METHODS AND SYSTEMS FOR LIGHT FIELD AUGMENTED REALITY/VIRTUAL REALITY ON MOBILE DEVICES

Abstract: Methods and apparatus are described that enable augmented or virtual reality based on a light field. A geometric proxy of a mobile device such as a smart phone is used during the process of inserting a virtual object from the light field into the real world images being acquired. For example, a mobile device includes a processor and a camera coupled to the processor. The processor is configured to define a view-dependent geometric proxy, record images with the camera to produce recorded frames and, based on the view-dependent geometric proxy, render the recorded frames with an inserted light field virtual object.
Declarations under Rule 4.17:
— as to the applicant's entitlement to claim the priority of
 the earlier application (Rule 4.17(Hi))

Published:
— with international search report (Art. 21(3))
Methods and Systems for Light Field Augmented Reality / Virtual Reality on Mobile Devices

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Application No. 14/848,759, filed on September 9, 2015, entitled "Methods and Systems for Light Field Augmented Reality / Virtual Reality on Mobile Devices" which is hereby incorporated herein by reference as if reproduced in full.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENCE TO A MICROFICHE APPENDIX

Not applicable.

BACKGROUND

Augmented reality (AR) is a technology that superimposes a computer-generated image on a user's view of the real world, thus providing a composite view. Virtual reality (VR) is a technology by which a user interactively explores a computer-generated environment typically through the use of goggles. Some AR and VR systems require computer-generated (CG) or scanned three dimensional (3D) objects to be inserted into a video sequence. Often CG-generated or scanned 3D objects have fairly limited realism. Further, the design and creation of CG-generated 3D content is labor-intensive. Another drawback is captured panoramic videos only permit users to rotate their heads, but not move freely around a room.

SUMMARY

Methods and apparatus are described that enable augmented or virtual reality based on a light field. A view-dependent geometric proxy of a mobile device such as a smart phone is used during the process of inserting a virtual object from the light field into the real world images being acquired. For example, a mobile device includes a processor and a camera coupled to the processor. The processor is configured to define a view-dependent geometric proxy, record images with the
camera to produce recorded frames and, based on the view-dependent geometric proxy, render the recorded frames with an inserted light field virtual object.

[0005] In another embodiment, a non-transitory storage device including instructions which, when executed by a processor, cause the processor to determine a view-dependent geometric proxy for a mobile device as the mobile device moves in three dimensional (3D) space, receive video frames recorded by a camera, and based on the view-dependent geometric proxy, render the recorded frames on a display with an inserted light field virtual object.

[0006] In yet another embodiment, an augmented or virtual reality method includes receiving, via a user interface, a location as to where to insert a light field object in images captured by a mobile camera and recording video with the mobile camera to produce recorded video frames. The method further includes, based on a view-dependent geometric proxy defined for the mobile camera, rendering the recorded video frames with an inserted light field virtual object.

[0007] These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.

[0009] Fig. 1 is an example of an augmented reality video frame image in accordance with various embodiments.

[0010] Fig. 2 is an example of the generation of a light field using a circular array of light field cameras in accordance with various embodiments.

[0011] Fig. 3 is an example of the generation of a light field using a two-dimensional array of light field cameras in accordance with various embodiments.

[0012] Fig. 4 illustrates the movement of a mobile camera in relation to the light field generating cameras in accordance with various embodiments.

[0013] Fig. 5 shows a method by which a video frame is rendered with an inserted light field object based on a geometric proxy representation for the mobile camera in accordance with various embodiments.
Fig. 6 shows an example of a method by which the views of nearby light field images are transformed based, in part, on the geometric proxy of the mobile camera in accordance with various embodiments.

Fig. 7 shows a block diagram of mobile device usable to render video with inserted light field objects based on geometric proxies of the mobile device in accordance with various examples.

DETAILED DESCRIPTION

It should be understood at the outset that although an illustrative implementation of one or more embodiments are provided below, the disclosed systems and/or methods may be implemented using any number of techniques, whether currently known or in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the exemplary designs and implementations illustrated and described herein, but may be modified within the scope of the appended claims along with their full scope of equivalents.

Disclosed herein are various embodiments for generating augmented reality (AR) or virtual reality (VR) images, both static photos and video. The disclosed embodiments include the use of a light field to render AR or VR images. Through the use of, for example, a mobile camera such as a smart phone, a user can easily insert one or more light field objects anywhere in a video image currently being captured by the mobile camera. Further, the user can move with the mobile camera freely in space to perceive the light field video content rendered in the AR or VR images on the mobile camera from different positions and angles.

As a result, a real world image can be captured by the mobile camera such as that shown in Fig. 1. The real world image is the actual image being captured by the camera and the light field object is superimposed into the real world image thereby producing the AR or VR effect. Fig. 1 shows an example of a real world image 50 captured by a camera of a mobile device. A light field object 60 was separately acquired through prior use of the same mobile camera or by other cameras and rendered into the real world image as shown on a display of the mobile camera itself, or on a separate display.

