Title: TREATMENT OF INFLAMMATORY RESPIRATORY DISEASE USING BIOLOGICAL SOLUTIONS

Abstract: Methods and therapeutic compositions for treating respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and devices for administering the therapeutic compositions. Methods for treatment include producing a protein solution, producing a concentrated bone marrow aspirate (cBMA), optimally combining the protein solution and cBMA to form a therapeutic composition, and optionally saturating the autologous therapeutic composition with hydrogen gas, and administering the therapeutic composition to a subject in need thereof. The present methods, compositions and devices are useful for treating COPD and the progression of COPD.
INTRODUCTION

[0001] The present technology relates to methods of treating inflammatory respiratory diseases, including chronic obstructive pulmonary disease. In particular, methods comprise use of solutions comprising mononuclear cells and cytokines, including such solutions derived from blood, bone marrow aspirate, and other tissues.

[0002] Chronic obstructive pulmonary disease ("COPD") includes both chronic bronchitis and emphysema, affects between 15 million and 30 million people in the United States, and is the fourth leading cause of death in the United States. The annual direct and indirect medical costs related to COPD now exceed $30 billion.

[0003] COPD is a lung disease characterized by chronic inflammation of the airways, a reduction in the lungs' ability to transfer oxygen to the bloodstream due to swelling of alveoli, and abnormal chest wall expansion. COPD affects the bronchial tubes, which branch from the trachea, the alveoli, and the lining of the airways. The lining of the airways helps clean lung tissue by producing mucus that traps particles (irritants, allergens, and infectious organisms), which are removed from the lungs by the wave motion of cilia.

[0004] In many cases, COPD is linked to smoking. When exposed to cigarette smoke, the cilia stop moving, which allows particles, viruses, and bacteria to remain in the lungs and cause further damage. Smoking can damage both the airways and the alveoli. In subjects with emphysema, the walls of the alveoli are damaged and individual alveoli collapse into fewer, larger alveoli, which lose their ability to transfer gases in and out of the bloodstream. Additionally, air is trapped in these large, diseased, nonfunctional alveoli.

[0005] In recent years, researchers have found that high levels of interleukin-6 (IL-6) are exhaled in the breath of patients with COPD. Furthermore, interleukin-1 receptor, type 1 (IL-1RI), and tumor necrosis factor a (TNF-a) have been shown to be critical to the development of elastase-induced emphysema in mice. Additionally, studies have shown that bone marrow mononuclear cells may attenuate inflammation, MMP-2, and apoptosis, and enhance alveolar cell proliferation in subjects with COPD. Oxidative stress has also been shown to play a pivotal role in the progression of COPD.
by orchestrating inflammation, mucous gland hyperplasia, and apoptosis of the airway lining epithelium.

[0006] Currently there are no treatments available to cure COPD. Clinical practices are limited to elimination of causative factors (e.g., promoting cessation of smoking), which in mild COPD, can reverse or eliminate symptoms. In advanced cases of COPD, treatments including bronchodilators, inhaled steroids, supplemental oxygen and/or surgery may be required. Such treatments may present side effects, and may have limited ability to restore lung function. Accordingly, there remains a need to develop novel therapies for the treatment of COPD and other inflammatory respiratory diseases, particularly therapies that improve efficacy and have reduced side effects.

SUMMARY

[0007] The present technology provides methods and therapeutic compositions for respiratory disorders, including acute lung disease, disorders associated with lung surgery, and inflammatory respiratory disease (such as COPD), and devices for administering the therapeutic compositions. In some embodiments, the present technology provides method for treating respiratory disorders comprising administering (a) a cell tissue material selected from the group consisting of bone marrow-derived mononuclear cells, platelets, bone marrow aspirate, concentrated bone marrow aspirate, adipose stromal cells, and combinations thereof, and, optionally, (b) a protein solution comprising anti-inflammatory cytokines (such as interleukin-1 receptor antagonist and soluble tumor necrosis factor-receptor I). In some embodiments, the methods comprise administering the protein solution. The compositions may be infused with hydrogen gas.

[0008] Accordingly, methods include those for the treatment of respiratory disorders in a human or other mammalian subject, comprising topically administering a composition to the site of the disorder in the subject, the composition comprising at least two proteins selected from the group consisting of IL-Ira, sTNF-RI, sTNF-RII, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-β1, and sIL-1RII, wherein the concentration of each protein in the composition is greater than the concentration of the protein in normal blood. The composition may be a blood derived protein solution that is autologous to the subject. In some embodiments, a blood derived protein solution comprises
(a) at least about 10,000 pg/ml IL-lra;
(b) at least about 1,200 pg/ml sTNF-RI; and
(c) a protein selected from the group consisting of sTNF-RII, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-βI, and sIL-lRII, and mixtures thereof, wherein the protein has a concentration higher than the protein's baseline concentration in normal blood.

[0009] Methods also include those for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering a composition to the tissue at the site of the disorder in the subject a cell tissue material selected from the group consisting of bone marrow-derived mononuclear cells, platelets, bone marrow aspirate, concentrated bone marrow aspirate, adipose stromal cells, and combinations thereof. In some embodiments, the method further comprises administering a protein solution, as described above.

[0010] Autologous protein solutions useful herein can be produced by contacting a tissue containing cytokine-producing cells with a solid extraction material, such as polyacrylamide beads. The tissue may be obtained from the subject in order to provide an autologous treatment. Concentrated bone marrow aspirates may be produced fractionating bone marrow in a centrifugal device.

[0011] Therapeutic compositions may be administered intratracheally directly to the interior lining of the lung cavity, or through direct injection to the lung tissue. Therapeutic compositions may additionally be administered to the exterior wall of the lung. For example, therapeutic compositions may be administered directly into the lungs of a subject by an endotracheal intubation device comprising a flexible tube including an inlet end, a pressurizing element, an expelling end, and, optionally, a release valve.

[0012] It has been found that APS contains anti-inflammatory cytokines, including IL-lra, which can reduce lung inflammation. cBMA attenuates inflammation, matrix metalloproteases, and apoptosis, and enhances alveolar cell proliferation. Solutions concentrated in hydrogen gas can be used to reduce free radical generation that orchestrates inflammation, mucous gland hyperplasia, and apoptosis of the airway lining epithelium.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 is a block diagram illustrating a method for producing an anti-inflammatory cytokine composition;

[0014] Figure 2 is a diagram of a fractionation device;

[0015] Figures 3 shows a device for activating a sample to generate anti-inflammatory cytokines, before (Fig. 3A) and after (Fig. 3B) centrifugation;

[0016] Figure 4 is a diagram of a device for generating a blood clot;

[0017] Figure 5 is a diagram of a single device capable of generating an anti-inflammatory cytokine composition;

[0018] Figure 6 is a block diagram illustrating a method for treating COPD; and

[0019] Figure 7 is a schematic diagram for an endotracheal intubation device for administering a therapeutic composition.

[0020] Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings. It should be noted that the figures set forth herein are intended to exemplify the general characteristics of materials, compositions, devices, and methods among those of the present technology, for the purpose of the description of certain embodiments. These figures may not precisely reflect the characteristics of any given embodiment, and are not necessarily intended to fully define or limit specific embodiments within the scope of this technology.

DETAILED DESCRIPTION

[0021] The following description of technology is merely exemplary in nature of the composition, manufacture and use of one or more inventions, and is not intended to limit the scope, application, or uses of any specific invention claimed in this application or in such other applications as may be filed claiming priority to this application, or patents issuing therefrom. A non-limiting discussion of terms and phrases intended to aid understanding of the present technology is provided at the end of this Detailed Description.

[0022] The present technology relates to treating respiratory disorders, such as chronic obstructive pulmonary disease (COPD) and other inflammatory respiratory diseases, acute lung disease, and disorders associated with lung surgery. Included are treatment methods using a cell tissue material (such as concentrated bone marrow aspirate), cytokine solutions (such as an autologous protein solution, or "APS"), and
combinations thereof. In some embodiments, methods also include administration of hydrogen gas. As further described below, methods for treating chronic obstructive pulmonary disease in a human or other mammalian subject, comprise:

(a) obtaining a cytokine cell suspension from one or more mammalian subjects;
(b) fractionating the suspension to produce a protein solution comprising one or more proteins, such as interleukin-1 receptor antagonist; and
(c) administering the protein solution to lung tissue of the subject.

Protein Compositions and Cell Tissue Material

[0023] The present technology provides methods for treating respiratory disorders in humans or other mammalian subjects using compositions (herein referred to as "Protein Solutions") comprising proteins dissolved, suspended or otherwise carried for delivery to a mammalian subject in a physiologically-acceptable medium. In various embodiments, such compositions comprise proteins (e.g., cytokines) that are native to whole blood or bone marrow in normal mammal subjects. Such compositions may also contain viable cells, including platelets, white blood cells, and combinations thereof.

[0024] In various embodiments, the Protein Solution comprises at least two proteins selected from the group consisting of IL-1ra, sTNF-RI, sTNF-RII (soluble tumor necrosis factor-receptor 2), IGF-I (insulin-like growth factor 1), EGF (epidermal growth factor), HGF (hepatocyte growth factor), PDGF-AB (platelet-derived growth factor AB), PDGF-BB (platelet-derived growth factor BB), VEGF (vascular endothelial growth factor), TGF-βI (transforming growth factor-βI, and sIL-1RII (soluble interleukin receptor II), wherein the concentration of each protein in the composition is greater than the concentration of the protein in normal blood. For the sake of clarity, the Protein Solution may contain three or more of the proteins from the recited group. While the concentration of every such protein in the composition may be greater than its respective concentrations in normal blood, it is not necessary that the concentration of more than two of the proteins be greater than their respective concentrations in normal blood.

[0025] In various embodiments, the platelet-rich protein solution comprises the following components.
<table>
<thead>
<tr>
<th>Component</th>
<th>Composition Concentration</th>
<th>Normal Whole Blood Concentration</th>
</tr>
</thead>
</table>
| plasma proteins (total) | about 80 mg/ml or greater
about 100 mg/ml or greater
about 200 mg/ml or greater
about 250 mg/ml or greater | about 67 mg/ml |
| albumin | about 60 mg/ml or greater
about 100 mg/ml of greater | about 56 mg/ml |
| fibrinogen | about 3.2 mg/ml or greater
about 4 mg/ml or greater | about 2.9 mg/ml |
| IL-1ra | about 10,000 pg/ml or greater
about 25,000 pg/ml or greater
about 30,000 pg/ml or greater
from about 25,000 to about 110,000 pg/ml
from about 25,000 to about 40,000 pg/ml | about 4200 pg/ml |
| sTNF-RI | about 1,200 pg/ml or greater
about 1,800 pg/ml or greater
about 3,000 pg/ml or greater | about 630 pg/ml |
| sTNF-RII | about 3,000 pg/ml or greater
about 5,000 pg/ml or greater
about 7,000 pg/ml or greater
about 9,000 pg/ml or greater | about 1200 pg/ml |
| sIL-1RII | about 15,000 pg/ml or greater | about 11,800 pg/ml |
Growth factors

<table>
<thead>
<tr>
<th>Protein</th>
<th>Lower Concentration</th>
<th>Higher Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF</td>
<td>about 800 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 1,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 1,200 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 250 pg/ml</td>
<td></td>
</tr>
<tr>
<td>HGF</td>
<td>about 1,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 2,500 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 2,800 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 3,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 500 pg/ml</td>
<td></td>
</tr>
<tr>
<td>PDGF-AB</td>
<td>about 35,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 50,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 70,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 6,000 pg/ml</td>
<td></td>
</tr>
<tr>
<td>PDGF-BB</td>
<td>about 10,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 15,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 20,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 1,500 pg/ml</td>
<td></td>
</tr>
<tr>
<td>TGF-βI</td>
<td>about 100,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 150,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 190,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 10,000 pg/ml</td>
<td></td>
</tr>
<tr>
<td>IGF-1</td>
<td>about 130,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 150,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 160,000 pg/ml or greater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 70,000 pg/ml</td>
<td></td>
</tr>
</tbody>
</table>

Protein concentrations can be measured using the methods set forth in Example 4.
The composition further preferably comprises viable white blood cells, lysed white blood cells, or both. In a preferred composition, the Protein Solution comprises monocytes, granulocytes, and platelets. In various embodiments, a Protein Solution comprises the following components.

Table 2. Protein Solution Exemplary Cellular Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition Concentration</th>
<th>Normal Whole Blood Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>white blood cells</td>
<td>at least about 15 k/μl
at least about 30 k/μl
from about 30 to about 60 k/μl
from about 40 to about 50 k/μl</td>
<td>6.5 k/μl</td>
</tr>
<tr>
<td>red blood cells</td>
<td>less than about 3 M/μl
less than about 2 M/μl
less than about 2.5 M/μl</td>
<td>4.5 M/μl</td>
</tr>
<tr>
<td>platelets</td>
<td>at least about 400 k/μl
at least about 800 k/μl
at least about 1,000 k/μl</td>
<td>240 k/μl</td>
</tr>
<tr>
<td>neutrophils</td>
<td>at least about 5 k/μl
at least about 10 k/μl
at least about 12 k/μl</td>
<td>3.7 k/μl</td>
</tr>
<tr>
<td>monocytes</td>
<td>at least about 1 k/μl
at least about 2 k/μl
at least about 3 k/μl</td>
<td>0.5 k/μl</td>
</tr>
<tr>
<td>lymphocytes</td>
<td>at least about 5 k/μl
at least about 10 k/μl
at least about 20 k/μl</td>
<td>2 k/μl</td>
</tr>
<tr>
<td>eosinophiles</td>
<td>at least about 0.15 k/µl</td>
<td>0.1 k/µl</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>at least about 0.18 k/µl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>basophils</th>
<th>at least about 0.2 k/µl</th>
<th>0.1 k/µl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at least about 0.4 k/µl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at least about 0.6 k/µl</td>
<td></td>
</tr>
</tbody>
</table>

[0027] It will be understood that this concentration is species specific. Further, it is understood that concentrations may vary among individual subjects. Thus, in methods comprising production of a Protein Solution from the blood or other tissue containing cytokine-producing cells, the concentration of proteins and cells in the Protein Solution may vary from those recited above; the values recited above are mean values for concentrations as may be seen in a population of subjects.

[0028] In various embodiments, the concentration of one or more of the proteins or other components in the Protein Solution is greater than the concentration of the component in normal blood. (Compositions with such higher concentrations of components are said to be "rich" in such components.) As referred to herein, the concentration of a component in "normal" blood or other tissue is the concentration found in the general population of mammalian subjects from which the tissue is obtained, e.g., in normal whole blood. In methods wherein the anti-inflammatory cytokine composition is derived from tissue from a specific subject, the "normal" concentration of a protein or cell may be the concentration in the blood of that individual before processing is performed to derive the protein or cell.

