NO:19)	
Probe MID; 17-mer; mixed probe; 24-fold degenerat ATGATA/C/TGAC/TGAG/ATAC/TCC (SEQ ID NO:21)	:е
PEPTIDE 53-28 ITGLLEGEDVINTGK (SEQ ID NO:20)	
Probe EDV-C; 17-mer; mixed probe; 48-fold degenerate GAA/GGAC/TGTA/C/G/TATA/C/TAACAC (SEQ ID NO:22)	
Probe EDV-T; 17-mer; mixed probe; 48-fold degenerate GAA/GGAC/TGTA/C/G/TATA/C/TAATAC (SEQ ID NO:23)	

[0100] The probes were labeled using gamma-³²P-ATP and polynucleotide kinase. DNA from fourteen of the cosmids described above was restricted with EcoRI, transferred to membrane and probed with the oligonucleotide probes. The conditions used were as follows: prehybridization was carried out in 6×SSC, 10×Denhardt's for 2-18 hour periods at 60° C., and hybridization was for 48-72 hours in 6×SSC, 10×Denhardt's, $100 \,\mu\text{g/ml}$ tRNA at 10° C. below the T_{d} for the probe. The T_d of the probe was approximated by the formula 2° $C.\times(A+T)+4^{\circ}C.\times(G+C)$. The filters were then washed three times with 6×SSC for ten minutes each at room temperature, dried and autoradiographed. Using the MID probe, an ~9.9 kb fragment in the pMON17076 cosmid gave the only positive signal. This cosmid DNA was then probed with the EDV-C (SEQ ID NO:22) and EDV-T (SEQ ID NO:23) probes separately and again this ~9.9 kb band gave a signal and only with the EDV-T probe.

[0101] The combined data on the glyphosate-tolerant phenotype, the complementation of the *E. coli* aroA-phenotype, the expression of a ~45 Kd protein, and the hybridization to two probes derived from the CP4 EPSPS amino acid sequence strongly suggested that the pMON17076 cosmid contained the EPSPS gene.

Localization and Subcloning of the CP4 EPSPS Gene

[0102] The CP4 EPSPS gene was further localized as follows: a number of additional Southern analyses were carried out on different restriction digests of pMON17076 using the MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes separately. Based on these analyses and on subsequent detailed restriction mapping of the pBlueScript (Stratagene) subclones of the ~9.9 kb fragment from pMON17076, a 3.8 kb EcoRI-SalI fragment was identified to which both probes hybridized. This analysis also showed that MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes hybridized to different sides of BamHI, ClaI, and SacII sites. This 3.8 kb fragment was cloned in both orientations in pBlueScript to form pMON17081 and pMON17082. The phenotypes imparted to *E. coli* by these clones were then determined.

Glyphosate tolerance was determined following transformation into E. coli MM294 containing pGP1-2 (pBlueScript also contains a T7 promoter) on M9 agar media containing glyphosate at 3 mM. Both pMON17081 and pMON17082 showed glyphosate-tolerant colonies at three days at 30° C. at about half the size of the controls on the same media lacking glyphosate. This result suggested that the 3.8 kb fragment contained an intact EPSPS gene. The apparent lack of orientation-dependence of this phenotype could be explained by the presence of the T7 promoter at one side of the cloning sites and the lac promoter at the other. The aroA phenotype was determined in transformants of E. coli GB100 on M9 agar media lacking aromatic supplements. In this experiment, carried out with and without the Plac inducer IPTG, pMON17082 showed much greater growth than pMON17081, suggesting that the EPSPS gene was expressed from the Sall site towards the EcoRI site.

[0103] Nucleotide sequencing was begun from a number of restriction site ends, including the BamHI site discussed above. Sequences encoding protein sequences that closely matched the N-terminus protein sequence and that for the tryptic fragment 53-28 (SEQ ID NO:20) (the basis of the EDV-T probe) (SEQ ID NO:23) were localized to the SalI side of this BamHI site. These data provided conclusive evidence for the cloning of the CP4 EPSPS gene and for the direction of transcription of this gene. These data coupled with the restriction mapping data also indicated that the complete gene was located on an ~2.3 kb XhoI fragment and this fragment was subcloned into pBlueScript. The nucleotide sequence of almost 2 kb of this fragment was determined by a combination of sequencing from cloned restriction fragments and by the use of specific primers to extend the sequence. The nucleotide sequence of the CP4 EPSPS gene and flanking regions is shown in FIG. 3 (SEQ ID NO:2). The sequence corresponding to peptide 61-24-25 (SEQ ID NO:19) was also located. The sequence was determined using both the SEQUENASETM kit from IBI (International Biotechnologies Inc.) and the T7 sequencing/Deaza Kit from Pharmacia.

[0104] That the cloned gene encoded the EPSPS activity purified from the *Agrobacterium* sp. strain CP4 was verified in the following manner: By a series of site directed mutageneses, BglII and NcoI sites were placed at the N-terminus with the fMet contained within the NcoI recognition sequence, the first internal NcoI site was removed (the second internal NcoI site was removed later), and a SacI site was placed after the stop codons. At a later stage the internal NotI site was also removed by site-directed mutagenesis. The following list includes the primers for the site-directed mutagenesis (addition or removal of restriction sites) of the CP4 EPSPS gene. Mutagenesis was carried out by the procedures of Kunkel et al. (1987), essentially as described in Sambrook et al. (1989).

PRIMER BgNc (addition of BglII and NcoI sites to N-terminus)

(SEQ ID NO:24)

CGTGGATAGATCTAGGAAGACAACCATGGCTCACGGTC

PRIMER Sph2 (addition of SphI site to N-terminus)

(SEQ ID NO:25)

GGATAGATTAAGGAAGACGCGCATGCTTCACGGTGCAAGCAGCC

PRIMER S1 (addition of SacI site immediately after

stop codons)

(SEQ ID NO:26)

GGCTGCCTGATGAGCTCCACAATCGCCATCGATGG

PRIMER N1 (removal of internal NotI recognition site)

(SEO ID NO:27)

CGTCGCTCGTCGTGCGTGGCCGCCCTGACGGC

PRIMER Ncol (removal of first internal Ncol recognition site)

(SEQ ID NO:28)

CGGGCAAGGCCATGCAGGCTATGGGCGCC

PRIMER Nco2 (removal of second internal NcoI recognition site) $\,$

(SEQ ID NO:29)

CGGGCTGCCGCCTGACTATGGGCCTCGTCGG

[0105] This CP4 EPSPS gene was then cloned as a Ncol-BamHI N-terminal fragment plus a BamHI-SacI C-terminal fragment into a PrecA-gene10L expression vector similar to those described (Wong et al., 1988; Olins et al., 1988) to form pMON17101. The K_m for PEP and the K_i for glyphosate were determined for the EPSPS activity in crude lysates of pMON17101/GB100 transformants following induction with nalidixic acid (Wong et al., 1988) and found to be the same as that determined for the purified and crude enzyme preparations from Agrobacterium sp. strain CP4.

Characterization of the EPSPS Gene from Achromobacter sp. Strain LBAA and from Pseudomonas sp. Strain PG2982

[0106] A cosmid bank of partially HindIII-restricted LBAA DNA was constructed in *E. coli* MM294 in the vector pHC79 (Hohn and Collins, 1980). This bank was probed with a full length CP4 EPSPS gene probe by colony hybridization and positive clones were identified at a rate of ~1 per 400 cosmids. The LBAA EPSPS gene was further localized in these cosmids by Southern analysis. The gene was located on an ~2.8 kb XhoI fragment and by a series of sequencing steps, both from restriction fragment ends and by using the oligonucleotide primers from the sequencing of the CP4 EPSPS gene, the nucleotide sequence of the LBAA EPSPS gene was completed and is presented in FIG. 4 (SEQ ID NO:4).

[0107] The EPSPS gene from PG2982 was also cloned. The EPSPS protein was purified, essentially as described for the CP4 enzyme, with the following differences: Following the Sepharose CL-4B column, the fractions with the highest EPSPS activity were pooled and the protein precipitated by adding solid ammonium sulfate to 85% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation, resuspended in Q Sepharose buffer and following dialysis against the same buffer was loaded onto the column (as for the CP4 enzyme). After purification on the Q Sepharose column, ~40 mg of protein in 100 mM Tris pH 7.8, 10% glycerol, 1 mM EDTA, 1 mM DTT, and 1 M ammonium sulfate, was loaded onto a Phenyl Superose (Pharmacia) column. The column was eluted at 1.0 ml/minutes with a 40 ml gradient from 1.0 M to 0.00 M ammonium sulfate in the above buffer.

[0108] Approximately 1.0 mg of protein from the active fractions of the Phenyl Superose 10/10 column was loaded onto a Pharmacia Mono P 5/10 Chromatofocusing column with a flow rate of 0.75 ml/minutes. The starting buffer was 25 mM bis-Tris at pH 6.3, and the column was eluted with 39 ml of Polybuffer 74, pH 4.0. Approximately 50 µg of the peak fraction from the Chromatofocusing column was dialyzed

into 25 mM ammonium bicarbonate. This sample was then used to determine the N-terminal amino acid sequence.

[0109] The N-terminal sequence obtained was:

(SEQ ID NO:30)
XHSASPKPATARRSE (where X = an unidentified regidue)

[0110] A number of degenerate oligonucleotide probes were designed based on this sequence and used to probe a library of PG2982 partial-HindIII DNA in the cosmid pHC79 (Hohn and Collins, 1980) by colony hybridization under nonstringent conditions. Final washing conditions were 15 minutes with 1×SSC, 0.1% SDS at 55° C. One probe with the sequence GCGGTBGCSGGYTTSGG (where B=C, G, or T; S=C or G, and Y=C or T) (SEQ ID NO:31) identified a set of cosmid clones.

[0111] The cosmid set identified in this way was made up of cosmids of diverse HindIII fragments. However, when this set was probed with the CP4 EPSPS gene probe, a cosmid containing the PG2982 EPSPS gene was identified (designated as cosmid 9C1 originally and later as pMON20107). By a series of restriction mappings and Southern analysis this gene was localized to a ~2.8 kb XhoI fragment and the nucleotide sequence of this gene was determined. This DNA sequence (SEQ ID NO:6) is shown in FIG. 5. There are no nucleotide differences between the EPSPS gene sequences from LBAA (SEQ ID NO:4) and PG2982 (SEQ ID NO:6). The kinetic parameters of the two enzymes are within the range of experimental error.

[0112] A gene from PG2982 that imparts glyphosate tolerance in *E. coli* has been sequenced (Fitzgibbon, 1988; Fitzgibbon and Braymer, 1990). The sequence of the PG2982 EPSPS Class II gene shows no homology to the previously reported sequence suggesting that the glyphosate-tolerant phenotype of the previous work is not related to EPSPS.

Characterization of the EPSPS from Bacillus subtilis

[0113] Bacillus subtilis 1A2 (prototroph) was obtained from the Bacillus Genetic Stock Center at Ohio State University. Standard EPSPS assay reactions contained crude bacterial extract with, 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3-phosphate (S3P), 0.1 mM ammonium molybdate, 5 mM potassium fluoride, and 50 mM HEPES, pH 7.0 at 25° C. One unit (U) of EPSPS activity is defined as one μmol EPSP formed per minute under these conditions. For kinetic determinations, reactions contained crude bacterial, 2 mM S3P, varying concentrations of PEP, and 50 mM HEPES, pH 7.0 at 25° C. The EPSPS specific activity was found to be 0.003 U/mg. When the assays were performed in the presence of 1 mM glyphosate, 100% of the EPSPS activity was retained. The app $K_m(PEP)$ of the B. subtilis EPSPS was determined by measuring the reaction velocity at varying concentrations of PEP. The results were analyzed graphically by the hyperbolic, Lineweaver-Burk and Eadie-Hofstee plots, which yielded app $K_m(PEP)$ values of 15.3 μ M, 10.8 μ M and 12.2 μM, respectively. These three data treatments are in good agreement, and yield an average value for app $K_m(PEP)$ of 13 μM. The appK_i(glyphosate) was estimated by determining the reaction rates of B. subtilis 1A2 EPSPS in the presence of several concentrations of glyphosate, at a PEP concentration of 2 μ M. These results were compared to the calculated V_{max} of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for B. subtilis EPSPS, as it

is for all other characterized EPSPSs, an app K_i (glyphosate) was determined graphically. The app K_i (glyphosate) was found to be 0.44 mM.

[0114] The EPSPS expressed from the *B. subtilis* aroE gene described by Henner et al. (1986) was also studied. The source of the *B. subtilis* aroE (EPSPS) gene was the *E. coli* plasmid-bearing strain ECE13 (original code=MM294[p trp100]; Henner, et al., 1984; obtained from the *Bacillus* Genetic Stock Center at Ohio State University; the culture genotype is [pBR322 trp100] Ap [in MM294] [pBR322::6 kb insert with trpFBA-his H]). Two strategies were taken to express the enzyme in *E. coli* GB100 (aroA-): 1) the gene was isolated by PCR and cloned into an overexpression vector, and 2) the gene was subcloned into an overexpression vector. For the PCR cloning of the *B. subtilis* aroE from ECE13, two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NdeI and EcoRI) to the sequences of the following oligonucleotides:

GGAACATATGAAACGAGATAAGGTGCAG

(SEO ID NO:45)

GGAATTCAAACTTCAGGATCTTGAGATAGAAAATG (SEO ID NO:46)

[0115] The other approach to the isolation of the *B. subtilis* aroE gene, subcloning from ECE13 into pUC118, was performed as follows:

- (i) Cut ECE13 and pUC with XmaI and SphI.
- (ii) Isolate 1700 bp aroE fragment and 2600 bp pUC118 vector fragment.
- (iii) Ligate fragments and transform into GB100.

The subclone was designated pMON21133 and the PCRderived clone was named pMON21132. Clones from both approaches were first confirmed for complementation of the aroA mutation in E. coli GB100. The cultures exhibited EPSPS specific activities of 0.044 U/mg and 0.71 U/mg for the subclone (pMON21133) and PCR-derived clone (pMON21132) enzymes, respectively. These specific activities reflect the expected types of expression levels of the two vectors. The B. subtilis EPSPS was found to be 88% and 100% resistant to inhibition by 1 mM glyphosate under these conditions for the subcloned (pMON21133) and PCR-derived (pMON21132) enzymes, respectively. The appK_m (PEP) and the app K_i (glyphosate) of the subcloned B. subtilis EPSPS (pMON21133) were determined as described above. The data were analyzed graphically by the same methods used for the 1A2 isolate, and the results obtained were comparable to those reported above for *B. subtilis* 1A2 culture. Characterization of the EPSPS Gene from Staphylococcus aureus

[0116] The kinetic properties of the *S. aureus* EPSPS expressed in *E. coli* were determined, including the specific activity, the app $K_m(PEP)$, and the app $K_i(glyphosate)$. The *S. aureus* EPSPS gene has been previously described (O'Connell et al., 1993)

[0117] The strategy taken for the cloning of the *S. aureus* EPSPS was polymerase chain reaction (PCR), utilizing the known nucleotide sequence of the *S. aureus* aroA gene encoding EPSPS(O'Connell et al., 1993). The *S. aureus* culture (ATCC 35556) was fermented in an M2 facility in three 250 mL shake flasks containing 55 mL of TYE (tryptone 5 g/L, yeast extract 3 g/L, pH 6.8). The three flasks were inoculated with 1.5 mL each of a suspension made from freeze dried ATCC 35556 *S. aureus* cells in 90 mL of PBS (phosphate-buffered saline) buffer. Flasks were incubated at 30° C. for 5

days while shaking at 250 rpm. The resulting cells were lysed (boiled in TE [tris/EDTA] buffer for 8 minutes) and the DNA utilized for PCR reactions. The EPSPS gene was amplified using PCR and engineered into an *E. coli* expression vector as follows:

[0118] (i) two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NcoI and SacI) to the sequences of the oligonucleotides:

GGGGCCATGGTAAATGAACAAATCATTG

(SEQ ID NO:47)

 $\tt GGGGGAGCTCATTATCCCTCATTTTGTAAAAGC$

(SEQ ID NO:48)

[0119] (ii) The purified, PCR-amplified aroA gene from *S. aureus* was digested using NcoI and SacI enzymes.

[0120] (iii) DNA of pMON 5723, which contains a pRecA bacterial promoter and Gene10 leader sequence (Olins et al., 1988) was digested NcoI and SacI and the 3.5 kb digestion product was purified.

[0121] (iv) The *S. aureus* PCR product and the Ncol/SacI pMON 5723 fragment were ligated and transformed into *E. coli* JM101 competent cells.

[0122] (v) Two spectinomycin-resistant *E. coli* JM101 clones from above (SA#2 and SA#3) were purified and transformed into a competent aroA- *E. coli* strain, GB100 [0123] For complementation experiments SAGB#2 and SAGB#3 were utilized, which correspond to SA#2 and SA#3, respectively, transformed into *E. coli* GB100. In addition, *E. coli* GB100 (negative control) and pMON 9563 (wt petunia EPSPS, positive control) were tested for AroA complementation. The organisms were grown in minimal media plus and minus aromatic amino acids. Later analyses showed that the SA#2 and SA#3 clones were identical, and they were assigned the plasmid identifier pMON21139.

[0124] SAGB#2 in *E. coli* GB100 (pMON21139) was also grown in M9 minimal media and induced with nalidixic acid. A negative control, *E. coli* GB100, was grown under identical conditions except the media was supplemented with aromatic amino acids. The cells were harvested, washed with 0.9% NaCl, and frozen at -80° C., for extraction and EPSPS analysis

[0125] The frozen pMON21139 E. coli GB100 cell pellet from above was extracted and assayed for EPSPS activity as previously described. EPSPS assays were performed using 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3-phosphate (S3P), 0.1 mM ammonium molybdate, 5 mM potassium fluoride, pH 7.0, 25° C. The total assay volume was 50 μ L, which contained 10 μ L of the undiluted desalted extract. [0126] The results indicate that the two clones contain a functional aroA/EPSPS gene since they were able to grow in minimal media which contained no aromatic amino acids. As expected, the GB100 culture did not grow on minimal medium without aromatic amino acids (since no functional EPSPS is present), and the pMON9563 did confer growth in minimal media. These results demonstrated the successful cloning of a functional EPSPS gene from S. aureus. Both clones tested were identical, and the E. coli expression vector was designated pMON21139.

[0127] The plasmid pMON21139 in *E. coli* GB100 was grown in M9 minimal media and was induced with nalidixic acid to induce EPSPS expression driven from the RecA promoter. A desalted extract of the intracellular protein was analyzed for EPSPS activity, yielding an EPSPS specific activity of 0.005 µmol/min mg. Under these assay conditions,

the *S. aureus* EPSPS activity was completely resistant to inhibition by 1 mM glyphosate. Previous analysis had shown that *E. coli* GB100 is devoid of EPSPS activity.

[0128] The app K_m (PEP) of the *S. aureus* EPSPS was determined by measuring the reaction velocity of the enzyme (in crude bacterial extracts) at varying concentrations of PEP. The results were analyzed graphically using several standard kinetic plotting methods. Data analysis using the hyperbolic, Lineweaver-Burke, and Eadie-Hofstee methods yielded app- K_m (PEP) constants of 7.5, 4.8, and 4.0 μ M, respectively. These three data treatments are in good agreement, and yield an average value for app K_m (PEP) of 5 μ M.

[0129] Further information of the glyphosate tolerance of *S. aureus* EPSPS was obtained by determining the reaction rates of the enzyme in the presence of several concentrations of glyphosate, at a PEP concentration of 2 μM. These results were compared to the calculated maximal velocity of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for *S. aureus* EPSPS, as it is for all other characterized EPSPSs, an appK_i(glyphosate) was determined graphically. The appK_i(glyphosate) for *S. aureus* EPSPS estimated using this method was found to be 0.20 mM.

[0130] The EPSPS from *S. aureus* was found to be glyphosate-tolerant, with an app K_i (glyphosate) of approximately 0.2 mM. In addition, the app K_m (PEP) for the enzyme is approximately 5 μ M, yielding a app K_i (glyphosate)/app K_m (PEP) of 40.

Alternative Isolation Protocols for Other Class II EPSPS Structural Genes

[0131] A number of Class II genes have been isolated and described here. While the cloning of the gene from CP4 was difficult due to the low degree of similarity between the Class I and Class II enzymes and genes, the identification of the other genes was greatly facilitated by the use of this first gene as a probe. In the cloning of the LBAA EPSPS gene, the CP4 gene probe allowed the rapid identification of cosmid clones and the localization of the intact gene to a small restriction fragment and some of the CP4 sequencing primers were also used to sequence the LBAA (and PG2982) EPSPS gene(s). The CP4 gene probe was also used to confirm the PG2982 gene clone. The high degree of similarity of the Class II EPSPS genes may be used to identify and clone additional genes in much the same way that Class I EPSPS gene probes have been used to clone other Class I genes. An example of the latter was in the cloning of the A. thaliana EPSPS gene using the *P. hybrida* gene as a probe (Klee et al., 1987).

[0132] Glyphosate-tolerant EPSPS activity has been reported previously for EPSP synthases from a number of sources. These enzymes have not been characterized to any extent in most cases. The use of Class I and Class II EPSPS gene probes or antibody probes provide a rapid means of initially screening for the nature of the EPSPS and provide tools for the rapid cloning and characterization of the genes for such enzymes.

[0133] Two of the three genes described were isolated from bacteria that were isolated from a glyphosate treatment facility (Strains CP4 and LBAA). The third (PG2982) was from a bacterium that had been isolated from a culture collection strain. This latter isolation confirms that exposure to glyphosate is not a prerequisite for the isolation of high glyphosate-tolerant EPSPS enzymes and that the screening of collections of bacteria could yield additional isolates. It is possible to

enrich for glyphosate degrading or glyphosate resistant microbial populations (Quinn et al., 1988; Talbot et al., 1984) in cases where it was felt that enrichment for such microorganisms would enhance the isolation frequency of Class II EPSPS microorganisms. Additional bacteria containing class II EPSPS gene have also been identified. A bacterium called C12, isolated from the same treatment column beads as CP4 (see above) but in a medium in which glyphosate was supplied as both the carbon and phosphorus source, was shown by Southern analysis to hybridize with a probe consisting of the CP4 EPSPS coding sequence. This result, in conjunction with that for strain LBAA, suggests that this enrichment method facilitates the identification of Class II EPSPS isolates. New bacterial isolates containing Class II EPSPS genes have also been identified from environments other than glyphosate waste treatment facilities. An inoculum was prepared by extracting soil (from a recently harvested soybean field in Jerseyville, Ill.) and a population of bacteria selected by growth at 28° C. in Dworkin-Foster medium containing glyphosate at 10 mM as a source of carbon (and with cycloheximide at 100 μg/ml to prevent the growth of fungi). Upon plating on L-agar media, five colony types were identified. Chromosomal DNA was prepared from 2 ml L-broth cultures of these isolates and the presence of a Class II EPSPS gene was probed using a the CP4 EPSPS coding sequence probe by Southern analysis under stringent hybridization and washing conditions. One of the soil isolates, S2, was positive by this screen.

[0134] Class II EPSPS enzymes are identifiable by an elevated K, for glyphosate and thus the genes for these will impart a glyphosate tolerance phenotype in heterologous hosts. Expression of the gene from recombinant plasmids or phage may be achieved through the use of a variety of expression promoters and include the T7 promoter and polymerase. The T7 promoter and polymerase system has been shown to work in a wide range of bacterial (and mammalian) hosts and offers the advantage of expression of many proteins that may be present on large cloned fragments. Tolerance to growth on glyphosate may be shown on minimal growth media. In some cases, other genes or conditions that may give glyphosate tolerance have been observed, including over expression of beta-lactamase, the igrA gene (Fitzgibbon and Braymer, 1990), or the gene for glyphosate oxidoreductase (PCT Pub. No. WO92/00377). These are easily distinguished from Class II EPSPS by the absence of EPSPS enzyme activity.

[0135] The EPSPS protein is expressed from the aroA gene (also called aroE in some genera, for example, in Bacillus) and mutants in this gene have been produced in a wide variety of bacteria. Determining the identity of the donor organism (bacterium) aids in the isolation of Class II EPSPS genesuch identification may be accomplished by standard microbiological methods and could include Gram stain reaction, growth, color of culture, and gas or acid production on different substrates, gas chromatography analysis of methylesters of the fatty acids in the membranes of the microorganism, and determination of the GC % of the genome. The identity of the donor provides information that may be used to more easily isolate the EPSPS gene. An AroA-host more closely related to the donor organism could be employed to clone the EPSPS gene by complementation but this is not essential since complementation of the E. coli AroA mutant by the CP4 EPSPS gene was observed. In addition, the information on the GC content the genome may be used in chooosing nucleotide probes—donor sources with high GC % would preferably use

the CP4 EPSPS gene or sequences as probes and those donors with low GC would preferably employ those from *Bacillus subtilis*, for example.

Relationships Between Different EPSPS Genes

[0136] The deduced amino acid sequences of a number of Class I and the Class II EPSPS enzymes were compared using the Bestfit computer program provided in the UWGCG package (Devereux et al. 1984). The degree of similarity and identity as determined using this program is reported. The degree of similarity/identity determined within Class I and Class II protein sequences is remarkably high, for instance, comparing E. coli with S. typhimurium (similarity/identity=93%/88%) and even comparing E. coli with a plant EPSPS (Petunia hybrida; 72%/55%). These data are shown in Table IV. The comparison of sequences between Class I and Class II, however, shows a much lower degree of relatedness between the Classes (similarity/identity=50-53%/23-30%). The display of the Bestfit analysis for the E. coli (SEQ ID NO:8) and CP4 (SEQ ID NO:3) sequences shows the positions of the conserved residues and is presented in FIG. 6. Previous analyses of EPSPS sequences had noted the high degree of conservation of sequences of the enzymes and the almost invariance of sequences in two regions—the "20-35" and "95-107" regions (Gasser et al., 1988; numbered according to the Petunia EPSPS sequence)—and these regions are less conserved in the case of CP4 and LBAA when compared to Class I bacterial and plant EPSPS sequences (see FIG. 6 for a comparison of the E. coli and CP4 EPSPS sequences with the E. coli sequence appearing as the top sequence in the Figure). The corresponding sequences in the CP4 Class II EPSPS are:

PGDKSISHRSFMFGGL (SEQ ID NO:32) and LDFGNAATGCRLT. (SEQ ID NO:33)

[0137] These comparisons show that the overall relatedness of Class I and Class II is EPSPS proteins is low and that sequences in putative conserved regions have also diverged considerably.

[0138] In the CP4 EPSPS an alanine residue is present at the "glycinelol" position. The replacement of the conserved glycine (from the "95-107" region) by an alanine results in an elevated K_i for glyphosate and in an elevation in the K_m for PEP in Class I EPSPS. In the case of the CP4 EPSPS, which contains an alanine at this position, the K_m for PEP is in the low range, indicating that the Class II enzymes differ in many aspects from the EPSPS enzymes heretofore characterized.

[0139] Within the Class II isolates, the degree of similarity/identity is as high as that noted for that within Class I (Table IVA). FIG. 7 displays the Bestfit computer program alignment of the CP4 (SEQ ID NO:3) and LBAA (SEQ ID NO:5) EPSPS deduced amino acid sequences with the CP4 sequence appearing as the top sequence in the Figure. The symbols used in FIGS. 6 and 7 are the standard symbols used in the Bestfit computer program to designate degrees of similarity and identity.

TABLE IVA^{1,2}

	similarity	identity	
Comparison of relatedness of EPSPS protein sequences Comparison between Class I and Class II EPSPS protein sequences			
S. cerevisiae vs. CP4	54	30	
A. nidulans vs. CP4	50	25	
B. napus vs. CP4	47	22	
A. thaliana vs. CP4	48	22	
N. tabacum vs. CP4	50	24	
L. esculentum vs. CP4	50	24	
P. hybrida vs. CP4	50	23	
Z. mays vs. CP4	48	24	
S. gallinarum vs. CP4	51	25	
S. typhimurium vs. CP4	51	25	
S. typhi vs. CP4	51	25	
K. pneumoniae vs. CP4	56	28	
Y. enterocolitica vs. CP4	53	25	
H. influenzae vs. CP4	53	27	
P. multocida vs. CP4	55	30	
A. salmonicida vs. CP4	53	23	
B. pertussis vs. CP4	53	27	
E. coli vs. CP4	52	26	
E. coli vs. LBAA	52	26	
E. coli vs. B. subtilis	55	29	
E. coli vs. D. nodosus	55	32	
E. coli vs. S. aureus	55	29	
E. coli vs. Synechocystis sp. PCC6803	53	30	
Comparison between Class I EPSPS protein sequences			
E. coli vs. S. typhimurium	93	88	
P. hybrida vs. E. coli	72	55	
Comparison between Class II EPSPS p	rotein sequenc	ces	
D. nodosus vs. CP4	62	43	
LBAA vs. CP4	90	83	
PG2892 vs. CP4	90	83	
S. aureus vs. CP4	58	34	
B. subtilis vs. CP4	59	41	
Synechocystis sp. PCC6803 vs. CP4	62	45	

¹The EPSPS sequences compared here were obtained from the following references: *E. coli*, Rogers et al., 1983; *S. typhimurium*, Stalker et al., 1985; *Petunia hybrida*, Shah et al., 1986; *B. pertussis*, Maskell et al., 1988; *S. cerevisiae*, Duncan et al., 1987, *Synechocystis* sp. PCC6803, Dalla Chiesa et al., 1994 and *D. nodosus*, Alm et al., 1994.

²"GAP" Program, Genetics Computer Group, (1991), Program Manual for the GCG Package, Version 7, April 1991, 575 Science Drive, Madison, Wisconsin, USA 53711

[0140] The relative locations of the major conserved sequences among Class II EPSP synthases which distinguishes this group from the Class I EPSP synthases is listed below in Table IVB.

TABLE IVB

	TIBLE IVE				
		Conserved Se II EPSP Synt			
Source	Seq. 1 ¹	Seq. 2 ²	Seq. 3 ³	Seq. 4 ⁴	
		CP4			
start end	200 204	26 29 LBAA	173 177	271 274	
start end	200 204	26 29 PG2982	173 177	271 274	
start end	200 204	26 29	173 177	273 276	

TABLE IVB-continued

	Location of Conserved Sequences in Class II EPSP Synthases				
Source	Seq. 1 ¹	Seq. 2 ²	Seq. 3 ³	Seq. 4 ⁴	
	B. subtilis				
start end	190 194	17 20 S. aureus	164 168	257 260	
start end	193 197 <i>Synech</i>	21 24 ocystis sp. PC	166 170 CC6803	261 264	
start end	210 214	34 38 D. nodosus	183 187	278 281	
start end min.start max.end	195 199 190 214	22 25 17 38	168 172 164 187	261 264 257 281	

 $^{^{1}}$ -R-X₁-H-X₂-E- (SEQ ID NO: 37)

[0141] The domains of EPSP synthase sequence identified in this application were determined to be those important for maintenance of glyphosate resistance and productive binding of PEP. The information used in identifying these domains included sequence alignments of numerous glyphosate-sensitive EPSPS molecules and the three-dimensional x-ray structures of E. coli EPSPS (Stallings, et al. 1991) and CP4 EPSPS. The structures are representative of a glyphosatesensitive (i.e., Class I) enzyme, and a naturally-occurring glyphosate-tolerant (i.e., Class II) enzyme of the present invention. These exemplary molecules were superposed three-dimensionally and the results displayed on a computer graphics terminal. Inspection of the display allowed for structure-based fine-tuning of the sequence alignments of glyphosate-sensitive and glyphosate-resistant EPSPS molecules. The new sequence alignments were examined to determine differences between Class I and Class II EPSPS enzymes. Seven regions were identified and these regions were located in the x-ray structure of CP4 EPSPS which also contained a bound analog of the intermediate which forms catalytically between PEP and S3P.