The mobile camera used to capture the real world images and embed light field objects may include smart phones as mentioned above, as well as tablet computers, computer eye-worn...
glasses, goggles, laptop computers, digital cameras, and the like. Furthermore, the mobile camera may be part of any portable electronic device having a camera in communication with a processor. Such devices generally have image capture devices (e.g., cameras), processors, memory, displays (e.g., touch displays), and other components. The rendering of the AR or VR images using the light fields may be performed by the device's processor executing software. In various embodiments, rendering of the AR or VR images using the light fields may be performed by software, firmware, hardware, or any combination thereof.

[0020] For ease of explanation, the following explanation is presented in terms of rendering augmented reality video. However, embodiments include rendering virtual reality video as well as AR or VR static images.

[0021] A light field is a collection of images taken of an object in a 3D scene from different viewpoints. For example, Fig. 2 illustrates a circular array of light field cameras 70 (70a, 70b, 70c, 70d, 70e, 70f, and 70g). Each camera 70 is schematically represented by a triangle. Each light field camera 70 points inward towards the center 75 of the circular array. A physical object may be placed at the center point 75 and thus each camera 70 captures static or video images of that object from a different location and angle. The location of each camera is designated as "T" and may be given as an x, y, z coordinate relative to an origin (e.g., point 75). For example, camera 70a is positioned at location Ti while camera 70 is positioned at location T2. Each camera is pointed generally at the object at center point 75. Because each camera 70 is at a different location T, each camera has a different orientation angle. Orientation angle is designated herein as "R" and may be given in terms of, for example, pitch, roll, and yaw angles. Camera 70a has an orientation angle Ri and camera 70b has an orientation angle of R2. The example of Fig. 2 shows seven light field cameras, but in general there are i (i is a number preferably greater than 1) light field cameras and each camera as a location Ti and an orientation angle of Ri. In some embodiments, the light field image from each light field camera 70 may be a video or static photograph, while in other embodiments, the light field images are video sequences.

[0022] Fig. 3 illustrates a two-dimensional (2D) camera array 80 for generating a light field. The cameras 82 in array 80 may be the same or similar cameras as in the circular array of Fig. 2 but arranged in a 2D array instead. As in the example of Fig. 2, each camera has a location Ti and an orientation Ri.
In another example, a single camera can be used to produce the light field images by a user acquiring an image from the camera at one location, then moving the camera to another location, acquiring a new image, and so on.

The light field cameras 70, 82 used to produce the light field image may be the same types of cameras noted above for the mobile camera used to capture the real world image, that is, smart phones tablet computers, computer eye-worn glasses, goggles, laptop computers, digital cameras, etc. In the embodiment in which a single camera is used to capture the light field (through movement of the camera from location to location), the same camera (e.g., same smart phone) can be used to capture the light field images as well as the real world images into which the light field object shown in the light field images is to be rendered. The user may acquire and store multiple sets of light field objects in the memory of the mobile camera used to capture the real world images. Alternatively, the light field objects may be captured by the user and uploaded for storage to an on-line storage service, and subsequently downloaded to the mobile device to generate the AR or VR images. In yet other embodiments, the user of the mobile device use to generate the AR or VR images does not generate his or her own light field images, and instead uses previously recorded light field images downloaded to the user's mobile camera or device from, for example, an on-line service.

By way of terminology, the device used to capture the real world image into which the light field object is to be inserted is referred to as a mobile camera, while the cameras used to capture the light field object itself are referred to as light field cameras. As noted above, the same camera device can be used both to capture the real world image as well as the light field images.

As noted above, the embodiments described herein use a "geometric proxy" for on-device light field AR/VR rendering. A geometric proxy is associated with the mobile camera used to capture the real world video into which the light field object is to be inserted. A geometric proxy can be a plane, a cylinder, or a surface with scene depth. The geometric proxy is view-dependent meaning that its orientation depends on the location and orientation angle of the mobile camera used to capture the real world video. The example of a geometric proxy being a plane is used below for ease of explanation but the geometric proxy can be numerous other shapes.

A plane can be defined, in part, by a vector that is normal to the surface of the plane. As the angular orientation of the plane changes, so does the angular orientation of the normal vector. The geometric proxy is considered to be located at a particular point in 3D space as specified by a
user of the mobile camera. As the user moves the mobile camera about the space and changes the angle and location of the mobile camera, the geometric proxy plane changes its angle so as to directly face the camera. As such, in some embodiments the geometric proxy is a plane that is represented by \((n,d)\) where \(n\) is the 3D normal of the plane and \(d\) is the distance between the plane and the mobile camera.