[0029] Thus, in various embodiments, the concentration of one or more components of the Protein Solution is greater than about 1.5 times, about 2 times, or about 3 times, greater than the concentration of the component in normal blood. For example, components may have greater concentrations in the compositions, relative to normal (whole) blood, as follows:

- IL-lra, at a concentration that is at least about 2.5, or at least about 3 or at least about 5, times greater;
- sTNF-RI, at a concentration that is at least about 2, or at least about 2.5 or at least about 3, times greater;
- sTNF-RII, at a concentration that is at least about 2, or at least about 2.5 or at least about 3, times greater;
- sIL-IRII, at a concentration that is at least about 1.5, or at least about 1.8 or at least about 2, times greater;
- EGF, at a concentration that is at least about 2, or at least about 3 or at least about 5, times greater;
- HGF, at a concentration that is at least about 2, or at least about 3 or at least about 4, times greater;
- PDGF-AB, at a concentration that is at least about 2, or at least about 3 or at least about 5, times greater;
- PDGF-BB, at a concentration that is at least about 2, or at least about 3 or at least about 5, times greater;
- TGF-βI, at a concentration that is at least about 3, or at least about 4 or at least about 6, times greater;
- IGF-1, at a concentration that is at least about 1.2, or at least about 1.4 or at least about 1.5, times greater;
- VEGF, at a concentration that is at least about 2, or at least about 2.5 or at least about 3, times greater;
- white blood cells, at a concentration that is at least about 2, or at least about 3 or at least about 4, times greater;
- platelets, at a concentration that is at least about 2, or at least about 3 or at least 4, times greater;
- neutrophils, at a concentration that is at least 1.5, or at least 2 or at least 3, times greater;
- monocytes, at a concentration that is at least 3, or at least 4 or at least 6, times greater;
- lymphocytes, at a concentration that is at least 5, or at least 8 or at least 10, times greater; and
- basophils, at a concentration that is at least 2, or at least 4 or at least 6, times greater.
Also, the concentration of erythrocytes in the Protein Solution is preferably at least half, or at least a third, of the concentration of erythrocytes in normal blood.

[0030] For example, a Protein Solution may comprise:

(a) at least about 10,000 pg/ml IL-1ra;

(b) at least about 1,200 pg/ml sTNF-RI; and

(c) a protein selected from the group consisting of sTNF-RII, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-βI, and sIL-IRII, and mixtures thereof, wherein the protein has a concentration higher than the protein's baseline concentration in normal blood. In another example, a Protein Solution comprises:

(a) interleukin-1 receptor antagonist (IL-1ra), at a concentration at least 3 times greater than the concentration of IL-1ra in normal blood;

(b) soluble tissue necrosis factor-rl (sTNF-rl), at a concentration at least 2 times greater than the concentration of IL-1ra in normal blood;

(c) white blood cells at a concentration at least 2 times greater than the concentration of white blood cells in normal blood; and

(d) platelets, at a concentration at least 2 times greater than the concentration of platelets in normal blood.

[0031] In some embodiments, the concentration of IL-1ra in the Protein Solution is preferably at least 5,000, or at least 10,000, times greater than the concentration of interleukin-1α in the Protein Solution. The ratio of IL-1ra:interleukin-ip (IL-1β) concentrations is preferably at least 100. In some embodiments, the concentration of IL-1ra in the Protein Solution is preferably at least 1500, or at least 8000, times greater than the concentration of IL-1β in the Protein Solution. The ratio of sIL-IRII:interleukin-ip (IL-1β) concentrations is preferably greater than 1. In some embodiments, the sIL-IRII in the Protein Solution is preferably at least 2000, or at least 45000, times greater the concentration of interleukin-1β in the Protein Solution.

[0032] In various embodiments, the Protein Solution comprises one or more components (e.g., platelets) derived from the subject to whom the solution is to be administered in a treatment methods according to this technology. Such components are, accordingly, "autologous." In some embodiments, the Protein Solutions (e.g., Autologous Protein Solutions) consisting essentially of such autologous components. In other embodiments, one or more components of the solution may be obtained from non-autologous sources, such as through recombinant or synthetic methods, or by isolation
from allogeneic sources (i.e., from subjects of the same species as the subject to whom the solution is to be administered) or xenogeneic sources (i.e., from animal sources other than the species to whom the solution is to be administered).

Methods of Making Protein Solutions

[0033] Protein Solutions may be made by any of a variety of methods, including admixture of individual components and processes wherein one or more components are derived from a source material. In various embodiments, the Protein Solution is made by fractionating a cytokine cell suspension, to produce a protein solution comprising ILI-ra.

Obtaining Protein Solutions by Contacting Cytokine-Producing Cells with an Extraction Material

[0034] In various embodiments, Protein Solutions are made by derivation of one or more components from tissue comprising cytokine-producing cells. As referred to herein, a "cytokine producing tissue" is a tissue obtained from a mammalian subject, comprising cells that are capable of producing cytokines. Such cells include white blood cells, adipose stromal cells, bone marrow stromal cells, and combinations thereof. It is understood that white blood cells include monocytes, lymphocytes, and granulocytes such as neutrophils, eosinophils, and basophils. White blood cell useful in the methods of this technology preferably include monocytes and neutrophils. Cytokine producing tissues among those useful herein include blood, adipose tissue, bone marrow, and fractions thereof, as further discussed below.

[0035] Blood useful herein includes whole blood, plasma, platelet-rich plasma, platelet-poor plasma, and blot clots. In a preferred embodiment, methods of the present technology use platelet-rich plasma (PRP), containing white blood cells and platelets, comprising the buffy coat layer created by sedimentation of whole blood. Adipose tissue useful herein includes any fat tissue, including white and brown adipose tissue, which may be derived from subcutaneous, omental/visceral, mammary, gonadal, or other adipose tissue sites. Bone marrow useful herein includes red marrow and yellow marrow. In a preferred embodiment, bone marrow is bone marrow concentrate, obtained from the red marrow of long bones, comprising hematopoietic and mesenchymal stems cells. As discussed above, blood, adipose, and bone marrow tissue useful herein may be from either autologous or allogeneic sources, relative to the subject to be treated.
according to methods of this technology. Compositions may also be made from combinations of allogeneic and autologous tissues.

[0036] In some embodiments, methods comprise fractionating a liquid (a "cytokine cell suspension.") comprising cells capable of producing cytokines, such as IL1-ra and sTNF-RI. As discussed above, such cells include white blood cells, adipose stromal cells, bone marrow stromal cells, and combinations thereof. In some embodiments, the cytokine cell suspension is a liquid comprising white blood cells. It should be understood that the cytokine cell suspension comprises cells and an extracellular liquid, regardless of the relative proportions of the cells and liquid. In some embodiments, the suspension may comprise primarily cells, with liquid being present as only a minor component, essentially wetting the cells. In some embodiments, the liquid may comprise two phases, consisting of a phase primarily consisting of liquid and a phase primarily consisting of cells, forming a suspension of cells in the liquid only upon agitation or other mixing.

[0037] As exemplified in Figure 1, such processes comprise:

 (a) obtaining a cytokine cell suspension, such as a liquid comprising white blood cells (steps 105, 115 or 135, or combinations thereof);
 (b) contacting the tissue with a solid extraction material (step 140); and
 (c) isolating a protein-containing liquid from the solid extraction material (step 150).

[0038] Obtaining the suspension 105, 115, 135 can comprise any of a variety of methods for creating a liquid containing cells among those known in the art. Such methods include isolation from tissue and culturing. Obtaining may be performed directly in the method, whereby a health care practitioner or other individual performs isolation, processing, culturing or other processes for creating the suspension, in a procedure that includes the contacting and isolating steps. In some embodiments, the processes for creating the suspension are performed contemporaneously with the contacting and isolating steps, as part of a point-of-care procedure, as discussed further herein. Alternatively, obtaining the suspension may be indirect, involving only the acquisition of the suspension for use in the contacting and isolating steps, wherein the processing to create the suspension has previously been performed by another party.

[0039] In various embodiments, obtaining comprises isolating a cytokine cell suspension, comprising white blood cells or other cytokine-producing cells, from blood,
adipose tissue, bone marrow aspirate or other tissue comprising cytokine-producing cells, as exemplified in Steps 110, 120 and 125 of Figure 1. Methods may comprise obtaining a cytokine cell suspension from two, three or more tissue sources.

5 Obtaining a Cytokine Cell Suspension from Blood

[0040] In embodiments comprising the use of blood, the blood may be used directly in contacting the solid extraction material, as exemplified in step 140 of Figure 1, or may be processed to provide a blood fraction, such as PRP, in a preferred embodiment. Many devices and methods for creating blood fractions are known in the art, using such means as centrifugation and filtering.

[0041] In various embodiments, methods of the present technology comprise creating PRP as the cytokine cell suspension, using centrifugation. Such methods generally comprise placing blood in a container a separator operable to separate the blood into two or more fractions, and centrifuging the separator to create a platelet-rich plasma fraction. Such devices may include a tube and a buoy disposed in the tube, wherein the buoy has a density such that the buoy reaches an equilibrium position upon centrifugation of the tissue in the tube, the equilibrium position being between a first fraction and a second fraction comprising cytokine-producing cells, the second fraction having a concentration of cytokine-producing cells greater than the concentration of cytokine-producing cells in the first fraction. Such methods further comprise centrifuging the tube so that the buoy defines an interface between the first fraction and the second fraction comprising cytokine-producing cells. The second fraction is then collected for further use in the methods of this technology.

[0042] One such device useful herein is described in U.S. Patent No. 7,992,725, Leach et al., issued August 9, 2011. Such a device is commercially available as GPS III Platelet Concentrate and Separation System, from Biomet Biologies, LLC (Warsaw, Indiana, USA). The device can be used in a clinical or laboratory environment to isolate fractions from a suspension or multi-component tissue material obtained from a subject, such as blood, bone marrow aspirate, cerebrospinal fluid, adipose tissue. Isolated fractions can include platelets, platelet poor plasma, platelet rich plasma and stromal cells. The isolated fractions can each have equilibrium point or positions within the separation container that are achieved when separation has occurred. For example, a
buffy coat (PRP) of whole blood may have an equilibrium position above that of the red blood cells when a sample of whole blood is separated.

[0043] The fractionation device 200 is exemplified in Figure 2. The fractionation device 200 comprises a buoy 210 and a container wall 215. When the separation container 205 is centrifuged, the buoy perimeter 210a and the container wall 215 have clearance allowing the buoy 210 to move within the separation container 205 and a material to pass between the buoy perimeter 210a and the container wall 215. Alternatively, the buoy 210 could have an opening, such as a centrally or internally located opening or a peripheral channel running the height of the buoy, which would allow a material to move through the buoy.

[0044] The buoy 210 is carried in the separation container 205 and has a tuned density that is configured to reach a selected equilibrium position in a suspension. The buoy can have its density tuned in the range from about 1.0 g/cc to about 1.10 g/cc, such as about 1.06 g/cc. The buoy 210, according to various embodiments, can be formed to include the tuned density and can be formed of one or more materials to achieve the tuned density.

[0045] Referring to Figure 2, a collection area 220 is positioned within the device 200 after a separation procedure has occurred. The collection area 220, defined relative to the buoy 210, is positioned at an equilibrium position of a separated or isolated middle fraction 225 in the container. The equilibrium position of a selected fraction can be defined as its position within the container relative to other fractions in the container of a separated sample or material. The equilibrium position can also be defined relative to the axis X of the buoy 210 or the container 12. The equilibrium position, however, may depend upon the amount of the sample of the amount of a selected fraction within a sample. According to the illustration in Figure 2, the equilibrium position of the fraction 230 is above or nearer a top 235 of the device 200 than the equilibrium position of the fraction 225. Thus, the buoy 210 can be tuned, such as including a selected density or specific gravity, to position the collection area 220 relative to an equilibrium position of any selected fraction.

[0046] In some embodiments, the buoy 210 can comprise a collection port 240. The collection port 240 communicates with access port 245 and communicates with a collection space 220 above buoy upper surface 250 and can be located near the buoy perimeter 210a. In some embodiments, the collection port 240 is not carried on the
buoy, but rather the collection port is a withdraw device such as a syringe that is inserted through an access port or top of the device 200.

[0047] According to various embodiments, an isolator 255, is coupled to the buoy 210. The combination of the isolator and buoy, according to various embodiments, can also be referred to as a separation assembly member. The isolator 255, for example, provides a means for creating the collection compartment 220 and comprises one or more spacers 260, 265 to position the isolator 255 apart from the buoy 210 to create the collection compartment 220. A withdraw port 270 can be carried on the isolator 255 communicating with the withdraw port 245 and the collection port 240. The spacer 260, 265 can also serve as a conduit 275 between the collection port 50 and a withdraw or withdraw port 245. The withdraw port 245 serves as a structure for withdrawing the isolated or second fraction 310 from the collection compartment 220.

[0048] After centrifuging the device 200 containing whole blood, the first fraction or top fraction 230, can be platelet-poor-plasma, the middle fraction 225 can be platelet-rich plasma or platelet concentrate, and a bottom fraction 278 can be red blood cells. Therefore, the fractionation method further comprises withdrawing a desired fraction from the device 200. Various ports 205, 245 and 280 can be provided to allow access to any appropriate compartment of the device 200. The access ports 205, 245, 280 can be any means that allow communication from outside the separation device 200 to the device's interior, such as a Luer lock port, a septum, a valve, or other opening. Additionally, collection vent tube 285 allows removal of a fractionated suspension in the collection area 220 through opening 290 without the need to remove the fraction, such as plasma, above the isolator 255. Although, without a collection vent tube 285, the fraction above the isolator could be removed and the collection area could be vented to the area above the isolator.

[0049] A method for using the fractionation device 200 can begin by inputting whole blood via an access port 205. The fractionation device 200 is placed into a centrifuge and spun for a period that is appropriate for fractionating whole blood. An exemplary period can be for about five minutes to about twenty minutes at a rate of about 320 rpm to about 5000 rpm. This speed may produce a selected gravity that may be approximately 7.17 xg to about 1750 xg (times greater than the normal force of gravity).

[0051] In addition to the GPS® Platelet Concentrate and Separation Systems, a variety of other commercially available devices may be used to isolate platelet-rich plasma, including the Magellan™ Autologous Platelet Separator System, commercially available from Medtronic, Inc. (Minneapolis, Minnesota, USA); SmartPRePTM, commercially available from Harvest Technologies Corporation (Plymouth, Massachusetts, USA); the AutoloGel™ Process, commercially available from Cytomix, Inc. (Rockville, Maryland, USA); the GenesisCS System, commercially available from EmCyte Corporation (Fort Myers, Florida, USA); the PCCS System, commercially available from Biomet 3i, Inc. (Palm Beach Gardens, Florida, USA) and the Arthrex ACP™ Double Syringe System, commercially available from Arthrex, Inc. (Naples, Florida, USA).

[0052] Referring again to Figure 1, blood drawn from the patient may be mixed with an anticoagulant in one or more of Steps 115, 120, 125, and 130, so as to facilitate processing. Suitable anticoagulants include heparin, citrate phosphate dextrose (CPD), ethylenediaminetetraacetic acid (EDTA), anticoagulant citrate dextrose solution (ACD), and mixtures thereof. For example, the anticoagulant may be placed in the syringe used for drawing blood from the subject, or may be mixed with the blood after it is drawn.

