发明名称

稀土离子掺杂的 LaBr₃ 微晶玻璃及其制备方法

摘要

本发明公开了一种稀土离子掺杂的 LaBr₃ 微晶玻璃及其制备方法，其摩尔百分组成为 B₂O₃: 50~70mol %，AlF₃:4~10mol %，NaF:3~15mol %，La₂O₃:1~15mol %，LaBr₃:5~20mol %，LnBr₃:0.5~10mol %，其中 LnBr₃ 为 CeBr₃、EuBr₃、TbBr₃、PrBr₃、NdBr₃ 中的一种；其制备方法是首先用熔融法制备出 B₂O₃-AlF₃-NaF-La₂O₃-LaBr₃-LnBr₃ 系玻璃，经热处理后得到透明的 LaBr₃ 微晶玻璃。本发明的 LaBr₃ 微晶玻璃，能抗潮解，机械性能好，短波长蓝紫光透过率较高，具有极强的光输出，衰减小，好的能量分辨率和时间分辨率等性能，该微晶玻璃的制备方法简单，生产成本较低。
1. 一种稀土离子掺杂的LaBr₃微晶玻璃，其摩尔百分组成为：

B₂O₃: 50~70mol% AlF₃: 4~10mol% NaF: 3~15mol%
La₂O₃: 1~15mol% LaBr₃: 5~20mol% LnBr₃: 0.5~10mol%

其中LnBr₃为CeBr₃、EuBr₃、TbBr₃、PrBr₃、NdBr₃中的一种。

2. 权利要求1所述的稀土离子掺杂的LaBr₃微晶玻璃，其特征在于该闪烁微晶玻璃原料组分为：B₂O₃: 70mol% AlF₃: 10mol% NaF: 3mol% La₂O₃: 10mol% LaBr₃: 5mol%
CeBr₃: 2mol%。

3. 权利要求1所述的稀土离子掺杂的LaBr₃微晶玻璃，其特征在于该闪烁微晶玻璃原料组分为：B₂O₃: 50mol% AlF₃: 4mol% NaF: 15mol% La₂O₃: 1mol% LaBr₃: 20mol%
EuBr₃: 10mol%。

4. 权利要求1所述的稀土离子掺杂的LaBr₃微晶玻璃，其特征在于该闪烁微晶玻璃原料组分为：B₂O₃: 60.5mol% AlF₃: 4mol% NaF: 10mol% La₂O₃: 15mol% LaBr₃: 10mol%
TbBr₃: 0.5mol%。

5. 根据权利要求1所述的稀土离子掺杂的LaBr₃微晶玻璃的制备方法，其特征在于包括下列具体步骤：

(1) B₂O₃·AlF₃·NaF·La₂O₃·LaBr₃·LnBr₃系玻璃的熔制：按原料组分称取分析纯的各原料，各占原料总量5%的NH₄HF₂、NH₄HBr₂，将原料混合均匀，然后将石英坩埚或刚玉坩埚加上盖熔化，熔化温度1350~1450℃，保温1~2小时，将玻璃熔体倒入铸铁模内，然后置于马弗炉中进行退火，于玻璃转变温度Tg温度保温2小时后，以10℃/小时的速率降温至50℃，关闭马弗炉电源自动降温至室温，取出玻璃，用于微晶化热处理；

(2) LaBr₃微晶玻璃的制备：根据玻璃的热分析实验数据，将制得的玻璃置于氢气精密退火炉中，在其第一析晶峰附近温度热处理4~6小时，然后再以5℃/小时的速率降温至50℃，关闭精密退火炉电源，自动降温至室温，得到透明的稀土离子掺杂的LaBr₃微晶玻璃。
稀土离子掺杂的 LaBr₃ 微晶玻璃及其制备方法

技术领域
[0001] 本发明涉及一种稀土离子掺杂的微晶玻璃，尤其是涉及一种用作闪烁材料的稀土离子掺杂的 LaBr₃ 微晶玻璃及其制备方法。

背景技术
[0002] 闪烁材料是一种在高能射线（如 x 射线、γ 射线）或其它放射性粒子的激发下能够发出可见光的光功能材料，被广泛应用于核医学诊断、高能物理与核物理实验室研究、工业及地质勘探等领域。根据应用领域的不同对闪烁体的要求也不尽相同，但一般情况下闪烁材料应具备下列特性：发光效率高、荧光衰减快，密度较大，成本低和抗辐射性能好等特点。闪烁晶体一般具有耐辐照、快衰减、高光输出等优点，但闪烁晶体也存在以下严重的缺点：制备困难，价格昂贵。而稀土离子掺杂的闪烁玻璃虽然成本低，易制备大尺寸玻璃，但它在光输出、重复次数等方面难以晶体相比，因此其应用也受到很大限制。
[0003] LaBr₃ 晶体是一种可掺杂稀土离子的闪烁晶体基质，Ce³⁺ 掺杂的 LaBr₃ 晶体具有光输出高，快衰减，好的能量分辨率、时间分辨率和能线性响应，具有比稀土离子掺杂的氟化物晶体与氧化物晶体更高的发光效率，可使闪烁探测仪效率大大提高。Eu³⁺、Tb³⁺ 掺杂 LaBr₃ 晶体的闪烁性能也较优异，可用于安检、闪烁荧光屏等领域。但 LaBr₃ 晶体极易潮解、机械性能较差，易解理成片状、大尺寸晶体生长困难，价格昂贵等缺点影响了其实际应用。