[0028] Any suitable technique can be implemented by the mobile camera to compute \((n,d)\) at each point in time as the camera is moved about by the user. For example, any of variety of Simultaneous Localization And Mapping (SLAM) techniques can be used for this purpose. One suitable SLAM technique uses an inertial measurement unit and is described in "Inertial Aiding of Inverse Depth SLAM Using a Monocular Camera," Pinies et. al., IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April 2007. In that technique, an inertial measurement unit (IMU) such as a gyroscope and/or an accelerometer is used to aid the determination of the mobile camera's position, rotation and velocity. The IMU provides measurements of its own acceleration and angular velocity at relatively high update rates. From those measurements, position, velocity and angular orientation of the mobile camera can be calculated by way of integration. The mobile camera computes its geometric proxy based, in part, on sensor signals from the IMU as well as captured images by an image capture device.

[0029] The camera's position, velocity and angular orientation and a map with the most relevant feature locations of the environment are estimated using relative information between the camera and each feature in the 3D space. The state vector to be estimated is then given by:

\[
x(k) = \begin{bmatrix} x_v(k) \\ Y(k) \end{bmatrix}
\]

where \(x_v(k)\) represents the vehicle state

\[
x_v(k) = \begin{bmatrix} r^n(k) \\ v^n(k) \\ \psi^n(k) \\ f_{bias}(k) \\ \omega_{bias}(k) \end{bmatrix}
\]

and \(Y(k)\) is the set of \(n\) features in the map

\[
Y(k) = \begin{bmatrix} y_1(k) \\ \vdots \\ y_n(k) \end{bmatrix}
\]
The components of the features $y_i(k)$ are described below. The vehicle state $x_v(k)$ contains the three cartesian coordinates of the camera's position r^v, velocity v^v and attitude in Euler angles ψ^n, all of them represented with respect to the navigation frame N and the bias in the accelerometers f_{bias}^b and gyros ω_{bias}^b in the camera's body frame B.

[0030] The dynamic evolution of the state in time is given by a non-linear state transition function:

$$x(k + 1) = f(x(k), u(k), w(k))$$

where the input $u(k)$ encloses the body-frame reference accelerations $f^b(k)$ and angular velocities $\omega^b(k)$ measured by the IMU

$$u(k) = \begin{bmatrix} f^b(k) \\ \omega^b(k) \end{bmatrix}$$

and the term $w(k)$ represents the noise in those measurements as a zero mean uncorrected Gaussian noise with covariance Q

$$w(k) = \begin{bmatrix} \delta f^b(k) \\ 8\omega^b(k) \end{bmatrix}$$

[0031] The evolution of the camera state given the previous input and noise can be calculated using the following equations:

$$\begin{bmatrix} r^n(k + 1) \\ v^n(k + 1) \\ \psi^n(k + 1) \\ f_{bias}^b(k + 1) \\ \omega_{bias}^b(k + 1) \end{bmatrix} = \begin{bmatrix} r^n(k) + v^n(k + 1)\Delta t \\ v^n(k) + [C^b_n(k) \left(f^b(k) + \delta f^b(k) \right) - f_{bias}^b(k)] + g^n \Delta t \\ \psi^n(k) + E^b_n \left(\omega^b(k) + \delta \omega^b(k) \right) - \omega_{bias}^b(k) \Delta t \\ f_{bias}^b(k) \\ \omega_{bias}^b(k) \end{bmatrix}$$

where $C^b_n(k)$ and E^b_n are the direction cosine matrix and rotation rate transformation matrix, respectively. The biases are assumed to be constant and affected by gaussian noise.

[0033] In some embodiments, the representation of the 3D features is over-parameterized as follows:

$$y_i = \begin{bmatrix} r^n_i \\ \theta_i^n \\ \phi_i^n \\ \rho_i^n \end{bmatrix}$$
where \(r^n \) represents the camera optical center, in cartesian coordinates, from where the feature was first observed. The angles \(\theta^n, \phi^n \) define the azimuth and elevation of the ray that goes from the initial camera position to the 3D point feature. Finally, \(p_i^n = 1/d_i \) is the inverse of the distance \(d_i \) between that camera position and the feature.

In some examples, the observations are related to the state by:

\[
z_i = \begin{bmatrix} \arctan\left(\frac{h^c_y}{h^c_x}\right) \\ \arctan\left(\frac{h^c_z}{\sqrt{(h^c_x)^2 + (h^c_y)^2}}\right) \end{bmatrix} + \nu
\]

where \([h^c_x, h^c_y, h^c_z]^T\) are the components of the vector \(h^c \) which defines the ray that goes from the current camera position to the 3D point in camera coordinates \((\cdot)\) and \(\nu \) is the uncorrected, zero-mean Gaussian observation noise with covariance \(R \).