[0053] A cytokine cell suspension may be prepared by admixing cells with a suitable liquid, as shown in step 125, using methods known in the art. For example, white blood cells may be isolated from whole blood by lysing red blood cells or by centrifugation of whole blood utilizing a density gradient where the white blood cells sediment to the bottom of a centrifuge tube. An example of density centrifugation includes the Ficoll-Paque™ Plus (GE Healthcare Bio-Sciences, Piscataway, New Jersey, USA). In some cases, a density gradient may be used to further separate mononuclear and polymorphonuclear cells. Cytokine-producing cells may also be prepared from
whole blood using filtration; an example includes the Acelere™ MNC Harvest System (Pall Life Sciences, Ann Arbor, Michigan, USA). Cytokine-producing cells can also be obtained from bone marrow. The cytokine-producing cells may be then suspended in a suitable medium, such as plasma, so as to maintain their viability.

[0054] Other methods may be used to create platelet-rich plasma or cytokine cell suspension. For example, whole blood can be centrifuged without using a buoy system, whole blood may be centrifuged in multiple stages, continuous-flow centrifugation can be used, and filtration can also be used. In addition, a blood component including platelet-rich plasma can be produced by separating plasma from red blood cells using a slow speed centrifugation step to prevent pelleting of the platelets. In other embodiments, the buffy coat fraction formed from centrifuged blood can be separated from remaining plasma and re-suspended to form platelet-rich plasma.

Obtaining a Cytokine Cell Suspension from Adipose Tissue

[0055] In embodiments comprising the use of adipose tissue, the adipose tissue may be used directly in contacting the solid extraction material, as exemplified in step 140 of Figure 1, or the adipose tissue may be processed to provide isolated adipocytes in step 110. Cell fractions comprising adipose-derived stem cells are also useful in this method. In some embodiments, adipose tissue is derived from human subcutaneous fat isolated by suction assisted lipectomy or liposuction. Stromal cells may be isolated from the adipose tissue and/or tissue portions using any suitable method, including methods known in the art such as mechanical and breakdown centrifugation. Stromal cells can also be isolated using enzymatic digestion. For example, stromal cells can be isolated from lipoaspirate, treated by sonication and/or enzymatic digestion, and enriched by centrifugation. Stromal cells isolated from adipose tissue may be washed and pelleted.

[0056] For example, adipose tissue can be collected by suction-assisted tumescent liposuction inside a specialized collection container attached to suction hoses and to a liposuction cannula. The collection container can have a gauze-type grid filter that allows the tumescent fluid to pass through and retains the solid adipose tissue. After collecting the adipose tissue, the collection container is removed from the suction device and reattached to a centrifugation device. The filter unit may further contain a filter having approximately a 100 micrometer pore size. Once the collection container containing the adipose tissue is attached to the centrifugation device, the tissue is
sonicated. After sonication, the entire apparatus is inserted into a centrifuge bucket and centrifuged at, for example, 300xg for 5 minutes. After centrifugation, the collection container together with the filter unit is detached and can be discarded. The pellet containing the stromal cells can then be re-suspended in biocompatible solutions, such as plasma, plasma concentrate and platelet-rich plasma.

[0057] Various methods and devices for isolating and/or fractionating adipose tissue and adipocytes include those as described by U.S. Patent No. 7,374,678, Leach, issued May 20, 2008; U.S. Patent No. 7,179,391 to Leach et al., issued February 20, 2007; U.S. Patent No. 7,992,725, Leach et al., issued August 9, 2011; U.S. Patent No. 7,806,276, Leach et al., issued October 5, 2010; and U.S. Patent No. 8,048,297, Leach et al., issued November 1, 2011. A device, such as the GPS™ Platelet Concentrate System, commercially available from Biomet Biologies, LLC (Warsaw, Indiana, USA), may be used to isolate adipocytes.

 Obtaining a Cytokine Cell Suspension from Bone Marrow

[0058] In embodiments comprising the use of bone marrow, the marrow may be used directly in contacting the solid extraction material, as exemplified in step 140 of Figure 1, or may be processed to provide a bone marrow concentrate, as in step 135. Many devices and methods for obtaining and concentrating bone marrow are known in the art.

[0059] An exemplary process for isolating and creating a bone marrow concentrate (cBMA) is diagrammed in Figure 6. Generally, the method 600 may start in step 605 with obtaining a bone marrow aspirate volume. The bone marrow aspirate (BMA) may be obtained in any selected or generally known manner. For example, a selected region of bone, such as a portion near an operative procedure, may be used to obtain the bone marrow aspirate. Generally, an accessing device, such as a syringe and needle, may be used to access an intramedullary area of a selected bone. A small volume of the selected portion may be drawn from a plurality of locations to obtain an appropriate volume of BMA or selected fraction of the BMA.

[0060] Once a selected volume of the BMA is obtained in step 605, it may be separated and concentrated using a gravimetric separator. Separators among those useful herein are operable to separate a multi-component fluid that generally includes various components or constituents of varying densities that are commingled or mixed together,
including those described above for separation of fractions from blood and adipose tissue. The separator may include a buoy that is of a selected density relative to BMA. Such separators include those described above for use in concentrating and isolating fractions from blood and adipose tissue, including those described in U.S. Patent No. 7,374,678, Leach, issued May 20, 2008; U.S. Patent No. 7,179,391 to Leach et al., issued February 20, 2007; U.S. Patent No. 7,992,725, Leach et al., issued August 9, 2011; U.S. Patent No. 7,806,276, Leach et al., issued October 5, 2010; and U.S. Patent No. 8,048,297, Leach et al., issued November 1, 2011. A device, such as the GPS™ Platelet Concentrate System, commercially available from Biomet Biologies, LLC (Warsaw, Indiana, USA), may be used to isolate adipocytes. Separators and methods that may be used to fractionate BMA at steps 610 and 615 are also described, for example, in U.S. Application Publication No. 2006/0278588, Woodell-May, published December 14, 2006. The BMA may be positioned in a separator according to various embodiments in step 610. Once the BMA is positioned in the separator, a selected fraction of the BMA may be separated from the BMA in step 615.

[0061] Once the BMA is placed in the separator, separator is spun in a centrifuge in a range between about 1,000 and about 8,000 RPM. This produces a force between about 65 and about 4500 times greater than the force of normal gravity, as generally calculated in the art, on the separator and the BMA. At this force, the more dense material in a BMA sample is forced toward the bottom end of the tube. The separator can thus be used to remove nucleated cells from the bone marrow sample. In various embodiments, concentrated BMA has a concentration of nucleated cells that is at least 2, at least 3, at least 4, or at least 5 times the concentration of nucleated cells in BMA.

Obtaining a Liquid Cytokine Cell Suspension from Blood Clots

[0062] In other embodiments comprising the use of blood, a liquid comprising cytokine-producing cells may get trapped in a blood clot. Cell releasate can be generated from the blood clot by either compression ("squeezing"), clot disruption, or centrifugation. The blood clot can be generated from the blood clot by either compression ("squeezing"), clot disruption, or centrifugation. The blood clot can be made with or without anticoagulant and with or without exogenous thrombin by combining blood or a blood fraction with a clotting agent. Suitable clotting agents include thrombin (e.g., bovine, recombinant human, pooled human, or autologous),
autologous clotting protein, and polyethylene glycol. Calcium may be in the form of a calcium salt, such as calcium chloride.

In some embodiments, the clotting agent comprises a clotting protein, which may be a clotting fraction derived from a blood obtained from the patient to be treated. A suitable clotting fraction can be obtained by a process of: loading whole blood or plasma with a calcium solution (e.g., calcium chloride in ethanol) into a blood isolation device; optionally heating the whole blood or plasma for at least about 20 minutes, at a temperature of at least about 20°C; and isolating the clotting fraction. The isolating may be performed by centrifuging the heated whole blood or plasma. A suitable isolation device is commercially available as the Clotalyst™ Autologous Thrombin Collection System (hereinafter "Clotalyst System"), sold by Biomet Biologies LLC, Warsaw, Indiana, USA.

An exemplary procedure for producing a clotting agent using a device 400 of Figure 4 begins with injecting a reagent comprising calcium chloride and ethanol into the main chamber 405 through the first port 410. Glass beads are also placed in the main chamber 405. After the reagent has been injected, the first port 410 is closed using the first replacement cap 415. Blood with anticoagulant is injected into the main chamber 405 through the second port 420. After the blood has been injected, the second port 420 is closed using the second replacement cap 425. Optionally, the syringes and blood separation device 400 are pre-heated to a temperature of about 25°C.

The contents of the blood component separation device 400 are mixed by repeatedly inverting the device 400, e.g. about twelve times, so as to contact the blood with the glass beads. After mixing, the device is incubated. The incubation process can be at a temperature and for a duration that will permit the contents of the device 400 to be heated at about 25°C for about 15 minutes. Upon completion of the incubation period, a clotted mass of red blood cells, blood plasma, and glass beads forms at a second end 406 of the main chamber 405. After incubation is complete, the device 400 is shaken enough to dislodge and break-up any gel that may be present.

Obtaining a Cytokine Cell Suspension Using Non-Centrifugal Methods

As noted above, the liquid containing white blood cells can be obtained by non-centrifugal means, such as by culturing. As referred to herein, a "non-centrifugal method" comprises a process for obtaining tissue fractions comprising cytokine-
producing cells from tissue without use of a centrifuge. In some embodiments, methods are "non-gravimetric," wherein, based on physical, chemical or physicochemical properties of the cells other than density, wherein the concentration of white blood cells in the fraction are higher than the concentration of white blood cells in the tissue. Such non-gravimetric methods are, in particular, distinguished from methods wherein a white blood cell fraction is created by centrifugation of whole blood or other tissue. In some embodiments, the non-centrifugal method comprises a process solely based on such properties of white blood cells other than density. Non-centrifugal methods include filtration, antibody binding, and electrophoretic methods.

[0067] For example, as discussed above, white blood cells may be prepared from whole blood, bone marrow aspirate or other tissue, using filtration. White blood cells and other cytokine-producing cells obtained from blood, bone marrow, adipose tissue or other sources may also be cultured, using methods among those known in the art. The cells may be then suspended in a suitable medium, such as plasma, so as to maintain their viability and facilitate mixing or other contact with a solid extraction material. A liquid containing the cells may also be produced by compression or disruption of blood clots, as described above.

Contacting a Cytokine Cell Suspension With an Extraction Material and Isolating a Protein Solution

[0068] In further reference to the exemplified process of Figure 1, the cytokine cell suspension is incubated or otherwise contacted with a solid extraction material (step 140) to produce a protein-containing liquid. This liquid is then isolated (step 150) from the solid extraction material, as a Protein Solution of the present technology. Without limiting the scope, mechanism or function of the present technology, solid extraction materials useful herein concentrate cytokines or other proteins in the liquid volume of cytokine-producing cells and may, in some embodiments, activate, stimulate or otherwise increase production of cytokines, including IL-Ira. Thus, in some embodiments, methods comprising activating a cytokine cell suspension with a solid extraction material.

[0069] The solid extraction material can include various materials that provide a particular surface area to contact the cells. The solid extraction material may be a continuous material or may be discontinuous and comprise a plurality of separate
particles. For example, the solid extraction material may be in the form of a plurality of beads, fibers, powder, a porous material, or a surface of a container comprising the liquid containing the cells. The solid extraction material may comprise geometric forms having various cross-sectional shapes, such as spherical, oval, or polygonal, among others. The solid extraction material can also comprise a continuous porous network, similar to a sponge, or can include a plurality of individual porous particles. The solid extraction material may also provide a larger surface area by being porous in comparison to a non-porous material.

[0070] In some embodiments, the solid extraction material includes particles having a large aspect ratio, for example, where the particles are needle-like in shape. The solid extraction material may also be formed as long fibers and may be or take a form similar to glass wool.

[0071] In some cases, the solid extraction material can comprise the internal walls of a container holding the cytokine cell suspension. For example, the solid extraction material may comprise the lumen of a syringe that contains the cytokine cell suspension. Other containers include tubes, such as centrifuge tubes, or a blood fractionation device or concentrator assembly as described elsewhere herein.

[0072] Where the solid extraction material is a continuous material, such as a porous sponge-like material, the solid extraction material can be used in an amount sufficient to absorb or adsorb or include substantially the entire liquid volume of cytokine-producing cells within the pores or interstices of the solid extraction material. Where the solid extraction material is a discontinuous material, such as a plurality of particles, the solid extraction material can be combined with the liquid containing the cells to form a slurry-like composition. The slurry can vary in consistency from paste-like, having a high-solids fraction, to a readily flowable slurry having a low-solids fraction.

[0073] The solid extraction material can provide a large surface area with which to contact the cells. However, in some cases, the solid extraction material can be further treated to increase its surface area, for example, by physically or chemically etching or eroding the surface of the solid extraction material. With respect to chemical etching, a corrosive agent can be used to modify the surface of the solid extraction material depending on the nature of the material. The modified surface may be produced by employing an alkali or an acid, for example chromosulphonic acid, in particular about
20% to about 80% in strength, preferably about 50% chromosulphonic acid. The solid extraction material can be incubated with the corrosive agent for about 5 min to about 30 min in order to chemically etch the surface and increase the surface area. The solid extraction material can then be washed to remove the corrosive agent. For example, the solid extraction material can include the internal walls of a container for holding the cytokine cell suspension where the internal walls are etched to subsequently increase the surface area in contact with the liquid.

[0074] Various polymers, metals, ceramics, and glasses can be used as the solid extraction material. In some embodiments, the solid extraction material comprises a hygroscopic material. Examples of suitable solid extraction material materials include glasses, minerals, polymers, metals, and polysaccharides. Minerals include corundum and quartz. Polymers include polystyrene, polyethylene, polyvinyl chloride, polypropylene, and polyacrylamide. Metals include titanium. Polysaccharides include dextran and agarose. A preferred solid extraction material comprises, or consists essentially of, polyacrylamide, as further described below.

[0075] The solid extraction material may comprise, for example, continuous solid extraction material of glass or a plurality of glass particles, glass wool, a continuous solid extraction material of metal such as titanium, a plurality of metal beads, metal powder, and combinations thereof. A continuous solid extraction material of metal can include a block or other three-dimensional shape formed of porous metal or metal alloys with an open cell structure. The solid extraction material may include various beads or particles of various sizes including substantially spherical beads. Beads include polystyrene beads, polyacrylamide beads, glass beads, metal (e.g., titanium) beads, or any other appropriate beads. Beads may be any size appropriate for the container and the amount of cytokine cell suspension being used. In some instances, bead sizes can range from about 0.001 millimeters to about 3 millimeters in diameter. Where the bead size is sufficiently small, the beads can appear more like a powder.

