
United States Patent (19)
Pohlman, III et al.

54)

(75)

(73)
(21)
22)
(51)
(52)
(58)

(56)

EXTENDED ADDRESS, SINGLE AND
MULTIPLE BIT MCROPROCESSOR

Inventors: William B. Pohlman, III, Los Gatos;
Bruce W. Ravenel, III, Sunnyvale;
James F. McKevitt, III, San Jose;
Stephen P. Morse, San Francisco, all
of Calif.

Assignee: Intel Corporation, Santa Clara, Calif.
Appl. No.: 873,777
Filed; Jan. 31, 1978
Int. Cl. G06F 7/50; G06F 13/00
U.S. Cl. ... 364/200
Field of Search ... 364/200 MS File, 900 MS File,

364/748,749; 340/347 DD
References Cited

U.S. PATENT DOCUMENTS

3,657,705 4/1972 Mekota, Jr. et al. 364/200
3,786,436 l/1974 Zelinski et al. 364/200
3,818,460 6/1974 Beard et al. 364/200
3,938,096 2/1976 Brown et al. 364/200
3,949,378 4/1976 Crabb et al. 364/200
3,976,976 8/1976 Khosharian 364A200
4,037,21 1 7/1977 Ikuta et al. 364/200
4,042,911 8/1977 Bourke et al. ... 364/200
4,079,455 3/1978 Ozga 364/200
4,092,715 5/1978 Scriver 364/200

4,363,091
Dec. 7, 1982

(11)

45

Primary Examiner-Gareth D. Shaw
Assistant Examiner-Thomas M. Heckler
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafiman

57) ABSTRACT
The addressable memory space within the retrievable
capacity of the microprocessor is necessarily limited by
the bit length of the address word. This in turn, is lim
ited by the bit length of the word which the micro
processor may compute or manipulate. By appropriate
organization of multiple registers, an extended or ex
panded memory space may be achieved without the
necessity of increasing the word length of the digital
information manipulated by the microprocessor. In
addition, the microprocessor can be fabricated to be
capable of both eight bit and sixteen bit operation by
appropriate organization and coordination of a plurality
of register files. By virtue of this register file organiza
tion and coordination additional improved operations
may be achieved, such as direct coupling by the micro
processor between the memory and separate dedicated
data processing chips, simplified string instructions and
the condensation of entire classes of instructions into
single generic instruction formats.

26 Claims, No Drawings

4,363,091
1.

EXTENDED ADDRESS, SINGLE AND MULTIPLE
BIT MICROPROCESSOR

BACKGROUND OF THE INVENTION
1. Field of the Present Invention
The present invention relates to the field of micro

processors and in particular relates to the organization
of microprocessors as that organization limits or relates
to the use and structure of microprocessor instructions.

2. Description of the Prior Art
Since their inception, digital computers have continu

ously become more efficient, expanding into new appli
cations with each major technological improvement.
The advent of minicomputers allow digital computers
to be included as a permanent part of various process
control systems. Unfortunately, the size and cost of
minicomputers in dedicated applications has limited
their use. Capacity and ability of such dedicated mini
computers has been limited in part due to a fixed or
limited word length upon which the operation of the
microprocessor is based.
Thus, prior art microprocessors typically assumed a

certain memory structure or by reason of their internal
organization were subject to certain limitations with
respect to the manner and means in which digital infor
mation could be stored and retrieved from a memory
and later manipulated within the microprocessor itself.
These limitations led to restrictions as to how multiple
byte words were to be stored within a memory with
respect to word length boundaries, and restrictions as to
the structure of instructions which were decoded in the
microprocessor to manipulate the digital information.
As a result, instruction sets from microprocessors neces
sarily were limited in the power of the instruction, and
in the number of instructions which could be accommo
dated. Typically prior art microprocessors, by virtue of
their architectural organization, would require a large
number of distinct instructions or comparatively con
plex instructions in order to perform relatively simple
tasks.
The present invention, as disclosed herein, over

comes each of these disadvantages in the manner and by
the means as set forth in the following brief summary,