The following equations illustrate how to calculate the ray \(h^c \) from the components of the camera state \(x \), and the corresponding feature \(y \). The term \(r_{bc}^b \) is the sensor offset from the inertial measured in the body frame and the matrix \(C_b^b \) is the transformation matrix from the body frame to the camera frame.

\[
h^c = C_b^b C_n^b h^n
\]

\[
h^n = (r^n + \frac{1}{r_{bc}} m(\theta^n, \phi^n) - (r^n + C_b^b r_{bc})
\]

The vector \(\varphi \) is a unitary vector that describes the direction of the ray when the feature was seen for the first time. It can be calculated from the azimuth \(\theta^n \) and elevation \(\phi^n \) angles of the feature by:

\[
m(\theta^n, \phi^n) = \begin{bmatrix} \cos(\theta^n) \cos(\phi^n) \\ \sin(\theta^n) \sin(\phi^n) \\ \sin(\phi^n) \end{bmatrix}
\]

After applying an undistortion process to the points interest in the image a pinhole camera model is used to determine the azimuth and elevation angles in the camera from the pixel coordinates \((u, v)\) of the feature:

\[
\begin{bmatrix} h^c \\ \Psi_i^c \end{bmatrix} = \begin{bmatrix} \arctan\left(\frac{u-u_0}{f_u}\right) \\ \arctan\left(\frac{v-v_0}{f_v}\right) \end{bmatrix}
\]

where \(u_0, v_0 \) are the center coordinates in the image and \(f_u, f_v \) are the components of the focal length.
As the mobile camera is moved about a space while capturing video images, for each frame of video, the mobile camera determines the camera’s location and orientation angle (T and R) using the technique described above, or another technique. In other embodiments, the mobile camera may determine the camera’s location and orientation angle less frequently than for each video frame (once every 10 video frames). The location and orientation angle of the mobile camera changes over time as the camera is moved and thus the camera’s location and orientation angle is represented as T(t) and R(t) to indicate that the location and orientation angle vary with respect to time, t.

To summarize to this point, a set of light field images of a physical object are acquired and stored or otherwise used for subsequent rendering to video of a real world image acquired by a mobile camera. The location T_i and an orientation angle of R_i of each light field camera i is recorded as well along with the light field images. During acquisition by the mobile camera of a real world scene into which the light field object is to be inserted, the camera’s location T(t) and orientation angle R(t) are recorded. The user of the mobile camera specifies where in 3D space the user wants the light field object to be inserted. The user may specify that location by inputting a distance value into the mobile camera while pointing the mobile camera at the real world scene of interest. For example, the user may specify a distance of 5 feet meaning that the light field object is to be inserted and rendered so as to appear to be 5 feet directly in front of the mobile camera’s lens. If the mobile camera is a smart phone, the user may enter the distance of the light field object using the touch sensitive display of the smart phone.

Once the mobile camera is made aware of where the user wants the light field object to be located in the real world scene to be acquired, the mobile camera computes a modified version of one or more of the light field images based on the mobile camera’s geometric proxy. Fig. 4 illustrates the concept of the mobile camera 100 positioned initially at location 101 and moving along camera trajectory 105 while acquiring video images of an object located at point 107. The geometric proxy 110 of the mobile camera 100 is also located at point 107 and is computed by camera 100 to have a variable orientation angle based on the movement of camera 100. The current orientation angle of the geometric proxy 110 is such that it faces directly towards the current location of mobile camera 100.

Fig. 4 also shows a circular array of light field cameras 70 superimposed on top of the real world scene being acquired by mobile camera 100 to illustrate the relationship between the
light field images previously acquired by cameras 70 and the real world image being acquired by mobile camera 100. Of course, the light field cameras 70 are not literally superimposed in the image being acquired by the mobile camera 100. The center point of the circular array of cameras is considered to be coincident with the location of the camera’s geometric proxy 110. Thus, each light field camera 70 (e.g., 70a and 70b) are shown in their location and orientation angle as they would have been had they been positioned to acquire light field images of an object placed at point 107. As explained above, a location T_i and an orientation angle R_i is recorded for each light field camera 70a, 70b, etc. Similarly, location T(t) and orientation angle R(t) data are recorded for the mobile camera 100 as it moves along camera trajectory 105. Those location and orientation angle values as well as the surface normal n(t) and distance d(t) of the geometric proxy 110 are used to compute a transformation for each of one or more light field views that are within a predetermined range of the mobile device’s current location. In the example of Fig. 4, light field cameras 70a, 70b are closest to the mobile camera 100 and thus the light field images from those two cameras at the current point in time are transformed according to the following transformation:

\[
H_i(t) = K_i^{-1} \left[R_i \ast R(t)^{-1} - \left(T_i - R_i \ast R(t)^{-1} \ast T(t) \right) \ast \left(R(t) \ast n(t) \ast l(d(t) \cdot \langle l(t) \ast n(t) \ast T(t) \rangle) \right) \right] \ast K_i^{-1}
\]

where:

- \(K_i \) denotes the intrinsic camera matrix of the \(i \)th light field camera (camera 70a or 70b in this example);
- \(R_i \) denotes the 3D orientation angle of the \(i \)th light field camera;
- \(T_i \) denotes the 3D location of the \(i \)th light field camera;
- \(R(t) \) denotes the 3D orientation angle of the mobile camera 100;
- \(T(t) \) denotes the 3D location of the mobile camera 100;
- \(n(t) \) denotes the normal of the plane of the geometric proxy 110;
- \(d(t) \) denotes the distance between the geometric proxy 110 and the mobile camera’s current location. The values \(n(t) \) and \(d(t) \) define the position and orientation of the geometric proxy.