[0076] Polyacrylamide beads used as the solid extraction material can be formed by polymerizing acrylamide monomer using controlled and standardized protocols as known in the art to produce relatively uniform beads formed of polyacrylamide gel. In general, polyacrylamide is formed by polymerizing acrylamide with a suitable bifunctional crosslinking agent, most commonly N,N'-methylenebisacrylamide (bisacrylamide). Gel polymerization is usually initiated with ammonium persulfate and
the reaction rate is accelerated by the addition of a catalyst, such as N,N,N':N'-tetramethylethlyenediamine (TEMED). In various embodiments, polyacrylamide beads comprise 0.5 micromole of carboxyl groups per milliliter of beads, imparting a slight anionic character (negative charge). The beads are also typically resistant to changes in pH, and are stable in many aqueous and organic solutions. By adjusting the total acrylamide concentration, the polyacrylamide gel can be formed in a wide range of pore sizes. Moreover, the polyacrylamide beads can be formed in many sizes and can have relatively uniform size distributions. Bead size may range from several micrometers in diameter to several millimeters in diameter. For example, various types of Bio-Gel™ P polyacrylamide gel beads (Bio-Rad Laboratories, Hercules, California, USA) have particle sizes ranging from less than about 45 μm up to about 180 μm. Polyacrylamide beads are also available from SNF Floerger (Riceboro, Georgia, USA), Pierce Biotechnology, Inc. (Rockford, Illinois, USA), and Polymers, Inc. (Fayetteville, Arkansas, USA).

[0077] Once polymerized, polyacrylamide beads can be dried and stored in a powder-like form. The dry beads are insoluble in water but can swell considerably upon being rehydrated. Rehydration returns the polyacrylamide beads to a gel consistency that can be from about two to about three times the dry state size. Thus, dry polyacrylamide beads (i.e., desiccating polyacrylamide beads) may be used to absorb a portion of a liquid volume, including solutes smaller than the bead pore size, and can serve to concentrate IL-lra and other proteins produced by the cytokine-producing cells. For example, combining dry polyacrylamide beads with the blood and/or platelet-rich plasma in step 230 activates production of IL-lra by the cytokine-producing cells and also reduces the total liquid volume as the dry beads rehydrate and swell.

[0078] Without limiting the scope, mechanism or function of the present technology, it has been discovered that surface contact with the solid extraction material can activate the cells and the solid extraction material can, in some cases, assist in the separation and concentration of the resulting Protein Solution rich in cytokines, including IL-lra. For example, in the case of a porous solid extraction material, a portion of the liquid comprising the cells can enter the pores and remain therein. Cells in the liquid may contact this additional surface area. In some embodiments, the pores are too small for the cells to enter, but a portion of the liquid can enter the pores. Liquid can be removed from the solid extraction material and pores by centrifuging, for example.
The solid extraction material is preferably sterilized, using techniques among known in the art, in order to prevent contamination of the cytokine cell suspension. For example, heat and pressure sterilization methods, such as autoclaving, may be used depending on the particular composition of the solid extraction material. Alternative methods, such as chemical sterilization or irradiation, can be used where the solid extraction material may be adversely affected by the autoclaving process.

In some embodiments, the cytokine cell suspension is incubated with solid extraction material for a time effective to remove a portion of the liquid. The incubation may be carried out over a period from about 30 seconds to about 72 hours and may be carried out at a temperature from about 20°C to about 41°C. For example, the incubation may be 24 hours or less, 10 hours or less, 5 hours or less, 2 hours or less, 1 hour or less, 30 minutes or less, 15 minutes or less 10 minutes or less, 5 minutes or less, 4 minutes or less, 3, minutes or less, or 2 minutes or less. Incubation may be at least about 15 seconds, at least about 30 seconds, at least about 1 minutes, at least about 90 seconds, at least about 2 minutes, at least about 10 minutes, or at least about 30 minutes. In some embodiments, incubation is from about 1 minute to about 3 minutes. In some embodiments, the incubation is conducted at about 37°C. In some embodiments the liquid is not incubated, but is contacted with the solid extraction material for only so long as necessary to perform subsequent processing. The contacting may occur at ambient conditions, e.g., at a temperature of about 20-25°C.

In some embodiments, the cytokine cell suspension and the solid extraction material are agitated to more thoroughly mix these components during contact. The agitation may be accomplished by inverting, shaking, rocking, stirring, or vortexing the liquid and solid extraction material. Agitation may increase contact of the cells within the liquid with the solid extraction material. Agitation may be performed once, repeated multiple times, repeated periodically, or may be continuous. The liquid comprising the cells and the solid extraction material may also be agitated while the liquid is stimulated an electromagnetic field, as described below. Additional aspects and features relating to producing protein-rich solutions using polyacrylamide beads and other solid extraction materials are described in: U.S. Patent Application Publication No. 2009/0220482, Higgins et al., published September 3, 2009; U.S. Patent Application Publication No. 2010/0055087, Higgins et al., published March 4, 2010; U.S. Patent Application Publication 2011/0052561, Hoeppner, published March 3, 2011;

[0082] Contacting of the cytokine cell suspension with the solid extraction material may be performed using a suitable container or other apparatus to affect the contact. Contacting may be performed in a continuous process wherein a flow of the liquid is passed over or through the solid extraction material, or the liquid and solid extraction material may be contained in a vessel. As discussed above, the vessel may comprise the solid extraction material, or may merely serve as a container holding the beads or other forms of the material. Containers useful in the present technology include those known in the art, such as the Plasmax™ Plus Plasma Concentrator, commercially available from Biomet Biologies, LLC (Warsaw, Indiana, USA) and may include those devices and methods of use as described in U.S. Patent No. 7,553,413, Dorian et al., issued June 30, 2009; and U.S. Patent No. 7,694,828, Swift et al., issued April 13, 2010.

[0083] Such a device is shown in Figures 3A and 3B, for exemplary use with a polyacrylamide gel bead solid extraction material. The device 300 has an upper chamber 305 and a lower chamber 310. The upper chamber 305 has an end wall 315 through which the agitator stem 320 of a gel bead agitator 325 extends. The device 300 also has an inlet port 330 that extends through the end wall 315 and into the upper chamber 305.
The device 300 also includes an outlet port 335 that communicates with a plasma concentrate conduit 340. The floor of upper chamber 305 includes a filter 345, the upper surface of which supports desiccated concentrating polyacrylamide beads 350.

[0084] During use, a fluid 355 containing cytokine-producing cells and, optionally, platelets is injected to the upper chamber 305 via the inlet port 330 and mixed with the polyacrylamide beads 350. The fluid 355 and polyacrylamide beads 350 may be mixed by rotating the agitator stem 320 and the gel bead agitator 325, to help mix the fluid 355 and beads 350. The mixed fluid 355 and polyacrylamide beads 350 are then incubated for the desired time at the desired temperature. The device 300 is then centrifuged so that liquid passes to the lower chamber 310 while the polyacrylamide beads 350 are retained by a filter 345, thereby separating the polyacrylamide beads 350 from the resulting solution 360 of IL-1ra and other proteins that collects in the lower chamber 310. The solution 360 may be removed from the device via outlet port 335.

[0085] In some embodiments, a Protein Solution can be made in a process wherein a cytokine cell suspension is isolated from a tissue and then contacted with a solid extraction material in a continuous process. Referring again to Figure 1, in some embodiments the isolating 110, 120, 135 and contacting 140 are performed using a single apparatus, referred to herein as a single separation and concentration device ("S/C device"). One such device is described in U.S. Patent Application Serial Number 13/434,245, O'Connell, filed March 29, 2012.

[0086] The S/C device comprises a separation region, a first concentration region, a second concentration region, a buoy system, an inlet port, a check valve, a first withdrawal port and a second withdrawal port. Figure 5 shows an S/C device 500 capable of generating an anti-inflammatory cytokine composition from whole blood. For example, the method may start with obtaining a volume of whole blood, which is filled into a separation region 505 of the S/C device 500 by injecting through the inlet port 510. A buoy system 515 is located within the separation region 505. The buoy system comprises a first buoy member 520, a second buoy member 525, and a third buoy member 530 that couples the first buoy member 520 to the second buoy member 525. A space between the first and second buoy members 520, 525 defines a buoy separation region 535. A density of each buoy member can be selected depending on what blood fraction is desired as a result of a separation. The buoy system 515 can include a selected buoy system, such as the buoy system generally used in the GPS® II or GPS®III gravity

[0087] A method for obtaining a Protein Solution comprises spinning the S/C device 500 by centrifugation. Centrifugal forces allow the buoy system 515 to move through the whole blood, resulting in a fraction of the whole blood to be located in the buoy separation region 535. For example, this fraction may comprise platelet-rich plasma. With a use of a withdrawal syringe, the selected fraction can be removed from the collection volume 535 through the third buoy member 530 that defines a removal passage 540 that is connected with collection face passages 545. A connection elbow 550 can interconnect with the removal passage 540 to allow a vacuum to be formed through the connection elbow 550, the collection passage 540, and the buoy collection passages 545. A collection tube 555 can interconnect the connection elbow 550 with a withdrawal elbow 560 that extends from a wall 565 that can be a bottom wall of concentration region 570. A second withdrawal tube 575 can be first connected with a check valve assembly 580 and a first withdrawal port 585. The first withdrawal port 585 can be connected with the withdrawal syringe with a Luer lock type connection or other appropriate connection.

[0088] The check valve assembly 580 ensures the fraction being removed flows in one direction and prevents the fraction being removed from reentering the second withdrawal tube 575. Furthermore, when material is pushed back into the check valve assembly 580 from the first withdrawal port 585, such that material will enter the concentration region 570, a disc within the check valve 580 can flex down towards the second withdrawal tube 575 and close an opening and thereby open a second opening within the check valve assembly 580. The second opening allows the fraction to be pushed into the concentration region 570.

[0089] Therefore, the blood fraction is then re-injected through the first withdrawal port 285, through the check valve assembly 580, and into an upper volume 588 of the concentration region 570. Polyacrylamide beads 590 are added to the blood fraction in the upper volume 588 and the blood fraction and the polyacrylamide beads 590 can be mixed by shaking. Optionally, the blood fraction and the beads 590 can be incubated for a selected period of time before proceeding with the method.
The method comprises a second step of spinning by centrifugation. During the second centrifugation, the anti-inflammatory cytokine composition is separated from the beads 590 by being forced through a filter 592 and into a lower concentration region 595 of the concentration region 570. The Protein Solution can be withdrawn through a third withdrawal tube 596 and out a second withdrawal port 598 by use of a second withdrawal syringe. Again, the syringe can be connected to the second withdrawal port by a Luer® lock type connection.

Referring again to Figure 1, following contacting the liquid with the solid extraction materials, a Protein Solution is isolated, as indicated at step 150. Isolation may be accomplished by drawing off at least a portion of the liquid volume and leaving the beads. In some cases, the extraction material may be sedimented by centrifugation prior to drawing off the Protein Solution. Isolation may also be performed by filtration, where the material is retained by a filter and the Protein Solution passes through the filter using centrifugal force or by using vacuum, for example. If the incubation with extraction material utilizes dry polyacrylamide beads, the liquid volume may be reduced as the beads swell upon rehydration, thereby concentrating the resulting Protein Solution. To maintain the increased concentration, care should be taken in the isolation step so as to avoid compressing the beads or drawing liquid out from the swollen beads. For example, high centrifugal force or high vacuum may collapse the beads and/or draw liquid out of the internal volume of the beads.

Optional Electromagnetic Stimulation

The cytokine cell suspension can be stimulated with an electromagnetic field, before or during the contacting of the liquid with a solid extraction material. Thus, in some embodiments, stimulation of the liquid comprising the cells can be performed prior to contacting the liquid and the solid extraction material. However, it is preferred that at least a portion of the contacting step and at least a portion of the stimulating step overlap in time such that the liquid comprising the cells is concurrently in contact with the solid extraction material and stimulated with the electromagnetic field.

Stimulating the cytokine cell suspension with an electromagnetic field may involve various forms of electromagnetic stimulation, such as a pulsed electromagnetic field or a capacitively coupled electromagnetic field. In some embodiments, the liquid is stimulated using a power source coupled to a stimulation coil.
The current passing through the coil produces a pulsing magnetic field which induces in the liquid a pulsing electric field. The coil may partially surround the liquid as it is held within a container, such as a tube or syringe. The coil may be integrated into to the container holding the cytokine cell suspension or may be removable. For example, a plastic tube can be formed with an integrated coil or the coil can be temporarily coupled to the container or placed within the container; for example, the tube can be configured so that the coil can be snapped onto the container. The power source can be coupled to the coil as needed to perform the stimulating step.

[0094] Stimulation of the liquid with an electromagnetic field may also include placing at least two electrodes across the liquid. Electrical energy may then be applied to the electrodes so as to capacitively couple the electrodes and generate the electromagnetic field there between. The electromagnetic field is therefore able to pass through the liquid so as to increase the rate and/or amount of cytokine production. In other embodiments, electrodes can be used to produce a direct current or one or more coils can be used to produce a pulsed electromagnetic field.

[0095] The strength of the electromagnetic field during stimulation can be at least about 0.5 microvolts per centimeter, whether produced by direct current, capacitively coupled current, or pulsed electromagnetic field. In the case of a direct current electrode, the amplitude of the current can be from about 1 to about 200 microamperes, and in some embodiments, the amplitude may be from about 20 to about 100 microamperes. In still further embodiments, the current may be about 20, about 60, or about 100 microamperes. It should be understood, however, that the amplitude of the current may be of other suitable magnitudes.

[0096] The electromagnetic field applied during the stimulating step may be constant or vary over time. For example, a sinusoidal time varying electromagnetic field can be applied using the electrodes placed across the liquid. Such a sinusoidal time varying electromagnetic field can have a peak voltage across the electrodes from about 1 volt to about 10 volts, and in some embodiments, the peak voltage can be about 5 volts. The corresponding electric field produced can have an amplitude of from about 0.1 millivolt per centimeter (mV/cm) to about 100 mV/cm, and in some embodiments can be about 20 mV/cm. The sinusoidal time varying electric field may have a frequency of from about 1,000 Hz to about 200,000 Hz, and in some embodiments the frequency may be about 60,000 Hz.
[0097] The electromagnetic field applied to the liquid may also be a pulsed electromagnetic field. The pulsed electromagnetic field can be induced using an external coil and a pulse generator. In this regard, a pulsed electromagnetic field may have a pulse duration of from about 10 microseconds per pulse to about 2000 microseconds per pulse. The pulse duration in one embodiment can be about 225 microseconds. The pulses may include electromagnetic bursts, in which a burst can comprise from 1 pulse to about 200 pulses. Alternatively, the electromagnetic field may have bursts that comprise from about 10 pulses to about 30 pulses. In this regard, in one embodiment each burst may comprise about 20 pulses.

[0098] The frequency at which bursts in the pulsed electromagnetic are applied may vary. In this regard, bursts can be repeated at a frequency of from about 1 Hz to about 100 Hz in some embodiments, and can be repeated at a frequency of about 10 Hz to about 20 Hz in other embodiments. Furthermore, bursts can repeat at a frequency of about 1.5 Hz, about 15 Hz or about 76 Hz. A burst can have a duration from about 10 microseconds up to about 40,000 microseconds. In this regard, a burst can have a duration of about 4.5 milliseconds.

[0099] Suitable devices for generating a capacitively coupled electromagnetic field include SpinalPak® spinal stimulator (EBI, L.P., Parsippany, New Jersey) or a DC stimulation device such as an SpF® XL lib spinal fusion stimulator (EBI, L.P., Parsippany, New Jersey). Pulsed electromagnetic fields can be produced using various known methods and apparatuses, such as using a single coil or a pair of Helmholtz coils. For example, a suitable apparatus includes the EBI Bone Healing System® Model 2001 (EBI, L.P., Parsippany, New Jersey) and the BTBS stimulation coil. With respect to direct current, an electric field may be generated using any known device for generating a direct current electric field, such as for example, the Osteogen™ implantable bone growth stimulator (EBI, L.P., Parsippany, New Jersey). Other suitable devices for generating electromagnetic fields may be used.