BRIEF SUMMARY OF THE INVENTION

The present invention is an improvement in a data
processing system. The data processing system includes
a memory unit for storing digital information. Such
digital information includes instructions, addresses, and
data. The data processing system also includes a proces
sor unit for processing the digital information communi
cated between the processor unit and the memory unit.
The improvement comprises a first plurality of registers
in the processor unit for storing bytes of digital informa
tion. A second plurality of registers is also included in
the processor unit for storing words of digital informa
tion. The word is an integral number of bytes of digital
information. At least some of the second plurality of
registers are relocation registers wherein each of the
relocation registers has associated therewith a plurality
of assumed bits to extend the effective bit length of the
word in each such relocation register. As a result, the
data processing system may be afforded an extended
memory space beyond the word length limitation of the
first and second plurality of registers.
The present invention may also be viewed as a data

processing system comprised of a memory having an

s

O

5

20

25

35

40

45

SO

55

60

65

2
addressable memory space used for storing digital infor
mation, a first plurality of registers, a second plurality of
registers, an arithmetic logic unit, and a control means.
The first plurality of registers temporarily stores a cor
responding plurality of single bytes. The second plural
ity of registers temporarily stores a corresponding plu
rality of multiple byte words having a maximum bit
length. The arithmetic logic unit selectively performs
arithmetic and logical operations upon the digital infor
mation. The control means is coupled to the memory, to
the first and second plurality of registers and to the
arithmetic logic unit in order to selectively transfer
digital information therebetween and to selectively
generate a plurality of discrete command signals thereto
in response to a plurality of instructions. The control
means includes an extended address means for generat
ing an extended digital word having a bit length greater
than the maximum bit length.
One way in which the extended address means gener

ates the extended digital word, typically used for ad
dressing in an extended memory space, is by summing
selected bits of the contents of a selected one of the
second plurality of registers with a predetermined digi
tal word. The remaining unselected bits of the contents
of the selected register are then placed as a prefix or
suffix with respect to the sum to form an extended digi
tal word. In the case where it is a prefix, carries may
ripple through the prefix. The selected register, or relo
cation register, is selected by the control means in re
sponse to an address instruction.
The data processing system of the present invention is

used with a conventional memory and comprises an
upper control means for transferring digital information
to and from the memory and a lower control means for
processing the digital information wherein the opera
tion of the upper and lower control means are overlap
ping and asynchronous. The upper control means in
cludes a file of registers which in turn includes a plural
ity of registers forming an ordered first-in-first-out
queue of registers. Digital instructions obtained from
the memory are temporarily stored in the queue until
requested by the lower control unit for execution. The
queue is filled in whole or in part to allow the lower
control unit to run at maximum speed. The lower con
trol unit runs in an overlapping manner in that the data
processing system of the present invention processes the
digital information in the lower control means by exe
cuting an instruction while simultaneously decoding a
subsequent instruction. In particular, the upper and
lower control means processes single byte and multiple
byte instructions. The upper and lower control means
has an upper and lower file respectively of single byte
and multiple byte registers, The upper and lower file of
registers are selectively coupled by a bus which has a
plurality of separate bus lines equal in number to the
number of bits in the multiple byte register. Selected
ones of the upper and lower files of registers are selec
tively coupled to the bus as a source or destination
register by and in response to a plurality of bus registers.
The bus registers in turn are responsive to the single
byte and multiple byte instructions. By this scheme, the
lower control means can execute both single byte and
multiple byte instructions without duplication of hard
ware and in a simple manner.
The lower control means includes an instruction reg

ister coupled to the queue. A group decode ROM has its
inputs coupled to the instruction register. The group

4,363,091
3

decode ROM generates a plurality of group decode
signals which are indicative of the genera of the single
byte and multiple byte instructions being received and
decoded by the lower control means. A microcode
address register has inputs coupled to the queue. A
microcode address incrementing register is included
and is coupled to a microcode ROM. The microcode
ROM stores a multiplicity of microcode instructions.
The outputs of the microcode ROM are selectively
coupled to the first and second file of registers and to an
arithmetic and logic unit which may include a plurality
of temporary registers and status registers. A loader
means selectively enables and loads a byte from the
queue into the instruction register and microcode ad
dress register. The loader also enables the microcode
address incrementing register in microcode ROM. The
loader is characterized by having a plurality of cyclic
states. The microcode ROM is taken to include a ROM
OUT control means for selectively generating a next-to
the-last clock signal, NXT, on the next to the last clock
of a selected plurality of the multiplicity of microcode
instructions in the microcode ROM. The signal, NXT,
triggers the loader means to recycle through at least
part of the plurality of cyclic states.