The intrinsic camera matrix \(K_i \) is a 3x3 upper-triangular matrix that describes the camera’s internal parameters. The intrinsic matrix contains 5 intrinsic parameters. These parameters include focal length, image sensor format, and principal point. An example of an intrinsic matrix is provided below:
The parameters \(x = \frac{f}{m_x} \) and \(y = \frac{f}{m_y} \) represent focal length in terms of pixels, where \(m_x \) and \(m_y \) are the scale factors relating pixels to distance and \(f \) is the focal length in terms of distance. The parameter \(y \) represents the skew coefficient between the \(x \) and the \(y \) axes, and is often 0. The parameters \(u_0 \) and \(v_0 \) represent the principal point, which may be 0 in the center of the image.

Each nearby light field image is transformed using, for example, the transformation provided above. The transformed light field image or a derivative of each such transformed light field image is embedded into the real world image captured by the mobile camera 100.

Fig. 5 illustrates a method for generating AR or VR images in accordance with the disclosed embodiments. The operations in the example of Fig. 5 may be performed in the order shown, or in a different order. Further, two or more of the operations may be performed concurrently rather than sequentially.

At 152, the method includes capturing a light field. This operation may be performed as explained above. For example, the mobile camera 100 used to capture the real world scene into which the light field object is rendered can be used to also acquire the light field. The captured light field may be a series of still photographs or video sequences that are stored in memory of the mobile camera 100. In other embodiments, multiple light field cameras may be arranged in a circle, 2D array, or other arrangement and used to capture the light field. The captured light field of operation 152 may be performed ahead of time and stored in memory for subsequent use during the rendering process or may be performed concurrently with the real world image capture.

At 154, the method includes generating a mapping function for each light field camera (or at least the light field cameras that are nearby the mobile camera 100). The mapping function may contain a set of mapping values for each pixel in a given video frame. Each light field camera may have a mapping function that is a function of time and that specifies how the light field object is to be rendered into the real world scene. For example, if the light field object is opaque, the mapping function contains only one value for each pixel (0 or 1), which can be used as an alpha channel for alpha blending during rendering to make the resulting image look more realistic. A foreground/background segmentation module can be used to obtain the mapping function so that high values are assigned to pixels on targeted imposing foreground objects, and low values are
assigned to background pixels that users do not want to show in the light field AR/VR experience. When the light field object has transparency, the mapping function contains the information about the outgoing ray direction \((u,v)\) for environment matting.

At 156, the method includes specifying wherein the real world image to be acquired the user wants to have the light field object inserted. Specifying that location may be implemented by the user inputting a distance in front of the mobile camera 100 that is the location in the 3D space at which the light field object is to be rendered.

At 158, the mobile camera begins recording real world video. This operation may be initiated by the user pressing a "record" button on the mobile camera, or touching a record icon on a touch sensitive display of a mobile device such as a smart phone or table computer. The camera begins to record live images and, if desired, stores such images in memory.

At 160, the method includes rendering the real world view with the light field virtual object based on a real world view-dependent geometric proxy. The use of the geometric proxy associated with and computed by the mobile camera 100 enables the light field images to be processed and rendered into the images being captured by the mobile camera. More specifically, the geometric proxy is used to transform (i.e., distort) the light field images to cause them to appear closer to how they would have appeared had their light field camera been located at the current location of the mobile camera 100 and also facing the target object being recorded.

In some embodiments, operations 152, 154, and 158 may be the same device such as the mobile device 100 which may be implemented as a tablet device, smart phone, etc. as explained above. Further, operations 152 and 154 may be performed by a light field capture device or system and operation 158 may be performed by a different device. The captured light field thus may be captured ahead of time and used to be included into images acquired by a different device. Operation 156 and 160 may be performed by the same device that is used to record the real world video or by a different device such as a computer (e.g., server, laptop computer, etc.).

Fig. 6 shows an example of the implementation of operation 160 in which rendering uses the geometric proxy of the mobile camera. The operations in the example of Fig. 5 may be performed in the order shown, or in a different order. Further, two or more of the operations may be performed concurrently rather than sequentially. The operations shown in Fig. 6 may be performed for each frame of video captured by the mobile camera 100 (e.g., 30 times per second) or at a different rate (e.g., for every other video frame).
[0050] At 162, the position and rotation of the mobile camera 100 is determined. These determinations may be performed by a SLAM technique, such as that described above, through use of accelerometers, gyroscopes, or by other techniques. The current position of the mobile camera is given as T(t) where t is the current time, and the current rotation of the mobile camera is R(t) as explained above.