发明内容
[0004] 本发明要解决的技术问题在于提供一种抗潮解、机械性能好、具有极强的光输出、快衰减、能量分辨率和时间分辨率好的稀土离子掺杂 LaBr₃ 微晶玻璃及其制备方法。
[0005] 本发明解决上述技术问题所采用的技术方案为：稀土离子掺杂的 LaBr₃ 微晶玻璃，其摩尔百分组成为：

[0006] B₂O₃：50～70mol% AlF₃：4～10mol% NaF：3～15mol%
[0007] La₂O₃：1～15mol% LaBr₃：5～20mol% LnBr₃：O.5～10mol%
[0008] 其中 LnBr₃ 为 CeBr₃、EuBr₃、TbBr₃、PrBr₃、NdBr₃ 中的一种。
[0009] 该闪烁微晶玻璃原料组分为：B₂O₃：70mol%、AlF₃：10mol%、NaF：3mol%、La₂O₃：10mol%、LaBr₃：5mol%、CeBr₃：2mol%。
[0010] 该闪烁微晶玻璃原料组分为：B₂O₃：50mol%、AlF₃：4mol%、NaF：15mol%、La₂O₃：1mol%、LaBr₃：20mol%、EuBr₃：10mol%。
[0011] 该闪烁微晶玻璃原料组分为：B₂O₃：60.5mol%、AlF₃：4mol%、NaF：10mol%、La₂O₃：15mol%、LaBr₃：10mol%、TbBr₃：0.5mol%。
[0012] 所述的稀土离子掺杂的 LaBr₃ 微晶玻璃的制备方法，包括下述步骤：
[0013] (1) B₂O₃-AlF₃-NaF-La₂O₃-LaBr₃-LnBr₃ 系玻璃的熔制；
[0014] 按原料组分称取各原料，各组分原料总重 5% 的 NaH₂F₂、NaH₂Br₃，将原料混合均匀，然后浇入石英坩埚或刚玉坩埚中熔化，熔化温度 1350～1450℃，保温 1～2 小时，将
玻璃熔体倒入铸铁模中，然后置于马弗炉中进行退火，于玻璃转变温度 T_g 温度保温 2 小时后，以 $10^\circ C / 小时$ 的速率降温至50℃，关闭马弗炉电源自动降温至室温，取出玻璃，用于微晶化热处理。

[0015] (2) LaBr_3 微晶玻璃制备：

[0016] 根据玻璃的热分析（DTA）实验数据，将制得的玻璃置于氮气精密退火炉中在其第一析晶峰附近温度热处理4～6小时，然后再以5℃ / 小时的速率降温至50℃，关闭精密退火炉电源，自动降温至室温，得到透明的稀土离子掺杂的 LaBr_3 微晶玻璃。

[0017] 与现有技术相比，本发明的优点在于：该微晶玻璃由氟溴化合物组成，短波长的透过性能好，具有 LaBr_3 晶体基质材料的优越闪烁性能和氧化物玻璃的机械强度、稳定性和易于加工的特点，克服了 LaBr_3 单晶体极易潮解、机械性能较差、易解理成片状等缺点；经实验表明，按本发明配方和制备方法，析出稀土离子掺杂 LaBr_3 晶相，制得的稀土离子掺杂 LaBr_3 微晶玻璃透明，能抗潮解、机械性能好、短波长蓝紫光透过率较高，具有极强的光输出，快衰减，好的能量分辨率和时间分辨率等性能，可使闪烁探测仪效率大大提高。该微晶玻璃的制备方法简单，生产成本较低。

附图说明

[0018] 图 1 为实施例一微晶化热处理后样品的 X 射线衍射 (XRD) 图。
[0019] 图 2 为实施例一 X 射线激发的 Ce^{3+} 离子掺杂 LaBr_3 微晶玻璃的荧光光谱。
[0020] 图 3 为实施例二 X 射线激发的 Eu^{3+} 离子掺杂 LaBr_3 微晶玻璃的荧光光谱。
[0021] 图 4 为实施例三 X 射线激发的 Tb^{3+} 离子掺杂 LaBr_3 微晶玻璃的荧光光谱。