[0100] Electromagnetic stimulation of the cytokine cell suspension can be continued and/or repeated as desired with respect to contacting the liquid and the solid extraction material. It should be understood, however, that the step of stimulating the liquid with an electromagnetic field includes fields other than, or in addition to, electric or electromagnetic fields associated with ambient conditions (such the electromagnetic
fields generated by casual exposure to radios, telephones, desktop computers or similar devices).

[0101] In some embodiments, both the contacting and stimulating steps as shown in Figure 1 are performed in less than about 1 hour. The contacting and stimulating steps can also be performed at temperatures ranging from about 20°C to about 37°C. In a preferred embodiment, the temperature of the cytokine cell suspension is kept at about 37°C during the contacting and stimulating steps. One or both of the contacting and stimulating steps are typically performed ex vivo.

Other Methods for Forming Protein Solutions

[0102] The present technology provides other methods for forming Protein Solutions, such as the admixture of proteins and other components and the isolation and concentration of proteins and components without using solid extraction materials. Protein Solutions of the present technology can be made entirely comprising proteins made by such methods, or by addition of proteins made by such methods with components or solutions made by tissue isolation and processing with solid extraction materials, as described above.

[0103] For example, various methods provide acellular or substantially acellular Protein Solutions, comprising one or more proteins as described above. Without limiting the scope, mechanism or function of the present technology, such acellular anti-inflammatory cytokine compositions may offer advantages in certain applications, insofar as they may not create an immunogenic response in subjects to whom they are administered.

[0104] In particular, by way of example, a Protein Solution may comprise interleukin-1 receptor antagonist (IL-1ra) that is synthetic or recombinant, or isolated from autologous, allogeneic or xenogeneic blood or other biologic sources, aside from the methods described above. For example, Kineret™ (anakinra) is a recombinant, non-glycosylated form of IL-1ra, sold by Amgen Manufacturing, Ltd. (Thousand Oaks, California). Various recombinant interleukin-1 inhibitors and methods of treatment are described in U.S. Patent No. 6,599,873, Sommer et al., issued July 29, 2003; U.S. Patent No. 5,075,222, Hannum et al., issued December 24, 1991; and U.S. Application Publication No. 2005/0197293, Mellis et al., published September 8, 2005. In addition, methods for producing IL-1ra from body fluids, including the use of autologous fluids,
are described in U.S. Patent No. 6,623,472, Reinecke et al., issued September 23, 2003; U.S. Patent No. 6,713,246, Reinecke et al., issued March 30, 2004; and U.S. Patent No. 6,759,188, Reinecke et al., issued July 6, 2004. When an allogeneic anti-inflammatory cytokine composition is to be generated, multiple sources of IL-lra from multiple subjects may be pooled together.

[0105] More generally, methods for making acellular Protein Solutions can comprise culturing cells in a cell culture that either naturally produce anti-inflammatory cytokines, such as IL-lra, or cells that are engineered to produce such cytokines. Non-limiting examples of cells that naturally produce anti-inflammatory cytokines include adipose tissue cells, adipocytes, adipose-derived stem cells, stromal cells, bone marrow cells, mesenchymal stem cells, and blood cells.

[0106] In various embodiments, cell lines can be engineered to overproduce an anti-inflammatory cytokine. Non-limiting examples of anti-inflammatory cytokines include VEGF, TNF-a, IL-lra, sTNF-RI, sTNF-RII, PGDF-AB, PDGF-BB, IGF-I, EGF, TGF-β1, sIL-lRII, and HGF. Stable eukaryotic cell lines can be generated that overexpress an anti-inflammatory cytokine by transfecting eukaryotic cells, such as mammalian cells, with recombinant DNA comprising a gene encoding an anti-inflammatory cytokine and a selectable marker. Alternatively, prokaryotes and yeast can be engineered to overexpress an anti-inflammatory cytokine by transformation with recombinant DNA comprising a gene encoding an anti-inflammatory cytokine and a selectable marker. Transformations and transfections can be performed with recombinant DNA molecules comprising a DNA sequencing encoding an anti-inflammatory cytokine, such as IL-lra, and a selectable marker. Eukaryotic and prokaryotic cells can be engineered to overexpress the anti-inflammatory cytokine constitutively or by induction. Methods for expressing anti-inflammatory cytokines, such as IL-lra, sTNF-RI, and sTNF-RII, and sLLl-RII in eukaryotic and prokaryotic cells are described in U.S. Patent No. 6,337,072, Ford et al., issued January 8, 2002; and U.S. Application Publication No. 2001/0053764, Sims et al., published December 20, 2001.

[0107] When a IL-lra gene is transcribed in humans, the mRNA can be spliced into four variants, resulting in four isoforms of translated IL-lra. SEQ ID NOs: 1, 3, 5, and 7 are the cDNAs for IL-lra isoforms 1-4 respectively, and SEQ ID NOs: 2, 4, 6, and 8 are the amino acid sequences of IL-lra isoforms 1-4 respectively. Collectively, the IL-lra isoforms are referred to as "IL-lra." SEQ ID NO: 9 is the cDNA sequence for
sTNF-RI and SEQ ID NO: 10 is the amino acid sequence for sTNF-RI. SEQ ID NO: 11 is the cDNA sequence for sTNF-RII and SEQ ID NO: 12 is the amino acid sequence for sTNF-RII. SEQ ID NO: 13 is the cDNA sequence for sIL-1RI and SEQ ID NO: 14 is the amino acid sequence for sIL-1RII. SEQ ID NOs 15 and 17 are the cDNAs for sIL-1RIIvland sIL-1RIIv3 respectively, and SEQ ID NOs: 16 and 18 are the amino acid sequences for sIL-1RIIvland sIL-1RIIv3 respectively. The cDNA sequence for IL-1RIIv2 is a non-coding sequence; therefore, it is not included.

[0108] To express either IL-1ra, sTNF-RI, or sTNF-RII (generically referred to as a "protein of interest") in a prokaryotic culture, for example in a particular bacteria, a cDNA sequence (SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, or 17) is cloned into an expression vector suitable for the bacteria. The expression vector should comprise a strong promoter, and a selectable marker, such as antibiotic resistance. Non-limiting examples of antibiotics capable of killing bacteria cells include ampicillin, tetracycline, kanamycin, and chloramphenicol. The expression vector should further comprise elements that result in constitutive or inducible expression of the protein of interest. Optionally, a DNA sequence corresponding to a tag functionally coupled to the protein of interest that allows for identification and purification of the protein can be present in the vector adjacent to the gene for the protein of interest. For example, an N or C-terminal His tag can be used to detect proteins with anti-His antibodies, and they allow for purification on nickel columns. When the expression vector comprising a gene expressing a protein of interest is prepared, a bacteria cell, for example E. coli, can be transformed with the expression vector. The selectable marker ensures that only cells transformed with the vector will survive in LB broth supplemented with an antibiotic corresponding to the selectable marker. The bacteria can then be grown in LB broth supplemented with the antibiotic for expression and purification. Expression vectors, methods for cloning a protein of interest into an expression vector, methods for transforming prokaryotic cells, methods for expressing protein from transformed prokaryotic cells, and protein purification methods are commonly known by those with ordinary skill in the art.

[0109] To express a protein of interest in a eukaryotic culture, for example in mammalian cells, a cDNA sequence (SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, or 17) is cloned into an expression vector suitable for a particular mammalian cell. The expression vector should comprise a strong promoter, and a selectable marker, such as
antibiotic resistance. Non-limiting examples of antibiotics capable of killing mammalian cells include geneticin and gentamicin. The expression vector should further comprise elements that result in constitutive or inducible expression of the protein of interest. Optionally, a DNA sequence corresponding to a tag functionally coupled to the protein of interest that allows for identification and purification of the protein can be present in the vector adjacent to the gene for the protein of interest. When the expression vector comprising a gene expressing a protein of interest is prepared, a mammalian cell, such as a human cell, can be transfected with the expression vector. Transfected cells can be grown in a cell culture medium supplemented with an antibiotic corresponding to the selectable marker. The presence of the antibiotic allows for the isolation of stable cell lines. Stable cell lines can then be grown in cell culture medium supplemented with antibiotic for expression and purification. Expression vectors, methods for cloning a protein of interest into an expression vector, methods for transfecting eukaryotic cells and developing stable cell lines, methods for expressing protein from transfected eukaryotic cells, and protein purification methods are commonly known by those with ordinary skill in the art.

[0110] Alternatively, eukaryotic cells that have not been genetically altered by DNA transfection can be cultured. The eukaryotic cells can be primary cultures, i.e. cells grown directly from a eukaryotic donor, such as a human, or the eukaryotic cells can be established cell lines. Many established cell lines are available commercially from American Type Culture Collection, Inc. (Manassas, VA, USA). The cells can be grown with or an exogenous signal, such as a recombinant protein. Eukaryotic cells are often cultured in culture flasks with cell culture medium. The cell culture medium can be recovered from the flasks, and centrifuged to remove any non-adherent cells.

[0111] A cell culture can be a monolayer culture, a non-adherent culture, or a bioreactor. A monolayer culture comprises anchorage-dependent cells that are cultured on a suitable substrate that allows cell adhesion and spreading, such as cell culture flasks and cell culture dishes. A non-adherent culture comprises cells that are maintained in a suspension. Suitable cells are either not anchorage-dependent, or they are anchorage-dependent cells that have been adapted for culture in a suspension. Many cell lines, for example many insect cells, can be grown in either a monolayer or a suspension. A bioreactor is a device that can support a biologically active environment in which chemical processes are carried out and/or biochemically active substances are derived.
Bioreactors can include suspended or immobilized cells. Monolayer cultures, non-adherent cultures, and bioreactors can be maintained by methods commonly used in the art.

[0112] In some embodiments, the cell culture is subjected to an electromagnetic field, so as to stimulate the production of one or more proteins. Stimulating the culture with an electromagnetic field may involve various forms of electromagnetic stimulation, such as a pulsed electromagnetic field or a capacitively coupled electromagnetic field. Methods and conditions for stimulation include those discussed above.

[0113] Cell cultures can either release anti-inflammatory cytokines into culture medium naturally, or the cultures can be induced to release the anti-inflammatory cytokines into the culture medium. The culture medium can be isolated by aspiration, centrifugation or filtration to form the acellular anti-inflammatory cytokine composition.

[0114] In some embodiments, an anti-inflammatory cytokine is isolated from urine, for use in producing a Protein Solution of the present technology. Proteins can be isolated from urine by methods among those known in the art. One such method is employed in the ProteoSpin™ Urine Protein Concentration Maxi Kit sold by Norgen Biotek Corp. (Thorold, Ontario, Canada). This kit utilizes an ion exchange resin integrated into a spin column. Briefly, a urine sample is obtained and its pH adjusted to 3.5. The urine is then transferred to a spin column containing the ion exchange resin, which is placed in a collection tube. The column is then centrifuged, wherein the proteins attach to the resin, and the remaining fluids and salts flow into the collection tube and are discarded. The proteins are then washed by applying supplied column activation and wash buffer followed by centrifugation. The flow through is discarded and the wash procedure is repeated. An elution buffer (10 mM sodium phosphate, pH 12.5) is added to the column and neutralizer is added to an elution tube. The spin column containing the elution buffer is placed in the elution tube and centrifuged, whereby the proteins are eluted and captured in the elution tube containing neutralizer.

Therapeutic Compositions

[0115] The present technology also provides compositions comprising a Protein Solution and a second component comprising active materials, physiological carriers, and combinations thereof. In some embodiments, compositions comprise a safe and effective amount of the Protein Solution and a safe and effective amount of a second
active. A "safe and effective" amount of a component is an amount that is sufficient to have the desired therapeutic effect in the human or other mammalian subject, without undue adverse side effects (such as toxicity, irritation, or allergic response), commensurate with a reasonable benefit/risk ratio when used in the manner of this technology. The specific safe and effective amount of the component will, obviously, vary with such factors as the particular condition being treated, the physical condition of the patient, the nature of concurrent therapy (if any), the specific components used, the specific route of administration and dosage form, the carrier (if any) employed, and the desired dosage regimen.

[0116] Active materials among those useful herein include biologies and pharmaceutical actives. Biologies include blood fractions, such as PRP, blood products, concentrated bone marrow aspirate (cBMA), adipose stromal cells, and bone marrow-derived mononuclear cells.

[0117] Accordingly, in some embodiments, the present technology provides compositions comprising a safe and effective amount of a Protein Solution and a safe and effective amount of cBMA. cBMA can include hematopoietic, stem cells, stromal stem cells, mesenchymal stem cells, endothelial progenitor cells, red blood cells, white blood cells, fibroblasts, reticulocytes, adipose cells, or endothelial cells. As described above, the Protein Solution may be made using bone marrow aspirate as a cytokine containing tissue. However, a therapeutic composition may additionally comprise cBMA with Protein Solution. In one embodiment, a therapeutic composition comprises a Protein Solution and cBMA in an Protein Solution:cBMA ratio of about 1:1, about 1:2, about 1:3, about 1:4, about 1:5, about 1:6, about 1:7, about 1:8, about 1:9 or about 1:10. Alternatively, the Protein Solution:cBMA ratio can be about 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1 or about 10:1.

[0118] The cBMA and Protein Solution may also be produced simultaneously. Thus, in reference to Figure 1 and the processes described above, bone marrow aspirate may be added to the whole blood obtained in step 115, prior to or during the contacting with a solid extraction material in step 140; such a process involves operation of both steps 115 and 130. For example, bone marrow aspirate may be added to whole blood prior or during isolation of platelet-rich plasma in step 120. Such methods include those described in U.S. Application Publication No. 2006/0278588, Woodell-May, published December 14, 2006. Alternatively, the cBMA and Protein Solution may be produced
separately, and combined during administration to respiratory tissue (as described below) in a single composition, or administered separately.

[0119] In some embodiments, the cBMA and Protein Solution may be may produce simultaneously. Thus, in reference to Figure 1 and the processes described above, bone marrow aspirate may be added to the whole blood obtained in step 115, prior to or during the contacting with a solid extraction material in step 140; such a process involves operation of both steps 115 and 130. For example, bone marrow aspirate may be added to whole blood prior or during isolation of platelet-rich plasma in step 120. Such methods include those described in U.S. Application Publication No. 2006/0278588, Woodell-May, published December 14, 2006.