[0051] Based on at least the current position and orientation of the mobile camera, nearby light field views are selected (164). This means that the locations are determined of the light field cameras that would have been closest to the current mobile camera's position and orientation had such light field cameras actually been present in the current 3D space when pointed toward the geometric proxy. For example, Fig. 4 illustrates two nearby light field cameras 70a and 70b. The selection as to which light field cameras are "nearby" may be based on a threshold distance. Those light field cameras that are within a threshold distance (fixed or configurable) are deemed to be nearby. In some cases, the current position of the mobile camera 100 may be coincident with one of the light field cameras 70. If the distance between a light field camera 70 and mobile camera 100 is less than another threshold (i.e., very close together), then only the view of that one light field camera is determined to be used in operation 164. For example, in Fig. 4 if mobile camera 100 is on top of (same location) as light field camera 70b, then only the view of light field camera 70b is used. In other cases, the mobile camera 100 is not on top of any light field camera position and the views of the two or more closest light field cameras are determined to be used in operation 164.

[0052] For each of the light field cameras determined to be nearby the current location of the mobile camera 100, the method includes at 166 computing a transformation for each such nearby view based on the view-dependent geometric proxy. An example of the transformation is provided above and is a function of the geometric proxy's current normal and distance values (distance from the geometric proxy to the mobile camera 100), the mobile device's current position T(t) and rotation R(t), the position and rotation of the light field camera whose view is being transformed, and the intrinsic camera matrix for that light field camera.

[0053] At 168, each such nearby view is remapped using the corresponding transformation computed for that light field camera at 166. In this operation, the actual image shown in the current video frame from that light field camera is altered per the transformation. The result is that the transformed image is made to appear more accurate to what the view would have looked like had
the light field camera been located where the mobile camera 100 is currently located. At 170, the
mapping function for each such nearby view also is remapped using the same transformation
function determined at 166.

[0054] At 172, the remapped nearby views from operation 168 are interpolated to produce a
single interpolated light field image. Various types of interpolation methods can be used such as
linear interpolation. The remapped mapping functions also may be interpolated to produce a single
interpolated mapping function.

[0055] At 174, the interpolated light field image is embedded into the real world view captured
by the mobile camera. The corresponding interpolated mapping function also is used to generate
the resulting image to further enhance the realism of the resulting image.

[0056] Fig. 7 shows an example of a block diagram of a mobile device 200 usable as described
herein. The mobile device 200 includes a processor 202, a non-transitory storage device 204, a
camera 210, an input device 212, a 3D sensor 21, and a display 216. The non-transitory storage
device 204 may include volatile storage (e.g., random access memory), non-volatile storage (e.g.,
solid state storage, magnetic storage, optical storage, etc.), or a combination of both volatile and
non-volatile storage. The non-transitory storage device 204 may be implemented as a single
storage device or multiple storage devices. The non-transitory storage device 204 includes an
AR/VR application 206 which comprises multiple instructions that are executable by processor
202. When executed, the AR/VR application 206 causes the processor 202 to perform some or all
of the functions described above as attribute to the mobile camera.

[0057] The input device 212 may any type of user input device such as a keypad, keyboard,
mouse, touchpad, etc. In an embodiment in which the mobile device 200 is an integrated
computing device such as a smart phone, tablet device, and the like, the input device 212 and the
display 216 may be implemented as a single touch sensitive display. The input device 212 in such
embodiments may be the touch sensitive display itself. The 3D sensor 214 may include a single or
multi-axis accelerometer, a single or multi-axis gyroscope, or any other type of 3D sensor.

[0058] In one embodiment, a mobile device is disclosed that includes a processor means and
a camera means coupled to the processor means. The processor means is configured to define
a view-dependent geometric proxy, record images with the camera to produce recorded frames and,
render, based on the view-dependent geometric proxy, the recorded frames with an inserted light
field virtual object.
In another embodiment, a non-transitory storage device including instructions which, when executed by a processor means, cause the processor means to determine a view-dependent geometric proxy for a mobile device as the mobile device moves in three dimensional (3D) space, receive video frames recorded by a camera, and render, based on the view-dependent geometric proxy, the video frames on a display with an inserted light field virtual object.

While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods might be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.

In addition, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.
CLAIMS

What is claimed:

1. A mobile device, comprising:
 a processor; and
 a camera coupled to the processor,
 wherein the processor is configured to:
 define a view-dependent geometric proxy;
 record images with the camera to produce recorded frames; and,
 render, based on the view-dependent geometric proxy, the recorded frames with an inserted light field virtual object.

2. The mobile device of claim 1, further comprising a storage device configured to store a plurality of light field views of a physical object, wherein the processor is configured to select a subset of the plurality of light field views based on a distance determination.