[0142] The structure of the CP4 EPSPS with the bound intermediate analog was displayed on a computer graphics terminal and the seven sequence segments were examined. Important residues for glyphosate binding were identified as well as those residues which stabilized the conformations of those important residues; adjoining residues were considered necessary for maintenance of correct three-dimensional structural motifs in the context of glyphosate-sensitive EPSPS molecules. Three of the seven domains were determined not to be important for glyphosate tolerance and maintenance of productive PEP binding. The following four primary domains were determined to be characteristic of Class II EPSPS enzymes of the present invention:

[0143] —R—X₁—H—X₂-E (SEQ ID NO:37), in which

[0144] X_1 is an uncharged polar or acidic amino acid,

[0145] X₂ is serine or threonine,

[0146] The Arginine (R) reside at position 1 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate. The Histidine (H) residue at position 3 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Glutamic Acid (E) residue at position 5 stabilizes the Lysine (K) residue at position 5 of SEQ ID NO:39.

[0147] $-G-D-K-X_3$ (SEQ ID NO:38), in which

[0148] X_3 is serine or threonine,

[0149] The Aspartic acid (D) residue at position 2 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Lysine (K) residue at position 3 is important because for productive PEP binding.

[0150] —S-A-Q- X_4 —K (SEQ ID NO:39), in which

[0151] X_4 is any amino acid,

[0152] The Alanine (A) residue at position 2 stabilizes the Arginine (R) residue at position 1 of SEQ ID NO:37. The Serine (S) residue at position 1 and the Glutamine (Q) residue at position 3 are important for productive S3P binding.

[0153] $-N-X_5$ -T-R (SEQ ID NO:40) in which

[0154] X_5 is any amino acid,

[0155] The Asparagine (N) residue at position 1 and the Threonine (T) residue at position 3 stabilize residue X_1 at position 2 of SEQ ID NO:37. The Arginine (R) residue at position 4 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate.

[0156] Since the above sequences are only representative of the Class II EPSPSs which would be included within the generic structure of this group of EPSP synthases, the above sequences may be found within a subject EPSP synthase molecule within slightly more expanded regions. It is believed that the above-described conserved sequences would likely be found in the following regions of the mature EPSP synthases molecule:

 $-R-X_1-H-X_2$ -E- (SEQ ID NO:37) located between amino acids 175 and 230 of the mature EPSP synthase sequence;

-G-D-K—X₃- (SEQ ID NO:38) located between amino acids 5 and 55 of the mature EPSP synthase sequence;

—S-A-Q-X₄—K— (SEQ ID NO:39) located between amino acids 150 and 200 of the mature EPSP synthase sequence; and —N—X₅-T-R— (SEQ ID NO:40) located between amino acids 245 and 295 of the mature EPSPS synthase sequence.

[0157] One difference that may be noted between the deduced amino acid sequences of the CP4 and LBAA EPSPS proteins is at position 100 where an Alanine is found in the case of the CP4 enzyme and a Glycine is found in the case of the LBAA enzyme. In the Class I EPSPS enzymes a Glycine is usually found in the equivalent position, i.e Glycine 96 in E. coli and K. pneumoniae and Glycine101 in Petunia. In the case of these three enzymes it has been reported that converting that Glycine to an Alanine results in an elevation of the appKi for glyphosate and a concomitant elevation in the appKm for PEP (Kishore et al., 1986; Kishore and Shah, 1988; Sost and Amrhein, 1990), which, as discussed above, makes the enzyme less efficient especially under conditions of lower PEP concentrations. The Glycine 100 of the LBAA EPSPS was converted to an Alanine and both the appKm for PEP and the appKi for glyphosate were determined for the variant. The Glycine100Alanine change was introduced by mutagenesis using the following primer:

²-G-D-K-X₃- (SEQ ID NO: 38)

³-S-A-Q-X₄-K- (SEQ ID NO: 39)

⁴-N-X₅-T-R- (SEQ ID NO: 40)

CGGCAATGCCGCCACCGGCGCGCCC (SEQ ID NO:34)

and both the wild type and variant genes were expressed in $E.\ coli$ in a RecA promoter expression vector (pMON17201 and pMON17264, respectively) and the app K_m 's and appKi's determined in crude lysates. The data indicate that the appKi (glyphosate) for the G100A variant is elevated about 16-fold (Table V). This result is in agreement with the observation of the importance of this G-A change in raising the app K_i (glyphosate) in the Class I EPSPS enzymes. However, in contrast to the results in the Class I G-A variants, the app K_m (PEP) in the Class II (LBAA) G-A variant is unaltered. This provides yet another distinction between the Class II and Class I EPSPS enzymes.

TABLE V

Lysate prepared from:	appKm(PEP)	appKi(glyphosate)
E. coli/pMON17201 (wild type) E. coli/pMON17264 (G100A variant)	5.3 μM 5.5 μM	28 μ M* 459 μ M [#]

@ range of PEP: 2-40 µM

The LBAA G100A variant, by virtue of its superior kinetic properties, should be capable of imparting improved in planta glyphosate tolerance.

Modification and Resynthesis of the *Agrobacterium* sp. Strain CP4 EPSPS Gene Sequence

[0158] The EPSPS gene from Agrobacterium sp. strain CP4 contains sequences that could be inimical to high expression of the gene in plants. These sequences include potential polyadenylation sites that are often and A+T rich, a higher G+C% than that frequently found in plant genes (63% versus ~50%), concentrated stretches of G and C residues, and codons that are not used frequently in plant genes. The high G+C % in the CP4 EPSPS gene has a number of potential consequences including the following: a higher usage of G or C than that found in plant genes in the third position in codons, and the potential to form strong hair-pin structures that may affect expression or stability of the RNA. The reduction in the G+C content of the CP4 EPSPS gene, the disruption of stretches of G's and C's, the elimination of potential polyadenylation sequences, and improvements in the codon usage to that used more frequently in plant genes, could result in higher expression of the CP4 EPSPS gene in plants.

[0159] A synthetic CP4 gene was designed to change as completely as possible those inimical sequences discussed above. In summary, the gene sequence was redesigned to eliminate as much as possible the following sequences or sequence features (while avoiding the introduction of unnecessary restriction sites): stretches of G's and C's of 5 or greater; and A+T rich regions (predominantly) that could function as polyadenylation sites or potential RNA destabilization region The sequence of this gene is shown in FIG. 8 (SEQ ID NO:9). This coding sequence was expressed in E. coli from the RecA promoter and assayed for EPSPS activity and compared with that from the native CP4 EPSPS gene. The apparent K_m for PEP for the native and synthetic genes was 11.8 and 12.7, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was mutagenized to place an

SphI site at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. The following primer was used to accomplish this mutagenesis:

(SEQ ID NO:35) GGACGGCTGCTTGCACCGTGAAGCATGCTTAAGCTTGGCGTAATCATGG.

Expression of Chloroplast Directed CP4 EPSPS

[0160] The glyphosate target in plants, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, is located in the chloroplast. Many chloroplast-localized proteins, including EPSPS, are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps. Examples of other such chloroplast proteins include the small subunit (SSU) of Ribulose-1,5-bisphosphate carboxylase (RUBISCO), Ferredoxin, Ferredoxin oxidoreductase, the Light-harvesting-complex protein I and protein II, and Thioredoxin F. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast.

[0161] A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidopsis CTP was engineered by site-directed mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The sequence of this CTP, designated as CTP2 (SEQ ID NO:10), is shown in FIG. 9. The N-terminus of the CP4 EPSPS gene was modified to place a SphI site that spans the Met codon. The second codon was converted to one for leucine in this step also. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by rate of complementation of the aroA allele. This modified N-terminus was then combined with the SacI C-terminus and cloned downstream of the CTP2 sequences. The CTP2-CP4 EPSPS fusion was cloned into pBlueScript KS(+). This vector may be transcribed in vitro using the T7 polymerase and the RNA translated with ³⁵S-Methionine to provide material that may be evaluated for import into chloroplasts isolated from Lactuca sativa using the methods described hereinafter (della-Cioppa et al., 1986, 1987). This template was transcribed in vitro using T7 polymerase and the ³⁵S-methionine-labeled CTP2-CP4 EPSPS material was shown to import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (control=35S labeled PreEPSPS [pMON6140; della-Cioppa et al., 1986]).

[0162] In another example the *Arabidopsis* EPSPS CTP, designated as CTP3, was fused to the CP4 EPSPS through an EcoRI site. The sequence of this CTP3 (SEQ ID NO:12) is shown in FIG. 10. An EcoRI site was introduced into the *Arabidopsis* EPSPS mature region around amino acid 27, replacing the sequence -Arg-Ala-Leu-Leu- with -Arg-Ile-Leu-Leu- in the process. The primer of the following sequence was used to modify the N-terminus of the CP4 EPSPS gene to add an EcoRI site to effect the fusion to the

CTP3

 $\begin{tabular}{ll} $\tt GGAAGACGCCCA$\underline{GAATTC}$\tt ACGGTGCAAGCAGCCGG & (SEQ ID NO:36) \\ (the EcoRI site is underlined. \end{tabular}$

^{*}range of glyphosate: 0-310 µM;

[&]quot;range of glyphosate: 0-5000 μM.

This CTP3-CP4 EPSPS fusion was also cloned into the pBlueScript vector and the T7 expressed fusion was found to also import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (pMON6140).

[0163] A related series of CTPs, designated as CTP4 (SphI) and CTP5 (EcoRI), based on the Petunia EPSPS CTP and gene were also fused to the SphI- and EcoRI-modified CP4 EPSPS gene sequences. The SphI site was added by site-directed mutagenesis to place this restriction site (and change the amino acid sequence to -Cys-Met-) at the chloroplast processing site. All of the CTP-CP4 EPSPS fusions were shown to import into chloroplasts with approximately equal efficiency. The CTP4 (SEQ ID NO:14) and CTP5 (SEQ ID NO:16) sequences are shown in FIGS. 11 and 12.

[0164] A CTP2-LBAA EPSPS fusion was also constructed following the modification of the N-terminus of the LBAA EPSPS gene by the addition of a SphI site. This fusion was also found to be imported efficiently into chloroplasts.

[0165] By similar approaches, the CTP2-CP4 EPSPS and the CTP4-CP4 EPSPS fusion have also been shown to import efficiently into chloroplasts prepared from the leaf sheaths of corn. These results indicate that these CTP-CP4 fusions could also provide useful genes to impart glyphosate tolerance in monocot species.

[0166] The use of CTP2 or CTP4 is preferred because these transit peptide constructions yield mature EPSPS enzymes upon import into the chloroplat which are closer in composition to the native EPSPSs not containing a transit peptide signal. Those skilled in the art will recognize that various chimeric constructs can be made which utilize the functionality of a particular CTP to import a Class II EPSPS enzyme into the plant cell chloroplast. The chloroplast import of the Class II EPSPS can be determined using the following assay.

Chloroplast Uptake Assay

[0167] Intact chloroplasts are isolated from lettuce (*Latuca sativa*, var. *longifolia*) by centrifugation in Percoll/ficoll gradients as modified from Bartlett et al., (1982). The final pellet of intact chloroplasts is suspended in 0.5 ml of sterile 330 mM sorbitol in 50 mM Hepes-KOH, pH 7.7, assayed for chlorophyll (Arnon, 1949), and adjusted to the final chlorophyll concentration of 4 mg/ml (using sorbitol/Hepes). The yield of intact chloroplasts from a single head of lettuce is 3-6 mg chlorophyll.

[0168] A typical 300 µl uptake experiment contained 5 mM ATP, 8.3 mM unlabeled methionine, 322 mM sorbitol, 58.3 mM Hepes-KOH (pH 8.0), 50 μl reticulocyte lysate translation products, and intact chloroplasts from L. sativa (200 µg chlorophyll). The uptake mixture is gently rocked at room temperature (in 10×75 mm glass tubes) directly in front of a fiber optic illuminator set at maximum light intensity (150 Watt bulb). Aliquot samples of the uptake mix (about 50 µl) are removed at various times and fractionated over 100 ul silicone-oil gradients (in 150 µl polyethylene tubes) by centrifugation at 11,000× g for 30 seconds. Under these conditions, the intact chloroplasts form a pellet under the siliconeoil layer and the incubation medium (containing the reticulocyte lysate) floats on the surface. After centrifugation, the silicone-oil gradients are immediately frozen in dry ice. The chloroplast pellet is then resuspended in 50-100 µl of lysis buffer (10 mM Hepes-KOH pH 7.5, 1 mM PMSF, 1 mM benzamidine, 5 mM e-amino-n-caproic acid, and 30 µg/ml aprotinin) and centrifuged at 15,000×g for 20 minutes to pellet the thylakoid membranes. The clear supernatant (stromal proteins) from this spin, and an aliquot of the reticulocyte lysate incubation medium from each uptake experiment, are mixed with an equal volume of 2×SDS-PAGE sample buffer for electrophoresis (Laemmli, 1970).

[0169] SDS-PAGE is carried out according to Laemmli (1970) in 3-17% (w/v) acrylamide slab gels (60 mm×1.5 mm) with 3% (w/v) acrylamide stacking gels (5 mm×1.5 mm). The gel is fixed for 20-30 min in a solution with 40% methanol and 10% acetic acid. Then, the gel is soaked in EN³HANCE™ (DuPont) for 20-30 minutes, followed by drying the gel on a gel dryer. The gel is imaged by autoradiography, using an intensifying screen and an overnight exposure to determine whether the CP4 EPSPS is imported into the isolated chloroplasts.

Plant Transformation

[0170] Plants which can be made glyphosate-tolerant by practice of the present invention include, but are not limited to, soybean, cotton, corn, canola, oil seed rape, flax, sugarbeet, sunflower, potato, tobacco, tomato, wheat, rice, alfalfa and lettuce as well as various tree, nut and vine species.

[0171] A double-stranded DNA molecule of the present invention ("chimeric gene") can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those disclosed, e.g., by Herrera-Estrella (1983), Bevan (1984), Klee (1985) and EPO publication 120,516 (Schilperoort et al.). In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of *Agrobacterium*, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation, chemicals that increase free DNA uptake, free DNA delivery via microprojectile bombardment, and transformation using viruses or pollen.

Class II EPSPS Plant Transformation Vectors

[0172] Class II EPSPS DNA sequences may be engineered into vectors capable of transforming plants by using known techniques. The following description is meant to be illustrative and not to be read in a limiting sense. One of ordinary skill in the art would know that other plasmids, vectors, markers, promoters, etc. would be used with suitable results. The CTP2-CP4 EPSPS fusion was cloned as a BglII-EcoRI fragment into the plant vector pMON979 (described below) to form pMON17110, a map of which is presented in FIG. 13. In this vector the CP4 gene is expressed from the enhanced CaMV35S promoter (E35S; Kay et al. 1987). A FMV35S promoter construct (pMON17116) was completed in the following way: The SalI-NotI and the NotI-BglII fragments from pMON979 containing the Spc/AAC(3)-III/oriV and the pBR322/Right Border/NOS 3'/CP4 EPSPS gene segment from pMON17110 were ligated with the XhoI-BglII FMV35S promoter fragment from pMON981. These vectors were introduced into tobacco, cotton and canola.

[0173] A series of vectors was also completed in the vector pMON977 in which the CP4 EPSPS gene, the CTP2-CP4 EPSPS fusion, and the CTP3-CP4 fusion were cloned as BgIII-SacI fragments to form pMON17124, pMON17119, and pMON17120, respectively. These plasmids were introduced into tobacco. A pMON977 derivative containing the CTP2-LBAA EPSPS gene was also completed (pMON17206) and introduced into tobacco.

[0174] The pMON979 plant transformation/expression vector was derived from pMON886 (described below) by replacing the neomycin phosphotransferase type II (KAN) gene in pMON886 with the 0.89 kb fragment containing the bacterial gentamicin-3-N-acetyltransferase type III (AAC (3)-III) gene (Hayford et al., 1988). The chimeric P-35S/AA (3)-III/NOS 3' gene encodes gentamicin resistance which permits selection of transformed plant cells. pMON979 also contains a 0.95 kb expression cassette consisting of the enhanced CaMV 35S promoter (Kay et al., 1987), several unique restriction sites, and the NOS 3' end (P-En-CaMV35S/NOS 3'). The rest of the pMON979 DNA segments are exactly the same as in pMON886.

[0175] Plasmid pMON886 is made up of the following segments of DNA. The first is a 0.93 kb AvaI to engineered-EcoRV fragment isolated from transposon Tn7 that encodes bacterial spectinomycin/streptomycin resistance (Spc/Str), which is a determinant for selection in E. coli and Agrobacterium tumefaciens. This is joined to the 1.61 kb segment of DNA encoding a chimeric kanamycin resistance which permits selection of transformed plant cells. The chimeric gene (P-35S/KAN/NOS 3') consists of the cauliflower mosaic virus (CaMV) 35S promoter, the neomycin phosphotransferase type II (KAN) gene, and the 3'-nontranslated region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983). The next segment is the 0.75 kb oriV containing the origin of replication from the RK2 plasmid. It is joined to the 3.1 kb SalI to PvuI segment of pBR322 (ori322) which provides the origin of replication for maintenance in E. coli and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells. The next segment is the 0.36 kb PvuI to BcII from pTiT37 that carries the nopaline-type T-DNA right border (Fraley et al., 1985).

[0176] The pMON977 vector is the same as pMON981 except for the presence of the P-En-CaMV35S promoter in place of the FMV35S promoter (see below).

[0177] The pMON981 plasmid contains the following DNA segments: the 0.93 kb fragment isolated from transposon Tn7 encoding bacterial spectinomycin/streptomycin resistance [Spc/Str; a determinant for selection in E. coli and Agrobacterium tumefaciens (Fling et al., 1985)]; the chimeric kanamycin resistance gene engineered for plant expression to allow selection of the transformed tissue, consisting of the 0.35 kb cauliflower mosaic virus 35S promoter (P-35S) (Odell et al., 1985), the 0.83 kb neomycin phosphotransferase type II gene (KAN), and the 0.26 kb 3'-nontranslated region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983); the 0.75 kb origin of replication from the RK2 plasmid (oriV) (Stalker et al., 1981); the 3.1 kb SalI to PvuI segment of pBR322 which provides the origin of replication for maintenance in E. coli (ori-322) and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells, and the 0.36 kb PvuI to BcII fragment from the pTiT37 plasmid containing the nopaline-type T-DNA right border region (Fraley et al., 1985). The expression cassette consists of the 0.6 kb 35S promoter from the figwort mosaic virus (P-FMV35S) (Gowda et al., 1989) and the 0.7 kb 3' non-translated region of the pea rbcS-E9 gene (E9 3') (Coruzzi et al., 1984, and Morelli et al., 1985). The 0.6 kb SspI fragment containing the FMV35S promoter (FIG. 1) was engineered to place suitable cloning sites downstream of the transcriptional start site. The CTP2-CP4syn gene fusion was introduced into plant expression vectors (including pMON981, to form pMON17131; FIG. **14**) and transformed into tobacco, canola, potato, tomato, sugarbeet, cotton, lettuce, cucumber, oil seed rape, poplar, and *Arabidopsis*.

[0178] The plant vector containing the Class II EPSPS gene may be mobilized into any suitable Agrobacterium strain for transformation of the desired plant species. The plant vector may be mobilized into an ABI Agrobacterium strain. A suitable ABI strain is the A208 Agrobacterium tumefaciens carrying the disarmed Ti plasmid pTiC58 (pMP90RK) (Koncz and Schell, 1986). The Ti plasmid does not carry the T-DNA phytohormone genes and the strain is therefore unable to cause the crown gall disease. Mating of the plant vector into ABI was done by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). When the plant tissue is incubated with the ABI::plant vector conjugate, the vector is transferred to the plant cells by the vir functions encoded by the disarmed pTiC58 plasmid. The vector opens at the T-DNA right border region, and the entire plant vector sequence may be inserted into the host plant chromosome. The pTiC58 Ti plasmid does not transfer to the plant cells but remains in the Agrobacterium.

Class II EPSPS Free DNA Vectors

[0179] Class II EPSPS genes may also be introduced into plants through direct delivery methods. A number of direct delivery vectors were completed for the CP4 EPSPS gene. The vector pMON13640, a map of which is presented in FIG. 15, is described here. The plasmid vector is based on a pUC plasmid (Vieira and Messing, 1987) containing, in this case, the nptII gene (kanamycin resistance; KAN) from Tn903 to provide a selectable marker in E. coli. The CTP4-EPSPS gene fusion is expressed from the P-FMV35S promoter and contains the NOS 3' polyadenylation sequence fragment and from a second cassette consisting of the E35S promoter, the CTP4-CP4 gene fusion and the NOS 3' sequences. The scoreable GUS marker gene (Jefferson et al., 1987) is expressed from the mannopine synthase promoter (P-MAS; Velten et al., 1984) and the soybean 7S storage protein gene 3' sequences (Schuler et al., 1982). Similar plasmids could also be made in which CTP-CP4 EPSPS fusions are expressed from the enhanced CaMV35S promoter or other plant promoters. Other vectors could be made that are suitable for free DNA delivery into plants and such are within the skill of the art and contemplated to be within the scope of this disclosure.

Plastid Transformation:

[0180] While transformation of the nuclear genome of plants is much more developed at this time, a rapidly advancing alternative is the transformation of plant organelles. The transformation of plastids of land plants and the regeneration of stable transformants has been demonstrated (Svab et al., 1990; Maliga et al., 1993). Transformants are selected, following double cross-over events into the plastid genome, on the basis of resistance to spectinomycin conferred through rRNA changes or through the introduction of an aminoglycoside 3"-adenyltransferase gene (Svab et al., 1990; Svab and Maliga, 1993), or resistance to kanamycin through the neomycin phosphotransferase NptII (Carrer et al., 1993). DNA is introduced by biolistic means (Svab et al, 1990; Maliga et al., 1993) or by using polyethylene glycol (O'Neill et al., 1993). This transformation route results in the production of 500-10, 000 copies of the introduced sequence per cell and high levels of expression of the introduced gene have been reported (Carrer et al., 1993; Maliga et al., 1993). The use of plastid transformation offers the advantages of not requiring the chloroplast transit peptide signal sequence to result in the localization of the heterologous Class II EPSPS in the chloroplast and the potential to have many copies of the heterologous plant-expressible Class II EPSPS gene in each plant cell since at least one copy of the gene would be in each plastid of the cell.

Plant Regeneration

[0181] When expression of the Class II EPSPS gene is achieved in transformed cells (or protoplasts), the cells (or protoplasts) are regenerated into whole plants. Choice of methodology for the regeneration step is not critical, with suitable protocols being available for hosts from Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, etc.), Cucurbitaceae (melons and cucumber), Gramineae (wheat, rice, corn, etc.), Solanaceae (potato, tobacco, tomato, peppers), various floral crops as well as various trees such as poplar or apple, nut crops or vine plants such as grapes. See, e.g., Ammirato, 1984; Shimamoto, 1989; Fromm, 1990; Vasil, 1990.

[0182] The following examples are provided to better elucidate the practice of the present invention and should not be interpreted in any way to limit the scope of the present invention. Those skilled in the art will recognize that various modifications, truncations, etc. can be made to the methods and genes described herein while not departing from the spirit and scope of the present invention.

[0183] In the examples that follow, EPSPS activity in plants is assayed by the following method. Tissue samples were collected and immediately frozen in liquid nitrogen. One gram of young leaf tissue was frozen in a mortar with liquid nitrogen and ground to a fine powder with a pestle. The powder was then transferred to a second mortar, extraction buffer was added (1 ml/gram), and the sample was ground for an additional 45 seconds. The extraction buffer for canola consists of 100 mM Tris, 1 mM EDTA, 10% glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4° C.). The extraction buffer for tobacco consists of 100 mM Tris, 10 mM EDTA, 35 mM KCl, 20% glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4° C.). The mixture was transferred to a microfuge tube and centrifuged for 5 minutes. The resulting supernatants were desalted on spin G-50 (Pharmacia) columns, previously equilibrated with extraction buffer (without BSA), in 0.25 ml aliquots. The desalted extracts were assayed for EPSP synthase activity by radioactive HPLC assay. Protein concentrations in samples were determined by the BioRad microprotein assay with BSA as the standard.

[0184] Protein concentrations were determined using the BioRad Microprotein method. BSA was used to generate a standard curve ranging from 2-24 μg . Either 800 μl of standard or diluted sample was mixed with 200 μl of concentrated BioRad Bradford reagent. The samples were vortexed and read at A(595) after ~5 minutes and compared to the standard curve.

[0185] EPSPS enzyme assays contained HEPES (50 mM), shikimate-3-phosphate (2 mM), NH₄ molybdate (0.1 mM) and KF (5 mM), with or without glyphosate (0.5 or 1.0 mM).

The assay mix (30 μ l) and plant extract (10 μ l) were preincubated for 1 minute at 25° C. and the reactions were initiated by adding $^{14}\text{C-PEP}$ (1 mM). The reactions were quenched after 3 minutes with 50 μ l of 90% EtOH/0.1M HOAc, pH 4.5. The samples were spun at 6000 rpm and the resulting supernatants were analyzed for $^{14}\text{C-EPSP}$ production by HPLC. Percent resistant EPSPS is calculated from the EPSPS activities with and without glyphosate.

[0186] The percent conversion of ¹⁴C labeled PEP to ¹⁴C EPSP was determined by HPLC radioassay using a C18 guard column (Brownlee) and an AX100 HPLC column (0.4×25 cm, Synchropak) with 0.28 M isocratic potassium phosphate eluant, pH 6.5, at 1 ml/min. Initial velocities were calculated by multiplying fractional turnover per unit time by the initial concentration of the labeled substrate (1 mM). The assay was linear with time up to ~3 minutes and 30% turnover to EPSPS. Samples were diluted with 10 mM Tris, 10% glycerol, 10 mM DTT, pH 7.5 (4° C.) if necessary to obtain results within the linear range.

[0187] In these assays DL-dithiotheitol (DTT), benzamidine (BAM), and bovine serum albumin (BSA, essentially globulin free) were obtained from Sigma. Phosphoenolpyruvate (PEP) was from Boehringer Mannheim and phosphoenol-[1-14C]pyruvate (28 mCi/mmol) was from Amersham.

EXAMPLES

Example 1

[0188] Transformed tobacco plants have been generated with a number of the Class II EPSPS gene vectors containing the CP4 EPSPS DNA sequence as described above with suitable expression of the EPSPS. These transformed plants exhibit glyphosate tolerance imparted by the Class II CP4 EPSPS.

[0189] Transformation of tobacco employs the tobacco leaf disc transformation protocol which utilizes healthy leaf tissue about 1 month old. After a 15-20 minutes surface sterilization with 10% Clorox plus a surfactant, the leaves are rinsed 3 times in sterile water. Using a sterile paper punch, leaf discs are punched and placed upside down on MS104 media (MS salts 4.3 μ l, sucrose 30 g/l, B5 vitamins 500×2 ml/l, NAA 0.1 mg/l, and BA 1.0 mg/l) for a 1 day preculture.

[0190] The discs are then inoculated with an overnight culture of a disarmed *Agrobacterium* ABI strain containing the subject vector that had been diluted 1/5 (i.e.: about 0.6 OD). The inoculation is done by placing the discs in centrifuge tubes with the culture. After 30 to 60 seconds, the liquid is drained off and the discs were blotted between sterile filter paper. The discs are then placed upside down on MS104 feeder plates with a filter disc to co-culture.

[0191] After 2-3 days of co-culture, the discs are transferred, still upside down, to selection plates with MS104 media. After 2-3 weeks, callus tissue formed, and individual clumps are separated from the leaf discs. Shoots are cleanly cut from the callus when they are large enough to be distinguished from stems. The shoots are placed on hormone-free rooting media (MSO: MS salts 4.3 g/l, sucrose 30 g/l, and B5 vitamins 500×2 ml/l) with selection for the appropriate antibiotic resistance. Root formation occurred in 1-2 weeks. Any leaf callus assays are preferably done on rooted shoots while still sterile. Rooted shoots are then placed in soil and kept in

a high humidity environment (i.e.: plastic containers or bags). The shoots are hardened off by gradually exposing them to ambient humidity conditions.

Expression of CP4 EPSPS Protein in Transformed Plants

[0192] Tobacco cells were transformed with a number of plant vectors containing the native CP4 EPSPS gene, and using different promoters and/or CTP's. Preliminary evidence for expression of the gene was given by the ability of the leaf tissue from antibiotic selected transformed shoots to recallus on glyphosate. In some cases, glyphosate-tolerant callus was selected directly following transformation. The level of expression of the CP4 EPSPS was determined by the level of glyphosate-tolerant EPSPS activity (assayed in the presence of 0.5 mM glyphosate) or by Western blot analysis using a goat anti-CP4 EPSPS antibody. The Western blots were quantitated by densitometer tracing and comparison to a standard curve established using purified CP4 EPSPS. These data are presented as % soluble leaf protein. The data from a number of transformed plant lines and transformation vectors are presented in Table VI below.

TABLE VI

Expression of C	P4 EPSPS in trans	sformed tobacco tissue
Vector	Plant #	CP4 EPSPS** (% leaf protein)
MON17110	25313	0.02
MON17110	25329	0.04
MON17116	25095	0.02
MON17119	25106	0.09
MON17119	25762	0.09
MON17119	25767	0.03

 $^{**{\}rm Glyphosate}$ tolerant EPSPS activity was also demonstrated in leaf extracts for these plants.

[0193] Glyphosate tolerance has also been demonstrated at the whole plant level in transformed tobacco plants. In tobacco, R_{ϕ} transformants of CTP2-CP4 EPSPS were sprayed at 0.4 lb/acre (0.448 kg/hectare), a rate sufficient to kill control non-transformed tobacco plants corresponding to a rating of 3, 1 and 0 at days 7, 14 and 28, respectively, and were analyzed vegetatively and reproductively (Table VII).

TABLE VII

Glyphosate tolerance in R. tobacco CP4 transformants*

		Sc	ore**	
		Vegetative	<u>: </u>	
Vector/Plant#	day 7	day 14	day 28	Fertile
pMON17110/25313	6	4	2	no
pMON17110/25329	9	10	10	yes
pMON17119/25106	9	9	10	yes

^{*}Spray rate = 0.4 lb/acre (0.448 kg/hectare)

Example 2A

[0194] Canola plants were transformed with the pMON17110, pMON17116, and pMON17131 vectors and a number of plant lines of the transformed canola were obtained which exhibit glyphosate tolerance.

Plant Material

[0195] Seedlings of *Brassica napus* cv Westar were established in 2 inch (~5 cm) pots containing Metro Mix 350. They were grown in a growth chamber at 24° C., 16/8 hour photoperiod, light intensity of 400 uEm⁻² sec⁻¹ (HID lamps). They were fertilized with Peters 20-10-20 General Purpose Special. After 2½ weeks they were transplanted to 6 inch (~15 cm) pots and grown in a growth chamber at 15/10° C. day/night temperature, 16/8 hour photoperiod, light intensity of 800 uEm⁻² sec⁻¹ (HID lamps). They were fertilized with Peters 15-30-15 Hi-Phos Special.

Transformation/Selection/Regeneration

[0196] Four terminal internodes from plants just prior to bolting or in the process of bolting but before flowering were removed and surfaced sterilized in 70% v/v ethanol for 1 minute, 2% w/v sodium hypochlorite for 20 minutes and rinsed 3 times with sterile deionized water. Stems with leaves attached could be refrigerated in moist plastic bags for up to 72 hours prior to sterilization. Six to seven stem segments were cut into 5 mm discs with a Redco Vegetable Slicer 200 maintaining orientation of basal end.

[0197] The *Agrobacterium* was grown overnight on a rotator at 24° C. in 2 mls of Luria Broth containing 50 mg/l kanamycin, 24 mg/l chloramphenicol and 100 mg/l spectinomycin. A 1:10 dilution was made in MS (Murashige and Skoog) media giving approximately 9×10^{8} cells per ml. This was confirmed with optical density readings at 660 mu. The stem discs (explants) were inoculated with 1.0 ml of *Agrobacterium* and the excess was aspirated from the explants.

[0198] The explants were placed basal side down in petri plates containing ½10× standard MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1.0 mg/l 6-benzyladenine (BA). The plates were layered with 1.5 ml of media containing MS salts, B5 vitamins, 3% sucrose, pH 5.7, 4.0 mg/l p-chlorophenoxyacetic acid, 0.005 mg/l kinetin and covered with sterile filter paper.

[0199] Following a 2 to 3 day co-culture, the explants were transferred to deep dish petri plates containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1 mg/l BA, 500 mg/l carbenicillin, 50 mg/l cefotaxime, 200 mg/l kanamycin or 175 mg/l gentamicin for selection. Seven explants were placed on each plate. After 3 weeks they were transferred to fresh media, 5 explants per plate. The explants were cultured in a growth room at 25° C., continuous light (Cool White).