In addition, the data processing system of the present
invention includes a subroutine translation ROM hav
ing inputs coupled to the queue and outputs coupled to
the microcode ROM. A subroutine translation ROM
also has its outputs coupled to the microcode address
register and the microcode address incrementing regis
ter to load therein a selected microcode address in re
sponse to predetermined ones of the output of the mi
crocode ROM. In addition, the subroutine translation
ROM may load a selected microcode address into the
microcode address register and microcode address in
crementing register in response to a selected bit field in
the second byte of a multiple byte instruction. The
subroutine translation ROM may also have associated
therewith, a subroutine register by which the micro
code address stored within the microcode address regis
ter and microcode address incrementing register may be
temporarily stored or saved during a microcode jump.
The data processing system may also include an ALU

opcode register having inputs coupled to the queue and
outputs coupled to an arithmetic and logic unit included
within a lower control means. The ALU opcode regis
ter temporarily stores the predetermined bit field from
the single byte and multiple byte instructions while the
microcode ROM is communicating ALU opcode in
structions to the arithmetic and logic unit in response to
the second byte of the single and multiple byte instruc
tions.
Many other advantages and benefits result by virtue

of the organization recited above and are best under
stood and will be described in the Detailed Description
of the Preferred Embodiments in association with the
accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are a simplified block diagram of
the internal organization of a microprocessor incorpo
rating the present invention.
FIG. 2 is an equivalent logical circuit to dedicated

ALU circuitry used in ASCII instructions.
FIG. 3 is a symbolic state diagram for the lower

control unit loader circuit.

5

10

20

25

30

35

45

55

60

65

4.
DETAILED DESCRIPTION OF THE
PREFERRED EMBOOMENTS

FIGS. 1A and 1B are simplified diagrammatic block
diagrams of a central processor 10 organized according
to the present invention. Central processing unit or
CPU 10 is characterized by the division of CPU 10 into
an upper control means 12 diagrammatically shown in
FIG. 1A and a lower control means 14, diagrammati
cally shown in FIG. 1B. As shown in FIGS. 1A and 1B
upper unit or means 12 is coupled to lower unit or
means 14 primarily by an ALU bus 16, an S or source
bus 18, a D or destination bus 20, and a Q bus 22. It must
be also understood that there are a plurality of discrete
command lines or buses connecting upper unit 12 and
lower unit 14 in a manner which shall be described
below,
Upper control unit 12 is the only portion of CPU 10

which is directly involved in the exchange of informa
tion with an external memory unit. As is well known to
the art, all CPU's are used in combination with one or
more memory systems, which in the present illustration
shall be assumed to be a one megabyte semiconductor
memory. Other types of memories or input/output de
vices well known to the art may be coupled, directly or
indirectly, to the external address and data bus coupled
to the address and data bus, input/output pins 24, of
CPU 10.

Sixteen of the address and data bus pins 24 are cou
pled to a latch and input/output buffer 26, well known
to the art. Binary information is coupled to a C bus 28
through a simple cross-over circuit 30. The sixteen pins
are organized into two bytes of eight bits each to form
a single sixteen bit word. Circuit 30 selectively couples
the two bytes forming a sixteen bit word to C bus 28
either in a normal order or reverse order. The use and
explanation of cross-over circuit 30 is described in
greater detail below.
Upper control unit 12 has an upper register file 32