3. The mobile device of claim 2, wherein the processor is further configured to:
 transform the selected subset of the plurality of light field views based on the view-dependent geometric proxy to produce transformed light field views;
 interpolate the transformed light field views to produce an interpolated light field virtual object; and
 render the recorded frames with the interpolated light field virtual object.

4. The mobile device of claim 3, wherein the processor determines a new subset of light field views to select based on movement of the mobile device in three dimensional (3D) space.

5. The mobile device of claim 3, wherein the processor is further configured to transform each light field image from each of the selected subset of the light field views based on an intrinsic camera matrix defined for the mobile device, a 3D orientation angle associated with each such light field view, a 3D location associated with each such light field view, a 3D orientation angle of the mobile device, a 3D position of the mobile device, and a position and orientation of the geometric proxy.
6. The mobile device of claim 3, wherein the processor is further configured to:
 transform a mapping function for each of the selected subset of the light field views based on the view-dependent geometric proxy to produce transformed mapping functions;
 interpolate the transformed mapping functions to produce an interpolated mapping function; and
 render the recorded frames with the interpolated light field virtual object using the interpolated mapping functions.

7. The mobile device of any of claims 1-6, further comprising an inertial measurement unit (EVIU), wherein the processor determines the view-dependent geometric proxy based, in part, on sensor signals from the EVIU.

8. The mobile device of any of claims 1-6, further comprising a touch sensitive display, wherein the processor receives a signal from the touch sensitive display indicating a distance from the mobile device as to where the light field virtual object is to appear to be located upon its insertion into the recorded frames captured by the mobile device.

9. The mobile device of any of claims 1-8, wherein the mobile device is a phone or tablet device.

10. A non-transitory storage device including instructions which, when executed by a processor, cause the processor to:
 determine a view-dependent geometric proxy for a mobile device as the mobile device moves in three dimensional (3D) space;
 receive video frames recorded by a camera; and
 render, based on the view-dependent geometric proxy, the video frames on a display with an inserted light field virtual object.

11. The non-transitory storage device of claim 10, wherein the instructions, when executed by the processor, cause the processor to:
select a subset of light field views from a plurality of light field based on a distance between locations at which the light field views are acquired and a current location of the camera; transform the subset of light field views based on a position and orientation of the geometric proxy to produce transformed light field views; and render the video frames on the display using the transformed light field views.

12. The non-transitory storage device of claim 11, wherein the instructions, when executed by the processor, cause the processor to:
interpolate the transformed light field views to produce an interpolated light field view; and render the video frames on the display using the interpolated light field views.

13. The non-transitory storage device of claim 11, wherein the instructions, when executed by the processor, cause the processor to transform the subset of light field views based, at least in part, on a geometrical relationship between the a position and orientation of the geometric proxy and a position and orientation associated with the subset of light field views.

14. The non-transitory storage device of any of claims 10-13, wherein the instructions, when executed by the processor, cause the processor to receive an input from a user input device indicating a location in the video frames to insert the light field virtual object.

15. The non-transitory storage device of any of claims 10-13, wherein the instructions, when executed by the processor, cause the processor to determine the view-dependent geometric proxy based on an inertial simultaneous localization and mapping technique.

16. An augmented or virtual reality method, comprising:
receiving, via a user interface, an input as to a location to insert a light field object in images captured by a mobile camera;
recording video with the mobile camera to produce recorded video frames; and rendering, based on a view-dependent geometric proxy defined for the mobile camera, the recorded video frames with an inserted light field virtual object at the location specified by the input.
17. The method of claim 16, wherein rendering the recorded video frames with the inserted light field object includes:
 determining a position and rotation of the mobile camera;
 selecting a subset of light field views within a predetermined range of the mobile camera;
 computing a transformation of each selected light field view of the selected subset based on the view-dependent geometric proxy to produce a computed transformation for each of the selected light field views of the subset;
 remapping each of the subset of light field views using the computed transformation for each such selected light field view to produce remapped selected light field views;
 generating a remapped nearby view using the remapped selected light field views; and
 embedding the remapped nearby view into the recorded video frames.

18. The method of claim 17, further comprising:
 determining a mapping function for each frame of each selected light field view;
 remapping each mapping function using the computed transformation to produce a transformed mapping function of each such mapping function; and
 combining the transformed mapping functions to produce a combined transformed mapping function,
 wherein rendering the recorded video frames with an inserted light field object includes applying the combined transformed mapping function to the remapped nearby view.

19. The method of claim 16, further comprising defining the geometric proxy for the mobile camera as a geometric shape located at a 3D coordinate origin and rotated based on a time varying orientation of the mobile camera.