[0120] Pharmaceutical actives among those useful herein include herein include organic molecules, proteins, peptides, peptidomimetics, nucleic acids, nucleoproteins, antisense molecules, polysaccharides, glycoproteins, lipoproteins, carbohydrates and polysaccharides, botanical extracts, and synthetic and biologically engineered analogs thereof, living cells (other than white blood cells stromal cells) such as chondrocytes, bone marrow cells, viruses and virus particles, natural extracts, and combinations thereof. Specific non-limiting examples of bioactive materials include hormones, antibiotics and other anti-infective agents, hematopoietics, thrombopoietics, antiviral agents, antitumor agents (chemotherapeutic agents), antipyretics, analgesics, anti-inflammatory agents, antiallergy agents, vasodilators, cytokines, growth factors, gene regulators, vitamins, minerals and other nutritionals, nutraceuticals and combinations thereof. In particular, actives include bronchodilators (such as albuterol, levabuterol, irbuterol, ipatropium, salmeterol, and formoterol), glucocorticosteroids (such as mometasone, fluticasone, budesonide, and beclomethasone), antibiotics, antivirals, and combinations thereof. In some embodiments, compositions may comprise growth factors in addition to those present in the Protein Solution, such Platelet-Derived Growth Factor (PDGF), Transforming Growth Factor Beta (TGF-β), Insulin-Like Growth Factor (IGF), Fibroblast Growth Factor (FGF), Epidermal Growth Factor (EGF), Vascular Endothelial Growth Factor (VEGF), and Bone Morphogenetic Proteins (BMPs).

[0121] The compositions may comprise a carrier material, in addition to any liquid comprising the Protein Solution. It should be understood that in various embodiments of the present technology, methods of treatment employ the Protein Solution as comprised and made above, without further carrier, by direct injection or
other application to the site of treatment. However, in other embodiments, an additional carrier material may be used for such reasons as for ease of administration, to facilitate administration using a particular delivery device, enhancing activity, an increasing the length of time the Protein Solution remains at the site of administration. Carriers among those useful herein include saline, hyaluronic acid, collagen, buffers (such as Hank's Buffer), cell culture media, blood products (such as PRP and platelet poor plasma), and mixtures thereof.

[0122] Protein Solutions, and compositions comprising Protein Solutions may be sterilized prior to administration, by any suitable method. For example, a Protein Solution may be sterilized by including a sterile filter to process the product made by the processes described above. In some embodiments, an antibiotic may be included in the solid extraction material during the contacting step described above, or may be added at one or more of the various steps in the methods and treatments described herein. Alternatively, or in addition, the Protein Solution may be produced aseptically.

[0123] Protein Solutions and compositions comprising Protein Solutions may also be lyophilized (freeze drying, or cryodesiccation) after production, using methods among those known in the art. Thus, as depicted in Figure 1, the Protein Solution can be lyophilized after it is isolated from the solid extraction material. When freeze dried, the anti-inflammatory cytokine composition can be hydrated with a suitable media at a time before administration or at a time of administration. Hydration may be accomplished by mixing the composition with a solution including saline, buffers, blood, blood fractions, bone marrow aspirate, concentrated bone marrow aspirate, and combinations thereof.

[0124] The present technology also provides compositions comprising components derived from blood or other tissue that are suitable for allogeneic administration. In particular, such compositions may comprise proteins and other components isolated from a mammalian subject, or a plurality of mammalian subjects, other than the subject to whom the composition is to be administered in a method of this technology. In further reference to Figure 1, compositions made by contacting a cytokine cell suspension with a solid extraction material may be made suitable for allogeneic administration by freeze drying, as depicted in step 160, after isolation of the Protein Solution from the solid extraction material. In some embodiments, the composition can be processed to remove cytokine-producing cells present in the Protein
Solution composition after contacting step 140. Methods for removing cytokine-producing cells include those known in the art, including filtering, clotting, and gravimetric methods. In some embodiments, isolating the blood fraction comprising plasma and removing cytokine-producing cells are performed essentially simultaneously. Thus, the present technology provides methods for making a non-immunogenic anti-inflammatory cytokine composition, comprising:

(a) obtaining a cytokine cell suspension from a mammalian donor;
(b) contacting the liquid with solid extraction material to generate a composition rich in interleukin-1 receptor antagonist;
(c) removing cells from the composition; and
(d) freeze drying the composition to produce the non-immunogenic anti-inflammatory cytokine composition.

[0125] In some embodiments, a cryopreservative storage solution is added to the Protein Solution, to provide stability for subsequent storage at reduced temperatures. Suitable storage solutions include those in the art, such as glycerol and dimethylsulfoxide (DMSO). The composition may be stored at reduced temperatures, such as from about 1 °C to about 6 °C. In some embodiments, the composition is stored under liquid nitrogen, at about - 80 °C. Preferably, the cryopreservative storage solution is removed from the Protein Solution prior to administration to a mammalian subject. Removal of the storage solution may be performed by methods including those known in the art for processing stored blood comprising cryopreservatives. Washing may be performed using a wash solution, such as saline. In such embodiments, the blood type of the subject to be treated may be matched to the blood type of the donor from whom the cytokine cell suspension was obtained.

Methods of Treatment

[0126] The present technology provides methods for the treatment of respiratory disorder in a human or other mammalian subject, comprising, to the respiratory tissue that is the site of the disorder, one or both of (a) a Protein Solution of the present technology and (b) a cell tissue material selected from the group consisting of bone marrow-derived mononuclear cells, platelets, bone marrow aspirate, concentrated bone marrow aspirate, adipose stromal cells, and combinations thereof. In various embodiments, the methods comprise administering concentrated bone marrow aspirates
alone, or in combination with a Protein Solution. The methods may also comprise administering hydrogen gas.

[0127] Respiratory disorders treated by the methods of this technology include inflammatory respiratory diseases, such as chronic obstructive pulmonary disease (COPD), chronic bronchitis, asthma, fibrosis, emphysema, acute respiratory distress syndrome, and pneumonia. Respiratory disorders also include acute lung disease, and inflammation and other disorders associated with lung surgery. Respiratory diseases treated by the methods of this technology may be caused by a variety of factors, including environmental and infectious agents. Treatments include methods which accomplish one or more of alleviating symptoms, preventing further deterioration of lung function, improving lung function, and healing damaged lung tissue. Lung function may be determined by methods known in the art, such as by one or more of arterial blood gas analysis, radiographic methods, bronchoscopy, ventilation/perfusion lung scanning, and diagnostic sonography.

[0128] In various embodiments, methods are for the treatment of inflammatory respiratory diseases in a human. In other embodiments, treatment is for non-human mammals, such as companion, working, and sports animals. For example, such methods of this technology may be used for the treatment of inflammatory respiratory diseases in horses.

[0129] Without limiting the mechanism, utility or function of the present technology, the methods and treatments of this technology mediate the effects of interleukin-1 and its role in the inflammation cascade. For example, interleukin-1 (IL-1) includes a family of cytokines that can stimulate lymphocytes, neutrophils, and macrophages, activate phagocytes, increase airway fibrosis, promote lymphocyte nodules in the airways, increase production of both MMP-9 and MMP-12, and are involved in many chronic inflammatory conditions. IL-1 can be generated by macrophages, monocytes, and dendritic cells, and can be part of the inflammatory response against infection. See, Lappalainen et al., "Interleukin-1β Causes Pulmonary Inflammation, Emphysema, and Airway Remodeling in the Adult Murine Lung" American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 4, pages 311-318 (April 2005).

[0130] The mode of action of IL-1 can be mediated by IL-1ra. IL-1ra binds to the same receptor on the cell surface as IL-1, and thus prevents IL-1 from sending a signal to that cell. IL-1ra is secreted from cytokine-producing cells, including
monocytes, macrophages, neutrophils, polymorphonuclear cells (PMNs), and other cells, and can modulate a variety of IL-1 related immune and inflammatory responses, as described by Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) "Interleukin-1 receptor antagonist: role in biology" Annu. Rev. Immunol. 16: 27-55. Production of IL-1ra is stimulated by several substances including adherent immunoglobulin G (IgG), other cytokines, and bacterial or viral components. Likewise, the mode of action of TNF-a can be mediated by sTNF-RI and sTNF-RII, which prevent TNF-a from binding to membrane bound TNF-RI and/or TNF-RII.

[0131] In various embodiments, methods of the present technology comprise a point-of-care method for making a Protein Solution. As referred to herein, a "point-of-care method" wherein the processes of the present technology are performed at a time proximate to the administration of the Protein Solution to the subject being treated. Such methods may be performed at a location proximate, such as in the same room (for example, bed side) or otherwise immediately adjacent, to the mammalian subject to be transfused with the RBCs. In various embodiments, a "proximate time" may be, for example, within 12 hours, within 8 hours, within 2 hours, within 1 hour or within 30 minutes of administration of the Protein Solution to the subject.

[0132] In some embodiments, the Protein Solution is administered with a concomitant therapy. Such therapies include, for example, the administration of pharmaceutical actives or biologies, as described above. In some embodiments, concomitant therapies are administered concurrently with a Protein Solution. For example, methods may comprise administration of a Protein Solution with a safe and effective amount of an active selected from the group consisting of bronchodilators glucocorticosteroids antibiotics, antivirals, and combinations thereof.

[0133] In some embodiments, methods comprise administration of a Protein Solution with concentrated bone marrow aspirate, as described above. For example, cBMA and a Protein Solution may be administered concomitantly, as further discussed below.

[0134] The present technology also provides methods comprising administration of hydrogen gas. Referring again to Figure 1, in some embodiments, methods comprise administering a composition comprising a cytokine-rich Protein Solution 150 with hydrogen gas 170. Such compositions may also comprise cBMA 135. Compositions comprising hydrogen gas 170 may be made by any suitable for dissolving (e.g.,
saturating) hydrogen gas in the platelet-rich solution. For example, hydrogen gas may be bubbled into a protein solution.

[0135] An exemplary method for treating COPD is diagrammed in Figure 6. In step 605, a Protein Solution is isolated from a cytokine-producing tissue taken from the subject to be treated. (It should be understood that such a composition may also be isolated from tissue of other mammalian subjects, as described above.) For example, the Protein Solution can be produced by any method described herein, including Figures 1 and 2. In step 610, concentrated bone marrow aspirate (cBMA) is produced from BMA from a subject with COPD. The cBMA can be produced by the method described above and in Figure 3.

[0136] In various embodiments, both the APS produced in step 705 and the cBMA produced in step 610 are isolated from the same subject with COPD in need of treatment. Accordingly, in some embodiments, the present technology provides point-of-care production of the APS and (optionally) cBMA and hydrogen gas. Thus, the method 600 may allow for the treatment of COPD on site at a clinic or hospital, without long processing times for the solutions.

[0137] When the APS and the cBMA have both been isolated according to steps 605 and 610, they can be combined to form an autologous therapeutic composition in step 615, as discussed above. The autologous therapeutic composition can comprise hydrogen gas, as discussed above. Thus, optionally, the autologous therapeutic composition can be saturated with hydrogen gas in step 620. The hydrogen gas can be bubbled into the autologous therapeutic composition until the autologous therapeutic composition is saturated. In some embodiments, the hydrogen gas is introduced into the autologous therapeutic composition while the composition is in a delivery device.

[0138] The therapeutic composition may be administered by any medically appropriate method to the site of the respiratory disorder. In some embodiments, the composition is administered intratracheally by aerosol spray, to coat the interior lining of the lung cavity. In some embodiments, the composition may be administered by aerosol spray to the exterior wall of a lung. The composition may also be administered by direct injection to lung tissue.

[0139] Administration of the therapeutic composition in step 625 can be performed with any suitable device, including such devices known in the art for topical
delivery of pharmaceutical compositions to the lungs. Preferably the device maintains the viability of the cell materials during storage and administration.

[0140] In some embodiments, administration of the autologous therapeutic composition in step 625 can be performed with an endotracheal intubation device 700 as depicted in Figure 7. The endotracheal intubation device 700 comprises a flexible tube 705 that includes an inlet end 710, and an expelling end 715, a valve 720, a pressurizing element 725, and a release trigger 730, and a nebulizer 735. To administer the autologous therapeutic composition, the autologous therapeutic composition is loaded into the endotracheal intubation device 700 through the inlet end 710. The valve 720 can then be closed to prevent the autologous therapeutic composition from flowing out of the inlet end 710. The pressurizing element 725 can then be operated to pressurize the interior of the flexible tube 705. The pressurizing element 725 can be any suitable pressurizing element known to those with ordinary skill in the art. Non-limiting examples of pressurizing elements include pumps, and rubber bulbs. Additionally, the pressurizing element 725 can be a port for a tube connected to a pump, which can be operated to pressurize the contents of the flexible tube 705.

[0141] When the autologous therapeutic composition is loaded into the endotracheal intubation device 700, and pressurized, the expelling end 715 of the device 700 can be inserted through the mouth of the subject, so as to administer the Protein Solution to the trachea or lung. The flexible tube 705 allows a user of the device 700 to maneuver the expelling end 715 of the device 700 to enter a selected lung cavity of the subject to target the delivery of the autologous therapeutic composition to areas most affected by the COPD. The trigger 730 is operably connected to the nebulizer 735 so that when the trigger 730 is pressed, the autologous therapeutic composition is sprayed through the expelling end 715 of the device 700 as an aerosol, or as a mist. The nebulizer 735 allows for a uniform coating of all lung tissue surfaces and alveoli. In some embodiments, the expelling end 715 comprises orifices operable to atomize the Protein Solution. Preferably, operation of the device 700 is coordinated with inhalation of the subject, so as to maximize penetration into lung tissue.

[0142] Embodiments of the present technology are further illustrated through the following non-limiting examples.

Example 1
Preparing and Characterizing a Protein Solution

[0143] A Protein Solution rich in interleukin-I receptor antagonist is prepared from seven consented human providers. Blood (55 mL) is drawn into a 60 cc syringe with 5 mL of anticoagulant citrate dextrose solution A (ACD-A, Citra Labs, Braintree, MA). Platelet-rich plasma (PRP) is created using the GPS® III platelet concentration system (800-1 003A, Biomet Biologies, Warsaw, Indiana) according to the instructions for use. The solution is generated by adding 6 mL of PRP to a modified Plasmax device containing 1 gram of polyacrylamide beads (Biomet Biologies, Warsaw, IN). The IL-Ira solution is removed from the Plasmax devices and frozen at minus 50°C for the assay. Cytokine content is assayed on a 16-plex ELISA (Searchlight Protein Array, Aushon Biosystems, Billerica, MA). The analytes included IL-4, IL-10, IL-11, IL-13, IL-Ira, IFN-γ, sTNF-RI, sTNF-RII, IL-la, IL-1β, TNF-a, IL-17, IL-18, bFGF, TBF-βI, and TBF-P2.

[0144] The solution contains both anabolic (bFGF, TGF-βI, TGF-P2 (see Table 2)) and anti-inflammatory (IL-Ira, sTNF-RI, sTNF-RII, IL-4, IL-10, IL-11, IL-13, IFN-γ, (see Table 3)) cytokines without expressing large doses of catabolic cytokines (IL-la, IL-1β, TNF-a, IL-17, IL-18 (see Table 4)). The anti-inflammatory cytokines IL-Ira and sTNF-R are all detected in ng/mL quantities, while all of the catabolic analytes were in pg/mL quantities. However, donor-to-donor variability is detected. Correlations between the catabolic cytokines IL-1 and TNF-a and anti-inflammatory analytes IL-Ira and sTNF-R are compared, but no large correlations detected (Table 5). On average, there is about 13,260 times more IL-Ira than IL-la and about 7,561 times more than IL-1β.
Table 3. Anabolic cytokines in the solution.