which includes four-6 bit relocation registers 34
through 40 also denoted as registers RC, RD, RS and
RA respectively. Upper register file 32 also includes a
16 bit program counter 42 denoted as register PC; a 16
bit indirect register 44, also denoted as register IND; a
16 bit operand register 46 also denoted as register OPR.
In addition, register file 42 includes an instruction queue
buffer 48, which in the embodiment illustrated, is shown
as six paired 8 bit registers also denoted as registers Q0
and Q5. Register file 32 is coupled through Cbus 28 and
B bus 50 to temporary registers 52 and 54 respectively.
C bus 28 is coupled to temporary register 52 through a
multiplexer 56 which also has as its inputs the outputs of
a constant read only memory or ROM 58. The outputs
of temporary registers 52 and 54 are coupled to an adder
60 which in turn has its output coupled to a temporary
register 62. The output of temporary register 62 is simi
larly coupled to Cbus 28 to permit communication with
the external address and data bus. Four lines of Cbus 28
are singled out to form the first 4 bits of the 20 bit ad
dress. One line is coupled to the zeroeth order address
pin 66 or A0, while the remaining three lines are cou
pled through a temporary register 64 to an address latch
and buffer 68 having as its output, the three address bits
A1 through A3.
Upper register file 32 is also coupled to ALU bus 16,

S bus 18, D bus 20 and Q bus 22 to communicate with
lower control unit 14 in a manner described below.

4,363,091
5

Finally, the upper control unit 12 also includes a
T-state generator 70, a cycle decision logic circuit 72
and a Q control circuit 74. Each of these circuits are
described below and are publicly marketed in a product
under the trademark, Intel 8086. Upper control unit 12
also includes an external interface circuit 76 which is
described in greater detail in a co-pending application
assigned to the same assignee as the present invention
filed on June 30, 1978 and entitled "APPARATUS
AND METHOD FOR COOPERATIVE AND CON
CURRED COPROCESSING OF DIGITAL INFOR
MATION".

Cycle decision logic circuit 72 provides the proper
commands to relocation registers 32 through 40 to exe
cute the memory READ and WRITE cycles with
proper timing. Relocation registers 32 through 40 are
accessed through discrete control lines not shown in
FIG. 1A in addition to being treated as ordinary digital
information registers subject to the manipulation and
control by the instructions. Queue control circuit 74
maintains a count of bytes in the instruction queue and
their ordering. This information is provided to logic
circuit 72 to effect the proper computations with re
spect to program counter 42, operand register 46 and
indirect register 44 in the memory READ and WRITE
operations described below, interrupt operations and
their subsequent address and program counter correc
tions. Constant read only memory 58 selectively pro
vides a series of integer values, such as +6 to -6, to
adder 60 to be used during the relocation address cor
rections and program counter corrections discussed
below. T-state timer circuitry 70 provides a plurality of
flip-flop defined T-states to cycle upper control unit 12
through the instruction FETCH, READ and WRITE
cycles and such other cycles, such as INTERRUPT
cycles, which are typically required of a general pur
pose microprocesser. Queue control circuitry 74, cycle
decision logic circuitry and T-state timing generator 70
employ random logic organized according to principles
well known to the art to effect the functions described
above.
Lower control unit 14 similarly has a lower or main

register file 78 coupled to ALU bus 16 through a cross
over circuit 80 similar to that of cross-over circuit 30,
Main register file 78 is also appropriately coupled to S
bus 18 and D bus 20. Main register file 78, in the illus
trated embodiment, includes eight paired, 8 bit registers
82 through 96 also denoted as X, B, D, H, A, C, E, and
L, respectively. Similarly, main file 78 includes a 16 bit
stack pointer register 98 also denoted as register SP, a
16 bit memory pointer register 100 or register MP and
two 16 bit index registers 103 and 105 or registers IJ and
IK respectively.
Q bus 22 from upper control unit 12 is coupled to a

plurality of registers and decoders in lower control unit
14. All eight bit lines of Q bus 22 are coupled to an
instruction decoder 102 denoted as register IR. Simi
larly, the three least significant bits are coupled to an M
register 104 whose output in turn is coupled to S bus 18
and D bus 20. Bits 3 through 5, the fourth through sixth
most significant bits, are coupled to an N register 106
which also has its output coupled to S bus 18 and D bus
20. Bits 3 through 5 are also loaded into an X register
108 which has an output coupled to an ALU opcode