20. The method of claim 19, wherein defining the geometric proxy for the mobile camera as a geometric shape comprises defining the geometric shape to be a plane.
FIG. 4

107 110

100 105

101

70b

70a

REAL BACKGROUND

FIG. 5

152

CAPTURE LIGHT FIELD

154

GENERATE MAPPING FUNCTION FOR EACH LIGHT FIELD CAMERA

156

SPECIFY WHERE IN REAL IMAGE TO INSERT LIGHT FIELD OBJECT

158

BEGIN RECORDING REAL WORLD VIDEO

160

RENDER REAL WORLD VIEW WITH INSERTED LIGHT FIELD VIRTUAL OBJECT BASED ON REAL WORLD VIEW DEPENDENT GEOMETRIC PROXY
FIG. 6

160

DETERMINE POSITION AND ROTATION OF INSIDE CAMERA

162

SELECT A SUBSET OF NEAR BY VIEWS FROM LIGHT FIELD

164

COMPUTE TRANSFORMATION FOR EACH NEARBY VIEW BASED ON VIEW DEPENDENT GEOMETRIC PROXY

166

REMAP EACH NEARBY VIEW USING CORRESPONDING TRANSFORMATION

168

REMAP MAPPING FUNCTION FOR EACH NEARBY VIEW USING CORRESPONDING TRANSFORMATION

170

INTERPOLATE REMAPPED NEARBY VIEW

172

USE REMAPPED MAPPING FUNCTION TO EMBED INTERPOLATED REMAPPED NEARBY VIEW INTO REAL WORLD FRAME

174

FIG. 7

200

212

INPUT DEVICE

210

CAMERA

204

NON-TRANSITORY STORAGE DEVICE

206

AR/VR APP

208

LIGHT FIELD IMAGES

214

3D SENSOR

216

DISPLAY

202

PROCESSOR
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H04N 7/14(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04N

Documentation data base consulted during the international search (name of database and, where practicable, search terms used)

CNPAT,CNKI,WPLEPODOC,IEEE:HUAWEI, Gu Jinwei, JIANG Wei, WILBURN Bennett, geometric, geometry, model, proxy, light field, camera, virtual, augmented, reality, location, orientation, angle

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2013321564 A1 (MICROSOFT CORPORATION) 05 December 2013 (2013-12-05) description, paragraphs [0006]-[0010], [0027]-[0078], and figures 1-10</td>
<td>1, 7, 9, 10, 15</td>
</tr>
<tr>
<td>A</td>
<td>CN 102147658 A (HUAWEI DEVICE CO., LTD.) 10 August 2011 (201-1-08-10) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103577788 A (HUAWEI DEVICE CO., LTD.) 12 February 2014 (2014-02-12) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2015031854 A2 (QUALCOMM INCORPORATED.) 05 March 2015 (2015-03-05) the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2004104935 A1 (WILLIAMSON, TODD ET AL.) 03 June 2004 (2004-06-03) the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"X" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"&" document member of the same patent family

Date of the actual completion of the international search 02 November 2016

Date of mailing of the international search report 30 November 2016

Name and mailing address of the ISA/CN

STATE INTELLECTUAL PROPERTY OFFICE OF THE P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing 100088
China

Authorized officer ZHANG,Suqing

Facsimile No. (86-10)62019451

Telephone No. (86-10)61648254
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2013321413 A1</td>
<td>05 December 2013</td>
<td>US 2013321413 A1</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>US 9332218 B2</td>
<td>03 May 2016</td>
<td>US 2013321586 A1</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>US 2013321418 A1</td>
<td>05 December 2013</td>
<td>US 2013321590 A1</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>US 2013321393 A1</td>
<td>05 December 2013</td>
<td>US 2013321589 A1</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>US 2013321410 A1</td>
<td>05 December 2013</td>
<td>US 2013321575 A1</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>US 2013321575 A1</td>
<td>05 December 2013</td>
<td>US 2013321593 A1</td>
<td>05 December 2013</td>
</tr>
<tr>
<td>CN 102147658 A</td>
<td>10 August 2011</td>
<td>CN 102147658 B</td>
<td>09 January 2013</td>
</tr>
<tr>
<td>WO 2015031854 A2</td>
<td>05 March 2015</td>
<td>KR 20160048874 A</td>
<td>04 May 2016</td>
</tr>
<tr>
<td>EP 3039656 A2</td>
<td>06 July 2016</td>
<td>US 2015062120 A1</td>
<td>05 March 2015</td>
</tr>
<tr>
<td>CN 105493155 A</td>
<td>13 April 2016</td>
<td>US 2004104935 A1</td>
<td>03 June 2004</td>
</tr>
<tr>
<td>US 2004104935 A1</td>
<td>03 June 2004</td>
<td>WO 02069272 A2</td>
<td>06 September 2002</td>
</tr>
<tr>
<td>EP 1371019 A2</td>
<td>17 December 2003</td>
<td>WO 2004012141 A2</td>
<td>05 February 2004</td>
</tr>
<tr>
<td>AU 2003259291 A1</td>
<td>16 February 2004</td>
<td>JP 2004537082 A</td>
<td>09 December 2004</td>
</tr>
<tr>
<td>JP 2004537082 A</td>
<td>09 December 2004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>