<table>
<thead>
<tr>
<th>Donor</th>
<th>bFGF</th>
<th>TGF-β1</th>
<th>TGF-β2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.5</td>
<td>1,458,008</td>
<td>153,833</td>
</tr>
<tr>
<td>2</td>
<td>10.7</td>
<td>1,137,404</td>
<td>119,545</td>
</tr>
<tr>
<td>3</td>
<td>1.9</td>
<td>585,298</td>
<td>70,544</td>
</tr>
<tr>
<td>4</td>
<td>4.9</td>
<td>1,342,442</td>
<td>162,707</td>
</tr>
<tr>
<td>5</td>
<td>20.0</td>
<td>1,579,361</td>
<td>204,670</td>
</tr>
<tr>
<td>6</td>
<td>7.7</td>
<td>1,393,746</td>
<td>170,345</td>
</tr>
<tr>
<td>7</td>
<td>13.9</td>
<td>1,474,155</td>
<td>174,502</td>
</tr>
<tr>
<td>Average</td>
<td>12.5</td>
<td>1,281,488</td>
<td>150,878</td>
</tr>
<tr>
<td></td>
<td>± 5.5</td>
<td>± 336,345</td>
<td>± 43,617</td>
</tr>
</tbody>
</table>

Table 4. Anti-inflammatory cytokines in the solution.

<table>
<thead>
<tr>
<th>Donor</th>
<th>IFN-γ</th>
<th>IL-4</th>
<th>IL-10</th>
<th>IL-13</th>
<th>IL-1ra</th>
<th>TNF-R1</th>
<th>TNF-R2</th>
<th>IL-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><0.4</td>
<td>2.1</td>
<td>0.5</td>
<td>3.5</td>
<td>9,660</td>
<td>2,728</td>
<td>2,249</td>
<td><2.0</td>
</tr>
<tr>
<td>2</td>
<td><0.4</td>
<td>1.3</td>
<td>0.3</td>
<td>2.8</td>
<td>17,477</td>
<td>5,120</td>
<td>2,900</td>
<td><2.0</td>
</tr>
<tr>
<td>3</td>
<td><0.4</td>
<td><0.8</td>
<td>0.3</td>
<td>0.1</td>
<td>23,126</td>
<td>6,247</td>
<td>2,446</td>
<td><2.0</td>
</tr>
<tr>
<td>4</td>
<td>40.4</td>
<td>59.9</td>
<td>8.9</td>
<td>19.9</td>
<td>10,458</td>
<td>4,374</td>
<td>2,612</td>
<td><2.0</td>
</tr>
<tr>
<td>5</td>
<td>30.2</td>
<td>33.9</td>
<td>23.3</td>
<td>15.8</td>
<td>13,462</td>
<td>2,763</td>
<td>1,394</td>
<td><2.0</td>
</tr>
<tr>
<td>6</td>
<td>2.6</td>
<td>23.3</td>
<td>1.4</td>
<td>25.6</td>
<td>8,813</td>
<td>2,992</td>
<td>2,716</td>
<td><2.0</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>1.2</td>
<td>0.6</td>
<td>1.8</td>
<td>11,277</td>
<td>3,330</td>
<td>1,915</td>
<td><2.0</td>
</tr>
<tr>
<td>Average</td>
<td>10.7</td>
<td>17.5</td>
<td>5.0</td>
<td>9.9</td>
<td>13,468</td>
<td>3,936</td>
<td>2,319</td>
<td><2.0</td>
</tr>
<tr>
<td></td>
<td>± 17.0</td>
<td>±22.9</td>
<td>± 8.7</td>
<td>±10.3</td>
<td>± 5,154</td>
<td>± 1,356</td>
<td>± 520</td>
<td>± 0</td>
</tr>
<tr>
<td></td>
<td>± SD</td>
<td>± 14.1</td>
<td>±241</td>
<td>± 0.8</td>
<td>± 0.8</td>
<td>± 183</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Catabolic cytokines in the solution.

<table>
<thead>
<tr>
<th>Donor</th>
<th>IL-17</th>
<th>TNF-α</th>
<th>!IL-1α</th>
<th>IL-1β</th>
<th>IL-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
<td>16.0</td>
<td><0.8</td>
<td>1.5</td>
<td>239</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td><2.3</td>
<td>2.5</td>
<td>3.3</td>
<td>559</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td><2.3</td>
<td>1.8</td>
<td>2.3</td>
<td>511</td>
</tr>
<tr>
<td>4</td>
<td>28.9</td>
<td>195</td>
<td>0.8</td>
<td>1.3</td>
<td>329</td>
</tr>
<tr>
<td>5</td>
<td>33.8</td>
<td>66.1</td>
<td>0.8</td>
<td>2.0</td>
<td>450</td>
</tr>
<tr>
<td>6</td>
<td>22.0</td>
<td>105</td>
<td>0.3</td>
<td>1.7</td>
<td>333</td>
</tr>
<tr>
<td>7</td>
<td>6.7</td>
<td><2.3</td>
<td>1.9</td>
<td>1.0</td>
<td>787</td>
</tr>
<tr>
<td>Average</td>
<td>13.8</td>
<td>141</td>
<td>13</td>
<td>1.9</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>± SD</td>
<td>± 14.1</td>
<td>±241</td>
<td>± 0.8</td>
<td>± 183</td>
</tr>
</tbody>
</table>
Example 2
Generation of IL-1ra from Platelet-Rich Plasma.

[0145] An IL-1ra-rich solution is created as follows. Whole blood (70 mL) anticoagulated (10%) with ACD-A (Braintree, Massachusetts, USA) is drawn from 5 healthy volunteers. A portion (10 mL) is reserved for a whole blood measurement. Platelet-rich plasma (PRP) (6 mL) is produced using the GPS® II System (Biomet Biologies, LLC, Warsaw, Indiana, USA). Complete blood counts are collected for the whole blood and PRP samples following a validated procedure, as described in Woodell-May JE, Ridderman DN, Swift MJ, Higgins J. "Producing Accurate Platelet Counts for Platelet Rich Plasma: Validation of a Hematology Analyzer and Preparation Techniques for Counting" J. Craniofac. Surg. (2005) Sep. 16(5):749-56.

[0146] Following the PRP production, 5 mL of the PRP is added to a modified plasma concentration device (Plasmax™, Biomet Biologies LLC, Warsaw, Indiana, USA) and incubated with polyacrylamide desiccating beads in the device for 24 hours at room temperature. Following the contact with polyacrylamide beads the electromagnetic field, the plasma concentration device is centrifuged to separate the serum fraction.

[0147] To analyze baseline IL-1ra levels at time zero, the whole blood and PRP samples are activated with 50 μL of thrombin and 10 % CaCl2 (1,000 units/mL). A blood clot is formed and incubated for 30 minutes at room temperature. Following incubation, the clot is centrifuged for 5 minutes at 3,000 rpm. Serum is collected from the clots and retained for ELISA analysis. The serum fraction from the plasma concentrator does not require activation by thrombin, and is tested directly. All samples are analyzed for IL-1ra using an ELISA kit (IL-1ra Quantikine™ Kit, R&D Systems, Minneapolis, Minnesota, USA).

[0148] The PRP samples result in about an eight-fold increase in platelets, about five-fold increase in total white blood cells (WBCs), about nine-fold increase in the
monocyte fraction of the WBCs, and about a three-fold increase in the PMN fraction of the WBCs. The IL-1ra production in the whole blood and PRP samples is correlated most closely to the WBC concentration. The five-fold increase in the PRP is likely due to the increase in WBCs, and both the whole blood and PRP IL-1ra values can be considered baseline IL-1ra content. This is in contrast to the 195-fold increase in IL-1ra following incubation in the plasma concentrator. This plasma concentration device typically results in a 3-fold increase in plasma protein concentration due to a volume reduction caused by the desiccation process. This 3-fold decrease in volume does not account for the levels of increase seen in the amount of IL-1ra. Therefore, this level of increase indicates stimulation of WBCs to produce IL-1ra during the contact with the solid extraction material (e.g., polyacrylamide beads) and electromagnetic field stimulation.

[0149] Correlation analysis demonstrates that IL-1ra production is more closely correlated with the increase in WBCs than the platelet content. The IL-1ra levels do not correlate as closely with the WBC population in the PRP. This is not surprising since the WBC are not activated, and the serum is collected by thrombin activation of the plasma. However, it is possible that the WBC, once activated in the plasma concentration device, participate in the significant production of IL-1ra seen in this example.

Example 3

Production of Protein Solution from PRP

[0150] Anticoagulated blood (120 cc) is collected from 5 human donors. Platelet-rich plasma (PRP) is prepared using GPS® III disposables (Biomet Biologies LLC, Warsaw, Indiana, USA). PRP is loaded into modified plasma concentration devices (Plasmax™, Biomet Biologies LLC, Warsaw, Indiana, USA) and processed. The output is divided into 4 groups: IL-1ra in concentrated plasma with and without thrombin activation (1000 U/mL in 1M CaCl2), or cell-free IL-1ra with and without thrombin activation. IL-1ra is measured using ELISA (R&D Systems) over time.

[0151] The PRP contacts polyacrylamide beads in the Plasmax™ device while electromagnetic field stimulation is provided using a capacitively coupled electromagnetic field.

[0152] Unclotted PRP produces an average of about 50 ng over 24 hrs. The cell-free samples produce about 34 ng without changing over 24 hrs. Once clotted, the
elution of IL-1ra is slowed, with only about 30% being eluted after 10 hours. Release in the cell-free samples is also delayed, but eluted 100% of available IL-1ra after 10 hours.

Example 4

Generation of Protein Solution and Characterization of Cytokine Levels In Healthy Subjects and Subjects Suffering from an Inflammatory Disorder

[0153] An Autologous Protein Solution (APS) from healthy patients are prepared as follows for the measurement of growth factors. 72 ml of anticoagulated whole blood are drawn by venipuncture from each of six donors. 3 ml of each donor's anticoagulated whole blood are aliquoted into microcentrifuge tubes and frozen at -50°C. 60 ml of the anticoagulated whole blood is loaded into GPS® III disposable devices (Biomet Biologies LLC, Warsaw, Indiana, USA), which is processed according to the manufacturer's instructions to produce PRP. The PRP is removed from the GPS® III devices and added to Plasmax™ devices (Biomet Biologies LLC, Warsaw, Indiana, USA), which is processed according to the manufacturer's instructions to produce APS. APS is extracted from each device, aliquoted into microcentrifuge tubes, and frozen at -50°C.

Each sample, whole blood and PRP, is subjected to three freeze-thaw cycles. Quantikine Human Immunoassays (R&D Systems, Inc., Minneapolis, MN) for VEGF, PDGF-BB, PDGF-AB, EGF, TGF-βI, TGF-P2, and IGF-1 are run in duplicate according to the manufacturer's instructions for each APS and whole blood sample.

[0154] APS from healthy patients is prepared as above for the measurement of anti-inflammatory cytokines. Quantikine Human Immunoassays (R&D Systems, Inc., Minneapolis, MN) for IL-1ra, IL-1β, IL-8, sTNF-RI, TNF-a, IL-6, sTNF-RII, IL-10, IL-13, and IL-4 are run in duplicate according to the manufacturer's instructions for each APS and whole blood sample. Immunoassays are also performed to detect hepatocyte growth factor (HGF) and soluble IL-1RII.

[0155] APS from 105 osteoarthritis patients is prepared as above for the measurement of growth factors anti-inflammatory cytokines. The APS is stored at -50°C or in dry ice.

[0156] Cytokine concentrations are compared between healthy donors and OA patients in baseline blood and APS. IL-1β is concentrated at a higher level in OA
patients, but the fold increase is still much lower than that of IL-1ra. Other cytokines and growth factors that are concentrated at least to the level of that observed in healthy donors include sTNF-RI, IGF-I, IL-8, VEGF, and IL-6. The soluble cytokines sTNF-RII and sIL-IRII are concentrated to a level not quite as high but very similar to the healthy concentration level. The results are displayed in Table 7.

Table 7. Concentration of growth factors and anti-inflammatory cytokines from APS derived from healthy patients and patients with osteoarthritis (in pg/ml).

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Baseline</th>
<th>APS</th>
<th>Fold Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>StDev</td>
<td>Average</td>
</tr>
<tr>
<td>VEGF</td>
<td>Healthy</td>
<td>276</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>484</td>
<td>201</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Healthy</td>
<td>3.4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>3.3</td>
<td>1.1</td>
</tr>
<tr>
<td>IL-8</td>
<td>Healthy</td>
<td>74</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>73.5</td>
<td>29.6</td>
</tr>
<tr>
<td>IL-6</td>
<td>Healthy</td>
<td>3.1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>1.8</td>
<td>1.3</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Healthy</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>2.4</td>
<td>2</td>
</tr>
<tr>
<td>IL-1ra</td>
<td>Healthy</td>
<td>8092</td>
<td>2536</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>7576</td>
<td>2469</td>
</tr>
<tr>
<td>sTNF-RII</td>
<td>Healthy</td>
<td>2485</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>1491</td>
<td>492</td>
</tr>
<tr>
<td>PDGF-AB</td>
<td>Healthy</td>
<td>13400</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>16799</td>
<td>5731</td>
</tr>
<tr>
<td>PDGF-BB</td>
<td>Healthy</td>
<td>4702</td>
<td>1027</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>5306</td>
<td>2422</td>
</tr>
<tr>
<td>IGF-I</td>
<td>Healthy</td>
<td>114000</td>
<td>30000</td>
</tr>
<tr>
<td></td>
<td>OA</td>
<td>79072</td>
<td>22137</td>
</tr>
<tr>
<td>EGF</td>
<td>Healthy</td>
<td>240</td>
<td>71</td>
</tr>
</tbody>
</table>
Example 5

Generation of a Protein Solution from Adipose Tissue.

[0157] Adipose stromal cells are prepared as follows. Adipose tissue is minced into small pieces (about 1 cm3) and digested in 2 mg/mL type I collagenase (Worthington Biochemical Corp., Lakewood, N.J.) under intermittent mechanical agitation in a water bath at 37°C for 180 minutes. Digestion can be neutralized by the addition of medium or a blood-derived solution. The cell suspension is centrifuged (300xg for 7 minutes at 25°C) followed by removal of the supernatant from the cell pellet. The pellet is then re-suspended in a compatible solution to provide a liquid volume comprising adipose stromal cells.

[0158] Alternatively, the pellet is suspended with whole blood obtained from the subject, and added to a GPS™ Platelet Concentrate System, from Biomet Biologies, Inc. (Warsaw, Ind.). Following centrifugation, the platelet-rich plasma layer, which also contains the adipose stromal cells, is extracted from the system.

[0159] The adipose stromal cells, optionally including platelet-rich plasma, are then combined with polyacrylamide beads and subjected to a pulsed electromagnetic field by using a pair of Helmholtz coils to stimulate production of IL-1ra. The adipose stromal cells and polyacrylamide beads are separated from the liquid solution to obtain a solution rich in IL-1ra.