Expression Assay

[0200] After 3 weeks shoots were excised from the explants. Leaf recallusing assays were initiated to confirm modification of R_o shoots. Three tiny pieces of leaf tissue were placed on recallusing media containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 5.0 mg/l BA, 0.5 mg/l naphthalene acetic acid (NAA), 500 mg/l carbenicillin, 50 mg/l cefotaxime and 200 mg/l kanamycin or gentamicin or 0.5 mM glyphosate. The leaf assays were incubated in a growth room under the same conditions as explant culture.

^{**}Plants are evaluated on a numerical scoring system of 0-10 where a vegetative score of 10 represents no damage relative to nonsprayed controls and 0 represents a dead plant. Reproductive scores (Fertile) are determined at 28 days after spraying and are evaluated as to whether or not the plant is fertile.

After 3 weeks the leaf recallusing assays were scored for herbicide tolerance (callus or green leaf tissue) or sensitivity (bleaching).

Transplantation

[0201] At the time of excision, the shoot stems were dipped in Rootone® and placed in 2 inch (~5 cm) pots containing Metro-Mix 350 and placed in a closed humid environment. They were placed in a growth chamber at 24° C., 16/8 hour photoperiod, 400 uEm⁻¹ sec⁻² (HID lamps) for a hardening-off period of approximately 3 weeks.

[0202] The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one resistant phenotype.

[0203] Seed from an R_o plant is harvested, threshed, and dried before planting in a glyphosate spray test. Various techniques have been used to grow the plants for R_1 spray evaluations. Tests are conducted in both greenhouses and growth chambers. Two planting systems are used; ~10 cm pots or plant trays containing 32 or 36 cells. Soil used for planting is either Metro 350 plus three types of slow release fertilizer or plant Metro 350. Irrigation is either overhead in greenhouses or sub-irrigation in growth chambers. Fertilizer is applied as required in irrigation water. Temperature regimes appropriate for canola were maintained. A sixteen hour photoperiod was maintained. At the onset of flowering, plants are transplanted to ~15 cm pots for seed production.

[0204] A spray "batch" consists of several sets of R_1 progenies all sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more non-segregating transformed genotypes previously identified as having some resistance.

[0205] Two-six plants from each individual R_o progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not induced by the glyphosate. When the other plants reach the 2-4 leaf stage, usually 10 to 20 days after planting, glyphosate is applied at rates varying from 0.28 to 1.12 kg/ha, depending on objectives of the study. Low rate technology using low volumes has been adopted. A laboratory track sprayer has been calibrated to deliver a rate equivalent to field conditions.

[0206] A scale of 0 to 10 is used to rate the sprayed plants for vegetative resistance. The scale is relative to the unsprayed plants from the same R_o plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT), or until bolting, and a line is given the average score of the sprayed plants within an R_o plant family.

[0207] Six integers are used to qualitatively describe the degree of reproductive damage from glyphosate:

[0208] 0: No floral bud development

[0209] 2: Floral buds present, but aborted prior to opening

[0210] 4: Flowers open, but no anthers, or anthers fail to extrude past petals

[0211] 6: Sterile anthers

[0212] 8: Partially sterile anthers

[0213] 10: Fully fertile flowers

[0214] Plants are scored using this scale at or shortly after initiation of flowering, depending on the rate of floral structure development.

Expression of EPSPS in Canola

[0215] After the 3 week period, the transformed canola plants were assayed for the presence of glyphosate-tolerant EPSPS activity (assayed in the presence of glyphosate at 0.5 mM). The results are shown in Table VIII.

TABLE VIII

Expression of CP4 EPSPS in transformed Canola plants				
	Plant#	% resistant EPSPS activity of Leaf extract (at 0.5 mM glyphosate)		
Vector Control		0		
pMON17110	41	47		
pMON17110	52	28		
pMON17110	71	82		
pMON17110	104	75		
pMON17110	172	84		
pMON17110	177	85		
pMON17110	252	29*		
pMON17110	350	49		
pMON17116	40	25		
pMON17116	99	87		
pMON17116	175	94		
pMON17116	178	43		
pMON17116	182	18		
pMON17116	252	69		
pMON17116	298	44*		
pMON17116	332	89		
pMON17116	383	97		
pMON17116	395	52		

^{*}assayed in the presence of 1.0 mM glyphosate

[0216] R_1 transformants of canola were then grown in a growth chamber and sprayed with glyphosate at 0.56 kg/ha (kilogram/hectare) and rated vegetatively. These results are shown in Table IXA-IXC. It is to be noted that expression of glyphosate resistant EPSPS in all tissues is preferred to observe optimal glyphosate tolerance phenotype in these transgenic plants. In the Tables below, only expression results obtained with leaf tissue are described.

TABLE IXA

Glyphosate tolerance in Class II EPSPS
canola R₁ transformants
(pMON17110 = P-E35S; pMON17116 = P-FMV35S; R1 plants;
Spray rate = 0.56 kg/ha)

	% resistant	Vegetative Score**				
Vector/Plant No.	EPSPS*	day 7	day 14			
Control Westar pMON17110/41 pMON17110/71 pMON17110/177	0 47 82 85	5 6 6 9	3 7 7 10			

TABLE IXA-continued

 $\label{eq:Glyphosate tolerance in Class II EPSPS} Ganola \ R_1 transformants \\ (pMON17110 = P-E35S; pMON17116 = P-FMV35S; R1 plants; \\ Spray rate = 0.56 \ kg/ha)$

	% resistant	Vegetative Score**				
Vector/Plant No.	EPSPS*	day 7	day 14			
pMON17116/40	25	9	9			
pMON17116/99	87	9	10			
pMON17116/175	94	9	10			
pMON17116/178	43	6	3			
pMON17116/182	18	9	10			
pMON17116/383	97	9	10			

TABLE IXB

Glyphosate tolerance in Class II EPSPS
canola R₁ transformants
(pMON17131 = P-FMV35S; R1 plants; Spray rate = 0.84 kg/ha)

Vector/Plant No.	Vegetative score** day 14	Reproductive score day 28
17131/78	10	10
17131/102	9	10
17131/115	9	10
17131/116	9	10
17131/157	9	10
17131/169	10	10
17131/255	10	10
control Westar	1	0

TABLE IXC

Glyphosate tolerance in Class I EPSPS canola transformants
(P-E35S; R2 Plants; Spray rate = 0.28 kg/ha)

	% resistant	Vegetative Score**				
Vector/Plant No.	EPSPS*	day 7	day 14			
Control Westar	0	4	2			
pMON899/715	96	5	6			
pMON899/744	95	8	8			
pMON899/794	86	6	4			
pMON899/818	81	7	8			
pMON899/885	57	7	6			

^{*%} resistant EPSPS activity in the presence of 0.5 mM glyphosate

[0217] The data obtained for the Class II EPSPS transformants may be compared to glyphosate-tolerant Class I EPSP transformants in which the same promoter is used to express the EPSPS genes and in which the level of glyphosate-tolerant EPSPS activity was comparable for the two types of transformants. A comparison of the data of pMON17110 [in Table IXA] and pMON17131 [Table IXB] with that for pMON899 [in Table IXC; the Class I gene in pMON899 is that from *A. thaliana* {Klee et al., 1987} in which the glycine at position 101 was changed to an alanine] illustrates that the Class II EPSPS is at least as good as that of the Class I EPSPS. An improvement in vegetative tolerance of Class II EPSPS is

apparent when one takes into account that the Class II plants were sprayed at twice the rate and were tested as R_1 plants.

Example 2B

[0218] The construction of two plant transformation vectors and the transformation procedures used to produce glyphosate-tolerant canola plants are described in this example The vectors, pMON17209 and pMON17237, were used to generate transgenic glyphosate-tolerant canola lines. The vectors each contain the gene encoding the 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4. The vectors also contain either the gox gene encoding the glyphosate oxidoreductase enzyme (GOX) from Achromobacter sp. strain LBAA (Barry et al., 1992) or the gene encoding a variant of GOX (GOX v.247) which displays improved catalytic properties. These enzymes convert glyphosate to aminomethylphosphonic acid and glyoxylate and protect the plant from damage by the metabolic inactivation of glyphosate. The combined result of providing an alternative, resistant EPSPS enzyme and the metabolism of glyphosate produces transgenic plants with enhanced tolerance to glyphosate

Molecular biology techniques. In general, standard molecular biology and microbial genetics approaches were employed (Maniatis et al., 1982). Site-directed mutageneses were carried out as described by Kunkel et al. (1987). Plant-preferred genes were synthesized and the sequence confirmed.

Plant transformation vectors. The following describes the general features of the plant transformation vectors that were modified to form vectors pMON17209 and pMON17237. The Agrobacterium mediated plant transformation vectors contain the following well-characterized DNA segments which are required for replication and function of the plasmids (Rogers and Klee, 1987; Klee and Rogers, 1989). The first segment is the 0.45 kb ClaI-DraI fragment from the pTi15955 octopine Ti plasmid which contains the T-DNA left border region (Barker et al., 1983). It is joined to the 0.75 kb origin of replication (oriV) derived from the broad-host range plasmid RK2 (Stalker et al., 1981). The next segment is the 3.1 kb Sall-Pvul segment of pBR322 which provides the origin of replication for maintenance in E. coli and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells (Bolivar et al., 1977). This is fused to the 0.93 kb fragment isolated from transposon Tn7 which encodes bacterial spectinomycin and streptomycin resistance (Fling et al., 1985), a determinant for the selection of the plasmids in E. coli and Agrobacterium. It is fused to the 0.36 kb PvuI-BcII fragment from the pTiT37 plasmid which contains the nopaline-type T-DNA right border region (Fraley et al., 1985). Several chimeric genes engineered for plant expression can be introduced between the Ti right and left border regions of the vector. In addition to the elements described above, this vector also includes the 35S promoter/ NPTII/NOS 3' cassette to enable selection of transformed plant tissues on kanamycin (Klee and Rogers, 1989; Fraley et al., 1983; and Odell, et al., 1985) within the borders. An "empty" expression cassette is also present between the borders and consists of the enhanced E35S promoter (Kay et al., 1987), the 3' region from the small subunit of RUBPcarboxylase of pea (E9) (Coruzzi et al., 1984; Morelli et al., 1986), and a number of restriction enzyme sites that may be used for the cloning of DNA sequences for expression in plants. The plant transformation system based on Agrobacterium tumefaciens delivery has been reviewed (Klee and Rogers, 1989;

^{**}A vegetative score of 10 indicates no damage, a score of 0 is given to a dead plant.

Fraley et al., 1986). The *Agrobacterium* mediated transfer and integration of the vector T-DNA into the plant chromosome results in the expression of the chimeric genes conferring the desired phenotype in plants.

Bacterial Inoculum. The binary vectors are mobilized into *Agrobacterium tumefaciens* strain ABI by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). The ABI strain contains the disarmed pTiC58 plasmid pMP90RK (Koncz and Schell, 1986) in the chloramphenicol resistant derivative of the *Agrobacterium tumefaciens* strain A208.

Transformation procedure. *Agrobacterium* inocula were grown overnight at 28° C. in 2 ml of LBSCK (LBSCK is made as follows: LB liquid medium [1 liter volume]=10 g NaCl; 5 g Yeast Extract; 10 g tryptone; pH 7.0, and autoclave for 22 minutes. After autoclaving, add spectinomycin (50 mg/ml stock)-2 ml, kanamycin (50 mg/ml stock)-1 ml, and chloramphenicol (25 mg/ml stock)-1 ml.). One day prior to inoculation, the *Agrobacterium* was subcultured by inoculating 200 μ l into 2 ml of fresh LBSCK and grown overnight. For inoculation of plant material, the culture was diluted with MSO liquid medium to an A_{660} range of 0.2-0.4.

[0219] Seedlings of *Brassica napus* cv. Westar were grown in Metro Mix 350 (Hummert Seed Co., St. Louis, Mo.) in a growth chamber with a day/night temperature of $15/10^{\circ}$ C., relative humidity of 50%, 16 h/8 h photoperiod, and at a light intensity of 500 μ mol m⁻² sec⁻¹. The plants were watered daily (via sub-irrigation) and fertilized every other day with Peter's 15:30:15 (Fogelsville, Pa.).

[0220] In general, all media recipes and the transformation protocol follow those in Fry et. al. (1987). Five to six weekold Westar plants were harvested when the plants had bolted (but prior to flowering), the leaves and buds were removed, and the 4-5 inches of stem below the flower buds were used as the explant tissue source. Following sterilization with 70% ethanol for 1 min and 38% Clorox for 20 min, the stems were rinsed three times with sterile water and cut into 5 mm-long segments (the orientation of the basal end of the stem segments was noted). The plant material was incubated for 5 minutes with the diluted Agrobacterium culture at a rate of 5 ml of culture per 5 stems. The suspension of bacteria was removed by aspiration and the explants were placed basal side down—for an optimal shoot regeneration response—onto co-culture plates (1/10 MSO solid medium with a 1.5 ml TXD (tobacco xanthi diploid) liquid medium overlay and covered with a sterile 8.5 cm filter paper). Fifty-to-sixty stem explants were placed onto each co-culture plate.

[0221] After a 2 day co-culture period, stem explants were moved onto MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/l BAP (benzylaminopurine) for 3 days. The stem explants were then placed for two periods of three weeks each, again basal side down and with 5 explants per plate, onto an MS/0.1 mM glyphosate, selection medium (also containing carbenicillin, cefotaxime, and BAP (The glyphosate stock [0.5M] is prepared as described in the following: 8.45 g glyphosate [analytical grade] is dissolved in 50 ml deionized water, adding KOH pellets to dissolve the glyphosate, and the volume is brought to 100 ml following adjusting the pH to 5.7. The solution is filter-sterilized and stored at 4° C.). After 6 weeks on this glyphosate selection medium, green, normally developing shoots were excised from the stem explants and were placed onto fresh MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/1 BAP, for further shoot development. When the shoots were 2-3 inches tall, a fresh cut at the end of the stem was made, the cut end was dipped in Root-tone, and the shoot was placed in Metro Mix 350 soil and allowed to harden-off for 2-3 weeks.

Construction of Canola Transformation Vector pMON17209 The EPSPS gene was isolated originally from Agrobacterium sp. strain CP4 and expresses a highly tolerant enzyme. The original gene contains sequences that could be inimical to high expression of the gene in some plants. These sequences include potential polyadenylation sites that are often A+T rich, a higher G+C % than that frequently found in dicotyledonous plant genes (63% versus ~50%), concentrated stretches of G and C residues, and codons that may not used frequently in dicotyledonous plant genes. The high G+C % in the CP4 EPSPS gene could also result in the formation of strong hairpin structures that may affect expression or stability of the RNA. A plant preferred version of the gene was synthesized and used for these vectors. This coding sequence was expressed in E. coli from a PRecA-gene 10L vector (Olins et al., 1988) and the EPSPS activity was compared with that from the native CP4 EPSPS gene. The appK_m for PEP for the native and synthetic genes was 11.8 μM and 12.7 μM, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was then mutagenized to place an SphI site (GCATGC) at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by complementation of the aroA mutant. A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidopsis CTP was engineered by site-directed mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The CTP2-CP4 EPSPS fusion was tested for import into chloroplasts isolated from Lactuca sativa using the methods described previously (della-Cioppa et al., 1986; 1987).

[0222] The GOX gene that encodes the glyphosate metabolizing enzyme glyphosate oxidoreductase (GOX) was cloned originally from Achromobacter sp. strain LBAA (Hallas et al., 1988; Barry et al., 1992). The gox gene from strain LBAA was also resynthesized in a plant-preferred sequence version and in which many of the restriction sites were removed (PCT Appln. No. WO 92/00377). The GOX protein is targeted to the plastids by a fusion between the C-terminus of a CTP and the N-terminus of GOX. A CTP, derived from the SSU1A gene from Arabidopsis thaliana (Timko et al., 1988) was used. This CTP (CTP1) was constructed by a combination of site-directed mutageneses. The CTP1 is made up of the SSU1A CTP (amino acids 1-55), the first 23 amino acids of the mature SSU1A protein (56-78), a serine residue (amino acid 79), a new segment that repeats amino acids 50 to 56 from the CTP and the first two from the mature protein (amino acids 80-87), and an alanine and methionine residue (amino acid 88 and 89). An NcoI restriction site is located at the 3' end (spans the Met89 codon) to facilitate the construction of precise fusions to the 5' of GOX. At a later stage, a BgIII site was introduced upstream of the N-terminus of the SSU1A sequences to facilitate the introduction of the fusions into plant transformation vectors. A fusion was assembled between CTP1 and the synthetic GOX gene.

[0223] The CP4 EPSPS and GOX genes were combined to form pMON17209 as described in the following. The CTP2-

CP4 EPSPS fusion was assembled and inserted between the constitutive FMV35S promoter (Gowda et al., 1989; Richins et al., 1987) and the E93' region (Coruzzi et al., 1984; Morelli et al., 1985) in a pUC vector (Yannisch-Perron et al., 1985; Vieira and Messing, 1987) to form pMON17190; this completed element may then be moved easily as a NotI-NotI fragment to other vectors. The CTP1-GOX fusion was also assembled in a pUC vector with the FMV35S promoter. This element was then moved as a HindIII-BamHI fragment into the plant transformation vector pMON10098 and joined to the E9 3' region in the process. The resultant vector pMON17193 has a single NotI site into which the FMV 35S/CTP2-CP4 EPSPS/E9 3' element from pMON17190 was cloned to form pMON17194. The kanamycin plant transformation selection cassette (Fraley et al., 1985) was then deleted from pMON17194, by cutting with XhoI and religating, to form the pMON17209 vector (FIG. 24).

Construction of Canola Transformation Vector pMON17237. The GOX enzyme has an apparent K_m for glyphosate [appK_m (glyphosate)] of ~25 mM. In an effort to improve the effectiveness of the glyphosate metabolic rate in planta, a variant of GOX has been identified in which the $appK_m(glyphosate)$ has been reduced approximately 10-fold; this variant is referred to as GOX v.247 and the sequence differences between it and the original plant-preferred GOX are illustrated in PCT Appln. No. WO 92/00377. The GOX v.247 coding sequence was combined with CTP1 and assembled with the FMV35S promoter and the E9 3' by cloning into the pMON17227 plant transformation vector to form pMON17241. In this vector, effectively, the CP4 EPSPS was replaced by GOX v.247. The pMON17227 vector had been constructed by replacing the CTP1-GOX sequences in pMON17193 with those for the CTP2-CP4 EPSPS, to form pMON17199 and followed by deleting the kanamycin cassette (as described above for pMON17209). The pMON17237 vector (FIG. 25) was then completed by cloning the FMV35S/CTP2-CP4 EPSPS/E9 3' element as a NotI-NotI fragment into pMON17241.

Example 3

[0224] Soybean plants were transformed with the pMON13640 (FIG. 15) vector and a number of plant lines of the transformed soybean were obtained which exhibit glyphosate tolerance.

[0225] Soybean plants are transformed with pMON13640 by the method of microprojectile injection using particle gun technology as described in Christou et al. (1988). The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one resistant phenotype.

[0226] Seed from an R_o soybean plant is harvested, and dried before planting in a glyphosate spray test. Seeds are planted into 4 inch (~5 cm) square pots containing Metro 350. Twenty seedlings from each R_o plant is considered adequate for testing. Plants are maintained and grown in a greenhouse environment. A 12.5-14 hour photoperiod and temperatures

of 30° C. day and 24° C. night is regulated. Water soluble Peters Pete Lite fertilizer is applied as needed.

[0227] A spray "batch" consists of several sets of R_1 progenies all sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more non-segregating transformed genotypes previously identified as having some resistance.

[0228] One to two plants from each individual R_o progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not induced by the glyphosate. When the other plants reach the first trifoliate leaf stage, usually 2-3 weeks after planting, glyphosate is applied at a rate equivalent of 128 oz./acre (8.895 kg/ha) of Roundup®. A laboratory track sprayer has been calibrated to deliver a rate equivalent to those conditions.

[0229] A vegetative score of 0 to 10 is used. The score is relative to the unsprayed progenies from the same R_o plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT). The data from the analysis of one set of transformed and control soybean plants are described on Table X and show that the CP4 EPSPS gene imparts glyphosate tolerance in soybean also.

TABLE X

Glyphosate tolerance in Class II EPSPS soybean transformants
(P-E35S, P-FMV35S; RO plants; Spray rate = 128 oz./acre)

_	Vegetative score								
Vector/Plant No.	day 7	day 14	day 28						
13640/40-11	5	6	7						
13640/40-3	9	10	10						
13640/40-7	4	7	7						
control A5403 2	1	0							
control A5403 1	1	0							

Example 4

[0230] The CP4 EPSPS gene may be used to select transformed plant material directly on media containing glyphosate. The ability to select and to identify transformed plant material depends, in most cases, on the use of a dominant selectable marker gene to enable the preferential and continued growth of the transformed tissues in the presence of a normally inhibitory substance. Antibiotic resistance and herbicide tolerance genes have been used almost exclusively as such dominant selectable marker genes in the presence of the corresponding antibiotic or herbicide. The nptII/kanamycin selection scheme is probably the most frequently used. It has been demonstrated that CP4 EPSPS is also a useful and perhaps superior selectable marker/selection scheme for producing and identifying transformed plants.

[0231] A plant transformation vector that may be used in this scheme is pMON17227 (FIG. 16). This plasmid resembles many of the other plasmids described infra and is essentially composed of the previously described bacterial

replicon system that enables this plasmid to replicate in *E. coli* and to be introduced into and to replicate in *Agrobacte-rium*, the bacterial selectable marker gene (Spc/Str), and located between the T-DNA right border and left border is the CTP2-CP4 synthetic gene in the FMV35S promoter-E9 3' cassette. This plasmid also has single sites for a number of restriction enzymes, located within the borders and outside of the expression cassette. This makes it possible to easily add other genes and genetic elements to the vector for introduction into plants.

[0232] The protocol for direct selection of transformed plants on glyphosate is outlined for tobacco. Explants are prepared for pre-culture as in the standard procedure as described in Example 1: surface sterilization of leaves from 1 month old tobacco plants (15 minutes in 10% clorox+surfactant; 3x dH₂O washes); explants are cut in 0.5x0.5 cm squares, removing leaf edges, mid-rib, tip, and petiole end for uniform tissue type; explants are placed in single layer, upside down, on MS104 plates+2 ml 4COO5K media to moisten surface; pre-culture 1-2 days. Explants are inoculated using overnight culture of Agrobacterium containing the plant transformation plasmid that is adjusted to a titer of 1.2×10^9 bacteria/ml with 4COO5K media. Explants are placed into a centrifuge tube, the Agrobacterium suspension is added and the mixture of bacteria and explants is "Vortexed" on maximum setting for 25 seconds to ensure even penetration of bacteria. The bacteria are poured off and the explants are blotted between layers of dry sterile filter paper to remove excess bacteria. The blotted explants are placed upside down on MS104 plates+2 ml 4COO5K media+filter disc. Co-culture is 2-3 days. The explants are transferred to MS104+ Carbenicillin 1000 mg/l+cefotaxime 100 mg/l for 3 days (delayed phase). The explants are then transferred to MS104+ glyphosate 0.05 mM+Carbenicillin 1000 mg/l+cefotaxime 100 mg/l for selection phase. At 4-6 weeks shoots are cut from callus and placed on MSO+Carbenicillin 500 mg/l rooting media. Roots form in 3-5 days, at which time leaf pieces can be taken from rooted plates to confirm glyphosate tolerance and that the material is transformed.

[0233] The presence of the CP4 EPSPS protein in these transformed tissues has been confirmed by immunoblot analysis of leaf discs. The data from one experiment with pMON17227 is presented in the following: 139 shoots formed on glyphosate from 400 explants inoculated with *Agrobacterium* ABI/pMON17227; 97 of these were positive on recallusing on glyphosate. These data indicate a transformation rate of 24 per 100 explants, which makes this a highly efficient and time saving transformation procedure for plants. Similar transformation frequencies have been obtained with pMON17131 and direct selection of transformants on glyphosate with the CP4 EPSPS genes has also been shown in other plant species, including, *Arabidopsis*, soybean, corn, wheat, potato, tomato, cotton, lettuce, and sugarbeet.

[0234] The pMON17227 plasmid contains single restriction enzyme recognition cleavage sites (NotI, XhoI, and BstXI) between the CP4 glyphosate selection region and the left border of the vector for the cloning of additional genes and to facilitate the introduction of these genes into plants.

Example 5A

[0235] The CP4 EPSPS gene has also been introduced into Black Mexican Sweet (BMS) corn cells with expression of the protein and glyphosate resistance detected in callus.

[0236] The backbone for this plasmid was a derivative of the high copy plasmid pUC119 (Viera and Messing, 1987). The 1.3 Kb FspI-DraI pUC119 fragment containing the origin of replication was fused to the 1.3 Kb SmaI-HindIII filled fragment from pKC7 (Rao and Rogers, 1979) which contains the neomycin phosphotransferase type II gene to confer bacterial kanamycin resistance. This plasmid was used to construct a monocot expression cassette vector containing the 0.6 kb cauliflower mosaic virus (CaMV) 35S RNA promoter with a duplication of the -90 to -300 region (Kay et al., 1987), an 0.8 kb fragment containing an intron from a maize gene in the 5' untranslated leader region, followed by a polylinker and the 3' termination sequences from the nopaline synthase (NOS) gene (Fraley et al., 1983). A 1.7 Kb fragment containing the 300 bp chloroplast transit peptide from the *Arabidopsis* EPSP synthase fused in frame to the 1.4 Kb coding sequence for the bacterial CP4 EPSP synthase was inserted into the monocot expression cassette in the polylinker between the intron and the NOS termination sequence to form the plasmid pMON19653 (FIG. 17).

[0237] pMON19653 DNA was introduced into Black Mexican Sweet (BMS) cells by co-bombardment with EC9, a plasmid containing a sulfonylurea-resistant form of the maize acetolactate synthase gene. 2.5 mg of each plasmid was coated onto tungsten particles and introduced into log-phase BMS cells using a PDS-1000 particle gun essentially as described (Klein et al., 1989). Transformants are selected on MS medium containing 20 ppb chlorsulfuron. After initial selection on chlorsulfuron, the calli can be assayed directly by Western blot. Glyphosate tolerance can be assessed by transferring the calli to medium containing 5 mM glyphosate. As shown in Table XI, CP4 EPSPS confers glyphosate tolerance to corn callus.

TABLE XI

Expression of CP4 in	Expression of CP4 in BMS Corn Callus - pMON 19653										
Line	CP4 expression (% extracted protein)										
284	0.006%										
287	0.036										
290	0.061										
295	0.073										
299	0.113										
309	0.042										
313	0.003										

[0238] To measure CP4 EPSPS expression in corn callus, the following procedure was used: BMS callus (3 g wet weight) was dried on filter paper (Whatman#1) under vacuum, reweighed, and extraction buffer (500 μ l/g dry weight; 100 mM Tris, 1 mM EDTA, 10% glycerol) was added. The tissue was homogenized with a Wheaton overhead stirrer for 30 seconds at 2.8 power setting. After centrifugation (3 minutes, Eppendorf microfuge), the supernatant was removed and the protein was quantitated (BioRad Protein Assay). Samples (50 μ g/well) were loaded on an SDS PAGE gel (Jule, 3-17%) along with CP4 EPSPS standard (10 ng), electrophoresed, and transferred to nitrocellulose similarly to a previously described method (Padgette, 1987). The nitrocellulose blot was probed with goat anti-CP4 EPSPS

IgG, and developed with I-125 Protein G. The radioactive blot was visualized by autoradiography. Results were quantitated by densitometry on an LKB UltraScan XL laser densitomer and are tabulated below in Table X.

TABLE XII

		ance in BMS Corn pMON 19653	Callus		
Vector	Experiment	# chlorsulfuron- resistant lines	# cross-resistant to Glyphosate		
19653 19653 EC9 control	253 254 253/254	120 80 8	81/120 = 67.5% 37/80 = 46% 0/8 = 0%		

[0239] Improvements in the expression of Class II EPSPS could also be achieved by expressing the gene using stronger plant promoters, using better 3' polyadenylation signal sequences, optimizing the sequences around the initiation codon for ribosome loading and translation initiation, or by combination of these or other expression or regulatory sequences or factors.

Example 5B

[0240] The plant-expressible genes encoding the CP4 EPSPS and a glyphosate oxidoreductasease enzyme (PCT Pub. No. WO92/00377) were introduced into embryogenic corn callus through particle bombardment. Plasmid DNA was prepared using standard procedures (Ausubel et al., 1987), cesium-chloride purified, and re-suspended at 1 mg/ml in TE buffer. DNA was precipitated onto M10 tungsten or 1.0µ gold particles (BioRad) using a calcium chloride/spermidine precipitation protocol, essentially as described by Klein et al. (1987). The PDS1000® gunpowder gun (BioRad) was used. Callus tissue was obtained by isolating 1-2 mm long immature embryos from the "Hi-II" genotype (Armstrong et al., 1991), or Hi-II X B73 crosses, onto a modified N6 medium (Armstrong and Green, 1985; Songstad et al., 1991). Embryogenic callus ("type-II"; Armstrong and Green, 1985) initiated from these embryos was maintained by subculturing at two week intervals, and was bombarded when less than two months old. Each plate of callus tissue was bombarded from 1 to 3 times with either tungsten or gold particles coated with the plasmid DNA(s) of interest. Callus was transferred to a modified N6 medium containing an appropriate selective agent (either glyphosate, or one or more of the antibiotics kanamycin, G418, or paromomycin) 1-8 days following bombardment, and then re-transferred to fresh selection media at 2-3 week intervals. Glyphosate-resistant calli first appeared approximately 6-12 weeks post-bombardment. These resistant calli were propagated on selection medium, and samples were taken for assays gene expression. Plant regeneration from resistant calli was accomplished essentially as described by Petersen et al. (1992).

[0241] In some cases, both gene(s) were covalently linked together on the same plasmid DNA molecule. In other instances, the genes were present on separate plasmids, but were introduced into the same plant through a process termed "co-transformation". The 1 mg/ml plasmid preparations of interest were mixed together in an equal ratio, by volume, and then precipitated onto the tungsten or gold particles. At a high frequency, as described in the literature (e.g., Schocher et al., 1986), the different plasmid molecules integrate into the

genome of the same plant cell. Generally the integration is into the same chromosomal location in the plant cell, presumably due to recombination of the plasmids prior to integration. Less frequently, the different plasmids integrate into separate chromosomal locations. In either case, there is integration of both DNA molecules into the same plant cell, and any plants produced from that cell.

[0242] Transgenic corn plants were produced as described above which contained a plant-expressible CP4 gene and a plant-expressible gene encoding a glyphosate oxidoreductase enzyme.

[0243] The plant-expressible CP4 gene comprised a structural DNA sequence encoding a CTP2/CP4 EPSPS fusion protein. The CTP2/CP4 EPSPS is a gene fusion composed of the N-terminal 0.23 Kb chloroplast transit peptide sequence from the *Arabidopsis thaliana* EPSPS gene (Klee et al. 1987, referred to herein as CTP2), and the C-terminal 1.36 Kb 5-enolpyruvylshikimate-3-phosphate synthase gene (CP4) from an *Agrobacterium* species. Plant expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature CP4 protein.

[0244] The plant-expressible gene expressing a glyphosate oxidoreductase enzyme comprised a structural DNA sequence comprising CTP1/GOXsyn gene fusion composed of the N-terminal 0.26 Kb chloroplast transit peptide sequence derived from the $Arabidopsis\ thaliana\ SSU\ 1a$ gene (Timko et al., 1988 referred to herein as CTP1), and the C-terminal 1.3 Kb synthetic gene sequence encoding a glyphosate oxidoreductase enzyme (GOXsyn, as described in PCT Pub. No. WO92/00377 previously incorporated by reference). The GOXsyn gene encodes the enzyme glyphosate oxidoreductase from an Achromobacter sp. strain LBAA which catalyzes the conversion of glyphosate to herbicidally inactive products, aminomethylphosphonate and glyoxylate. Plant expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature GOX protein.