具体实施方式

[0022] 以下结合附图实施例对本发明作进一步详细描述。
[0023] 实施例一：表 1 为实施例一的玻璃配方及第一析晶温度值。
[0024] 表 1

<table>
<thead>
<tr>
<th>原料</th>
<th>B_2O_3</th>
<th>AlF_3</th>
<th>NaF</th>
<th>La_2O_3</th>
<th>LaBr_3</th>
<th>CeBr_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>组分（mol%）</td>
<td>70</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>玻璃透明情况</td>
<td>透明</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一析晶温度（℃）</td>
<td>655</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0026] 具体制备过程如下：第一步，按表 1 中的配方称量 50 克分析纯原料，加 2.5 克 NH_3HF_2、2.5 克 NH_4Br_2，将原料混合均匀后倒进石英坩埚中熔化，熔化温度 1350℃，保温 2 小时，将玻璃熔体倒入铸铁模中，然后置于马弗炉中进行退火，于玻璃转变温度 T_g 温度保温 2 小时后，以 $10^\circ C / 小时$ 的速率降温至50℃，关闭马弗炉电源自动降温至室温，取出玻璃；第二步，根据玻璃的热分析（DTA）实验数据，得到第一析晶温度 655℃，将制得的玻璃置于氮气精密退火炉中在 675℃热处理 6 小时，然后再以5℃ / 小时的速率降温至50℃，关闭精密退火炉电源自动降温至室温，得到透明的 Ce^{3+} 掺杂的 LaBr_3 微晶玻璃样品。
对制备的 LaBr₃ 微晶玻璃进行 X 射线衍射测试，得到玻璃经微晶化处理后的 XRD 图如图 1 所示，其结果如下，经过热处理得到的样品的 XRD 衍射峰与 LaBr₃ 晶相的标准 XRD 图的主要衍射峰都相符，因此得到的材料是 LaBr₃ 晶相的微晶玻璃。而 X 射线激发的 Ce³⁺ 离子掺杂 LaBr₃ 微晶玻璃的荧光光谱如图 2 所示，发光峰强度很大。掺 Ce³⁺ 离子 LaBr₃ 微晶玻璃光输出可达 58000ph/MeV 时，衰减时间为 35ns。

实施例二：表 2 为实施例二的玻璃配方及第一析晶温度值。

<table>
<thead>
<tr>
<th>原料</th>
<th>B₂O₃</th>
<th>AlF₃</th>
<th>NaF</th>
<th>La₂O₃</th>
<th>LaBr₃</th>
<th>EuBr₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>组分（mol%）</td>
<td>50</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>玻璃透明情况</td>
<td>透明</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一析晶温度（℃）</td>
<td>662</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

具体制备过程如下：第一步，按表 2 中的配方称量 50 克分析纯原料，加 2.5 克 NH₄H₂F₂、2.5 克 NH₄HBr，将原料混合均匀后倒入刚玉坩埚中熔化，熔化温度 1400℃，保温 1 小时，将玻璃熔体倒入铸铁模内，然后置于马弗炉中进行退火，于玻璃转变温度 Tg 温度保温 2 小时后，以 10℃/小时的速率降温至 50℃，关闭马弗炉电源自动降温至室温，取出玻璃；第二步，根据玻璃的热分析（DTA）实验数据，得到第一析晶温度 662℃，将制得的玻璃置于氮气精密退火炉中在 680℃热处理 4 小时，然后再以 5℃/小时的速率降温至 50℃，关闭精密退火炉电源自动降温至室温，得到透明的 Eu³⁺ 离子掺杂的 LaBr₃ 微晶玻璃。

具体制备过程如下：第一步，按表 3 中的配方称量 50 克分析纯原料，加 2.5 克 NH₄H₂F₂、2.5 克 NH₄HBr，将原料混合均匀后倒入刚玉坩埚中熔化，熔化温度 1450℃，保温 1.5 小时，将玻璃熔体倒入铸铁模内，然后置于马弗炉中进行退火，于玻璃转变温度 Tg 温度保温 2 小时后，以 10℃/小时的速率降温至 50℃，关闭马弗炉电源自动降温至室温，取出玻璃。第二步，根据玻璃的热分析（DTA）实验数据，得到第一析晶温度 671℃，将制得的玻璃置于氮气精密退火炉中在 690℃热处理 5 小时，然后再以 5℃/小时的速率降温至 50℃，关闭
精密退火炉电源自动降温至室温，得到透明的 Tb$^{3+}$ 离子掺杂的 LaBr$_3$ 微晶玻璃。

[0037] 对制备的 LaBr$_3$ 微晶玻璃的光谱性质测试，X 射线激发的 Tb$^{3+}$ 离子掺杂 LaBr$_3$ 微晶玻璃的荧光光谱如图 4 所示，其结果表明经过热处理后产生 Tb :LaBr$_3$ 微晶与相应的玻璃基体相比发光强度有了明显的提高，说明 Tb :LaBr$_3$ 微晶玻璃的发光性质更好，发光强度明显提高；由上述制备过程得到的稀土离子掺杂的 LaBr$_3$ 微晶玻璃透明且物理化学性能优良。
图 1

图 2