Example 6

Generation of Protein Solution From Lipoaspirate.
A therapeutic composition of IL-1ra is generated from stromal cells isolated from adipose tissue. Isolation of human stromal cells is performed by obtaining human subcutaneous adipose tissue from lipoaspiration/liposuction procedures and digesting the tissue in collagenase type I solution (Worthington Biochemical Corp., Lakewood, N.J.) under gentle agitation for 1 hour at 37°C. The dissociated cells are filtered with 500 μm and 250 μm Nitex filters. The fraction is centrifuged at 300×g for 5 minutes. The supernatant is discarded and the cell pellet is re-suspended in a compatible liquid solution, such as a blood-derived solution.

Non-limiting Discussion of Terminology

The headings (such as "Introduction" and "Summary") and sub-headings used herein are intended only for general organization of topics within the present disclosure, and are not intended to limit the disclosure of the technology or any aspect thereof. In particular, subject matter disclosed in the "Introduction" may include novel technology and may not constitute a recitation of prior art. Subject matter disclosed in the "Summary" is not an exhaustive or complete disclosure of the entire scope of the technology or any embodiments thereof. Classification or discussion of a material within a section of this specification as having a particular utility is made for convenience, and no inference should be drawn that the material must necessarily or solely function in accordance with its classification herein when it is used in any given composition.

The disclosure of all patents and patent applications cited in this disclosure are incorporated by reference herein.

The description and specific examples, while indicating embodiments of the technology, are intended for purposes of illustration only and are not intended to limit the scope of the technology. Equivalent changes, modifications and variations of specific embodiments, materials, compositions and methods may be made within the scope of the present technology, with substantially similar results. Moreover, recitation of multiple embodiments having stated features is not intended to exclude other embodiments having additional features, or other embodiments incorporating different combinations of the stated features. Specific examples are provided for illustrative purposes of how to make and use the compositions and methods of this technology and, unless explicitly stated otherwise, are not intended to be a representation that given embodiments of this technology have, or have not, been made or tested.
[0164] As used herein, the words "prefer" or "preferable" refer to embodiments of the technology that afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the technology.

[0165] As used herein, the word "include," and its variants, is intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the materials, compositions, devices, and methods of this technology. Similarly, the terms "can" and "may" and their variants are intended to be non-limiting, such that recitation that an embodiment can or may comprise certain elements or features does not exclude other embodiments of the present technology that do not contain those elements or features.

[0166] Although the open-ended term "comprising," as a synonym of non-restrictive terms such as including, containing, or having, is used herein to describe and claim embodiments of the present technology, embodiments may alternatively be described using more limiting terms such as "consisting of" or "consisting essentially of." Thus, for any given embodiment reciting materials, components or process steps, the present technology also specifically includes embodiments consisting of, or consisting essentially of, such materials, components or processes excluding additional materials, components or processes (for consisting of) and excluding additional materials, components or processes affecting the significant properties of the embodiment (for consisting essentially of), even though such additional materials, components or processes are not explicitly recited in this application. For example, recitation of a composition or process reciting elements A, B and C specifically envisions embodiments consisting of, and consisting essentially of, A, B and C, excluding an element D that may be recited in the art, even though element D is not explicitly described as being excluded herein. Further, as used herein the term "consisting essentially of recited materials or components envisions embodiments "consisting of" the recited materials or components.

[0167] "A" and "an" as used herein indicate "at least one" of the item is present; a plurality of such items may be present, when possible. "About" when applied to values indicates that the calculation or the measurement allows some slight imprecision in the
value (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If, for some reason, the imprecision provided by "about" is not otherwise understood in the art with this ordinary meaning, then "about" as used herein indicates at least variations that may arise from ordinary methods of measuring or using such parameters.

[0168] As referred to herein, ranges are, unless specified otherwise, inclusive of endpoints and include disclosure of all distinct values and further divided ranges within the entire range. Thus, for example, a range of "from A to B" or "from about A to about B" is inclusive of A and of B. Disclosure of values and ranges of values for specific parameters (such as temperatures, molecular weights, weight percentages, etc.) are not exclusive of other values and ranges of values useful herein. It is envisioned that two or more specific exemplified values for a given parameter may define endpoints for a range of values that may be claimed for the parameter. For example, if Parameter X is exemplified herein to have value A and also exemplified to have value Z, it is envisioned that Parameter X may have a range of values from about A to about Z. Similarly, it is envisioned that disclosure of two or more ranges of values for a parameter (whether such ranges are nested, overlapping or distinct) subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges. For example, if Parameter X is exemplified herein to have values in the range of 1-10, or 2-9, or 3-8, it is also envisioned that Parameter X may have other ranges of values including 1-9, 1-8, 1-3, 1-2, 2-10, 2-8, 2-3, 3-10, and 3-9.
CLAIMS

What is claimed is:

1. A method for treating respiratory disorder in a human or other mammalian subject, comprising topically administering a composition to the tissue at the site of the disorder in the subject, the composition comprising at least two proteins selected from the group consisting of IL-1ra, sTNF-RI, sTNF-RII, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-βI, and sIL-1RII, wherein the concentration of each protein in the composition is greater than the concentration of the protein in normal blood.

2. The method according to Claim 1, wherein the composition is a blood derived protein solution that is autologous to the subject.

3. The method according to Claim 2, wherein the blood derived protein solution comprises
 (a) at least about 10,000 pg/ml IL-1ra;
 (b) at least about 1,200 pg/ml sTNF-RI; and
 (c) a protein selected from the group consisting of sTNF-RII, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-βI, and sIL-1RII, and mixtures thereof, wherein the protein has a concentration higher than the protein's baseline concentration in normal blood
 (d) blood cells, selected from the group consisting of monocytes, leukocytes, platelets and combinations thereof.

4. A method for treating chronic obstructive pulmonary disease in a human or other mammalian subject, comprising topically administering a composition to lung tissue of said subject, the composition comprising:
 (a) interleukin-1 receptor antagonist (IL-1ra), at a concentration at least 3 times greater than the concentration of IL-1ra in normal blood;
 (b) soluble tissue necrosis factor-rl (sTNF-rl), at a concentration at least 2 times greater than the concentration of IL-1ra in normal blood;
(c) white blood cells at a concentration at least 2 times greater than the concentration of white blood cells in normal blood; and
(d) platelets, at a concentration at least 2 times greater than the concentration of platelets in normal blood.

5. The method according to Claim 4, wherein the concentration of IL-lra is from about 10,000 pg/ml to about 50,000 pg/ml, and the concentration of TNF-rl from about 2,000 pg/ml to about 4,000 pg/ml.

6. The method according to Claim 4, wherein the composition further comprises monocytes, lymphocytes, and granulocytes.

7. The method according to Claim 4, wherein the composition further comprises a protein selected from the group consisting of sTNF-RII, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-β1, and sIL-lRII, and mixtures thereof, wherein the concentration of the protein in the composition is greater than the concentration of the protein in normal blood.

8. The method according to Claim 4, wherein the composition further comprises concentrated bone marrow aspirate.

9. The method according to Claim 1, wherein composition is made by a process comprising
 (a) obtaining a cytokine cell suspension from the subject;
 (b) fractionating the liquid to produce an autologous protein solution comprising interleukin-1 receptor antagonist;
 (c) administering the autologous protein solution to lung tissue of the subject.

10. A method for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering a composition to the tissue at the site of the disorder in the subject a cell tissue material selected from the group consisting of bone marrow-derived mononuclear cells, platelets, bone marrow
aspirate, concentrated bone marrow aspirate, adipose stromal cells, and combinations thereof.

11. The method according to Claim 9, wherein the cell tissue material is concentrated bone marrow aspirate.

12. The method according to Claim 11, further comprising administering to the site a protein solution comprising
 (a) at least about 10,000 pg/ml IL1-ра;
 (b) at least about 1,200 pg/ml sTNF-RI; and
 (c) a protein selected from the group consisting of sTNF-II, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-β1, and sIL-IRII, and mixtures thereof, wherein the protein has a concentration higher than the protein's baseline concentration in normal blood

13. The method according to Claim 12, wherein the protein solution is made by a process comprising
 (a) obtaining a cytokine cell suspension from the subject;
 (b) fractionating the liquid to produce an autologous protein solution comprising interleukin-1 receptor antagonist;
 (c) administering the autologous protein solution to lung tissue of the subject.

14. The method according to Claim 13, wherein the cytokine cell suspension comprises whole blood, bone marrow aspirate, adipose tissue, urine, fractions thereof, and mixtures thereof.

15. The method according to Claim 10, wherein the liquid is selected from the group consisting of concentrated bone marrow aspirate, platelet rich plasma, and mixtures thereof.

16. The method according to Claim 13, wherein the fractionating comprises placing blood in a container a separator operable to separate the blood into two or more fractions; and centrifuging the separator to create a platelet-rich plasma fraction.
17. The method according to Claim 16, wherein the fractionating further comprises contacting the platelet-rich plasma with polyacrylamide beads, and separating the polyacrylamide beads from the platelet-rich plasma to form the autologous protein solution.

18. The method according to Claim 13, wherein the fractionating comprises:
 (1) loading tissue comprising whole blood, bone marrow aspirate, or both, and an anticoagulant into a tube comprising a buoy disposed in the tube, wherein the buoy has a density such that the buoy reaches an equilibrium position upon centrifugation of the tissue in the tube, the equilibrium position being between a first fraction and a second fraction comprising cytokine-producing cells, the second fraction having a concentration of cytokine-producing cells greater than the concentration of cytokine-producing cells in the first fraction;
 (2) centrifuging the tube so that the buoy defines an interface between the first fraction and the second fraction;
 (3) collecting the second fraction;
 (4) loading the second fraction into a concentrator assembly comprising a solid extraction material and contacting the second fraction with the solid extraction material; and
 (5) rotating the concentrator assembly at centrifugal speeds to separate from the solid extraction material the solution rich in interleukin-1 receptor antagonist having a concentration of interleukin-1 receptor antagonist greater than that of the whole blood.

19. The method according to Claim 18, wherein the solid extraction material is selected from the group consisting of corundum, quartz, titanium, dextran, agarose, polyacrylamide, polystyrene, polyethylene, polyvinyl chloride, polypropylene, and combinations thereof.
20. The method according to Claim 18, wherein the solid extraction material comprises a form selected from the group consisting of a bead, fiber, powder, porous material, and combinations thereof.

21. The method according to Claim 10, comprising:

(d) obtaining bone marrow aspirate from the subject;
(e) concentrating the bone marrow aspirate to produce a concentrated bone marrow aspirate (cBMA);
(f) administering the cBMA to the subject.

22. The method according to Claim 12, wherein the administering of the cBMA is performed concurrently with the administering of the protein solution.

23. The method according to Claim 12, wherein the protein solution is saturated with hydrogen in the device prior to the administering.

24. The method according to Claim 13, wherein the fractionating is performed at the point-of-care of the subject.
Fig. 1
Fig. 6

1. ISOLATE AUTOLOGOUS PROTEIN SOLUTION (APS)
2. ISOLATE CONCENTRATED BMA (cBMA)
3. COMBINE APS AND cBMA TO FORM AN AUTOLOGOUS THERAPEUTIC COMPOSITION
4. SATURATE THE AUTOLOGOUS THERAPEUTIC COMPOSITION WITH HYDROGEN GAS
5. ADMINISTER THE AUTOLOGOUS THERAPEUTIC COMPOSITION TO A SUBJECT IN NEED THEREOF
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A61K35/14</th>
<th>A61K38/17</th>
<th>A61P11/00</th>
</tr>
</thead>
</table>

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>A61K</th>
<th>A61P</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- EPO-Internal
- WPI Data
- EMBASE
- BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) one of which is cited to establish the publication date of another citatio n or other special reason as specified
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

5 May 2014

Date of mailing of the international search report

24/07/2014

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Fayos, Cecile
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Wo 2008/021237 AI (ARUB0R CORP [US]; LEVITT ROY C [US]) 21 February 2008 (2008-02-21) the whole document claims 1, 2, 9, 19, 21 page 19, line 4</td>
<td>1-9</td>
</tr>
<tr>
<td>Y</td>
<td>Wo 2006/043972 AI (AMPROTEIN CORP [US]; HUI MIHZHU [US]) 27 April 2006 (2006-04-27) the whole document claims 1, 7, 8, 13, 14, 15 page 10, last paragraph - page 11, paragraph 1</td>
<td>1-9</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Y</td>
<td>the whole document</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2005)
Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

- see additional sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
 - 3-8(completion)
 - 1, 2, 9(partially)

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
This International Search Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 3-8 completely; 1, 2, 9 (partially)
 A method for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering a composition to the tissue at the site of the disorder in the subject, the composition comprising IL-1ra and sTNF-RI, wherein the concentration of each protein in the composition is greater than the concentration of the protein in normal blood.

2-55. claims: 1, 2, 9 (all partially)
 A method for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering a composition to the tissue at the site of the disorder in the subject, the composition comprising the combinations of at least two proteins selected from the group consisting of IL-1ra, sTNF-RI, sTNF-RIL, IGF-I, EGF, HGF, PDGF-AB, PDGF-BB, VEGF, TGF-01, and sIL-IRI-I, other than the combination of at least IL-1ra and sTNF-RI wherein the concentration of each protein in the composition is greater than the concentration of the protein in normal blood.

56. claims: 10-24 (partially)
 A method for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering a composition of bone marrow-derived mononuclear cells to the tissue at the site of the disorder in the subject.

57. claims: 10-24 (partially)
 A method for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering platelets to the tissue at the site of the disorder in the subject.

58. claims: 10-24 (partially)
 A method for treating a respiratory disorder in a human or other mammalian subject, comprising topically administering a bone marrow aspirate or concentrated bone marrow aspirate to the tissue at the site of the disorder in the subject.

59. claims: 10-24 (partially)
 A method for treating a respiratory disorder in a human or
other mammalian subject, comprising topically administering adipose stromal cells to the tissue at the site of the disorder in the subject.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2008021237 Al</td>
<td>21-02-2008</td>
<td>AU 2007284690 Al</td>
<td>21-02-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2660519 Al</td>
<td>21-02-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2068889 Al</td>
<td>17-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010500360 A</td>
<td>07-01-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010209357 Al</td>
<td>19-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008021237 Al</td>
<td>21-02-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0516350 Al</td>
<td>02-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2583937 Al</td>
<td>27-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008515970 A</td>
<td>15-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080022539 A</td>
<td>11-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 554481 A</td>
<td>30-04-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006043972 Al</td>
<td>27-04-2006</td>
</tr>
<tr>
<td>US 2009220482 Al</td>
<td>03-09-2009</td>
<td>EP 2259774 Al</td>
<td>15-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2567692 Al</td>
<td>13-03-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2620139 Al</td>
<td>31-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009220482 Al</td>
<td>03-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009108890 Al</td>
<td>03-09-2009</td>
</tr>
<tr>
<td>US 2010055087 Al</td>
<td>04-03-2010</td>
<td>AU 2010292553 Al</td>
<td>15-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2772067 Al</td>
<td>17-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102596173 A</td>
<td>18-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2470163 Al2</td>
<td>04-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013502929 A</td>
<td>31-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014012703 A</td>
<td>23-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010055087 Al</td>
<td>04-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011031524 A2</td>
<td>17-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003092684 Al</td>
<td>15-05-2003</td>
</tr>
</tbody>
</table>