[0245] Both of the above described genes also include the following regulatory sequences for plant expression: (i) a promoter region comprising a 0.6 Kb 35S cauliflower mosaic virus (CaMV) promoter (Odell et al., 1985) with the duplicated enhancer region (Kay et al., 1987) which also contains a 0.8 Kb fragment containing the first intron from the maize heat shock protein 70 gene (Shah et al., 1985 and PCT Pub. No. WO93/19189, the disclosure of which is hereby incorporated by reference); and (ii) a 3' non-translated region comprising a 0.3 Kb fragment of the 3' non-translated region of the nopaline synthase gene (Fraley et al., 1983 and Depicker, et al., 1982) which functions to direct polyadenylation of the mRNA.

[0246] The above described transgenic corn plants exhibit tolerance to glyphosate herbicide in greenhouse and field trials.

Example 6

[0247] The LBAA Class II EPSPS gene has been introduced into plants and also imparts glyphosate tolerance. Data on tobacco transformed with pMON17206 (infra) are presented in Table XIII.

TABLE XIII

	Tobacco Glyphosate Spray Test (pMON17206: E35S-CTP2-LBAA EPSPS: 0.4 lbs/ac)									
Line	7 Day Rating									
33358	9									
34586	9									
33328	9									
34606	9									
33377	9									
34611	10									
34607	10									
34601	9									
34589	9									
Samsun (Control)	4									

[0248] From the foregoing, it will be recognized that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with advantages which are obvious and which are inherent to the invention. It will be further understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

BIBLIOGRAPHY

- [0249] Alm, R.A., Dalrymple, B. P. and Mattick, J. S. 1994. Sequencing and expression of the aroA gene from *Dichelobacter nodosus*, *Gene*, 145: 97-101.
- [0250] Alton, N. K. and Vapnek, D. (1979) *Nature* 282:864-
- [0251] Ammirato, P. V., et al. *Handbook of Plant Cell Culture—Crop Species*. Macmillan Publ. Co. (1984).
- [0252] Armstrong, C. L., and Green, C. E. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. *Planta* 164:207-214.
- [0253] Armstrong, C. L., Green, C. E., and Phillips, R. L. 1991. Development and availability of germplasm with high Type II culture formation response. *Maize Genetics Cooperation NewsLetter* 65:92-93.
- [0254] Arnon, D. I. Plant Physiol. 24:1-15 (1949).
- [0255] Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. 1987. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley and Sons, Inc. New York.
- [0256] Bachmann, B. J. et al., Microb. Rev., 44:1-56 (1980).
- [0257] Barker, R., Idler, K, Thompson, D., and Kemp, J. (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens Ti plasmid pTi15955. Plant Mol Biol 2: 335-350
- [0258] Barry, G., Kishore, G., Padgette, S., Taylor, M., Kolacz, K, Weldon, M., Re D., Eichholtz., Fincher, K, and Hallas, L. (1992) Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. In: Biosynthesis and Molecular Regulation of Amino Acids in Plants. pp. 139-145. [Edited by Singh, B. K, Flores, H. E., and Shannon, J. C.] American Society of Plant Physiologists, Rockville, Md.

- [0259] Bartlett, S. G., Grossman, A. R., and Chua, N. H. (1982) in *Methods in Chloroplast Molecular Biology*, pp. 1081-1091. M. Edelman, R. B., Hallick, and Chua, N. H., eds.
- [0260] Bevan, M. (1984) Nucleic Acids Res. 12 (22): 8711-8721.
- [0261] Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucl. Acids. Res.* 7:1513-1525.
- [0262] Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. B., Heynecker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977) Construction and characterization of new cloning vehicles, II. A multi-purpose cloning system. *Gene* 2: 95-113.
- [0263] Boyer, H. W. and Rolland-Dussoix, D. (1969) A complementation analysis of the restriction and modification of DNA in *Escherichia coli. J. Mol. Biol.* 41:459.
- [0264] Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49-56.
- [0265] Christou, P., D. E. McCabe, and W. F. Swain (1988) Stable transformation of Soybean Callus by DNA-Coated Gold Particles. *Plant Physiol*. 87:671-674.
- [0266] Coruzzi, G., Broglie, R., Edwards, C., and Chua, N. H. (1984). Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. *EMBO J.* 3:1671.
- [0267] Dalla Chiesa, M., Mayes, S. R., Maskell, D. J., Nixon, P. J. and Barber, J. 1994 An AroA homologue from Synechocystis sp. PCC6803, Gene, 144: 145-146.
- [0268] della-Cioppa, G., Bauer, S. C., Klein, B. K, Shah, D. M., Fraley, R. T. and Kishore G. K (1986) Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. *Proc. Natl. Acad. Sci. USA* 83: 6873-6877.
- [0269] della-Cioppa, G., Bauer, S. C., Taylor, M. T., Rochester, D. E., Klein, B. K, Shah, D. M., Fraley, R. T. and Kishore G. M. (1987) Targeting a herbicide-resistant enzyme from *Escherichia coli* to chloroplasts of higher plants. *Bio/Technology* 5: 579-584.
- [0270] Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., and Goodman, H. M. 1982. Nopaline Synthase Transcript Mapping and DNA Sequence. J. MOLEC. APPL. GENET-ICS 1:561-573.
- [0271] Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. *Nucl. Acids. Res.* 12:387-395.
- [0272] Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-Negative bacteria: construction of a gene bank of *Rhizobium meliloti*. Proc Natl Acad Sci USA 77, 7347-7351.
- [0273] Duncan, K, Edwards, R. M., Coggins, J. R. (1987) The pentafunctional aroM enzyme of *Saccharomyces cerevisiae* is a mosaic of monofunctional domains. *Biochem. J.* 246: 375-386.
- [0274] Dunn, J. J. and Studier, F. W., (1983) J. Mol. Biol. 166:477-535.
- [0275] Fitzgibbon, J. E. (1988) *Pseudomonas* sp. strain PG2982: uptake of glyphosate and cloning of a gene which confers increased resistance to glyphosate. Ph. D. Dissertation, Louisiana State University.

- [0276] Fitzgibbon, E. F. and Braymer, H. D. (1990) Cloning of a gene from *Pseudomonas* sp. PG2982 conferring increased glyphosate resistance *Appl. Environ. Microbiol.* 56: 3382-3388.
- [0277] Fling, M. E., Kopf, J., and Richards, C. (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3"(9)-O-nucleotidyltransferase. *Nucleic Acids Res.* 13 no. 19, 7095-7106.
- [0278] Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R. Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A, Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffman, N. L., and Woo, S. C. 1983. Expression of bacterial genes in plant cells. *Proc. Natl. Acad. Sci. USA* 80:4803-4807.
- [0279] Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz D. A., Flick, J. S., Fink, C. L., Hoffmann, N. L. and Sanders, P. R. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. *Bio/Technology* 3: 629-635.
- [0280] Fromm, M., (1990) UCLA Symposium on Molecular Strategies for Crop Improvement, Apr. 16-22, 1990. Keystone, CO.
- [0281] Fry J., Barnason A., and Horsch R. (1987) *Plant Cell Reports* 6: 321-325.
- [0282] Gasser, C. S., Winter, J. A., Hironaka, C. M. and Shah, D. M. (1988) Structure, expression, and evolution of the 5-enolpyruvylshikimate 3-phosphate synthase genes of petunia and tomato. *J. Biol. Chem.* 263: 4280-4289.
- [0283] Gowda, S., Wu, F. C., and Shepard, R. J. (1989). Identification of promoter sequences for the major RNA transcripts of figwort mosaic and peanut chlorotic streak viruses (caulimovirus group). *Journal of Cellular Biochemistry* supplement 13D, 301 (Abstract).
- [0284] Hallas, L. E., Hahn, E. M. and Korndorfer, C. (1988) Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. *J. Industrial Microbiol.* 3: 377-385.
- [0285] Hayford, M. B., Medford, J. I., Hoffmann, N. L., Rogers, S. G. and Klee, H. J. (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. *Plant Physiol.* 86: 1216-1222.
- [0286] Herrera-Estrella, L., et al. (1983) Nature 303:209
- [0287] Heitkamp, M. A., Hallas, L. and Adams, W. J. (1990) Biotreatment of industrial wastewater with immobilized microorganisms—Presented in Session 11, Paper S40, Society for Industrial Microbiology Annual Meeting, Orlando, Fla., Jul. 29-Aug. 3, 1990.
- [0288] Henner, J. H., Band, L. and Shimotsu, H. (1984) Nucleotide sequence of the *Bacillus subtilis* tryptophan operon. *Gene*, 34: 169-177.
- [0289] Henner, J. H., Band, L., Flaggs, G. and Chen, E. (1986) The organization and nucleotide sequence of the *Bacillus subtilis* his H, tyrA and aroE genes *Gene* 49: 147-152.
- [0290] Hohn, B. and Collins J. (1980) A small cosmid for efficient cloning of large DNA fragments. *Gene* 11: 291-298.
- [0291] Horsch, R. B. and H. Klee. (1986) *Proc. Natl. Acad. Sci. U.S.A.* 83:4428-32.
- [0292] Hunkapiller, M. W., Hewick, R. M., Dreyer, R. J., and Hood, L. (1983) *Methods Enzymol.* 91, 399-413.
- [0293] Jefferson, R. A., Kavanaugh, T. A. and Bevan, M. W., 1987, EMBO J., 6:3901-3907.

- [0294] Kay, R., Chan, A., Daly, M. and McPherson, J. 1987. Duplication of the CaMV 35S promoter sequence creates a strong enhancer for plants. *Science* 236, 1299-1302.
- [0295] Kishore, G., Shah, D., Padgette, S., della-Cioppa, G., Gasser, C., Re, D., Hironaka, C., Taylor, M., Wibbenmeyer, J., Eichholtz, D., Hayford, M., Hoffman, N., Delannay, A, Horsch, R., Klee, H., Rogers, S., Rochester, D., Brundage, L., Sanders, P. and Fraley, R. T. (1988) 5-Enolpyruvylshikimate 3-phosphate synthase: From Biochemistry to genetic engineering of glyphosate tolerance, in *Biotechnology for Crop Protection ACS* Symposium series No. 379. Eds. Hedlin P. X, Menn, J. J. and Hollingsworth, R. M. pp. 37-48.
- [0296] Kishore, G. and Shah, D. (1988) *Ann. Rev. Biochem.* 57:627-663.
- [0297] Kishore, G. M., Brundage, L., Kolk, K, Padgette, S. R., Rochester, D., Huynh, Q. K and della-Cioppa, G. (1986) Fed. Proc. 45: 1506.
- [0298] Klee, H. J., et al. (1985) Bio/Technology 3:637-42.
- [0299] Klee, H. J., Muskopf, Y. M. and Gasser, C. S. (1987) Cloning of an *Arabidopsis thaliana* gene encoding 5-enolpyruvyl-shikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. *Mol. Gen. Genet.* 210: 437-442.
- [0300] Klee, H. J. and Rogers, S. G. (1989) Plant gene vectors and genetic transformation: plant transformation systems based on the use of *Agrobacterium tumefaciens* in: *Cell Culture and Somatic Cell: Genetics of Plants* eds J. Schell and I. K. Vasil. 6: 1-23.
- [0301] Klein, T. M., Kornstein, L., Sanford, J. C., and Fromm, M. E. 1989. Genetic transformation of maize cells by particle bombardment. *Plant Phys.* 91:440-444.
- [0302] Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of *Agrobacterium* binary vector. *Mol. Gen. Genet.* 204:383-396.
- [0303] Kunkel, T. A., Roberts, J. D. and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. *Methods Enzymol.* 154:367.
- [0304] Laemmli, U. K. (1970), "Cleavage of structural proteins during the assembly of the head of the bacteriophage T4" *Nature*, 227:680.
- [0305] Maliga, P., Carrer, H., Kanevski, I., Staub, J., and Svab, Z. (1993) Plastid engineering in land plants: a conservative genome is open to change. Philos. Trans. R. Soc. London B Biol. Sci. 342: 203-208.
- [0306] Maniatis, T., Fritsch, E. F. and Sambrook, J. (1982) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- [0307] Maskell, D. J., Morrissey, P. and Dougan, G. (1988) Cloning and nucleotide sequence of the aroA gene of *Bordetella pertussis*. *J. Bacteriol*. 170:2467-2471.
- [0308] Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- [0309] Moore, J. K, Braymer, H. D. and Larson, A. D. (1983) Isolation of a *Pseudomonas* sp. which utilizes the phosphonate herbicide glyphosate. *Appl. Environ. Microbiol.* 46: 316-320.
- [0310] Morelli, G., Nagy, F., Fraley, R. T., Rogers, S. G., and Chua, N. H. (1985). A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. *Nature* 315, 200-204.

- [0311] O'Connell, C., Pattee, P. A. and Foster, T. J. (1993) Sequence and mapping of the aroA gene of *Staphylococcus aureus* 8325-4. *J. Gen. Micr.* 139: 1449-1460.
- [0312] Odell, J. T., Nagy, F., and Chua, N. H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. *Nature* 313, 810-812.
- [0313] Olins, P. O., Devine, C. S., Rangwala, S. H. and Kavka, K. S. (1988) *Gene* 73: 227-235.
- [0314] O'Neill, C., Horvath, G. V., Horvath, E., Dix, P. J. and Medgyesy, P. (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. *Plant J.* 3: 729-738.
- [0315] Padgette, S. R., Huynh, Q. K, Borgmeyer, J., Shah, D. M., Brand, L. A., Re, D. B., Bishop, B. F., Rogers, S. G., Fraley, R. T., and Kishore, G. (1987) Bacterial expression and isolation of *Petunia hybrida* 5-enol-pyruvylshikimate-3-phosphate synthase. *Arch. Biochem. Biophys.* 258, 564-573
- [0316] Padgette, S. R., Huynh, Q. K, Aykent, S., Sammons, R. D., Sikorski, J. A., and Kishore, G. M. (1988) *J. Biol. Chem.* 263, 1798-1802.
- [0317] Petersen, W. L., Sulc, S., and Armstrong, C. L. 1992. Effect of nurse cultures on the production of macro-calli and fertile plants from maize embryogenic suspension protoplasts. *Plant Cell Reports* 10:591-594.
- [0318] Quinn, J. P., Peden, J. M. M. and Dick, E. (1988) Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. *Appl. Microbiol. Biotechnol.* 29: 511-516.
- [0319] Rao, R. N. and Rogers, S. G. (1979). Plasmid pKC7: A vector containing ten restriction endonuclease sites suitable for cloning DNA segments. *Gene* 7:79.
- [0320] Richins, R. D., Scholthof, H. B., and Shepard, R. J. (1987) Sequence of the figwort mosaic virus DNA (caulimovirus group). *Nucl. Acids Res.* 15: 8451-8466.
- [0321] Rogers, S. G., Brand, L. A. Holder, S. B. Sharps, E. S. and Brackin, M. J. (1983) Amplification of the aroA gene from *E. coli* results in tolerance to the herbicide glyphosate. *Appl. Environ. Microbiol.* 46:37-43.
- [0322] Rogers, S. G. and Klee, H. J. (1987). "Pathways to genetic manipulation employing *Agrobacterium*." in *Plant Gene Research, Plant DNA Infectious Agents*, Vol IV, Hohn, T. and Schell, J., eds. Springer-Verlag, Vienna, pp. 179-203.
- [0323] Sambrook, J., Fritsch, E. F. and Maniatis, T., (1989) *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- [0324] Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, I. (1986). Co-transformation of unlinked foreign genes into plants by direct gene transfer. *Bio/Technology* 4:1093-1097.
- [0325] Songstad, D. D., Armstrong, C. L., and Petersen, W. L. (1991). AgNO₃ increases type II callus production from immature embryos of maize inbred B73 and its derivatives. *Plant Cell Reports* 9: 699-702.
- [0326] Schuler, M. A., Schmitt, E. S, and Beachy, R. N. (1982) *Nucleic Acids Res.* 10:8225-8244.
- [0327] Schulz, A., Kruper, A. and Amrhein, N. (1985) Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiol. Lett. 28: 297-301.

- [0328] Schulz, A., Sost, D. and Amrhein, D. (1984) Arch. Microbiol. 137: 121-123.
- [0329] Shah, D., Horsch, R., Klee, H., Kishore, G., Winter, J., Tumer, N., Hironaka, C., Sanders, P., Gasser, C., Aykent, S., Siegal, N., Rogers, S., and Fraley, R. (1986). Engineering herbicide tolerance in transgenic plants. *Science* 233, 478-481.
- [0330] Shah, D. M., Rochester, D. E., Krivi, G., Hironaka, C., Mozer, T. J., Fraley, R. T., and D. C. Tiemeier. 1985. Structure and expression of the maize hsp70 gene. *Cell.* and Mol. Biol. of Plant Stress, Alan R. Liss, Inc. pp. 181-200.
- [0331] Shimamoto, K. et al. (1989) Nature 338:274-276.
- [0332] Sost, D., Schulz, A. and Amrhein, N. (1984) FEBS Lett. 173: 238-241.
- [0333] Sost, D. and Amrhein, N. (1990) Substitution of Gly-96 to Ala in the 5-enolpyruvylshikimate 3-phosphate synthase of *Klebsiella pneumoniae* results in greatly reduced affinity for the herbicide glyphosate. *Arch. Biochem. Biophys.* 282: 433-436.
- [0334] Stalker, D. M., Thomas, C. M., and Helinski, D. R. (1981). Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. *Mol Gen Genet*. 181: 8-12.
- [0335] Stalker, D. M., Hiatt, W. R. and Comai, L. (1985) A single amino acid substitution in the enzyme 5-enolpyruvylshikimate 3-phosphate synthase confers resistance to glyphosate. *J. Biol. Chem.* 260: 4724-4728.
- [0336] Stallings, W. C., Abdel-Meguid, S. S., Lim, L. W., Shieh, Huey-Sheng, Dayringer, H. E., Leimgruber, N. K., Stegeman, R. A., Anderson, K. S., Sikorski, J. A., Padgette S. R., Kishore, G. M. (1991). Structure and Topological Symmetry of the Glyphosate Target 5-enol-pyruvylshikimate-3-phosphate synthase, *Proc. Natl. Acad. Sci. USA* 88, 5046-5050.
- [0337] Svab, Z., Hajdukiewicz, P., and Maliga, P. (1990) Stable transformation of plastids in higher plants. *Proc. Natl. Acad. Sci. USA* 87: 8526-8530.
- [0338] Svab, Z. and Maliga, P. (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. *Proc. Natl. Acad. Sci. USA* 90:913-917.
- [0339] Tabor, S. and Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. *Proc. Natl. Acad. Sci. USA* 82: 1074-1078.
- [0340] Talbot, H. W., Johnson, L. M. and Munnecke, D. M. (1984) Glyphosate utilization by *Pseudomonas* sp. and *Alcaligenes* sp. isolated from environmental sources. *Current Microbiol.* 10: 255-260.
- [0341] Talmadge, K, and Gilbert, W., (1980) "Construction of plasmid vectors with unique PstI cloning sites in the signal sequence coding region" *Gene*, 12: 235-241.
- [0342] Timko, M. P., Herdies, L., de Almeida, E., Cashmore, A. R., Leemans, J., and Krebbers, E. 1988. Genetic Engineering of Nuclear-Encoded Components of the Photosynthetic Apparatus in *Arabidopsis* in "The Impact of Chemistry on Biotechnology," ACS Books, 279-295.
- [0343] Vasil, V., F. Redway and I. Vasil. (1990), Bio/Technology 8:429-434.
- [0344] Vieira, J. and Messing J. (1987) Production of single-stranded plasmid DNA. *Methods Enzymol.* 153: 3-11.
- [0345] Yanisch-Perron, C., Vieira, J. and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors. *Gene* 33, 103-119

SEQUENCE LISTING

<210		MBEF	OF	SEO	ID N	IOS :	70									
<160> NUMBER OF SEQ ID NOS: 70 <210> SEQ ID NO 1 <211> LENGTH: 597 <212> TYPE: DNA <213> ORGANISM: Figwort mosaic virus																
<400> SEQUENCE: 1																
tcat	caaa	aat a	attta	agcaç	gc at	tcca	agatt	ggg	gttca	aatc	aaca	aaggt	ac g	gagco	catatc	60
actt	tatt	ca a	aatto	ggtat	c go	ccaaa	aacca	a aga	aagga	act	ccca	atcct	ca a	aaggt	ttgta	120
agga	aagaa	att o	ctcaç	gteca	aa aç	geet	caaca	a agg	gtcaç	gggt	acaç	gagto	ctc	caaac	catta	180
gcca	aaaq	gct a	acago	gagat	c aa	atgaa	agaat	ctt	caat	caa	agta	aaact	ac 1	tgtto	ccagca	240
cato	gcato	cat q	ggtca	agtaa	ag tt	tcaç	gaaaa	a aga	acato	ccac	cgaa	agact	ta a	aagtt	agtgg	300
gcat	cttt	ga a	aagta	atct	t gt	caac	categ	g ago	cagct	ggc	ttgt	9999	gac (cagac	caaaaa	360
agga	aatgg	gtg (cagaa	attgt	t aç	ggcgo	cacct	aco	caaaa	agca	tctt	tgcc	ctt 1	tatto	gcaaag	420
ataa	aagca	aga t	tcct	ctaç	gt ac	caagt	9999	g aac	caaaa	ataa	cgt	ggaaa	aag	agcto	gtcctg	480
acaç	geeea	act o	cacta	aatgo	g ta	atgad	cgaac	gca	agtga	acga	ccad	caaaa	aga a	attco	cctcta	540
tata	aagaa	agg (catto	catto	cc ca	atttg	gaagg	g ato	catca	agat	acta	aacca	aat a	attto	ctc	597
<211 <212 <213 <220 <221 <222	<210> SEQ ID NO 2 <211> LENGTH: 1982 <212> TYPE: DNA <213> ORGANISM: Agrobacterium sp. <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (62)(1426)															
<400> SEQUENCE: 2 aagcccgcgt tctctccggc gctccgcccg gagagccgtg gatagattaa ggaagacgcc 60																
aago	cccgc				jc go	eteeg	gaaag	g gag	gagco	egtg	gata	agatt	caa q	ggaag	gacgcc	60
c at	g to	egt t	etet	ccgg	a aç	gc aç	ge eg	gg co	ec go	ca ac	cc go	cc cç	gc a		c tct	60 109
c at Met 1 ggc	g to Ser	egt t eg ca His tcc	cetet ac gg Gly gga	ceegg gt go Ala 5	a aq Ser gtc	gc aq Ser cgc	gc co Arg att	gg co Pro	ec go Ala 10 ggc	ca ac Thr gac	ec go Ala Aag	ec co Arg tcg	gc aa Lys atc	aa to Ser	cc tct Ser cac	
c at Met 1 ggc Gly	g to Ser ctt Leu tcc	egt teg ca His tcc Ser 20	ac gg Gly gga Gly	gt go Ala 5 acc Thr	gtc Ser gtc Val	gc aç Ser cgc Arg	gc co Arg att Ile 25	gg co Pro ccc Pro	Ala 10 ggc Gly	ca ac Thr gac Asp	aag Lys	tcg Ser 30	gc a Lys atc Ile	aa to Ser 15 too	cc tct Ser cac His	109
c at Met 1 ggc Gly cgg Arg	ctt Leu tcc Ser 35	tcc Ser 20 ttc Phe	ac gg Gly gga Gly atg Met	acc Thr	gtc Val ggc Gly	gc ag Ser cgc Arg ggt Gly 40	gc cg Arg att Ile 25 ctc Leu	gg co Pro ccc Pro gcg Ala	Ala 10 ggc Gly agc Ser	gac Asp ggt Gly	aag Lys gaa Glu 45	tcg Ser 30 acg Thr	gc as Lys atc Ile cgc Arg	aa to Ser 15 too Ser	cc tct Ser cac His acc Thr	109 157
c at Met 1 ggc Gly cgg Arg ggc Gly 50	cg to Ser ctt Leu tcc Ser 35 ctt Leu	cgt t cg ca His tcc Ser 20 ttc Phe	cctct ac gg Gly gga Gly atg Met gaa Glu	acc Thr ttc Phe ggc Gly	gtc Val ggc Gly gag Glu 55	gc ac Ser cgc Arg ggt Gly 40 gac Asp	att Ile 25 ctc Leu gtc Val	gg co Pro ccc Pro gcg Ala atc Ile	agc Ser	gac Asp ggt Gly acg Thr 60 gac	aag Lys gaa Glu 45 ggc Gly	tcg Ser 30 acg Thr aag Lys	gc a. Lys atc Ile cgc Arg gcc Ala	aa to Ser 15 toc Ser atc Ile	cac tct Ser cac His acc Thr cag Gln	109 157 205
c at Met 1 ggc Gly cgg Arg ggc Gly 50 gcc Ala 65 ggc	cg to Ser ctt Leu tcc Ser 35 ctt Leu atg	cgt this tcc Ser 20 ttc Phe ctg Leu ggc Gly	gga atg Glu gcc Ala	acc Thr ttc Phe ggc Gly agg Arg	gtc Val ggc Gly gag Glu 55 atc Ile 70	ggc agg Ser cgc Arg ggt Gly 40 gac Asp cgt Arg	att Ile 25 ctc Leu gtc Val aag	gg cc Pro ccc Pro gcg Ala atc Ile gaa Glu	ec go Ala 10 ggc Gly agc Ser aat Asn ggc Gly	gac Asp ggt Gly acg Thr 60 gac Asp 75 gag	aaag Lys gaa Glu 45 ggc Gly acc Thr	tcg Ser 30 acg Thr aag Lys	atc Ile cgc Arg gcc Ala atc Ile	aa to Ser 15 too Ser ato Ile atg Met	cac tct Ser cac His acc Thr cag Gln gat Asp 80	109 157 205 253
c at Met 1 ggc Gly cgg Arg 50 gcc Ala 65 ggc Gly ggc	cg to Ser ctt Leu tcc Ser 35 ctt Leu atg Met	egt the egg carrier of the egg c	gga Gly atg gaa Glu gcc Ala aat Asn 85	ttc Phe aggc Gly agg Ggc ggc	ggc Glu 555 atc Ile 70 ggc Gly	cgc ags Ser cgc Arg ggt 40 gac Asp cgt Arg ctc Leu tgc	att Ile 25 ctc Leu gtc Val aag Lys ctg Leu cgc	gg cc Pro ccc Pro gcg Ala atc Ile gaa Glu gcg Ala 90 ctg	agc Gly agc Garantee agc Ser aat Asn ggc Gly cct Pro	gac Asp ggt Gly acg Thr 60 gac Asp 75 gag Glu atg	aag Lys gaa Glu 45 ggc Gly acc Thr	teg Ser 30 aeg Thr aag Lys	gc aatc Ile cgc Arg gcc Ala atc Leu 95 gtc	aa tc Ser 15 tcc Ser atc Ile atg Met	cac tct Ser cac His acc Thr cag Gln gat Asp 80 ttc Phe	109 157 205 253 301

_	atg Met 130		_		_		_	_	_	_	_			_		493		
	tcg Ser															541		
	ccg Pro															589		
	tcc Ser															637		
	atc Ile															685		
	ttt Phe 210															733		
	atc Ile	_	_	_		_		_					_		_	781		
	ccg Pro															829		
	gtt Val															877		
	cgc Arg															925		
_	gtc Val 290			_	_		-			_	_			-	_	973		
_	gtt Val	_			_	_	_		_	_		_	_	-	_	1021		
Ala	cct Pro	Ser	Met	Ile 325	Asp	Glu	Tyr	Pro	Ile 330	Leu	Āla	Val	Āla	Ala 335	Ala	1069		
Phe	gcg Ala	Glu	Gly 340	Ala	Thr	Val	Met	Asn 345	Gly	Leu	Glu	Glu	Leu 350	Arg	Val	1117		
ГÀв	gaa Glu	Ser 355	Asp	Arg	Leu	Ser	Ala 360	Val	Ala	Asn	Gly	Leu 365	Lys	Leu	Asn	1165		
Gly	gtg Val 370	Asp	Cys	Asp	Glu	Gly 375	Glu	Thr	Ser	Leu	Val 380	Val	Arg	Gly	Arg	1213		
Pro 385		Gly	Lys	Gly	Leu 390	Gly	Asn	Āla	Ser	Gly 395	Āla	Āla	Val	Āla	Thr 400	1261		
His	ctc Leu	Āsp	His	Arg 405	Ile	Āla	Met	Ser	Phe 410	Leu	Val	Met	Gly	Leu 415	Val	1309		
	gaa Glu															1357		

														atc Ile		1405
					gct Ala		tgat	gaco	ctt (cacaa	atcg	cc at	cgat	ggt	2	1456
ccg	ctgc	ggc (egge	aagg	gg a	cgct	ctcg	g gc	cgtat	taga	gga	ggtat	tat 🤅	ggatt	tcatc	1516
atct	cgat	ac q	gggc	ctga	ec ta	atcgo	gcca	a cg	gccaa	aagc	gct	gata	gat (gagg	gcctgt	1576
cgct	tgat	ga (cgag	geggi	t go	ggc	gate	g tơ	geee	gcaa	tct	cgato	ett (gccg	ggctcg	1636
acc	ggtc	ggt g	gctgi	cgg	cc ca	atgc	catc	g gc	gagge	egge	ttc	gaaga	atc q	gcggt	catge	1696
cct	ggt	geg g	gegg	geget	g gt	cgaç	ggcg	c ago	egeaç	gctt	tgc	ggcg	egt (gagco	egggca	1756
cggt	gct	gga 1	gga	egeg	at at	cgg	cacg	g tg	gtctç	gccc	ggat	gege	ccg (gtgaa	agctct	1816
atgt	caco	ege (gtca	ccgg	aa gt	gcg	gega	a aad	gccg	gcta	tgad	cgaaa	atc (ctcg	gcaatg	1876
gcg	ggtt	ggc (cgati	cacg	gg a	gato	cata	g ago	gatat	teeg	ccg	ccgc	gac q	gagco	gggaca	1936
tggg	gtag	ggc (ggaca	agtc	et ti	gaaq	gaaa	g cc	gacga	atgc	gca	ctt				1982
<211 <212 <213	L> LE 2> TY 3> OF	ENGTH PE: RGANI	SM:	55 Agro	bact	eriu	ım sþ).								
<400)> SE	EQUE	ICE :	3												
Met 1	Ser	His	Gly	Ala 5	Ser	Ser	Arg	Pro	Ala 10	Thr	Ala	Arg	Lys	Ser 15	Ser	
Gly	Leu	Ser	Gly 20	Thr	Val	Arg	Ile	Pro 25	Gly	Asp	LÀa	Ser	Ile 30	Ser	His	
Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr	
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	ГÀа	Ala	Met	Gln	
Ala 65	Met	Gly	Ala	Arg	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Thr	Trp	Ile	Ile	Asp 80	
Gly	Val	Gly	Asn	Gly 85	Gly	Leu	Leu	Ala	Pro 90	Glu	Ala	Pro	Leu	Asp 95	Phe	
Gly	Asn	Ala	Ala 100	Thr	Gly	CAa	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Val	
Tyr	Asp	Phe 115	Asp	Ser	Thr	Phe	Ile 120	Gly	Asp	Ala	Ser	Leu 125	Thr	Lys	Arg	
Pro	Met 130	Gly	Arg	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val	
Lys 145	Ser	Glu	Asp	Gly	Asp 150	Arg	Leu	Pro	Val	Thr 155	Leu	Arg	Gly	Pro	Lys 160	
Thr	Pro	Thr	Pro	Ile 165	Thr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	Gln 175	Val	
ГÀа	Ser	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Ile 190	Thr	Thr	
Val	Ile	Glu 195	Pro	Ile	Met	Thr	Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	Gln	
Gly	Phe 210	Gly	Ala	Asn	Leu	Thr 215	Val	Glu	Thr	Asp	Ala 220	Asp	Gly	Val	Arg	

Thr Ile Arg Leu Glu Gly Arg Gly Lys Leu Thr Gly Gln Val Ile Asp 225 230 235 240	
Val Pro Gly Asp Pro Ser Ser Thr Ala Phe Pro Leu Val Ala Ala Leu 245 250 255	
Leu Val Pro Gly Ser Asp Val Thr Ile Leu Asn Val Leu Met Asn Pro 260 265 270	
Thr Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile 275 280 285	
Glu Val Ile Asn Pro Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu 290 295 300	
Arg Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg 305 310 315 320	
Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala 325 330 335	
Phe Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val 340 345 350	
Lys Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn 355 360 365	
Gly Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg 370 375 380	
Pro Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr 385 390 395 400	
His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val 405 410 415	
Ser Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser 420 425 430	
Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu 435 440 445	
Leu Ser Asp Thr Lys Ala Ala 450 455	
<210> SEQ ID NO 4 <211> LENGTH: 1673	
<212> TYPE: DNA <213> ORGANISM: Agrobacterium sp.	
<220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (86)(1432)	
<400> SEQUENCE: 4	
gtagccacac ataattacta tagctaggaa gcccgctatc tctcaatccc gcgtgatc	gc 60
gccaaaatgt gactgtgaaa aatcc atg tcc cat tct gca tcc ccg aaa cca Met Ser His Ser Ala Ser Pro Lys Pro 1 5	112
gca acc gcc cgc cgc tcg gag gca ctc acg ggc gaa atc cgc att ccg Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg Ile Pro 10 15 20 25	160
ggc gac aag tcc atc tcg cat cgc tcc ttc atg ttt ggc ggt ctc gca Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala 30 35 40	208
tcg ggc gaa acc cgc atc acc ggc ctt ctg gaa ggc gag gac gtc atc Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile 45 50 55	256
aat aca ggc cgc gcc atg cag gcc atg ggc gcg aaa atc cgt aaa gag	304

_												0011	tını	404			
Asn	Thr	Gly 60	Arg	Ala	Met	Gln	Ala 65	Met	Gly	Ala	Lys	Ile 70	Arg	Lys	Glu		
	_	_			atc Ile			_				_	_	_	_	352	
	_	_			gat Asp 95				_					_		400	
					ggc Gly											448	
					aag Lys											496	
					cag Gln											544	
_	_	_			ccg Pro	_	_	_		_				_		592	
_	_	_			cag Gln 175	_			_	-	_		_			640	
					acc Thr											688	
					ctg Leu											736	
					gtg Val											784	
					atc Ile											832	
					gcc Ala 255											880	
					aac Asn											928	
					gat Asp											976	
					gat Asp											1024	
					gaa Glu											1072	
					gcc Ala 335											1120	
					cgc Arg											1168	
gca	cgc	ggc	ctt	gaa	gcc	aac	ggc	gtc	gat	tgc	acc	gaa	ggc	gag	atg	1216	

-continued	
Ala Arg Gly Leu Glu Ala Asn Gly Val Asp Cys Thr Glu Gly Glu Met 365 370 375	
tcg ctg acg gtt cgc ggc cgc ccc gac ggc aag gga ctg ggc ggc ggc Ser Leu Thr Val Arg Gly Arg Pro Asp Gly Lys Gly Leu Gly Gly Gly 380 385 390	1264
acg gtt gca acc cat ctc gat cat cgt atc gcg atg agc ttc ctc gtg Thr Val Ala Thr His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val 395 400 405	1312
atg ggc ctt gcg gcg gaa aag ccg gtg acg gtt gac gac agt aac atg Met Gly Leu Ala Ala Glu Lys Pro Val Thr Val Asp Asp Ser Asn Met 410 415 420 425	1360
atc gcc acg tcc ttc ccc gaa ttc atg gac atg atg ccg gga ttg ggc Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly Leu Gly 430 435 440	1408
gca aag atc gag ttg agc ata ctc tagtcactcg acagcgaaaa tattatttgc Ala Lys Ile Glu Leu Ser Ile Leu 445	1462
gagattgggc attattaccg gttggtctca gcgggggttt aatgtccaat cttccatacg	1522
taacagcatc aggaaatatc aaaaaagctt tagaaggaat tgctagagca gcgacgccgc	1582
ctaagettte teaagaette gttaaaaetg taetgaaate eeggggggte eggggateaa	1642
atgacttcat ttctgagaaa ttggcctcgc a	1673
<210> SEQ ID NO 5 <211> LENGTH: 449 <212> TYPE: PRT <213> ORGANISM: Agrobacterium sp. <400> SEQUENCE: 5	
Met Ser His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu 1 5 10 15	
Ala Leu Thr Gly Glu Ile Arg Ile Pro Gly Asp Lys Ser Ile Ser His 20 25 30	
Arg Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr 35 40 45	
Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Arg Ala Met Gln 50 55 60	
Ala Met Gly Ala Lys Ile Arg Lys Glu Gly Asp Val Trp Ile Ile Asn 65 70 75 80	
Gly Val Gly Asn Gly Cys Leu Leu Gln Pro Glu Ala Ala Leu Asp Phe 85 90 95	
Gly Asn Ala Gly Thr Gly Ala Arg Leu Thr Met Gly Leu Val Gly Thr 100 105 110	
Tyr Asp Met Lys Thr Ser Phe Ile Gly Asp Ala Ser Leu Ser Lys Arg 115 120 125	
Pro Met Gly Arg Val Leu Asn Pro Leu Arg Glu Met Gly Val Gln Val 130 135 140	
Glu Ala Ala Asp Gly Asp Arg Met Pro Leu Thr Leu Ile Gly Pro Lys 145 150 155 160	
Thr Ala Asn Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val 165 170 175	
Lys Ser Ala Val Leu Leu Ala Gly Leu Asn Thr Pro Gly Val Thr Thr 180 185 190	
Val Ile Glu Pro Val Met Thr Arg Asp His Thr Glu Lys Met Leu Gln	

													con	tın	ued				
_		1	95					200					205						
Gl	y Ph 21		ly	Ala	Asp	Leu	Thr 215	Val	Glu	Thr	Asp	Lys 220	Asp	Gly	Val	Arg			
Ні 22		e A	rg	Ile	Thr	Gly 230	Gln	Gly	Lys	Leu	Val 235	Gly	Gln	Thr	Ile	Asp 240			
Va	l Pr	:0 G	ly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu			
Le	u Va	ıl G	lu	Gly 260	Ser	Asp	Val	Thr	Ile 265	_	Asn	Val	Leu	Met 270	Asn	Pro			
Th	r Ar	_	hr 75	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gly 285	Ala	Asp	Ile			
Gl	u Va 29		eu	Asn	Ala	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp 300	Val	Ala	Asp	Leu			
Ar 30		ıl A	rg	Ala	Ser	Lys 310	Leu	Lys	Gly	Val	Val 315	Val	Pro	Pro	Glu	Arg 320			
Al	a Pr	o S	er	Met	Ile 325	Asp	Glu	Tyr	Pro	Val 330	Leu	Ala	Ile	Ala	Ala 335	Ser			
Ph	e Al	a G	lu	Gly 340	Glu	Thr	Val	Met	Asp 345	Gly	Leu	Asp	Glu	Leu 350	Arg	Val			
Ly	s Gl		er 55	Asp	Arg	Leu	Ala	Ala 360	Val	Ala	Arg	Gly	Leu 365	Glu	Ala	Asn			
Gl	y Va 37		.ap	Сув	Thr	Glu	Gly 375	Glu	Met	Ser	Leu	Thr 380	Val	Arg	Gly	Arg			
Pr 38		p G	ly	Lys	Gly	Leu 390	Gly	Gly	Gly	Thr	Val 395	Ala	Thr	His	Leu	Asp 400			
Hi	s Ar	gI	le	Ala	Met 405	Ser	Phe	Leu	Val	Met 410	Gly	Leu	Ala	Ala	Glu 415	Lys			
Pr	o Va	ıl T	hr	Val 420	Asp	Asp	Ser	Asn	Met 425	Ile	Ala	Thr	Ser	Phe 430	Pro	Glu			
Ph	e Me		.ap 35	Met	Met	Pro	Gly	Leu 440	Gly	Ala	ГÀа	Ile	Glu 445	Leu	Ser	Ile			
Le	u																		
<2 <2 <2 <2 <2	20> 21>	LEN TYP: ORG. FEA' NAM	GTH E: ANI TUR E/K	: 15 DNA SM: E: EY:	000 Pset CDS	idomo		-											
<4	00>	SEQ	UEN	CE:	6														
						ga c¹ Ser		aaaa	a tc	c at	g tc	c cat	t tc	t gc	a tco	c ccg	54	4	
		0 A													atc Ile		102	2	
		o G													ggc Gly		150	0	
	u Āl														gag Glu		198	8	

					-
- COI	nΤ	٦.	nı	10	\cap

-continued	
gtc atc aat aca ggc cgc gcc atg cag gcc atg ggc gcg aaa atc cgt Val Ile Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg 60 65 70	246
aaa gag ggc gat gtc tgg atc atc aac ggc gtc ggc aat ggc tgc ctg Lys Glu Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu 75 80 85	294
ttg cag ccc gaa gct gcg ctc gat ttc ggc aat gcc gga acc ggc gcg Leu Gln Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala 90 95 100	342
cgc ctc acc atg ggc ctt gtc ggc acc tat gac atg aag acc tcc ttt Arg Leu Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe 105 110 115	390
atc ggc gac gcc tcg ctg tcg aag cgc ccg atg ggc cgc gtg ctg aac Ile Gly Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asn 120 125 130 135	438
ccg ttg cgc gaa atg ggc gtt cag gtg gaa gca gcc gat ggc gac cgc Pro Leu Arg Glu Met Gly Val Gln Val Glu Ala Ala Asp Gly Asp Arg 140 145 150	486
atg ccg ctg acg ctg atc ggc ccg aag acg gcc aat ccg atc acc tat Met Pro Leu Thr Leu Ile Gly Pro Lys Thr Ala Asn Pro Ile Thr Tyr 155 160 165	534
cgc gtg ccg atg gcc tcc gcg cag gta aaa tcc gcc gtg ctg ctc gcc Arg Val Pro Met Ala Ser Ala Gln Val Lys Ser Ala Val Leu Leu Ala 170 175 180	582
ggt ctc aac acg ccg ggc gtc acc acc gtc atc gag ccg gtc atg acc Gly Leu Asn Thr Pro Gly Val Thr Thr Val Ile Glu Pro Val Met Thr 185 190 195	630
cgc gac cac acc gaa aag atg ctg cag ggc ttt ggc gcc gac ctc acg Arg Asp His Thr Glu Lys Met Leu Gln Gly Phe Gly Ala Asp Leu Thr 200 205 210 215	678
gtc gag acc gac aag gat ggc gtg cgc cat atc cgc atc acc ggc cag Val Glu Thr Asp Lys Asp Gly Val Arg His Ile Arg Ile Thr Gly Gln 220 225 230	726
ggc aag ctt gtc ggc cag acc atc gac gtg ccg ggc gat ccg tca tcg Gly Lys Leu Val Gly Gln Thr Ile Asp Val Pro Gly Asp Pro Ser Ser 235 240 245	774
acc gcc ttc ccg ctc gtt gcc gcc ctt ctg gtg g	822
acc atc cgc aac gtg ctg atg aac ccg acc cgt acc ggc ctc atc ctc Thr Ile Arg Asn Val Leu Met Asn Pro Thr Arg Thr Gly Leu Ile Leu 265 270 275	870
acc ttg cag gaa atg ggc gcc gat atc gaa gtg ctc aat gcc cgt ctt Thr Leu Gln Glu Met Gly Ala Asp Ile Glu Val Leu Asn Ala Arg Leu 280 285 290 295	918
gca ggc ggc gaa gac gtc gcc gat ctg cgc gtc agg gct tcg aag ctc Ala Gly Gly Glu Asp Val Ala Asp Leu Arg Val Arg Ala Ser Lys Leu 300 305 310	966
aag ggc gtc gtc gtt ccg ccg gaa cgt gcg ccg tcg atg atc gac gaa Lys Gly Val Val Val Pro Pro Glu Arg Ala Pro Ser Met Ile Asp Glu 315 320 325	1014
tat ccg gtc ctg gcg att gcc gcc tcc ttc gcg gaa ggc gaa acc gtg Tyr Pro Val Leu Ala Ile Ala Ala Ser Phe Ala Glu Gly Glu Thr Val 330 335 340	1062
atg gac ggg ctc gac gaa ctg cgc gtc aag gaa tcg gat cgt ctg gca Met Asp Gly Leu Asp Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala 345 350 355	1110

												con	tin	ued		
	gtc Val															1158
	atg Met															1206
	ggc Gly															1254
	gtg Val															1302
	atg Met 425															1350
	ggc Gly									tag	tcac	tcg .	acag	cgaa	aa	1400
tat	tattatttgc gagattgggc attattaccg gttggtctca gcgggggttt aatgtccaat													1460		
ctt	ccata	acg 1	taac	agca	tc a	ggaa	atato	c aaa	aaaa	gctt						1500
<21:	0> SI 1> LI 2> TY 3> OF	ENGTI (PE :	H: 44 PRT	49	udomo	onas	ap.									
<40	0> SI	EQUEI	ICE :	7												
Met 1	Ser	His	Ser	Ala 5	Ser	Pro	Lys	Pro	Ala 10	Thr	Ala	Arg	Arg	Ser 15	Glu	
Ala	Leu	Thr	Gly 20	Glu	Ile	Arg	Ile	Pro 25	Gly	Asp	ГÀа	Ser	Ile 30	Ser	His	
Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr	
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	Arg	Ala	Met	Gln	
Ala 65	Met	Gly	Ala	Lys	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Val	Trp	Ile	Ile	Asn 80	
Gly	Val	Gly	Asn	Gly 85	Cys	Leu	Leu	Gln	Pro 90	Glu	Ala	Ala	Leu	Asp 95	Phe	
Gly	Asn	Ala	Gly 100		Gly	Ala	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Thr	
Tyr	Asp	Met 115	Lys	Thr	Ser	Phe	Ile 120	Gly	Asp	Ala	Ser	Leu 125	Ser	Lys	Arg	
Pro	Met 130	Gly	Arg	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val	
Glu 145	Ala	Ala	Asp	Gly	Asp 150	Arg	Met	Pro	Leu	Thr 155	Leu	Ile	Gly	Pro	Lys 160	
Thr	Ala	Asn	Pro	Ile 165	Thr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	Gln 175	Val	
ГÀа	Ser	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Val 190	Thr	Thr	
Val	Ile	Glu 195	Pro	Val	Met	Thr	Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	Gln	
												_ 55				

Gly Phe Gly Ala Asp Leu Thr Val Glu Thr Asp Lys Asp Gly Val Arg

210

215

-continued

220

His 225	Ile	Arg	Ile	Thr	Gly 230	Gln	Gly	Lys	Leu	Val 235	Gly	Gln	Thr	Ile	Asp 240
Val	Pro	Gly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
Leu	Val	Glu	Gly 260	Ser	Asp	Val	Thr	Ile 265	Arg	Asn	Val	Leu	Met 270	Asn	Pro
Thr	Arg	Thr 275	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gly 285	Ala	Asp	Ile
Glu	Val 290	Leu	Asn	Ala	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp	Val	Ala	Asp	Leu
Arg 305	Val	Arg	Ala	Ser	Lys 310	Leu	Lys	Gly	Val	Val 315	Val	Pro	Pro	Glu	Arg 320
Ala	Pro	Ser	Met	Ile 325	Asp	Glu	Tyr	Pro	Val 330	Leu	Ala	Ile	Ala	Ala 335	Ser
Phe	Ala	Glu	Gly 340	Glu	Thr	Val	Met	Asp 345	Gly	Leu	Asp	Glu	Leu 350	Arg	Val
ГЛа	Glu	Ser 355	Asp	Arg	Leu	Ala	Ala 360	Val	Ala	Arg	Gly	Leu 365	Glu	Ala	Asn
Gly	Val 370	Asp	СЛа	Thr	Glu	Gly 375	Glu	Met	Ser	Leu	Thr 380	Val	Arg	Gly	Arg
Pro 385	Asp	Gly	Lys	Gly	Leu 390	Gly	Gly	Gly	Thr	Val 395	Ala	Thr	His	Leu	Asp 400
His	Arg	Ile	Ala	Met 405	Ser	Phe	Leu	Val	Met 410	Gly	Leu	Ala	Ala	Glu 415	ГХа
Pro	Val	Thr	Val 420	Asp	Asp	Ser	Asn	Met 425	Ile	Ala	Thr	Ser	Phe 430	Pro	Glu
Phe	Met	Asp 435	Met	Met	Pro	Gly	Leu 440	Gly	Ala	ГЛа	Ile	Glu 445	Leu	Ser	Ile
Leu															
<211 <212	0> SE L> LE 2> TY	NGTH	I: 42 PRT	23	nerio	rh i a	go] i								
)> OF)> SE				lelic	IIIA	COII								
		-			Pro	Ile	Ala	Arg	Val 10	Asp	Gly	Thr	Ile	Asn 15	Leu
Pro	Gly	Ser	Lys 20	Thr	Val	Ser	Asn	Arg 25	Ala	Leu	Leu	Leu	Ala 30	Ala	Leu
Ala	His	Gly 35	Lys	Thr	Val	Leu	Thr 40	Asn	Leu	Leu	Asp	Ser 45	Asp	Asp	Val
Arg	His 50	Met	Leu	Asn	Ala	Leu 55	Thr	Ala	Leu	Gly	Val 60	Ser	Tyr	Thr	Leu
Ser 65	Ala	Asp	Arg	Thr	Arg 70	Cys	Glu	Ile	Ile	Gly 75	Asn	Gly	Gly	Pro	Leu 80
His	Ala	Glu	Gly	Ala 85	Leu	Glu	Leu	Phe	Leu 90	Gly	Asn	Ala	Gly	Thr 95	Ala
Met	Arg	Pro	Leu 100	Ala	Ala	Ala	Leu	Cys 105	Leu	Gly	Ser	Asn	Asp 110	Ile	Val
Leu	Thr	Gly	Glu	Pro	Arg	Met	Lys	Glu	Arg	Pro	Ile	Gly	His	Leu	Val

-continued
115 120 125
Asp Ala Leu Arg Leu Gly Gly Ala Lys Ile Thr Tyr Leu Glu Gln Glu 130 135 140
Asn Tyr Pro Pro Leu Arg Leu Gln Gly Gly Phe Thr Gly Gly Asn Val 145 150 155 160
Asp Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu Leu Met 165 170 175
Thr Ala Pro Leu Ala Pro Glu Asp Thr Val Ile Arg Ile Lys Gly Asp 180 185 190
Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met Lys Thr 195 200 205
Phe Gly Val Glu Ile Glu Asn Gln His Tyr Gln Gln Phe Val Val Lys 210 215 220
Gly Gly Gln Ser Tyr Gln Ser Pro Gly Thr Tyr Leu Val Glu Gly Asp 225 230 235 240
Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Ala Ala Ile Lys Gly Gly 245 250 255
Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Met Gln Gly Asp Ile 260 265 270
Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Ile Cys Trp Gly 275 280 285
Asp Asp Tyr Ile Ser Cys Thr Arg Gly Glu Leu Asn Ala Ile Asp Met 290 295 300
Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr Ala Ala 305 310 315 320
Leu Phe Ala Lys Gly Thr Thr Arg Leu Arg Asn Ile Tyr Asn Trp Arg 325 330 335
Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu Arg Lys 340 345 350
Val Gly Ala Glu Val Glu Gly His Asp Tyr Ile Arg Ile Thr Pro 355 360 365
Pro Glu Lys Leu Asn Phe Ala Glu Ile Ala Thr Tyr Asn Asp His Arg 370 375 380
Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro Val Thr 385 390 395 400
Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr Phe Glu 405 410 415
Gln Leu Ala Arg Ile Ser Gln 420
<210> SEQ ID NO 9 <211> LENGTH: 1377 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 9
ccatggetca eggtgeaage ageegteeag eaactgeteg taagteetet ggtetttetg 60
gaaccgtccg tattccaggt gacaagtcta teteccacag gteettcatg tttggaggte 120
tegetagegg tgaaactegt ateaceggte tittggaagg tgaagatgti ateaacactg 180
gtaaggctat gcaagctatg ggtgccagaa teegtaagga aggtgataet tggateattg 240

acg gcg tgc atg c Thr Ala Cys Met 75

-continued

-continued	
atggtgttgg taacggtgga ctccttgctc ctgaggctcc tctcgatttc ggtaacgctg	300
caactggttg ccgtttgact atgggtcttg ttggtgttta cgatttcgat agcactttca	360
ttggtgacgc ttctctcact aagcgtccaa tgggtcgtgt gttgaaccca cttcgcgaaa	420
tgggtgtgca ggtgaagtct gaagacggtg atcgtcttcc agttaccttg cgtggaccaa	480
agactecaac gecaateace tacagggtac etatggette egeteaagtg aagteegetg	540
ttctgcttgc tggtctcaac accccaggta tcaccactgt tatcgagcca atcatgactc	600
gtgaccacac tgaaaagatg cttcaaggtt ttggtgctaa ccttaccgtt gagactgatg	660
ctgacggtgt gcgtaccatc cgtcttgaag gtcgtggtaa gctcaccggt caagtgattg	720
atgttccagg tgatccatcc tctactgctt tcccattggt tgctgccttg cttgttccag	780
gttccgacgt caccatcctt aacgttttga tgaacccaac ccgtactggt ctcatcttga	840
ctctgcagga aatgggtgcc gacatcgaag tgatcaaccc acgtcttgct ggtggagaag	900
acgtggctga cttgcgtgtt cgttcttcta ctttgaaggg tgttactgtt ccagaagacc	960
gtgctccttc tatgatcgac gagtatccaa ttctcgctgt tgcagctgca ttcgctgaag	1020
gtgctaccgt tatgaacggt ttggaagaac tccgtgttaa ggaaagcgac cgtctttctg	1080
ctgtcgcaaa cggtctcaag ctcaacggtg ttgattgcga tgaaggtgag acttctctcg	1140
tegtgegtgg tegteetgae ggtaagggte teggtaaege ttetggagea getgtegeta	1200
cccacctcga tcaccgtatc gctatgagct tcctcgttat gggtctcgtt tctgaaaacc	1260
ctgttactgt tgatgatgct actatgatcg ctactagctt cccagagttc atggatttga	1320
tggctggtct tggagctaag atcgaactct ccgacactaa ggctgcttga tgagctc	1377
<pre><210> SEQ ID NO 10 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (87)(317)</pre>	
<400> SEQUENCE: 10	
agatctatcg ataagcttga tgtaattgga ggaagatcaa aattttcaat ccccattctt	60
cgattgcttc aattgaagtt tctccg atg gcg caa gtt agc aga atc tgc aat Met Ala Gln Val Ser Arg Ile Cys Asn 1 5	113
ggt gtg cag aac cca tct ctt atc tcc aat ctc tcg aaa tcc agt caa Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln 10 15 20 25	161
cgc aaa tct ccc tta tcg gtt tct ctg aag acg cag cag cat cca cga Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg 30 35 40	209
gct tat ccg att tcg tcg tcg tgg gga ttg aag aag agt ggg atg acg Ala Tyr Pro Ile Ser Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr 45 50 55	257
tta att ggc tct gag ctt cgt cct ctt aag gtc atg tct tct gtt tcc Leu Ile Gly Ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser 60 65 70	305

318

```
<210> SEO ID NO 11
<211> LENGTH: 77
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEOUENCE: 11
Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu
                                          10
Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val
Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser
                                40
Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg
                55
Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Cys Met
                      70
<210> SEQ ID NO 12
<211> LENGTH: 402
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (87)..(401)
<400> SEQUENCE: 12
agatctatcg ataagcttga tgtaattgga ggaagatcaa aattttcaat ccccattctt
                                                                                  60
cgattgcttc aattgaagtt teteeg atg geg caa g<br/>tt age aga ate tge aat Met Ala Gl<br/>n Val Ser Arg Ile Cys As<br/>n \,
                  5
ggt gtg cag aac cca tct ctt atc tcc aat ctc tcg aaa tcc agt caa
                                                                                 161
Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln
                      15
                                              20
cgc aaa tct ccc tta tcg gtt tct ctg aag acg cag cag cat cca cga Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg
                                                                                 209
                 3.0
                                         35
                                                                                 257
gct tat \operatorname{ccg} att \operatorname{tcg} \operatorname{tcg} \operatorname{tcg} \operatorname{tgg} \operatorname{gga} \operatorname{ttg} \operatorname{aag} \operatorname{aag} \operatorname{agt} \operatorname{ggg} \operatorname{atg} \operatorname{acg}
Ala Tyr Pro Ile Ser Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr
             45
                                     50
tta att ggc tct gag ctt cgt cct ctt aag gtc atg tct tct gtt tcc
                                                                                 305
Leu Ile Gly Ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser
        60
                                65
                                                        70
acg gcg gag aaa gcg tcg gag att gta ctt caa ccc att aga gaa atc
                                                                                 353
Thr Ala Glu Lys Ala Ser Glu Ile Val Leu Gln Pro Ile Arg Glu Ile
                           80
                                                   85
tcc ggt ctt att aag ttg cct ggc tcc aag tct cta tca aat aga att c
                                                                                 402
Ser Gly Leu Ile Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile
                      95
                                              100
<210> SEQ ID NO 13
<211> LENGTH: 105
<212> TYPE: PRT
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 13
Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu
Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val
```

											_	con	t in	ued		
			20					25					30			
Ser	Leu	Lys 35	Thr	Gln	Gln	His	Pro 40	Arg	Ala	Tyr	Pro	Ile 45	Ser	Ser	Ser	
Trp	Gly		Lys	Lys	Ser	Gly		Thr	Leu	Ile	Gly		Glu	Leu	Arg	
-	50		-	-		55					60				-	
Pro 65	Leu	Lys	Val	Met	Ser 70	Ser	Val	Ser	Thr	Ala 75	Glu	Lys	Ala	Ser	Glu 80	
Ile	Val	Leu	Gln		Ile	Arg	Glu	Ile		Gly	Leu	Ile	Lys		Pro	
Glv	Ser	Lvs	Ser	85 Leu	Ser	Agn	Ara	Ile	90					95		
y	~CI	-10	100		201	-1511	9	105								
<213 <213 <213 <220 <223 <223)> FE L> NA 2> LC	ENGTH PE: CGANI ATUR ME/R	H: 2: DNA ISM: RE: KEY: ION:	Petu CDS (14)	unia)(2		ybrid	la								
<400)> SE	QUE	ICE:	14												
					gca (Asn							caa 🤉	ggg (ata (caa	49
					tcc Ser											97
		15	-10				20		-15	-10		25	-10	-15		
	Ser				ttt Phe	Gly					ГЛа					145
	30					35			, .		40					400
					aaa Lys 50											193
	ttt	agg	att	tca	gca	tca	ata	act	aca		tac	atq	С		00	233
					Ala											
<211 <212)> SE L> LE 2> TY 3> OF	NGTI PE:	1: 7: PRT	3	unia	x hy	ybrid	la								
<400)> SE	QUEI	ICE :	15												
Met 1	Ala	Gln	Ile	Asn 5	Asn	Met	Ala	Gln	Gly 10	Ile	Gln	Thr	Leu	Asn 15	Pro	
Asn	Ser	Asn	Phe 20	His	Lys	Pro	Gln	Val 25	Pro	Lys	Ser	Ser	Ser 30	Phe	Leu	
Val	Phe	Gly 35	Ser	Lys	Lys	Leu	Lys 40	Asn	Ser	Ala	Asn	Ser 45	Met	Leu	Val	
Leu	Lys 50	Lys	Asp	Ser	Ile	Phe 55	Met	Gln	Lys	Phe	Cys	Ser	Phe	Arg	Ile	
Ser 65	Ala	Ser	Val	Ala	Thr 70	Ala	Cys	Met								
<211 <212)> SE L> LE 2> TY 3> OF	NGTI PE:	1: 3! DNA	52	unia	x hy	ybrid	la								

			concinaca	
<220> FEATURE: <221> NAME/KEY: <222> LOCATION:				
<400> SEQUENCE:	16			
agatctgcta gaaa Met Ala Gln 1	taattt tgtttaa	actt taagaaggag	atatatcc atg gca caa	57
			aat ccc aat tcc aat Asn Pro Asn Ser Asn 15	105
	_	_	ttt ctt gtt ttt gga Phe Leu Val Phe Gly 35	153
_			ttg gtt ttg aaa aaa Leu Val Leu Lys Lys 50	201
			agg att tca gca tca Arg Ile Ser Ala Ser 65	249
	Gln Lys Pro		ttg caa ccc att aaa Leu Gln Pro Ile Lys 80	297
	-		aaa tca tta tct aat Lys Ser Leu Ser Asn 95	345
aga att c Arg Ile 100				352
<210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: PRT <213> ORGANISM:	01	brida		
<400> SEQUENCE:	17			
Met Ala Gln Ile 1	Asn Asn Met 2 5	Ala Gln Gly Ile 10	Gln Thr Leu Asn Pro 15	
Asn Ser Asn Phe 20	His Lys Pro (Gln Val Pro Lys 25	Ser Ser Ser Phe Leu 30	
Val Phe Gly Ser 35		Lys Asn Ser Ala 40	Asn Ser Met Leu Val 45	
50	55	-	Cys Ser Phe Arg Ile 60	
Ser Ala Ser Val 65	Ala Thr Ala (Gln Lys Pro Ser 75	Glu Ile Val Leu Gln 80	
Pro Ile Lys Glu	Ile Ser Gly 1 85	Thr Val Lys Leu 90	Pro Gly Ser Lys Ser 95	
Leu Ser Asn Arg 100				
<pre><210> SEQ ID NO <211> LENGTH: 2: <212> TYPE: PRT <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INFO</pre>	8 Agrobacterium UNSURE (1)(18)	-		

```
<400> SEOUENCE: 18
Xaa His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly
                                       1.0
Leu Xaa Gly Thr Val Arg Ile Pro Gly Asp Lys Met
            20
<210> SEQ ID NO 19
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium sp.
<400> SEQUENCE: 19
Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val
1 5
<210> SEQ ID NO 20
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium sp.
<400> SEQUENCE: 20
Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys
<210> SEQ ID NO 21
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 21
atgathgayg artaycc
                                                                            17
<210> SEQ ID NO 22
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(17)
<223> OTHER INFORMATION: R = A or G;
      Y = C \text{ or } T/U;
      N = A \text{ or } C \text{ or } G \text{ or } T/U;
      H = A \text{ or } C \text{ or } T/U
<400> SEQUENCE: 22
gargaygtna thaacac
                                                                            17
<210> SEQ ID NO 23
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(17)
<223> OTHER INFORMATION: R = A or G;
     Y = C \text{ or } T/U;
      N = A \text{ or } C \text{ or } G \text{ or } T/U;
      H = A \text{ or } C \text{ or } T/U
```

<400> SEQUENCE: 23		
gargaygtna thaatac	17	
<210> SEQ ID NO 24 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide		
<400> SEQUENCE: 24		
cgtggataga tctaggaaga caaccatggc tcacggtc	38	
<210> SEQ ID NO 25 <211> LENGTH: 44 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide <400> SEQUENCE: 25		
ggatagatta aggaagacgc gcatgcttca cggtgcaagc agcc	44	
<pre><210> SEQ ID NO 26 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide</pre>		
<400> SEQUENCE: 26		
ggctgcctga tgagctccac aatcgccatc gatgg <210> SEQ ID NO 27 <211> LENGTH: 32 <212> TYPE: DNA	35	
<213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide		
<400> SEQUENCE: 27		
egtegetegt egtgegtgge egecetgaeg ge	32	
<210> SEQ ID NO 28 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide		
<400> SEQUENCE: 28		
cgggcaaggc catgcaggct atgggcgcc	29	
<210> SEQ ID NO 29 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide		
<400> SEQUENCE: 29		
egggetgeeg eetgaetatg ggeetegteg g	31	

```
<210> SEQ ID NO 30
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas sp.
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa = unknown
<400> SEQUENCE: 30
Xaa His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu
<210> SEQ ID NO 31
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(17)
<223> OTHER INFORMATION: B = C or G or T
      S = G \text{ or } C
      Y = C \text{ or } T
<400> SEQUENCE: 31
                                                                         17
gcggtbgcsg gyttsgg
<210> SEQ ID NO 32
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 32
Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu
                                     10
<210> SEQ ID NO 33
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 33
Leu Asp Phe Gly Asn Ala Ala Thr Gly Cys Arg Leu Thr
<210> SEQ ID NO 34
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 34
eggeaatgee gecaceggeg egegee
<210> SEQ ID NO 35
<211> LENGTH: 49
<212> TYPE: DNA
```

```
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 35
ggacggctgc ttgcaccgtg aagcatgctt aagcttggcg taatcatgg
                                                                        49
<210> SEQ ID NO 36
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 36
ggaagacgcc cagaattcac ggtgcaagca gccgg
                                                                       35
<210> SEQ ID NO 37
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa = Gly, Ser, Thr, Cys, Tyr, Asn, Gln, Asp,
      or Glu
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa = Ser or Thr
<400> SEQUENCE: 37
Arg Xaa His Xaa Glu
<210> SEQ ID NO 38
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa = Ser or Thr
<400> SEQUENCE: 38
Gly Asp Lys Xaa
<210> SEQ ID NO 39
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa=Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly,
      His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val
<400> SEQUENCE: 39
Ser Ala Gln Xaa Lys
```

```
<210> SEQ ID NO 40
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa=Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly,
     His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val
<400> SEQUENCE: 40
Asn Xaa Thr Arg
<210> SEQ ID NO 41
<211> LENGTH: 1287
<212> TYPE: DNA
<213> ORGANISM: Bacillus subtilis
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1)..(1287)
<400> SEOUENCE: 41
atg aaa cga gat aag gtg cag acc tta cat gga gaa ata cat att ccc
Met Lys Arg Asp Lys Val Gln Thr Leu His Gly Glu Ile His Ile Pro
                                  10
ggt gat aaa tee att tet eac ege tet gtt atg ttt gge geg eta geg
                                                                      96
Gly Asp Lys Ser Ile Ser His Arg Ser Val Met Phe Gly Ala Leu Ala
           20
                                25
gca ggc aca aca aca gtt aaa aac ttt ctg ccg gga gca gat tgt ctg
                                                                     144
Ala Gly Thr Thr Thr Val Lys Asn Phe Leu Pro Gly Ala Asp Cys Leu
                           40
age acg ate gat tgc ttt aga aaa atg ggt gtt cac att gag caa age
                                                                      192
Ser Thr Ile Asp Cys Phe Arg Lys Met Gly Val His Ile Glu Gln Ser
                        55
age age gat gte gtg att cae gga aaa gga ate gat gee etg aaa gag
                                                                     240
Ser Ser Asp Val Val Ile His Gly Lys Gly Ile Asp Ala Leu Lys Glu
                    7.0
cca gaa agc ctt tta gat gtc gga aat tca ggt aca acg att cgc ctg
                                                                      288
Pro Glu Ser Leu Leu Asp Val Gly Asn Ser Gly Thr Thr Ile Arg Leu
               85
                                    90
atg ctc gga ata ttg gcg ggc cgt cct ttt tac agc gcg gta gcc gga
                                                                      336
Met Leu Gly Ile Leu Ala Gly Arg Pro Phe Tyr Ser Ala Val Ala Gly
           100
                               105
gat gag agc att gcg aaa cgc cca atg aag cgt gtg act gag cct ttg
                                                                      384
Asp Glu Ser Ile Ala Lys Arg Pro Met Lys Arg Val Thr Glu Pro Leu
       115
                           120
                                                125
aaa aaa atg ggg gct aaa atc gac ggc aga gcc ggc gga gag ttt aca
Lys Lys Met Gly Ala Lys Ile Asp Gly Arg Ala Gly Gly Glu Phe Thr
                       135
ccg ctg tca gtg agc ggc gct tca tta aaa gga att gat tat gta tca
                                                                      480
Pro Leu Ser Val Ser Gly Ala Ser Leu Lys Gly Ile Asp Tyr Val Ser
                   150
                                       155
cct gtt gca agc gcg caa att aaa tct gct gtt ttg ctg gcc gga tta
Pro Val Ala Ser Ala Gln Ile Lys Ser Ala Val Leu Leu Ala Gly Leu
                                    170
cag get gag ggc aca aca act gta aca gag ece cat aaa tet egg gae
                                                                     576
Gln Ala Glu Gly Thr Thr Thr Val Thr Glu Pro His Lys Ser Arg Asp
```

									-
_	C	C	n	t.	٦	n	11	e	d

												con	tin	ued		
			180					185					190			
	act Thr			_			_			_	_			_	_	624
	acg Thr 210															672
	ttt Phe	_			_				_					_	_	720
	gcg Ala	_	_			_	_		_	_			_			768
	ccg Pro							_	_				_		_	816
	ctt Leu	_					_	_	_		_					864
	ttg Leu 290															912
	atc Ile															960
	act Thr	_		_				_		_	_		-			1008
	gtg Val		_			_		-		_	_				_	1056
	ctg Leu															1104
	aaa Lys 370															1152
	cga Arg			_	_				_		_		_			1200
	att Ile															1248
	ttc Phe											tga				1287
<21 <21	.0> SI .1> LI .2> T	ENGTH PE:	H: 42 PRT	28	i 1 1 1 1 1 1	2 0111	at i 1 -	ia								
	.3> OI .0> SI				LILUS	ui c	JU111	LD								
	Lys				Val	Gln	Thr	Leu	His	Glv	Glu	Ile	His	Ile	Pro	
1	-15	9		5					10	1				15		

Gly Asp Lys Ser Ile Ser His Arg Ser Val Met Phe Gly Ala Leu Ala $20 \\ 25 \\ 30$

Ala	Gly	Thr 35	Thr	Thr	Val	Lys	Asn 40	Phe	Leu	Pro	Gly	Ala 45	Asp	Cys	Leu
Ser	Thr 50	Ile	Asp	Сув	Phe	Arg 55	Lys	Met	Gly	Val	His 60	Ile	Glu	Gln	Ser
Ser 65	Ser	Asp	Val	Val	Ile 70	His	Gly	Lys	Gly	Ile 75	Asp	Ala	Leu	Lys	Glu 80
Pro	Glu	Ser	Leu	Leu 85	Asp	Val	Gly	Asn	Ser 90	Gly	Thr	Thr	Ile	Arg 95	Leu
Met	Leu	Gly	Ile 100	Leu	Ala	Gly	Arg	Pro 105	Phe	Tyr	Ser	Ala	Val 110	Ala	Gly
Asp	Glu	Ser 115	Ile	Ala	ГÀа	Arg	Pro 120	Met	Lys	Arg	Val	Thr 125	Glu	Pro	Leu
Lys	Lys	Met	Gly	Ala	ГÀз	Ile 135	Asp	Gly	Arg	Ala	Gly 140	Gly	Glu	Phe	Thr
Pro 145	Leu	Ser	Val	Ser	Gly 150	Ala	Ser	Leu	ГÀз	Gly 155	Ile	Asp	Tyr	Val	Ser 160
Pro	Val	Ala	Ser	Ala 165	Gln	Ile	ГÀз	Ser	Ala 170	Val	Leu	Leu	Ala	Gly 175	Leu
Gln	Ala	Glu	Gly 180	Thr	Thr	Thr	Val	Thr 185	Glu	Pro	His	Lys	Ser 190	Arg	Asp
His	Thr	Glu 195	Arg	Met	Leu	Ser	Ala 200	Phe	Gly	Val	ГÀа	Leu 205	Ser	Glu	Asp
Gln	Thr 210	Ser	Val	Ser	Ile	Ala 215	Gly	Gly	Gln	ГÀа	Leu 220	Thr	Ala	Ala	Asp
Ile 225	Phe	Val	Pro	Gly	Asp 230	Ile	Ser	Ser	Ala	Ala 235	Phe	Phe	Leu	Ala	Ala 240
Gly	Ala	Met	Val	Pro 245	Asn	Ser	Arg	Ile	Val 250	Leu	Lys	Asn	Val	Gly 255	Leu
Asn	Pro	Thr	Arg 260	Thr	Gly	Ile	Ile	Asp 265	Val	Leu	Gln	Asn	Met 270	Gly	Ala
Lys	Leu	Glu 275	Ile	Lys	Pro	Ser	Ala 280	Asp	Ser	Gly	Ala	Glu 285	Pro	Tyr	Gly
Asp	Leu 290	Ile	Ile	Glu	Thr	Ser 295	Ser	Leu	Lys	Ala	Val 300	Glu	Ile	Gly	Gly
Asp 305	Ile	Ile	Pro	Arg	Leu 310	Ile	Asp	Glu	Ile	Pro 315	Ile	Ile	Ala	Leu	Leu 320
Ala	Thr	Gln	Ala	Glu 325	Gly	Thr	Thr	Val	Ile 330	ГÀв	Asp	Ala	Ala	Glu 335	Leu
Lys	Val	ГЛа	Glu 340	Thr	Asn	Arg	Ile	Asp 345	Thr	Val	Val	Ser	Glu 350	Leu	Arg
Lys	Leu	Gly 355	Ala	Glu	Ile	Glu	Pro 360	Thr	Ala	Asp	Gly	Met 365	ГÀа	Val	Tyr
Gly	Lys 370	Gln	Thr	Leu	Lys	Gly 375	Gly	Ala	Ala	Val	Ser 380	Ser	His	Gly	Asp
His 385	Arg	Ile	Gly	Met	Met 390	Leu	Gly	Ile	Ala	Ser 395	Cys	Ile	Thr	Glu	Glu 400
Pro	Ile	Glu	Ile	Glu 405	His	Thr	Asp	Ala	Ile 410	His	Val	Ser	Tyr	Pro 415	Thr
Phe	Phe	Glu	His 420	Leu	Asn	Lys	Leu	Ser 425	Lys	Lys	Ser				

												COII	CIII	aca			
<213 <213 <213 <220 <221	L> LE 2> TY 3> OF 0> FE L> NA	EQ II ENGTH PE: RGANI EATUR AME/P	H: 12 DNA ISM: RE: KEY:	93 Stap CDS	-	293)	cus a	ureu	ıs								
<400)> SE	EQUEN	ICE :	43													
_	_		_			att Ile	_				_		_		_	48	
						aag Lys										96	
	_		_	_		gta Val					_					144	
_	_	_	_	_	_	atg Met 55	-			_				_	_	192	
						aaa Lys										240	ı
						gta Val										288	
						ttg Leu										336	
						att Ile										384	
						gat Asp 135										432	
						aag Lys			_							480	I
						gca Ala										528	
						ccg Pro										576	
						atg Met										624	
						aat Asn 215										672	
		_	_			gtt Val			_				_			720	ı
						atc Ile										768	
						aca Thr										816	

							-
- C	\cap	n	+	٦	n	٦.	

										-	con	tin	ued		
		260					265					270			
aaa atg Lys Met													_	_	864
cct act Pro Thr 290	Āla														912
aca atc Thr Ile 305	_		_		_			_		_	_	_		_	960
ata gca Ile Ala			_			_	_		_	_				_	1008
gcc gag Ala Glu	_			_		_			_		_		_	_	1056
gat atg Asp Met															1104
ttg att Leu Ile 370	Ile		_		_					-		_			1152
act gat Thr Asp 385		-			_	_		_	-	-	-	_			1200
agc gag Ser Glu		_						_	_	_		-			1248
cca gga Pro Gly						_							taa		1293
<210> SI <211> LI <212> TI <213> OI	ENGTH YPE :	H: 43 PRT	30	phylo	ococo	cus a	aurei	ıs							
<400> SI	EQUEN	ICE :	44												
Met Val 1	Asn	Glu	Gln 5	Ile	Ile	Asp	Ile	Ser 10	Gly	Pro	Leu	Lys	Gly 15	Glu	
Ile Glu	Val	Pro 20	Gly	Asp	Lys	Ser	Met 25	Thr	His	Arg	Ala	Ile 30	Met	Leu	
Ala Ser	Leu 35	Ala	Glu	Gly	Val	Ser 40	Thr	Ile	Tyr	Lys	Pro 45	Leu	Leu	Gly	
Glu Asp 50	Cys	Arg	Arg	Thr	Met 55	Asp	Ile	Phe	Arg	His 60	Leu	Gly	Val	Glu	
Ile Lys 65	Glu	Asp	Asp	Glu 70	ГÀа	Leu	Val	Val	Thr 75	Ser	Pro	Gly	Tyr	Gln 80	
Val Asn	Thr	Pro	His 85	Gln	Val	Leu	Tyr	Thr 90	Gly	Asn	Ser	Gly	Thr 95	Thr	
Thr Arg	Leu	Leu 100	Ala	Gly	Leu	Leu	Ser 105	Gly	Leu	Gly	Asn	Glu 110	Ser	Val	
Leu Ser	115					120					125				
Arg Pro 130		гуз	Leu	Met	Asp 135	Ala	Asn	ile	Glu	Gly 140	ıle	Glu	Asp	Asn	

Tyr Thr Pro Leu Ile Ile Lys Pro Ser Val Ile Lys Gly Ile Asn Tyr 150 155 Gln Met Glu Val Ala Ser Ala Gln Val Lys Ser Ala Ile Leu Phe Ala 165 170 Ser Leu Phe Ser Lys Glu Pro Thr Ile Ile Lys Glu Leu Asp Val Ser 185 Arg Asn His Thr Glu Thr Met Phe Lys His Phe Asn Ile Pro Ile Glu 200 Ala Glu Gly Leu Ser Ile Asn Thr Thr Pro Glu Ala Ile Arg Tyr Ile 215 Lys Pro Ala Asp Phe His Val Pro Gly Asp Ile Ser Ser Ala Ala Phe 230 Phe Ile Val Ala Ala Leu Ile Thr Pro Gly Ser Asp Val Thr Ile His Asn Val Gly Ile Asn Gln Thr Arg Ser Gly Ile Ile Asp Ile Val Glu 265 Lys Met Gly Gly Asn Ile Gln Leu Phe Asn Gln Thr Thr Gly Ala Glu Pro Thr Ala Ser Ile Arg Ile Gln Tyr Thr Pro Met Leu Gln Pro Ile Thr Ile Glu Gly Glu Leu Val Pro Lys Ala Ile Asp Glu Leu Pro Val Ile Ala Leu Leu Cys Thr Gln Ala Val Gly Thr Ser Thr Ile Lys Asp 325 330 Ala Glu Glu Leu Lys Val Lys Glu Thr Asn Arg Ile Asp Thr Thr Ala 345 340 Asp Met Leu Asn Leu Leu Gly Phe Glu Leu Gln Pro Thr Asn Asp Gly 360 Leu Ile Ile His Pro Ser Glu Phe Lys Thr Asn Ala Thr Asp Ile Leu 375 Thr Asp His Arg Ile Gly Met Met Leu Ala Val Ala Cys Val Leu Ser 395 390 Ser Glu Pro Val Lys Ile Lys Gln Phe Asp Ala Val Asn Val Ser Phe 405 410 Pro Gly Phe Leu Pro Lys Leu Lys Leu Leu Gln Asn Glu Gly 420 425 <210> SEQ ID NO 45 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide <400> SEQUENCE: 45 28 ggaacatatg aaacgagata aggtgcag <210> SEQ ID NO 46 <211> LENGTH: 35 <212> TYPE: DNA

<213> ORGANISM: Artificial sequence

<223> OTHER INFORMATION: Oligonucleotide

<220> FEATURE:

<400> SEQUENCE: 46

ggaattcaaa cttcaggatc ttgagataga aaatg	35
<210> SEQ ID NO 47 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 47	
ggggccatgg taaatgaaca aatcattg	28
<210> SEQ ID NO 48 <211> LENGTH: 33 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 48	
gggggagete attateeete attttgtaaa age	33
<210> SEQ ID NO 49 <211> LENGTH: 480 <212> TYPE: PRT <213> ORGANISM: Saccharomyces cerevisiae	
<400> SEQUENCE: 49	
Leu Thr Asp Glu Thr Leu Val Tyr Pro Phe Lys As	Ile Pro Ala Asp 15
Gln Gln Lys Val Val Ile Pro Pro Gly Ser Lys Se 20 25	Ile Ser Asn Arg 30
Ala Leu Ile Leu Ala Ala Leu Gly Glu Gly Gln Cy 35 40	Lys Ile Lys Asn 45
Leu Leu His Ser Asp Asp Thr Lys His Met Leu Th 50 55 60	Ala Val His Glu
Leu Lys Gly Ala Thr Ile Ser Trp Glu Asp Asn Gl 65 70 75	Glu Thr Val Val
Val Glu Gly His Gly Gly Ser Thr Leu Ser Ala Cy 85 90	Ala Asp Pro Leu 95
Tyr Leu Gly Asn Ala Gly Thr Ala Ser Arg Phe Le	Thr Ser Leu Ala 110
Ala Leu Val Asn Ser Thr Ser Ser Gln Lys Tyr II 115 120	Val Leu Thr Gly 125
Asn Ala Arg Met Gln Gln Arg Pro Ile Ala Pro Le 130 135 14	
Arg Ala Asn Gly Thr Lys Ile Glu Tyr Leu Asn As 145 150 155	Glu Gly Ser Leu 160
Pro Ile Lys Val Tyr Thr Asp Ser Val Phe Lys Gl 165 170	Gly Arg Ile Glu 175
Leu Ala Ala Thr Val Ser Ser Gln Tyr Val Ser Se 180 185	Ile Leu Met Cys 190
Ala Pro Tyr Ala Glu Glu Pro Val Thr Leu Ala Le 195 200	Val Gly Gly Lys 205
Pro Ile Ser Lys Leu Tyr Val Asp Met Thr Ile Ly	

Ile Pro Lys Gly His Tyr Ile Asn Pro Ser Glu Tyr Val Ile Glu Ser 245 250 Asp Ala Ser Ser Ala Thr Tyr Pro Leu Ala Phe Ala Ala Met Thr Gly Thr Thr Val Thr Val Pro Asn Ile Gly Phe Glu Ser Leu Gln Gly Asp 280 Ala Arg Phe Ala Arg Asp Val Leu Lys Pro Met Gly Cys Lys Ile Thr 295 Gln Thr Ala Thr Ser Thr Thr Val Ser Gly Pro Pro Val Gly Thr Leu 310 Lys Pro Leu Lys His Val Asp Met Glu Pro Met Thr Asp Ala Phe Leu Thr Ala Cys Val Val Ala Ala Ile Ser His Asp Ser Asp Pro Asn Ser Ala Asn Thr Thr Thr Ile Glu Gly Ile Ala Asn Gln Arg Val Lys Glu Cys Asn Arg Ile Leu Ala Met Ala Thr Glu Leu Ala Lys Phe Gly Val Lys Thr Thr Glu Leu Pro Asp Gly Ile Gln Val His Gly Leu Asn Ser Ile Lys Asp Leu Lys Val Pro Ser Asp Ser Ser Gly Pro Val Gly Val 405 410 Cys Thr Tyr Asp Asp His Arg Val Ala Met Ser Phe Ser Leu Leu Ala 420 425 Gly Met Val Asn Ser Gln Asn Glu Arg Asp Glu Val Ala Asn Pro Val 440 Arg Ile Leu Glu Arg His Cys Thr Gly Lys Thr Trp Pro Gly Trp Trp 455 Asp Val Leu His Ser Glu Leu Gly Ala Lys Leu Asp Gly Ala Glu Pro 470 475 <210> SEQ ID NO 50 <211> LENGTH: 460 <212> TYPE: PRT <213> ORGANISM: Aspergillus ridulaus <400> SEQUENCE: 50 Leu Ala Pro Ser Ile Glu Val His Pro Gly Val Ala His Ser Ser Asn Val Ile Cys Ala Pro Pro Gly Ser Lys Ser Ile Ser Asn Arg Ala Leu Val Leu Ala Ala Leu Gly Ser Gly Thr Cys Arg Ile Lys Asn Leu Leu 40 His Ser Asp Asp Thr Glu Val Met Leu Asn Ala Leu Glu Arg Leu Gly Ala Ala Thr Phe Ser Trp Glu Glu Glu Glu Glu Val Leu Val Val Asn 65 70 75 80 Gly Lys Gly Gly Asn Leu Gln Ala Ser Ser Ser Pro Leu Tyr Leu Gly Asn Ala Gly Thr Ala Ser Arg Phe Leu Thr Thr Val Ala Thr Leu Ala

Phe Gly Ile Asn Val Glu Thr Ser Thr Thr Glu Pro Tyr Thr Tyr Tyr

235

230

	100				105					110		
Asn Ser S	Ser Thr 115	Val Asp	Ser	Ser 120	Val	Leu	Thr	Gly	Asn 125	Asn	Arg	Met
Lys Gln A	Arg Pro	Ile Gly	Asp 135	Leu	Val	Asp	Ala	Leu 140	Thr	Ala	Asn	Val
Leu Pro I 145	Leu Asn	Thr Ser		Gly	Arg	Ala	Ser 155	Leu	Pro	Leu	Lys	Ile 160
Ala Ala S	Ser Gly	Gly Phe	Ala	Gly	Gly	Asn 170	Ile	Asn	Leu	Ala	Ala 175	Lys
Val Ser S	Ser Gln 180	Tyr Val	Ser	Ser	Leu 185	Leu	Met	GÀa	Ala	Pro 190	Tyr	Ala
Lys Glu I	Pro Val 195	Thr Lev	Arg	Leu 200	Val	Gly	Gly	Lys	Pro 205	Ile	Ser	Gln
Pro Tyr 1 210	Ile Asp	Met Thr	Thr 215	Ala	Met	Met	Arg	Ser 220	Phe	Gly	Ile	Asp
Val Gln I 225	Lys Ser	Thr Thr		Glu	His	Thr	Tyr 235	His	Ile	Pro	Gln	Gly 240
Arg Tyr \	Val Asn	Pro Ala 245	Glu	Tyr	Val	Ile 250	Glu	Ser	Asp	Ala	Ser 255	Сув
Ala Thr	Tyr Pro 260	Leu Ala	Val	Ala	Ala 265	Val	Thr	Gly	Thr	Thr 270	Cys	Thr
Val Pro A	Asn Ile 275	Gly Ser	Ala	Ser 280	Leu	Gln	Gly	Asp	Ala 285	Arg	Phe	Ala
Val Glu V 290	Val Leu	Arg Pro	Met 295	Gly	Cys	Thr	Val	Glu 300	Gln	Thr	Glu	Thr
Ser Thr 3	Thr Val	Thr Gly		Ser	Asp	Gly	Ile 315	Leu	Arg	Ala	Thr	Ser 320
Lys Arg (Gly Tyr	Gly Thr 325	Asn	Asp	Arg	330 Cys	Val	Pro	Arg	Cys	Phe 335	Arg
Thr Gly S	Ser His 340	Arg Pro	Met	Glu	Lys 345	Ser	Gln	Thr	Thr	Pro 350	Pro	Val
Ser Ser (Gly Ile 355	Ala Asr	Gln	Arg 360	Val	Lys	Glu	CÀa	Asn 365	Arg	Ile	ГЛа
Ala Met I 370	Lya Aap	Glu Leu	Ala 375	Lys	Phe	Gly	Val	Ile 380	CAa	Arg	Glu	His
Asp Asp (Gly Leu	Glu Ile 390	_	Gly	Ile	Asp	Arg 395	Ser	Asn	Leu	Arg	Gln 400
Pro Val (Gly Gly	Val Phe 405	. Cys	Tyr	Asp	Asp 410	His	Arg	Val	Ala	Phe 415	Ser
Phe Ser V	Val Leu 420	Ser Leu	Val	Thr	Pro 425	Gln	Pro	Thr	Leu	Ile 430	Leu	Glu
Lys Glu (Cys Val 435	Gly Lys	Thr	Trp 440	Pro	Gly	Trp	Trp	Asp 445	Thr	Leu	Arg
Gln Leu I 450	Phe Lys	Val Lys	Leu 455	Glu	Gly	Lys	Glu	Leu 460				

<210> SEQ ID NO 51 <211> LENGTH: 444 <212> TYPE: PRT <213> ORGANISM: Brassica napus

<400> SEQUENCE: 51

Lys 1	Ala	Ser	Glu	Ile 5	Val	Leu	Gln	Pro	Ile 10	Arg	Glu	Ile	Ser	Gly 15	Leu
Ile	ГÀа	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Glu	Gly	Thr	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Asn	Ser
Asp	Asp 50	Ile	Asn	Tyr	Met	Leu 55	Asp	Ala	Leu	Lys	60 Lys	Leu	Gly	Leu	Asn
Val 65	Glu	Arg	Asp	Ser	Val 70	Asn	Asn	Arg	Ala	Val 75	Val	Glu	Gly	Cys	Gly 80
Gly	Ile	Phe	Pro	Ala 85	Ser	Leu	Asp	Ser	Dys Lys	Ser	Asp	Ile	Glu	Leu 95	Tyr
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Ala	Ala	Gly 115	Gly	Asn	Ala	Ser	Tyr 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Val	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Asp	Val	Glu	СЛа	Thr 150	Leu	Gly	Thr	Asn	Сув 155	Pro	Pro	Val	Arg	Val 160
Asn	Ala	Asn	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	Lys 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Ser	Ala
Glu 225	His	Ser	Asp	Ser	Trp 230	Asp	Arg	Phe	Phe	Val 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Gly 245	Asn	Ala	Tyr	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Ile 265	Thr	Gly	Glu	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290		Lys	Met		Сув 295		Val	Ser		Thr 300		Asn	Ser	Val
Thr 305	Val	Thr	Gly	Pro	Ser 310	Arg	Asp	Ala	Phe	Gly 315	Met	Arg	His	Leu	Arg 320
Ala	Val	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Thr	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Ile	Ala 365	Ile	Сла	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Glu	Glu	Gly 380	Ser	Asp	Tyr	Сув
Val 385	Ile	Thr	Pro	Pro	Ala 390	ГÀа	Val	Lys	Pro	Ala 395	Glu	Ile	Asp	Thr	Tyr 400
Asp	Asp	His	Arg	Met	Ala	Met	Ala	Phe	Ser	Leu	Ala	Ala	Cys	Ala	Asp

												COII	CIII	aca	
				405					410					415	
Val	Pro	Val	Thr 420	Ile	Lys	Asp	Pro	Gly 425	Cys	Thr	Arg	Lys	Thr 430	Phe	Pro
Asp	Tyr	Phe 435	Gln	Val	Leu	Glu	Ser 440	Ile	Thr	Lys	His				
<21	0> SE L> LE 2> TY	ENGTI	I: 44												
	3> OF				oidor	sis	tha]	liana	1						
<400	D> SE	EQUE	ICE :	52											
Lys 1	Ala	Ser	Glu	Ile 5	Val	Leu	Gln	Pro	Ile 10	Arg	Glu	Ile	Ser	Gly 15	Leu
Ile	ГÀа	Leu	Pro 20	Gly	Ser	ГÀз	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Glu	Gly	Thr	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Asn	Ser
Asp	Asp 50	Ile	Asn	Tyr	Met	Leu 55	Asp	Ala	Leu	rya	Arg 60	Leu	Gly	Leu	Asn
Val 65	Glu	Thr	Asp	Ser	Glu 70	Asn	Asn	Arg	Ala	Val 75	Val	Glu	Gly	Cys	Gly 80
Gly	Ile	Phe	Pro	Ala 85	Ser	Ile	Asp	Ser	Lys 90	Ser	Asp	Ile	Glu	Leu 95	Tyr
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Ala	Ala	Gly 115	Gly	Asn	Ala	Ser	Tyr 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Val	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Asp	Val	Glu	CAa	Thr 150	Leu	Gly	Thr	Asn	Cys 155	Pro	Pro	Val	Arg	Val 160
Asn	Ala	Asn	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ser	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Val	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	Lys 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Ser	Val
Glu 225	His	Ser	Asp	Ser	Trp 230	Asp	Arg	Phe	Phe	Val 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Gly 245	Asn	Ala	Tyr	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Cys	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Ile 265	Thr	Gly	Glu	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	Сув 295	Lys	Val	Ser	Trp	Thr 300	Glu	Asn	Ser	Val
Thr 305	Val	Thr	Gly	Pro	Pro 310	Arg	Asp	Ala	Phe	Gly 315	Met	Arg	His	Leu	Arg 320

Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Thr	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Ile	Ala 365	Ile	Сув	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Glu	Glu	Gly 380	Ser	Asp	Tyr	Cys
Val 385	Ile	Thr	Pro	Pro	390 Lys	Lys	Val	Lys	Thr	Ala 395	Glu	Ile	Asp	Thr	Tyr 400
Asp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	CÀa	Ala 415	Asp
Val	Pro	Ile	Thr 420	Ile	Asn	Asp	Ser	Gly 425	СЛа	Thr	Arg	Lys	Thr 430	Phe	Pro
Asp	Tyr	Phe 435	Gln	Val	Leu	Glu	Arg 440	Ile	Thr	Lys	His				
<213 <213 <213		ENGTH PE: RGANI	H: 44 PRT SM:	Nico	otiar	na ta	ıbacı	ım							
	D> SE														
Lys 1	Pro	Asn	Glu	Ile 5	Val	Leu	Gln	Pro	Ile 10	ГÀа	Asp	Ile	Ser	Gly 15	Thr
Val	ГÀа	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	ràa	Gly	Arg	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Ser	Ser
Asp	Asp 50	Ile	His	Tyr	Met	Leu 55	Gly	Ala	Leu	ГÀа	Thr 60	Leu	Gly	Leu	His
Val 65	Glu	Asp	Asp	Asn	Glu 70	Asn	Gln	Arg	Ala	Ile 75	Val	Glu	Gly	Cys	Gly 80
Gly	Gln	Phe	Pro	Val 85	Gly	Lys	Lys	Ser	Glu 90	Glu	Glu	Ile	Gln	Leu 95	Phe
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Val	Ala	Gly 115	Gly	His	Ser	Arg	Tyr 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Asp	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Glu	Val	Asp	CAa	Phe 150	Leu	Gly	Thr	Asn	Cys 155	Pro	Pro	Val	Arg	Ile 160
Val	Ser	Lys	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	Lys 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Ser	Val
Glu 225	His	Thr	Ser	Ser	Trp 230	Asp	Lys	Phe	Leu	Val 235	Arg	Gly	Gly	Gln	Lys 240

245

-continued

Ser Tyr Phe Leu Ala Gly Ala Ala Val Thr Gly Gly Thr Val Thr Val 260 265 Glu Gly Cys Gly Thr Ser Ser Leu Gln Gly Asp Val Lys Phe Ala Glu Val Leu Glu Lys Met Gly Ala Glu Val Thr Trp Thr Glu Asn Ser Val 295 Thr Val Lys Gly Pro Pro Arg Asn Ser Ser Gly Met Lys His Leu Arg 310 Ala Val Asp Val Asn Met Asn Lys Met Pro Asp Val Ala Met Thr Leu 325 Ala Val Val Ala Leu Phe Ala Asp Gly Pro Thr Ala Ile Arg Asp Val Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr Glu Leu Arg Lys Leu Gly Ala Thr Val Val Glu Gly Ser Asp Tyr Cys Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Glu Ile Asp Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp Val Pro Val Thr Ile Lys Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 420 425 Asn Tyr Phe Asp Val Leu Gln Gln Tyr Ser Lys His 435 440 <210> SEQ ID NO 54 <211> LENGTH: 444 <212> TYPE: PRT <213> ORGANISM: Lycopersicon esculentum <220> FEATURE: <221> NAME/KEY: UNSURE <222> LOCATION: (1)..(444) <223> OTHER INFORMATION: Xaa = any <400> SEQUENCE: 54 Lys Pro His Glu Ile Val Leu Xaa Pro Ile Lys Asp Ile Ser Gly Thr 10 Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu 25 Ala Ala Leu Ser Glu Gly Arg Thr Val Val Asp Asn Leu Leu Ser Ser Asp Asp Ile His Tyr Met Leu Gly Ala Leu Lys Thr Leu Gly Leu His Val Glu Asp Asp Asn Glu Asn Gln Arg Ala Ile Val Glu Gly Cys Gly Gly Gln Phe Pro Val Gly Lys Lys Ser Glu Glu Glu Ile Gln Leu Phe Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr 105 Val Ala Gly Gly His Ser Arg Tyr Val Leu Asp Gly Val Pro Arg Met 120

Tyr Lys Ser Pro Gly Lys Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala

250

											-	con	tin	ued	
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Asp	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Glu	Val	Asp	CAa	Ser 150	Leu	Gly	Thr	Asn	Cys 155	Pro	Pro	Val	Arg	Ile 160
Val	Ser	Lys	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	Lys 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Phe	Val
Glu 225	His	Ser	Ser	Gly	Trp 230	Asp	Arg	Phe	Leu	Val 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Gly 245	Lys	Ala	Phe	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Val 265	Thr	Gly	Gly	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Ser	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	Glu	Val	Thr	Trp	Thr	Glu	Asn	Ser	Val
Thr 305	Val	Lys	Gly	Pro	Pro 310	Arg	Asn	Ser	Ser	Gly 315	Met	Lys	His	Leu	Arg 320
Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr	Leu
Ala	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Thr	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr	Glu	Arg	Met	Ile	Ala 365	Ile	Сув	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Val	Glu	Gly 380	Ser	Asp	Tyr	Cys
Ile 385	Ile	Thr	Pro	Pro	Glu 390	Lys	Leu	Asn	Val	Thr 395	Glu	Ile	Asp	Thr	Tyr 400
Asp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	Cys	Ala 415	Asp
Val	Pro	Val	Thr 420	Ile	Lys	Asn	Pro	Gly 425	Cha	Thr	Arg	ГЛа	Thr 430	Phe	Pro
Asp	Tyr	Phe 435	Glu	Val	Leu	Gln	Lys 440	Tyr	Ser	Lys	His				
		-					-								
<211 <212	.> LE !> TY	ENGTH PE:		14	,										
			ISM: ICE:		ınia	x hy	/brid	ia							
		-			Val	Leu	Gln	Pro	Ile	Lys	Glu	Ile	Ser	Gly	Thr
1				5					10	-				15	
Val	Lys	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Glu	Gly	Thr	Thr	Val	Val	Asp	Asn	Leu 45	Leu	Ser	Ser

Asp	Asp 50	Ile	His	Tyr	Met	Leu 55	Gly	Ala	Leu	Lys	Thr 60	Leu	Gly	Leu	His
Val 65	Glu	Glu	Asp	Ser	Ala 70	Asn	Gln	Arg	Ala	Val 75	Val	Glu	Gly	Сув	Gly 80
Gly	Leu	Phe	Pro	Val 85	Gly	Lys	Glu	Ser	Lys	Glu	Glu	Ile	Gln	Leu 95	Phe
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Val	Ala	Gly 115	Gly	Asn	Ser	Arg	Tyr 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Ser	Asp 135	Leu	Val	Asp	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Glu	Val	Asp	Cys	Phe 150	Leu	Gly	Thr	Lys	Сув 155	Pro	Pro	Val	Arg	Ile 160
Val	Ser	Lys	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	ГЛа	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	Lys 215	Leu	Met	Glu	Arg	Phe 220	Gly	Ile	Ser	Val
Glu 225	His	Ser	Ser	Ser	Trp 230	Asp	Arg	Phe	Phe	Val 235	Arg	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Gly 245	Lys	Ala	Phe	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Val 265	Thr	Gly	Gly	Thr	Ile 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Asn	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	Glu	Val	Thr	Trp	Thr 300	Glu	Asn	Ser	Val
Thr 305	Val	TÀa	Gly	Pro	Pro 310	Arg	Ser	Ser	Ser	Gly 315	Arg	Làa	His	Leu	Arg 320
Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	Val	Ala 340	Leu	Tyr	Ala	Asp	Gly 345	Pro	Thr	Ala	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Ile	Ala 365	Ile	Cys	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Glu	Glu	Gly 380	Pro	Asp	Tyr	Сув
Ile 385	Ile	Thr	Pro	Pro	Glu 390	Lys	Leu	Asn	Val	Thr 395	Asp	Ile	Asp	Thr	Tyr 400
Asp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	CAa	Ala 415	Asp
Val	Pro	Val	Thr 420	Ile	Asn	Asp	Pro	Gly 425	CAa	Thr	Arg	Lys	Thr 430	Phe	Pro
Asn	Tyr	Phe 435	Asp	Val	Leu	Gln	Gln 440	Tyr	Ser	Lys	His				

<211	L> LE		NO H: 44 PRT												
<213	3> OF	RGANI	SM:		mays	3									
<400)> SI	EQUE	ICE :	56											
Ala 1	Gly	Ala	Glu	Glu 5	Ile	Val	Leu	Gln	Pro 10	Ile	Lys	Glu	Ile	Ser 15	Gly
Thr	Val	Lys	Leu 20	Pro	Gly	Ser	Lys	Ser 25	Leu	Ser	Asn	Arg	Ile 30	Leu	Leu
Leu	Ala	Ala 35	Leu	Ser	Glu	Gly	Thr 40	Thr	Val	Val	Asp	Asn 45	Leu	Leu	Asn
Ser	Glu 50	Asp	Val	His	Tyr	Met 55	Leu	Gly	Ala	Leu	Arg 60	Thr	Leu	Gly	Leu
Ser 65	Val	Glu	Ala	Asp	Lys 70	Ala	Ala	Lys	Arg	Ala 75	Val	Val	Val	Gly	80 Gàa
Gly	Gly	Lys	Phe	Pro 85	Val	Glu	Asp	Ala	Lys 90	Glu	Glu	Val	Gln	Leu 95	Phe
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Ala	Ala	Gly 115	Gly	Asn	Ala	Thr	Tyr 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Val	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Asp	Val	Asp	Cys	Phe 150	Leu	Gly	Thr	Asp	Сув 155	Pro	Pro	Val	Arg	Val 160
Asn	Gly	Ile	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Ser	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Pro
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Ile	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	Arg 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Lys	Ala
Glu 225	His	Ser	Asp	Ser	Trp 230	Asp	Arg	Phe	Tyr	Ile 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Lys 245	Asn	Ala	Tyr	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Ile 265	Thr	Gly	Gly	Thr	Val 270	Thr	Val
Glu	Gly	Сув 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290	Glu	Met	Met	Gly	Ala 295	Lys	Val	Thr	Trp	Thr 300	Glu	Thr	Ser	Val
Thr 305	Val	Thr	Gly	Pro	Pro 310	Arg	Glu	Pro	Phe	Gly 315	Arg	Lys	His	Leu	Lys 320
Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Ala	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	ГÀа	Glu	Thr 360	Glu	Arg	Met	Val	Ala 365	Ile	Arg	Thr

Glu Leu Thr Lys Leu Gly Ala Ser Val Glu Glu Gly Pro Asp Tyr Cys 375 Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Ala Ile Asp Thr Tyr 390 395 Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Glu Val Pro Val Thr Ile Arg Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro 420 425 Asp Tyr Phe Asp Val Leu Ser Thr Phe Val Lys Asn 440 <210> SEQ ID NO 57 <211> LENGTH: 427 <212> TYPE: PRT <213> ORGANISM: Salmonella gallinarum <400> SEQUENCE: 57 Met Glu Ser Leu Thr Leu Gln Pro Ile Ala Arg Val Asp Gly Ala Ile Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala Ala Leu Ala Cys Gly Lys Thr Val Leu Thr Asn Leu Leu Asp Ser Asp Asp Val Arg His Met Leu Asn Ala Leu Ser Ala Leu Gly Ile Asn Tyr Thr Leu Ser Ala Asp Arg Thr Arg Cys Asp Ile Thr Gly Asn Gly Gly 65 707075757580 Pro Leu Arg Ala Pro Gly Ala Leu Glu Leu Phe Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Gln Asn Glu 105 Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His 120 Leu Val Asp Ser Leu Arg Gln Gly Gly Ala Asn Ile Asp Tyr Leu Glu Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Ile Gly Gly 155 Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 170 Leu Met Thr Ala Pro Leu Ala Pro Lys Asp Thr Ile Ile Arg Val Lys Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met Lys Thr Phe Gly Val Glu Ile Ala Asn His His Tyr Gln Gln Phe Val 215 Val Lys Gly Gly Gln Gln Tyr His Ser Pro Gly Arg Tyr Leu Val Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Lys Ser Met Gln Gly Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Ile Thr

		275					280					285			
Trp 0	31y 290	Asp	Asp	Phe	Ile	Ala 295	Cys	Thr	Arg	Gly	Glu 300	Leu	His	Ala	Ile
Asp M 305	/let	Asp	Met	Asn	His 310	Ile	Pro	Asp	Ala	Ala 315	Met	Thr	Ile	Ala	Thr 320
Thr A	Ala	Leu	Phe	Ala 325	Lys	Gly	Thr	Thr	Thr 330	Leu	Arg	Asn	Ile	Tyr 335	Asn
Trp A	Arg	Val	Lys 340	Glu	Thr	Asp	Arg	Leu 345	Phe	Ala	Met	Ala	Thr 350	Glu	Leu
Arg L	ŗys	Val 355	Gly	Ala	Glu	Val	Glu 360	Glu	Gly	His	Asp	Tyr 365	Ile	Arg	Ile
Thr F	Pro 370	Pro	Ala	ГÀЗ	Leu	Gln 375	His	Ala	Asp	Ile	Gly 380	Thr	Tyr	Asn	Asp
His A 385	Arg	Met	Ala	Met	Cys 390	Phe	Ser	Leu	Val	Ala 395	Leu	Ser	Asp	Thr	Pro 400
Val T	Thr	Ile	Leu	Asp 405	Pro	Lys	Сув	Thr	Ala 410	Lys	Thr	Phe	Pro	Asp 415	Tyr
Phe G	3lu	Gln	Leu 420	Ala	Arg	Met	Ser	Thr 425	Pro	Ala					
<210><211><211><212><213>	LE TY	NGTH PE:	I: 42 PRT	27	nonel	lla t	:yphi	lmuri	_um						
<400>	SE	QUEN	ICE :	58											
Met G	3lu	Ser	Leu	Thr 5	Leu	Gln	Pro	Ile	Ala 10	Arg	Val	Asp	Gly	Ala 15	Ile
Asn I	Leu	Pro	Gly 20	Ser	ГÀа	Ser	Val	Ser 25	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
Ala I	Leu	Ala 35	Cys	Gly	Lys	Thr	Val 40	Leu	Thr	Asn	Leu	Leu 45	Asp	Ser	Asp
Asp V	/al 50	Arg	His	Met	Leu	Asn 55	Ala	Leu	Ser	Ala	Leu 60	Gly	Ile	Asn	Tyr
Thr I	Leu	Ser	Ala	Asp	Arg 70	Thr	Arg	Сув	Asp	Ile 75	Thr	Gly	Asn	Gly	Gly 80
Pro L	Leu	Arg	Ala	Ser 85	Gly	Thr	Leu	Glu	Leu 90	Phe	Leu	Gly	Asn	Ala 95	Gly
Thr A	Ala	Met	Arg 100	Pro	Leu	Ala	Ala	Ala 105	Leu	Cys	Leu	Gly	Gln 110	Asn	Glu
Ile V	/al	Leu 115	Thr	Gly	Glu	Pro	Arg 120	Met	Lys	Glu	Arg	Pro 125	Ile	Gly	His
Leu V	/al L30	Asp	Ser	Leu	Arg	Gln 135	Gly	Gly	Ala	Asn	Ile 140	Asp	Tyr	Leu	Glu
Gln G 145	3lu	Asn	Tyr	Pro	Pro 150	Leu	Arg	Leu	Arg	Gly 155	Gly	Phe	Ile	Gly	Gly 160
Asp I	Ile	Glu	Val	Asp 165	Gly	Ser	Val	Ser	Ser 170	Gln	Phe	Leu	Thr	Ala 175	Leu
Leu M			180					185	_				190		-
Gly G	Glu	Leu 195	Val	Ser	ràa	Pro	Tyr 200	Ile	Asp	Ile	Thr	Leu 205	Asn	Leu	Met

											-	con	tin	ued	
Lys	Thr 210	Phe	Gly	Val	Glu	Ile 215	Ala	Asn	His	His	Tyr 220	Gln	Gln	Phe	Val
Val 225	Lys	Gly	Gly	Gln	Gln 230	Tyr	His	Ser	Pro	Gly 235	Arg	Tyr	Leu	Val	Glu 240
Gly	Asp	Ala	Ser	Ser 245	Ala	Ser	Tyr	Phe	Leu 250	Ala	Ala	Gly	Gly	Ile 255	Lys
Gly	Gly	Thr	Val 260	ГÀв	Val	Thr	Gly	Ile 265	Gly	Gly	Lys	Ser	Met 270	Gln	Gly
Asp	Ile	Arg 275	Phe	Ala	Asp	Val	Leu 280	His	Lys	Met	Gly	Ala 285	Thr	Ile	Thr
Trp	Gly 290	Asp	Asp	Phe	Ile	Ala 295	Cys	Thr	Arg	Gly	Glu 300	Leu	His	Ala	Ile
Asp 305	Met	Asp	Met	Asn	His 310	Ile	Pro	Asp	Ala	Ala 315	Met	Thr	Ile	Ala	Thr 320
Thr	Ala	Leu	Phe	Ala 325	Lys	Gly	Thr	Thr	Thr 330	Leu	Arg	Asn	Ile	Tyr 335	Asn
Trp	Arg	Val	Lys 340	Glu	Thr	Asp	Arg	Leu 345	Phe	Ala	Met	Ala	Thr 350	Glu	Leu
Arg	Lys	Val 355	Gly	Ala	Glu	Val	Glu 360	Glu	Gly	His	Asp	Tyr 365	Ile	Arg	Ile
Thr	Pro 370	Pro	Ala	ГÀа	Leu	Gln 375	His	Ala	Asp	Ile	Gly 380	Thr	Tyr	Asn	Asp
His 385	Arg	Met	Ala	Met	390 Cys	Phe	Ser	Leu	Val	Ala 395	Leu	Ser	Asp	Thr	Pro 400
Val	Thr	Ile	Leu	Asp 405	Pro	Lys	CÀa	Thr	Ala 410	ГÀа	Thr	Phe	Pro	Asp 415	Tyr
Phe	Glu	Gln	Leu 420	Ala	Arg	Met	Ser	Thr 425	Pro	Ala					
	D> SE L> LE														
<212	2> TY 3> OF	PE:	PRT		siel	lla p	neum	nonia	ıe						
<400)> SE	QUEN	ICE :	59											
Met 1	Glu	Ser	Leu	Thr 5	Leu	Gln	Pro	Ile	Ala 10	Arg	Val	Asp	Gly	Thr 15	Val
Asn	Leu	Pro	Gly 20	Ser	Lys	Ser	Val	Ser 25	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
Ala	Leu	Ala 35	Arg	Gly	Thr	Thr	Val 40	Leu	Thr	Asn	Leu	Leu 45	Asp	Ser	Asp
Asp	Val 50	Arg	His	Met	Leu	Asn 55	Ala	Leu	Ser	Ala	Leu 60	Gly	Val	His	Tyr
Val 65	Leu	Ser	Ser	Asp	Arg 70	Thr	Arg	Сла	Glu	Val 75	Thr	Gly	Thr	Gly	Gly 80
Pro	Leu	Gln	Ala	Gly 85	Ser	Ala	Leu	Glu	Leu 90	Phe	Leu	Gly	Asn	Ala 95	Gly
Thr	Ala	Met	Arg 100	Pro	Leu	Ala	Ala	Ala 105	Leu	Càa	Leu	Gly	Ser 110	Asn	Asp
Ile	Val	Leu 115	Thr	Gly	Glu	Pro	Arg 120	Met	Lys	Glu	Arg	Pro 125	Ile	Gly	His

155 150 Asp Val Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 165 170 Leu Met Ala Ser Pro Leu Ala Pro Gln Asp Thr Val Ile Ala Ile Lys Gly Glu Leu Val Ser Arg Pro Tyr Ile Asp Ile Thr Leu His Leu Met 200 Lys Thr Phe Gly Val Glu Val Glu Asn Gln Ala Tyr Gln Arg Phe Ile 215 Val Arg Gly Asn Gln Gln Tyr Gln Ser Pro Gly Asp Tyr Leu Val Glu 230 Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 265 Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Val Thr Trp Gly Glu Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asn Ala Ile Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 330 Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 345 340 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 360 Thr Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asn Asp 375 His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 390 395 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 410 Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 420 <210> SEQ ID NO 60 <211> LENGTH: 427 <212> TYPE: PRT <213> ORGANISM: Yersinia enterocolitica <400> SEOUENCE: 60 Met Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 10 Val Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Ala Ala Leu Ala Glu Gly Thr Thr Gln Leu Asn Asn Leu Leu Asp Ser Asp Asp Ile Arg His Met Leu Asn Ala Leu Gln Ala Leu Gly Val Lys Tyr Arg Leu Ser Ala Asp Arg Thr Arg Cys Glu Val Asp Gly Leu Gly

Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Thr Gly Gly

65					70					75					80
Gly	ГЛа	Leu	Val	Ala 85	Glu	Gln	Pro	Leu	Glu 90	Leu	Phe	Leu	Gly	Asn 95	Ala
Gly	Thr	Ala	Met 100	Arg	Pro	Leu	Ala	Ala 105	Ala	Leu	CAa	Leu	Gly 110	Lys	Asn
Asp	Ile	Val 115	Leu	Thr	Gly	Glu	Pro 120	Arg	Met	Lys	Glu	Arg 125	Pro	Ile	Gly
His	Leu 130	Val	Asp	Ala	Leu	Arg 135	Gln	Gly	Gly	Ala	Gln 140	Ile	Asp	Tyr	Leu
Glu 145	Gln	Glu	Asn	Tyr	Arg 150	Arg	Сув	Ile	Ala	Gly 155	Gly	Phe	Arg	Gly	Gly 160
Lys	Leu	Thr	Val	Asp 165	Gly	Ser	Val	Ser	Ser 170	Gln	Phe	Leu	Thr	Ala 175	Leu
Leu	Met	Thr	Ala 180	Pro	Leu	Ala	Glu	Gln 185	Asp	Thr	Glu	Ile	Gln 190	Ile	Gln
Gly	Glu	Leu 195	Val	Ser	Lys	Pro	Tyr 200	Ile	Asp	Ile	Thr	Leu 205	His	Leu	Met
Lys	Ala 210	Phe	Gly	Val	Asp	Val 215	Val	His	Glu	Asn	Tyr 220	Gln	Ile	Phe	His
Ile 225	Lys	Gly	Gly	Gln	Thr 230	Tyr	Arg	Ser	Pro	Gly 235	Ile	Tyr	Leu	Val	Glu 240
Gly	Asp	Ala	Ser	Ser 245	Ala	Ser	Tyr	Phe	Leu 250	Ala	Ala	Ala	Ala	Ile 255	Lys
Gly	Gly	Thr	Val 260	Arg	Val	Thr	Gly	Ile 265	Gly	Lys	Gln	Ser	Val 270	Gln	Gly
Asp	Thr	Lys 275	Phe	Ala	Asp	Val	Leu 280	Glu	ГÀа	Met	Gly	Ala 285	Lys	Ile	Ser
Trp	Gly 290	Asp	Asp	Tyr	Ile	Glu 295	Cys	Ser	Arg	Gly	Glu 300	Leu	Gln	Gly	Ile
Asp 305	Met	Asp	Met	Asn	His 310	Ile	Pro	Asp	Ala	Ala 315	Met	Thr	Ile	Ala	Thr 320
Thr	Ala	Leu	Phe	Ala 325	Asp	Gly	Pro	Thr	Val 330	Ile	Arg	Asn	Ile	Tyr 335	Asn
Trp	Arg	Val	Lys 340	Glu	Thr	Asp	Arg	Leu 345	Ser	Ala	Met	Ala	Thr 350	Glu	Leu
Arg	Lys	Val 355	Gly	Ala	Glu	Val	Glu 360	Glu	Gly	Gln	Asp	Tyr 365	Ile	Arg	Val
Val	Pro 370	Pro	Ala	Gln	Leu	Ile 375	Ala	Ala	Glu	Ile	Gly 380	Thr	Tyr	Asn	Asp
His 385	Arg	Met	Ala	Met	390 Cys	Phe	Ser	Leu	Val	Ala 395	Leu	Ser	Asp	Thr	Pro 400
Val	Thr	Ile	Leu	Asp 405	Pro	Lys	Cys	Thr	Ala 410	Lys	Thr	Phe	Pro	Asp 415	Tyr
Phe	Glu	Gln	Leu 420	Ala	Arg	Leu	Ser	Gln 425	Ile	Ala					
<211 <212	L> LE 2> TY	NGTH		32	nonh i	lug	infl	uons							

<213> ORGANISM: Haemophilus influenzae

<400> SEQUENCE: 61

Met 1	Glu	Lys	Ile	Thr 5	Leu	Ala	Pro	Ile	Ser 10	Ala	Val	Glu	Gly	Thr 15	Ile
Asn	Leu	Pro	Gly 20	Ser	Lys	Ser	Leu	Ser 25	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
Ala	Leu	Ala 35	Lys	Gly	Thr	Thr	Lys 40	Val	Thr	Asn	Leu	Leu 45	Asp	Ser	Asp
Asp	Ile 50	Arg	His	Met	Leu	Asn 55	Ala	Leu	Lys	Ala	Leu 60	Gly	Val	Arg	Tyr
Gln 65	Leu	Ser	Asp	Asp	Lys 70	Thr	Ile	Сув	Glu	Ile 75	Glu	Gly	Leu	Gly	Gly 80
Ala	Phe	Asn	Ile	Gln 85	Asp	Asn	Leu	Ser	Leu 90	Phe	Leu	Gly	Asn	Ala 95	Gly
Thr	Ala	Met	Arg 100	Pro	Leu	Thr	Ala	Ala 105	Leu	СЛа	Leu	Lys	Gly 110	Asn	His
Glu	Val	Glu 115	Ile	Ile	Leu	Thr	Gly 120	Glu	Pro	Arg	Met	Lys 125	Glu	Arg	Pro
Ile	Leu 130	His	Leu	Val	Asp	Ala 135	Leu	Arg	Gln	Ala	Gly 140	Ala	Asp	Ile	Arg
Tyr 145	Leu	Glu	Asn	Glu	Gly 150	Tyr	Pro	Pro	Leu	Ala 155	Ile	Arg	Asn	Lys	Gly 160
Ile	Lys	Gly	Gly	Lys 165	Val	Lys	Ile	Asp	Gly 170	Ser	Ile	Ser	Ser	Gln 175	Phe
Leu	Thr	Ala	Leu 180	Leu	Met	Ser	Ala	Pro 185	Leu	Ala	Glu	Asn	Asp 190	Thr	Glu
Ile	Glu	Ile 195	Ile	Gly	Glu	Leu	Val 200	Ser	Lys	Pro	Tyr	Ile 205	Asp	Ile	Thr
Leu	Ala 210	Met	Met	Arg	Asp	Phe 215	Gly	Val	Lys	Val	Glu 220	Asn	His	His	Tyr
Gln 225	Lys	Phe	Gln	Val	Lys 230	Gly	Asn	Gln	Ser	Tyr 235	Ile	Ser	Pro	Asn	Lys 240
Tyr	Leu	Val	Glu	Gly 245	Asp	Ala	Ser	Ser	Ala 250	Ser	Tyr	Phe	Leu	Ala 255	Ala
Gly	Ala	Ile	Lys 260	Gly	Lys	Val	Lys	Val 265	Thr	Gly	Ile	Gly	Lys 270	Asn	Ser
Ile	Gln	Gly 275	Asp	Arg	Leu	Phe	Ala 280	Asp	Val	Leu	Glu	Lys 285	Met	Gly	Ala
ГÀз	Ile 290		Trp	Gly		Asp 295		Ile	Gln		Glu 300		Ala	Glu	Leu
Asn 305	Gly	Ile	Asp	Met	Asp 310	Met	Asn	His	Ile	Pro 315	Asp	Ala	Ala	Met	Thr 320
Ile	Ala	Thr	Thr	Ala 325	Leu	Phe	Ser	Asn	Gly 330	Glu	Thr	Val	Ile	Arg 335	Asn
Ile	Tyr	Asn	Trp 340	Arg	Val	ГÀз	Glu	Thr 345	Asp	Arg	Leu	Thr	Ala 350	Met	Ala
Thr	Glu	Leu 355	Arg	ràs	Val	Gly	Ala 360	Glu	Val	Glu	Glu	Gly 365	Glu	Asp	Phe
Ile	Arg 370	Ile	Gln	Pro	Leu	Ala 375	Leu	Asn	Gln	Phe	180 380	His	Ala	Asn	Ile
Glu 385	Thr	Tyr	Asn	Asp	His 390	Arg	Met	Ala	Met	Сув 395	Phe	Ser	Leu	Ile	Ala 400
Leu	Ser	Asn	Thr	Pro	Val	Thr	Ile	Leu	Asp	Pro	Lys	Cys	Thr	Ala	Lys

405 410														415	
Thr	Phe	Pro	Thr 420	Phe	Phe	Asn	Glu	Phe 425		ГЛа	Ile	CÀa	Leu 430		Asn
<211	L> LE	Q ID	: 44												
		PE : RGANI		Past	eure	ella	mult	ocid	la						
<400)> SE	QUEN	CE:	62											
Val 1	Ile	Lys	Asp	Ala 5	Thr	Ala	Ile	Thr	Leu 10	Asn	Pro	Ile	Ser	Tyr 15	Ile
Glu	Gly	Glu	Val 20	Arg	Leu	Pro	Gly	Ser 25	ГЛа	Ser	Leu	Ser	Asn 30	Arg	Ala
Leu	Leu	Leu 35	Ser	Ala	Leu	Ala	Lys 40	Gly	Lys	Thr	Thr	Leu 45	Thr	Asn	Leu
Leu	Asp 50	Ser	Asp	Asp	Val	Arg 55	His	Met	Leu	Asn	Ala 60	Leu	TÀa	Glu	Leu
Gly 65	Val	Thr	Tyr	Gln	Leu 70	Ser	Glu	Asp	Lys	Ser 75	Val	Cys	Glu	Ile	Glu 80
Gly	Leu	Gly	Arg	Ala 85	Phe	Glu	Trp	Gln	Ser 90	Gly	Leu	Ala	Leu	Phe 95	Leu
Gly	Asn	Ala	Gly 100	Thr	Ala	Met	Arg	Pro 105	Leu	Thr	Ala	Ala	Leu 110	Cys	Leu
Ser	Thr	Pro 115	Asn	Arg	Glu	Gly	Lys 120	Asn	Glu	Ile	Val	Leu 125	Thr	Gly	Glu
Pro	Arg 130	Met	Lys	Glu	Arg	Pro 135	Ile	Gln	His	Leu	Val 140	Asp	Ala	Leu	Cys
Gln 145	Ala	Gly	Ala	Glu	Ile 150	Gln	Tyr	Leu	Glu	Gln 155	Glu	Gly	Tyr	Pro	Pro 160
Ile	Ala	Ile	Arg	Asn 165	Thr	Gly	Leu	Lys	Gly 170	Gly	Arg	Ile	Gln	Ile 175	Asp
Gly	Ser	Val	Ser 180	Ser	Gln	Phe	Leu	Thr 185	Ala	Leu	Leu	Met	Ala 190	Ala	Pro
Met	Ala	Glu 195	Ala	Asp	Thr	Glu	Ile 200	Glu	Ile	Ile	Gly	Glu 205	Leu	Val	Ser
rys	Pro 210	Tyr	Ile	Asp	Ile	Thr 215	Leu	Lys	Met	Met	Gln 220	Thr	Phe	Gly	Val
Glu 225	Val	Glu	Asn	Gln	Ala 230	Tyr	Gln	Arg	Phe	Leu 235	Val	Lys	Gly	His	Gln 240
Gln	Tyr	Gln	Ser	Pro 245	His	Arg	Phe	Leu	Val 250	Glu	Gly	Asp	Ala	Ser 255	Ser
Ala	Ser	Tyr	Phe 260	Leu	Ala	Ala	Ala	Ala 265	Ile	Lys	Gly	Lys	Val 270	Lys	Val
Thr	Gly	Val 275	Gly	Lys	Asn	Ser	Ile 280	Gln	Gly	Asp	Arg	Leu 285	Phe	Ala	Asp
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	His	Ile	Thr	Trp	Gly 300	Asp	Asp	Phe	Ile
Gln 305	Val	Glu	Lys	Gly	Asn 310	Leu	ГÀа	Gly	Ile	Asp 315	Met	Asp	Met	Asn	His 320
Ile	Pro	Asp	Ala	Ala 325	Met	Thr	Ile	Ala	Thr 330	Thr	Ala	Leu	Phe	Ala 335	Glu

Gly	Glu	Thr	Val 340	Ile	Arg	Asn	Ile	Tyr 345	Asn	Trp	Arg	Val	Lys 350	Glu	Thr
Asp	Arg	Leu 355	Thr	Ala	Met	Ala	Thr 360	Glu	Leu	Arg	Lys	Val 365	Gly	Ala	Glu
Val	Glu 370	Glu	Gly	Glu	Asp	Phe 375	Ile	Arg	Ile	Gln	Pro 380	Leu	Asn	Leu	Ala
Gln 385	Phe	Gln	His	Ala	Glu 390	Leu	Asn	Ile	His	Asp 395	His	Arg	Met	Ala	Met 400
CAa	Phe	Ala	Leu	Ile 405	Ala	Leu	Ser	Lys	Thr 410	Ser	Val	Thr	Ile	Leu 415	Aap
Pro	Ser	Cys	Thr 420	Ala	Lys	Thr	Phe	Pro 425	Thr	Phe	Leu	Ile	Leu 430	Phe	Thr
Leu	Asn	Thr 435	Arg	Glu	Val	Ala	Tyr 440	Arg							
<211 <212	0> SE L> LE 2> TY 3> OF	ENGTH	H: 42 PRT	26	omona	as sa	almor	nicio	la						
<400)> SE	EQUE	ICE :	63											
Asn 1	Ser	Leu	Arg	Leu 5	Glu	Pro	Ile	Ser	Arg 10	Val	Ala	Gly	Glu	Val 15	Asn
Leu	Pro	Gly	Ser 20	Lys	Ser	Val	Ser	Asn 25	Arg	Ala	Leu	Leu	Leu 30	Ala	Ala
Leu	Ala	Arg 35	Gly	Thr	Thr	Arg	Leu 40	Thr	Asn	Leu	Leu	Asp 45	Ser	Asp	Aap
Ile	Arg 50	His	Met	Leu	Ala	Ala 55	Leu	Thr	Gln	Leu	Gly 60	Val	Lys	Tyr	Lys
Leu 65	Ser	Ala	Asp	Lys	Thr 70	Glu	Cys	Thr	Val	His 75	Gly	Leu	Gly	Arg	Ser 80
Phe	Ala	Val	Ser	Ala 85	Pro	Val	Asn	Leu	Phe 90	Leu	Gly	Asn	Ala	Gly 95	Thr
Ala	Met	Arg	Pro 100	Leu	CAa	Ala	Ala	Leu 105	CAa	Leu	Gly	Ser	Gly 110	Glu	Tyr
Met	Leu	Gly 115	Gly	Glu	Pro	Arg	Met 120	Glu	Glu	Arg	Pro	Ile 125	Gly	His	Leu
Val	Asp 130	Cys	Leu	Ala	Leu	Lys 135	Gly	Ala	His	Ile	Gln 140	Tyr	Leu	Lys	Lys
Asp 145	Gly	Tyr	Pro	Pro	Leu 150	Val	Val	Asp	Ala	Lys 155	Gly	Leu	Trp	Gly	Gly 160
Asp	Val	His	Val	Asp 165	_	Ser	Val	Ser	Ser 170	Gln	Phe	Leu	Thr	Ala 175	Phe
Leu	Met	Ala	Ala 180	Pro	Ala	Met	Ala	Pro 185	Val	Ile	Pro	Arg	Ile 190	His	Ile
Lys	Gly	Glu 195	Leu	Val	Ser	Lys	Pro 200	Tyr	Ile	Asp	Ile	Thr 205	Leu	His	Ile
Met	Asn 210	Ser	Ser	Gly	Val	Val 215	Ile	Glu	His	Asp	Asn 220	Tyr	Lys	Leu	Phe
Tyr 225	Ile	Lys	Gly	Asn	Gln 230	Ser	Ile	Val	Ser	Pro 235	Gly	Asp	Phe	Leu	Val 240
Glu	Gly	Asp	Ala	Ser 245	Ser	Ala	Ser	Tyr	Phe 250	Leu	Ala	Ala	Gly	Ala 255	Ile

265 Ile His Phe Ala Asp Val Leu Glu Arg Met Gly Ala Arg Ile Thr Trp 280 Gly Asp Asp Phe Ile Glu Ala Glu Gln Gly Pro Leu His Gly Val Asp Met Asp Met Asn His Ile Pro Asp Val Gly His Asp His Ser Gly Gln 310 315 Ser His Cys Leu Pro Arg Val Pro Pro His Ser Gln His Leu Gln Leu 330 Ala Val Arg Asp Asp Arg Cys Thr Pro Cys Thr His Gly His Arg Arg 345 Ala Gln Ala Gly Val Ser Glu Glu Gly Thr Thr Phe Ile Thr Arg Asp Ala Ala Asp Pro Ala Gln Ala Arg Arg Asp Arg His Leu Gln Arg Ser 375 Arg Ile Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Ile Ala Val Thr Ile Asn Asp Pro Gly Cys Thr Ser Lys Thr Phe Pro Asp Tyr Phe Asp Lys Leu Ala Ser Val Ser Gln Ala Val 420 <210> SEQ ID NO 64 <211> LENGTH: 442 <212> TYPE: PRT <213> ORGANISM: Bacillus pertussis <400> SEOUENCE: 64 Met Ser Gly Leu Ala Tyr Leu Asp Leu Pro Ala Ala Arg Leu Ala Arg 10 Gly Glu Val Ala Leu Pro Gly Ser Lys Ser Ile Ser Asn Arg Val Leu 25 Leu Leu Ala Ala Leu Ala Glu Gly Ser Thr Glu Ile Thr Gly Leu Leu Asp Ser Asp Asp Thr Arg Val Met Leu Ala Ala Leu Arg Gln Leu Gly 55 Val Ser Val Gly Glu Val Ala Asp Gly Cys Val Thr Ile Glu Gly Val Ala Arg Phe Pro Thr Glu Gln Ala Glu Leu Phe Leu Gly Asn Ala Gly Thr Ala Phe Arg Pro Leu Thr Ala Ala Leu Ala Leu Met Gly Gly Asp Tyr Arg Leu Ser Gly Val Pro Arg Met His Glu Arg Pro Ile Gly Asp 120 Leu Val Asp Ala Leu Arg Gln Phe Gly Ala Gly Ile Glu Tyr Leu Gly Gln Ala Gly Tyr Pro Pro Leu Arg Ile Gly Gly Gly Ser Ile Arg Val 145 $\,$ 150 $\,$ 155 $\,$ 160 Asp Gly Pro Val Arg Val Glu Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu Leu Met Ala Ala Pro Val Leu Ala Arg Arg Ser Gly Gln Asp

Lys Gly Lys Val Arg Val Thr Gly Ile Gly Lys His Ser Ile Gly Asp

												COII	LIII	uea	
			180					185					190		
Ile	Thr	Ile 195	Glu	Val	Val	Gly	Glu 200		Ile	Ser	Lys	Pro 205	Tyr	Ile	Glu
Ile	Thr 210	Leu	Asn	Leu	Met	Ala 215	Arg	Phe	Gly	Val	Ser 220	Val	Arg	Arg	Asp
Gly 225	Trp	Arg	Ala	Phe	Thr 230	Ile	Ala	Arg	Asp	Ala 235	Val	Tyr	Arg	Gly	Pro 240
Gly	Arg	Met	Ala	Ile 245	Glu		Asp		Ser 250	Thr	Ala	Ser	Tyr	Phe 255	Leu
Ala	Leu	Gly	Ala 260		Gly					Arg	Val	Thr	Gly 270		Gly
Glu	Asp	Ser 275		Gln	Gly	Asp	Val 280	Ala	Phe	Ala	Ala	Thr 285		Ala	Ala
Met	Gly 290		Asp	Val	Arg	Tyr 295			Gly	Trp	Ile 300		Thr	Arg	Gly
	Arg	Val	Ala	Glu	-	Gly	Arg	Leu	Lys			Asp	Ala	Asp	
305 Asn	Leu	Ile	Pro		310 Ala		Met	Thr		315 Ala	Thr	Leu	Ala		320 Tyr
Ala	Asp	Gly		325 Cys	Arg	Leu	Arg		330 Ile	Gly	Ser	Trp		335 Val	Lys
Glu	Thr	Asp	340 Arg	Ile	His	Ala	Met	345 His	Thr	Glu	Leu	Glu	350 Lys	Leu	Gly
	Gly	355	J				360					365	•		-
	370					375					380				
385	Gly				390					395					400
Met	Ala	Met	Cys	Phe 405	Leu	Leu	Ala	Ala	Phe 410	Gly	Pro	Ala	Ala	Val 415	Arg
Ile	Leu	Asp	Pro 420	Gly	Cys	Val	Ser	Lys 425	Thr	Phe	Pro	Asp	Tyr 430	Phe	Asp
Val	Tyr	Ala 435	Gly	Leu	Leu	Ala	Ala 440	Arg	Asp						
)> SE														
<212	L> LE 2> TY 3> OF	PE:	PRT		none ⁻	+ داا	-vnh i	imuri	1170						
					E.	LLA I	- A F111	411	. u.III						
	0> SE	-			Len	വാം	Dro	Tle	Δ 1 ο	Δx~	Lev	Acr	G1++	Δ 1 ~	T10
Met 1	Glu	ser	ьeu	Thr 5	ьeu	GIN	Pro	шe	Ala 10	Arg	val	Asp	GΙΫ	Ala 15	11e
Asn	Leu	Pro	Gly 20	Ser	Lys	Ser	Val	Ser 25	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
Ala	Leu	Ala 35	Сув	Gly	Lys	Thr	Val 40	Leu	Thr	Asn	Leu	Leu 45	Asp	Ser	Asp
Asp	Val 50	Arg	His	Met	Leu	Asn 55	Ala	Leu	Ser	Ala	Leu 60	Gly	Ile	Asn	Tyr
Thr 65	Leu	Ser	Ala	Asp	Arg 70	Thr	Arg	CAa	Asp	Ile 75	Thr	Gly	Asn	Gly	Gly 80
Pro	Leu	Arg	Ala	Ser 85	Gly	Thr	Leu	Glu	Leu 90	Phe	Leu	Gly	Asn	Ala 95	Gly

Thr Ala Met Arg Pro Leu Ala Ala Ala Leu Cys Leu Gly Gln Asn Glu 105 Ile Val Leu Thr Gly Glu Pro Arg Met Lys Glu Arg Pro Ile Gly His 120 Leu Val Asp Ser Leu Arg Gln Gly Gly Ala Asn Ile Asp Tyr Leu Glu 135 Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Ile Gly Gly 150 155 Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu Leu Met Thr Ala Pro Leu Ala Pro Glu Asp Thr Ile Ile Arg Val Lys Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn Leu Met Lys Thr Phe Gly Val Glu Ile Ala Asn His His Tyr Gln Gln Phe Val Val Lys Gly Gly Gln Gln Tyr His Ser Pro Gly Arg Tyr Leu Val Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Gly Ile Lys Gly Gly Thr Val Lys Val Thr Gly Ile Gly Gly Lys Ser Met Gln Gly Asp Ile Arg Phe Ala Asp Val Leu His Lys Met Gly Ala Thr Ile Thr Trp Gly Asp Asp Phe Ile Ala Cys Thr Arg Gly Glu Leu His Ala Ile Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 310 Thr Ala Leu Phe Ala Lys Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 330 Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 345 Arg Lys Val Gly Ala Glu Val Glu Glu Gly His Asp Tyr Ile Arg Ile Thr Pro Pro Ala Lys Leu Gln His Ala Asp Ile Gly Thr Tyr Asn Asp 375 His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 390 395 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 410 Phe Glu Gln Leu Ala Arg Met Ser Thr Pro Ala <210> SEQ ID NO 66 <211> LENGTH: 1894 <212> TYPE: DNA <213> ORGANISM: Synechocystis sp. <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (275)..(1618) <400> SEQUENCE: 66

acgggctgta acggtagtag gggtcccgag cacaaaagcg gtgccggcaa gcagaactaa

tttccatggg gaataatggt atttcattgg tttggcctct ggtctggcaa tggttgctag	120
gcgatcgcct gttgaaatta acaaactgtc gcccttccac tgaccatggt aacgatgttt	180
tttacttcct tgactaaccg aggaaaattt ggcgggggc agaaatgcca atacaattta	240
gcttggtctt ccctgcccct aatttgtccc ctcc atg gcc ttg ctt tcc ctc aac Met Ala Leu Leu Ser Leu Asn 1 5	295
aat cat caa tcc cat caa cgc tta act gtt aat ccc cct gcc caa ggg Asn His Gln Ser His Gln Arg Leu Thr Val Asn Pro Pro Ala Gln Gly 10 15 20	343
gtc gct ttg act ggc cgc cta agg gtg ccg ggg gat aaa tcc att tcc Val Ala Leu Thr Gly Arg Leu Arg Val Pro Gly Asp Lys Ser Ile Ser 25 30 35	391
cat cgg gcc ttg atg ttg ggg gcg atc gcc acc ggg gaa acc att atc His Arg Ala Leu Met Leu Gly Ala Ile Ala Thr Gly Glu Thr Ile Ile 40 45 50 55	439
gaa ggg cta ctg ttg ggg gaa gat ccc cgt agt acg gcc cat tgc ttt Glu Gly Leu Leu Gly Glu Asp Pro Arg Ser Thr Ala His Cys Phe 60 65 70	487
cgg gcc atg gga gca gaa atc agc gaa cta aat tca gaa aaa atc atc Arg Ala Met Gly Ala Glu Ile Ser Glu Leu Asn Ser Glu Lys Ile Ile 75 80 85	535
gtt cag ggt cgg ggt ctg gga cag ttg cag gaa ccc agt acc gtt ttg Val Gln Gly Arg Gly Leu Gly Gln Leu Gln Glu Pro Ser Thr Val Leu 90 95 100	583
gat gcg ggg aac tct ggc acc acc atg cgc tta atg ttg ggc ttg cta Asp Ala Gly Asn Ser Gly Thr Thr Met Arg Leu Met Leu Gly Leu Leu 105 110 115	631
gcc ggg caa aaa gat tgt tta ttc acc gtc acc ggc gat gat tcc ctc Ala Gly Gln Lys Asp Cys Leu Phe Thr Val Thr Gly Asp Asp Ser Leu 120 125 130 135	679
cgt cac cgc ccc atg tcc cgg gta att caa ccc ttg caa caa atg ggg Arg His Arg Pro Met Ser Arg Val Ile Gln Pro Leu Gln Gln Met Gly 140 145 150	727
gca aaa att tgg gcc cgg agt aac ggc aag ttt gcg ccg ctg gca gtc Ala Lys Ile Trp Ala Arg Ser Asn Gly Lys Phe Ala Pro Leu Ala Val 155 160 165	775
cag ggt agc caa tta aaa ccg atc cat tac cat tcc ccc att gct tca Gln Gly Ser Gln Leu Lys Pro Ile His Tyr His Ser Pro Ile Ala Ser 170 175 180	823
gcc cag gta aag tcc tgc ctg ttg cta gcg ggg tta acc acc gag ggg Ala Gln Val Lys Ser Cys Leu Leu Leu Ala Gly Leu Thr Thr Glu Gly 185 190 195	871
gac acc acg gtt aca gaa cca gct cta tcc cgg gat cat agc gaa cgc Asp Thr Thr Val Thr Glu Pro Ala Leu Ser Arg Asp His Ser Glu Arg 200 205 210 215	919
atg ttg cag gcc ttt gga gcc aaa tta acc att gat cca gta acc cat Met Leu Gln Ala Phe Gly Ala Lys Leu Thr Ile Asp Pro Val Thr His 220 225 230	967
age gtc act gtc cat ggc ccg gcc cat tta acg ggg caa cgg gtg gtg Ser Val Thr Val His Gly Pro Ala His Leu Thr Gly Gln Arg Val Val 235 240 245	1015
gtg cca ggg gac atc agc tcg gcg gcc ttt tgg tta gtg gcg gca tcc Val Pro Gly Asp Ile Ser Ser Ala Ala Phe Trp Leu Val Ala Ala Ser 250 255 260	1063
att ttg cct gga tca gaa ttg ttg gtg gaa aat gta ggc att aac ccc Ile Leu Pro Gly Ser Glu Leu Leu Val Glu Asn Val Gly Ile Asn Pro	1111

-continued	
265 270 275	
acc agg aca ggg gtg ttg gaa gtg ttg gcc cag atg ggg gcg gac att Thr Arg Thr Gly Val Leu Glu Val Leu Ala Gln Met Gly Ala Asp Ile 280 285 290 295	1159
acc ccg gag aat gaa cga ttg gta acg ggg gaa ccg gta gca gat ctg Thr Pro Glu Asn Glu Arg Leu Val Thr Gly Glu Pro Val Ala Asp Leu 300 305 310	1207
cgg gtt agg gca agc cat ctc cag ggt tgc acc ttc ggc ggc gaa att Arg Val Arg Ala Ser His Leu Gln Gly Cys Thr Phe Gly Gly Glu Ile 315 320 325	1255
att ccc cga ctg att gat gaa att ccc att ttg gca gtg gcg gcc Ile Pro Arg Leu Ile Asp Glu Ile Pro Ile Leu Ala Val Ala Ala Ala 330 335 340	1303
ttt gca gag ggc act acc cgc att gaa gat gcc gca gaa ctg agg gtt Phe Ala Glu Gly Thr Thr Arg Ile Glu Asp Ala Ala Glu Leu Arg Val 345 350 355	1351
aaa gaa agc gat cgc ctg gcg gcc att gct tcg gag ttg ggc aaa atg Lys Glu Ser Asp Arg Leu Ala Ala Ile Ala Ser Glu Leu Gly Lys Met 360 365 370 375	1399
ggg gcc aaa gtc acc gaa ttt gat gat ggc ctg gaa att caa ggg gga Gly Ala Lys Val Thr Glu Phe Asp Asp Gly Leu Glu Ile Gln Gly Gly 380 385 390	1447
agc ccg tta caa ggg gcc gag gtg gat agc ttg acg gat cat cgc att Ser Pro Leu Gln Gly Ala Glu Val Asp Ser Leu Thr Asp His Arg Ile 395 400 405	1495
gcc atg gcg ttg gcg atc gcc gct tta ggt agt ggg ggg caa aca att Ala Met Ala Leu Ala Ile Ala Ala Leu Gly Ser Gly Gly Gln Thr Ile 410 415 420	1543
att aac cgg gcg gaa gcg gcc gcc att tcc tat cca gaa ttt ttt ggc Ile Asn Arg Ala Glu Ala Ala Ala Ile Ser Tyr Pro Glu Phe Phe Gly 425 430 435	1591
acg cta ggg caa gtt gcc caa gga taa agttagaaaa actcctgggc Thr Leu Gly Gln Val Ala Gln Gly 440 445	1638
ggtttgtaaa tgttttacca aggtagtttg gggtaaaggc cccagcaagt gctgccaggg	1698
taatttatcc gcaattgacc aatcggcatg gaccgtatcg ttcaaactgg gtaattctcc	1758
ctttaattcc ttaaaagctc gcttaaaact gcccaacgta tctccgtaat ggcgagtgag	1818
tagaagtaat ggggccaaac ggcgatcgcc acgggaaatt aaagcctgca tcactgacca	1878
cttataactt tcggga	1894
<210> SEQ ID NO 67 <211> LENGTH: 447 <212> TYPE: PRT <213> ORGANISM: Synechocystis sp.	
<400> SEQUENCE: 67	
Met Ala Leu Leu Ser Leu Asn Asn His Gln Ser His Gln Arg Leu Thr 1 5 10 15	
Val Asn Pro Pro Ala Gln Gly Val Ala Leu Thr Gly Arg Leu Arg Val 25 30	
Pro Gly Asp Lys Ser Ile Ser His Arg Ala Leu Met Leu Gly Ala Ile 35 40 45	
Ala Thr Gly Glu Thr Ile Ile Glu Gly Leu Leu Gly Glu Asp Pro	

												COII	C III.	aca	
Arg 65	Ser	Thr	Ala	His	Сув 70	Phe	Arg	Ala	Met	Gly 75	Ala	Glu	Ile	Ser	Glu 80
Leu	Asn	Ser	Glu	Lys	Ile	Ile	Val	Gln	Gly 90	Arg	Gly	Leu	Gly	Gln 95	Leu
Gln	Glu	Pro	Ser 100	Thr	Val	Leu	Asp	Ala 105	Gly	Asn	Ser	Gly	Thr 110	Thr	Met
Arg	Leu	Met 115	Leu	Gly	Leu	Leu	Ala 120	Gly	Gln	ГÀа	Asp	Cys 125	Leu	Phe	Thr
Val	Thr 130	Gly	Asp	Asp	Ser	Leu 135	Arg	His	Arg	Pro	Met 140	Ser	Arg	Val	Ile
Gln 145	Pro	Leu	Gln	Gln	Met 150	Gly	Ala	Lys	Ile	Trp 155	Ala	Arg	Ser	Asn	Gly 160
Lys	Phe	Ala	Pro	Leu 165	Ala	Val	Gln	Gly	Ser 170	Gln	Leu	Lys	Pro	Ile 175	His
Tyr	His	Ser	Pro 180	Ile	Ala	Ser	Ala	Gln 185	Val	Lys	Ser	Сув	Leu 190	Leu	Leu
Ala	Gly	Leu 195	Thr	Thr	Glu	Gly	Asp 200	Thr	Thr	Val	Thr	Glu 205	Pro	Ala	Leu
Ser	Arg 210	Asp	His	Ser	Glu	Arg 215	Met	Leu	Gln	Ala	Phe 220	Gly	Ala	Lys	Leu
Thr 225	Ile	Asp	Pro	Val	Thr 230	His	Ser	Val	Thr	Val 235	His	Gly	Pro	Ala	His 240
Leu	Thr	Gly	Gln	Arg 245	Val	Val	Val	Pro	Gly 250	Asp	Ile	Ser	Ser	Ala 255	Ala
Phe	Trp	Leu	Val 260	Ala	Ala	Ser	Ile	Leu 265	Pro	Gly	Ser	Glu	Leu 270	Leu	Val
Glu	Asn	Val 275	Gly	Ile	Asn	Pro	Thr 280	Arg	Thr	Gly	Val	Leu 285	Glu	Val	Leu
Ala	Gln 290	Met	Gly	Ala	Asp	Ile 295	Thr	Pro	Glu	Asn	Glu 300	Arg	Leu	Val	Thr
Gly 305	Glu	Pro	Val	Ala	Asp 310	Leu	Arg	Val	Arg	Ala 315	Ser	His	Leu	Gln	Gly 320
Cys	Thr	Phe	Gly	Gly 325	Glu	Ile	Ile	Pro	Arg 330	Leu	Ile	Asp	Glu	Ile 335	Pro
Ile	Leu	Ala	Val 340	Ala	Ala	Ala	Phe	Ala 345	Glu	Gly	Thr	Thr	Arg 350	Ile	Glu
Asp	Ala	Ala 355	Glu	Leu	Arg	Val	360 TAa	Glu	Ser	Asp	Arg	Leu 365	Ala	Ala	Ile
Ala	Ser 370	Glu	Leu	Gly	Lys	Met 375	Gly	Ala	ГÀз	Val	Thr 380	Glu	Phe	Asp	Asp
Gly 385	Leu	Glu	Ile	Gln	Gly 390	Gly	Ser	Pro	Leu	Gln 395	Gly	Ala	Glu	Val	Asp 400
Ser	Leu	Thr	Asp	His 405	Arg	Ile	Ala	Met	Ala 410	Leu	Ala	Ile	Ala	Ala 415	Leu
Gly	Ser	Gly	Gly 420	Gln	Thr	Ile	Ile	Asn 425	Arg	Ala	Glu	Ala	Ala 430	Ala	Ile
Ser	Tyr	Pro 435	Glu	Phe	Phe	Gly	Thr 440	Leu	Gly	Gln	Val	Ala 445	Gln	Gly	

<210> SEQ ID NO 68 <211> LENGTH: 1479 <212> TYPE: DNA

<213> ORGANISM: Dichelobacter nodosus <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (107)(1438)													
<400> SEQUENCE: 68													
tttaaaaaca atgagttaaa aaattatttt totggoacac gogotttttt tgoatttttt 60													
ctcccatttt tccggcacaa taacgttggt tttataaaag gaaatg atg acg Met Met Thr 1	115												
aat ata tgg cac acc gcg ccc gtc tct gcg ctt tcc ggc gaa ata acg Asn Ile Trp His Thr Ala Pro Val Ser Ala Leu Ser Gly Glu Ile Thr 5 10 15	163												
ata tgc ggc gat aaa tca atg tcg cat cgc gcc tta tta tta gca gcg Ile Cys Gly Asp Lys Ser Met Ser His Arg Ala Leu Leu Leu Ala Ala 20 25 30 35	211												
tta gca gaa gga caa acg gaa atc cgc ggc ttt tta gcg tgc gcg gat Leu Ala Glu Gly Gln Thr Glu Ile Arg Gly Phe Leu Ala Cys Ala Asp 40 45 50	259												
tgt ttg gcg acg cgg caa gca ttg cgc gca tta ggc gtt gat att caa Cys Leu Ala Thr Arg Gln Ala Leu Arg Ala Leu Gly Val Asp Ile Gln 55 60 65	307												
aga gaa aaa gaa ata gtg acg att cgc ggt gtg gga ttt ctg ggt ttg Arg Glu Lys Glu Ile Val Thr Ile Arg Gly Val Gly Phe Leu Gly Leu 70 75 80	355												
cag ccg ccg aaa gca ccg tta aat atg caa aac agt ggc act agc atg Gln Pro Pro Lys Ala Pro Leu Asn Met Gln Asn Ser Gly Thr Ser Met 85 90 95	403												
cgt tta ttg gca gga att ttg gca gcg cag cgc ttt gag agc gtg tta Arg Leu Leu Ala Gly Ile Leu Ala Ala Gln Arg Phe Glu Ser Val Leu 100 105 110 115	451												
tgc ggc gat gaa tca tta gaa aaa cgt ccg atg cag cgc att att acg Cys Gly Asp Glu Ser Leu Glu Lys Arg Pro Met Gln Arg Ile Ile Thr 120 125 130	499												
ccg ctt gtg caa atg ggg gca aaa att gtc agt cac agc aat ttt acg Pro Leu Val Gln Met Gly Ala Lys Ile Val Ser His Ser Asn Phe Thr 135 140 145	547												
gcg ccg tta cat att tca gga cgc ccg ctg acc ggc att gat tac gcg Ala Pro Leu His Ile Ser Gly Arg Pro Leu Thr Gly Ile Asp Tyr Ala 150 155 160	595												
tta ccg ctt ccc agc gcg caa tta aaa agt tgc ctt att ttg gca gga Leu Pro Leu Pro Ser Ala Gln Leu Lys Ser Cys Leu Ile Leu Ala Gly 165 170 175	643												
tta ttg gct gac ggt acc acg cgg ctg cat act tgc ggc atc agt cgc Leu Leu Ala Asp Gly Thr Thr Arg Leu His Thr Cys Gly Ile Ser Arg 180 185 190 195	691												
gac cac acg gaa cgc atg ttg ccg ctt ttt ggt ggc gca ctt gag atc Asp His Thr Glu Arg Met Leu Pro Leu Phe Gly Gly Ala Leu Glu Ile 200 205 210	739												
aag aaa gag caa ata atc gtc acc ggt gga caa aaa ttg cac ggt tgc Lys Lys Glu Gln Ile Ile Val Thr Gly Gly Gln Lys Leu His Gly Cys 215 220 225	787												
gtg ctt gat att gtc ggc gat ttg tcg gcg gcg gcg ttt ttt atg gtt Val Leu Asp Ile Val Gly Asp Leu Ser Ala Ala Ala Phe Phe Met Val 230 235 240	835												
gcg gct ttg att gcg ccg cgc gcg gaa gtc gtt att cgt aat gtc ggc Ala Ala Leu Ile Ala Pro Arg Ala Glu Val Val Ile Arg Asn Val Gly 245 250 255	883												

												con	tin	ued			
						gca Ala										931	
						cat His										979	
						cat His										1027	
						gcg Ala										1075	
Ālā	Āla 325	Āla	Cys	Ala	Glu	999 330	Thr	Thr	Phe	Val	Gly 335	Asn	Leu	Ser	Glu	1123	
Leu 340	Arg	Val	Lys	Ğlu	Ser 345	gat	Arg	Leu	Ala	Ala 350	Met	Ala	Gln	Asn	Leu 355	1171	
Gln	Thr	Leu	Gly	Val 360	Ala	tgc Cys caa	Asp	Val	Gly 365	Ala	Asp	Phe	Ile	His 370	Ile	1219 1267	
Tyr	Gly	Arg	Ser 375	Asp	Arg	Gln	Phe	Leu 380	Pro	Ala	Arg	Val	Asn 385	Ser	Phe	1315	
Gly	Asp	His 390	Arg	Ile	Ala	Met	Ser 395	Leu	Ala	Val	Ala	Gly 400	Val	Arg	Ala	1363	
Āla	Gly 405	Ğlu	Leu	Leu	Ile	Asp 410	Asp	Gly	Ala	Val	Ala 415	Ala	Val	Ser	Met	1411	
Pro 420	Gln	Phe	Arg	Asp	Phe 425	Ala	Ala	Ala	Ile	Gly 430	Met	Asn	Val	Gly		1458	
•	Āsp		•	440	•	His	Asp									1479	
<211 <212)> SE L> LE 2> TY 3> OR	NGTH	: 44 PRT	13	nelok	oact:	er no	odosı	ıs								
)> SE																
1				5	_	His			10					15	_		
			20	-		Asp Gly	-	25				_	30				
	Ala	35				Thr	40				Arg	45					
Asp 65	50 Ile	Gln	Arg	Glu	Lys	55 Glu	Ile	Val	Thr	Ile 75	60 Arg	Gly	Val	Gly	Phe 80		

Leu Gly Leu Gln Pro Pro Lys Ala Pro Leu Asn Met Gln Asn Ser Gly 85 90 95

<400> SEQUENCE: 70

-continued

Thr Ser Met Arg Leu Leu Ala Gly Ile Leu Ala Ala Gln Arg Phe Glu 105 100 Ser Val Leu Cys Gly Asp Glu Ser Leu Glu Lys Arg Pro Met Gln Arg 120 Ile Ile Thr Pro Leu Val Gln Met Gly Ala Lys Ile Val Ser His Ser Asn Phe Thr Ala Pro Leu His Ile Ser Gly Arg Pro Leu Thr Gly Ile 150 155 Asp Tyr Ala Leu Pro Leu Pro Ser Ala Gln Leu Lys Ser Cys Leu Ile 170 Leu Ala Gly Leu Leu Ala Asp Gly Thr Thr Arg Leu His Thr Cys Gly 185 Ile Ser Arg Asp His Thr Glu Arg Met Leu Pro Leu Phe Gly Gly Ala Leu Glu Ile Lys Lys Glu Gln Ile Ile Val Thr Gly Gly Gln Lys Leu His Gly Cys Val Leu Asp Ile Val Gly Asp Leu Ser Ala Ala Ala Phe Phe Met Val Ala Ala Leu Ile Ala Pro Arg Ala Glu Val Val Ile Arg Asn Val Gly Ile Asn Pro Thr Arg Ala Ala Ile Ile Thr Leu Leu Gln Lys Met Gly Gly Arg Ile Glu Leu His His Gln Arg Phe Trp Gly Ala 280 Glu Pro Val Ala Asp Ile Val Val Tyr His Ser Lys Leu Arg Gly Ile 295 Thr Val Ala Pro Glu Trp Ile Ala Asn Ala Ile Asp Glu Leu Pro Ile 315 Phe Phe Ile Ala Ala Ala Cys Ala Glu Gly Thr Thr Phe Val Gly Asn 330 Leu Ser Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Met Ala 345 Gln Asn Leu Gln Thr Leu Gly Val Ala Cys Asp Val Gly Ala Asp Phe 360 Ile His Ile Tyr Gly Arg Ser Asp Arg Gln Phe Leu Pro Ala Arg Val Asn Ser Phe Gly Asp His Arg Ile Ala Met Ser Leu Ala Val Ala Gly 395 390 Val Arg Ala Ala Gly Glu Leu Leu Ile Asp Asp Gly Ala Val Ala Ala Val Ser Met Pro Gln Phe Arg Asp Phe Ala Ala Ala Ile Gly Met Asn 425 Val Gly Glu Lys Asp Ala Lys Asn Cys His Asp <210> SEQ ID NO 70 <211> LENGTH: 455 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic

Met 1	Leu	His	Gly	Ala 5	Ser	Ser	Arg	Pro	Ala 10	Thr	Ala	Arg	Lys	Ser 15	Ser
Gly	Leu	Ser	Gly 20	Thr	Val	Arg	Ile	Pro 25	Gly	Asp	Lys	Ser	Ile 30	Ser	His
Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	Lys	Ala	Met	Gln
Ala 65	Met	Gly	Ala	Arg	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Thr	Trp	Ile	Ile	Asp 80
Gly	Val	Gly	Asn	Gly 85	Gly	Leu	Leu	Ala	Pro 90	Glu	Ala	Pro	Leu	Asp 95	Phe
Gly	Asn	Ala	Ala 100	Thr	Gly	CÀa	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Val
Tyr	Asp	Phe 115	Asp	Ser	Thr	Phe	Ile 120	Gly	Asp	Ala	Ser	Leu 125	Thr	Lys	Arg
Pro	Met 130	Gly	Arg	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val
Lys 145	Ser	Glu	Asp	Gly	Asp 150	Arg	Leu	Pro	Val	Thr 155	Leu	Arg	Gly	Pro	Lys 160
Thr	Pro	Thr	Pro	Ile 165	Thr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	Gln 175	Val
Lys	Ser	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Ile 190	Thr	Thr
Val	Ile	Glu 195	Pro	Ile	Met	Thr	Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	Gln
Gly	Phe 210	Gly	Ala	Asn	Leu	Thr 215	Val	Glu	Thr	Asp	Ala 220	Asp	Gly	Val	Arg
Thr 225	Ile	Arg	Leu	Glu	Gly 230	Arg	Gly	ГÀа	Leu	Thr 235	Gly	Gln	Val	Ile	Asp 240
Val	Pro	Gly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
Leu	Val	Pro	Gly 260	Ser	Asp	Val	Thr	Ile 265	Leu	Asn	Val	Leu	Met 270	Asn	Pro
Thr	Arg	Thr 275	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gly 285	Ala	Asp	Ile
Glu	Val 290	Ile	Asn	Pro	Arg	Leu 295	Ala	Gly	Gly	Glu	300 Asp	Val	Ala	Asp	Leu
Arg 305	Val	Arg	Ser	Ser	Thr 310	Leu	Lys	Gly	Val	Thr 315	Val	Pro	Glu	Asp	Arg 320
Ala	Pro	Ser	Met	Ile 325	Asp	Glu	Tyr	Pro	Ile 330	Leu	Ala	Val	Ala	Ala 335	Ala
Phe	Ala	Glu	Gly 340	Ala	Thr	Val	Met	Asn 345	Gly	Leu	Glu	Glu	Leu 350	Arg	Val
Lys	Glu	Ser 355	Asp	Arg	Leu	Ser	Ala 360	Val	Ala	Asn	Gly	Leu 365	Lys	Leu	Asn
Gly	Val 370	Asp	Сув	Asp	Glu	Gly 375	Glu	Thr	Ser	Leu	Val 380	Val	Arg	Gly	Arg
Pro 385	Asp	Gly	Lys	Gly	Leu 390	Gly	Asn	Ala	Ser	Gly 395	Ala	Ala	Val	Ala	Thr 400

His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val

Ser Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser

420

Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu

435

Leu Ser Asp Thr Lys Ala Ala

455

- 1. An isolated DNA sequence other than the structural coding sequence listed in SEQ ID NO:41, SEQ ID NO:43 SEQ ID NO:66 and SEQ ID NO:68, encoding an EPSPS enzyme having the sequence domains:
- —R— X_1 —H— X_2 -E- (SEQ ID NO:37), in which X_1 is G, S, T, C, Y, N, Q, D or E; X_2 is S or T; and -G-D-K— X_3 (SEQ ID NO:38), in which
- X₃ is S or T; and —S-A-Q-X₄—K— (SEQ ID NO:39), in which X₄ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and
- $-N-X_5$ -T-R— (SEQ ID NO:40), in which X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V.

* * * * *