O

15

20

25

30

35

40

45

50

55

register 110. Finally, all 8 bits of Q bus 22 are coupled to 65
a main array register or AR register 112. The output of
AR register 112 is coupled to the first stage decoder of
main ROM array 114 which contains most or all of the

6
microcode program. Similarly, the output of instruction
register 102 is coupled to a group decode ROM 116.
The microcode output from stage two of ROM 114 is
coupled through a 4 to 1 multiplexer and latch 118. Five
bits of the output of the latch is coupled to a 2 to 1
multiplexer 120, the output of which is similarly cou
pled to the input of a translation ROM 122. AR register
112 is paired with a counting and incrementing register
or CR register 124. The output of translation ROM 122
is coupled to AR register 112 and CR register 124
which are similarly coupled in a bidirectional manner
with a corresponding subroutine or SR register 126 and
subroutine incrementing register 128 respectively. The
operation of group decode ROM 116, translation ROM
122 and main ROM 114 are coordinated by a loader
circuit 130 by discrete command lines not shown. The
detailed operation of lower control unit 14 will be de
scribed below.
The output of multiplexer and latch 118 is similarly

coupled to S bus 18 and D bus 20 and to ALU opcode
register 110. The contents of opcode register 110 are
translated by an ALU ROM 132 which provides the
ALU control signals to a full function, 16 bit ALU
circuit 134 which provides the arithmetic and logical
operations for CPU 10. ALU 134 has its output coupled
to ALU bus 16 and is coupled with the program status
word or PSW register 136 which is used to test and
manipulate the state of the plurality of flags. PSW 136
includes such conventional flag bits as carry, aux-carry,
zero, sign, parity, overflow, direction, interrupt-enable
and trap. The input to ALU 134 is provided by means of
three temporary registers 138 through 142. The input to
each of the registers 138 through 142 is derived from
ALU bus 16. Both lower register file 78 and the tempo
rary registers 138-142 are coupled to S bus 18 and Sbus
20 by which these registers are selectively accessed.
Lower control unit 14 also contains certain randon

logic which facilitates operation and coordination of
over-all functions of CPU 10. For example, the output
of latch multiplexer 118 is coupled to a ROM-OUT
control circuit 144 which has at least part of its outputs
coupled to a prefix control circuit 146.
ROM-OUT circuitry 144 includes conventional ran

don logic circuitry which generates an internal com
mand signal, RUN-NEXT-INSTRUCTION, RNI, de
scribed in greater detail below. In addition, ROM-OUT
control generates the next-to-last clock instruction,
NXT, also described below. The communication be
tween lower control unit 14 and upper control unit 12 is
principally through the output bus connecting ROM
OUT control 144 to decision logic circuit 72. The com
munication between the upper and lower unit generally
pertains: to memory reading and writing; to relocation
register computations and manipulations; to correction
operations with respect to the relocation of registers
and program counter; to interrupt acknowledge opera
tions; to input and output operations; and to clearing of
queue 48 and suspension of overall microprocesser op
eration during a HALT mode. A large part of ROM
OUT control circuit 144 is coupled to program condi
tion jump circuit 145 which provides the random logic
needed to test conditions set-up in microcode jumps,
some examples of which are given in the following
tables.
A prefix control circuit 146 provides the required

random logic for various prefix bytes in a conventional
manner. In addition, prefix control circuit 146 provide
the random logic for a base prefix instruction employed

4,363,091
7

in the present invention. The circuit comprises three
flip-flops denoted BPE, BPL and BPH. The first flip
flop, BPE, will be enabled in response to a discrete
command generated by group decode ROM 116 in
response to the loading of a BASE prefix into instruc
tion register 102. The BASE prefix will indicate that a
selected relocation register is to be used as a stack relo
cation register and data relocation register for the dura
tion of the following instruction instead of the normally
assumed registers when a stack address is made through
MP, i.e., other than a push or pop instruction. The relo
cation register which is to be selected when the BASE
prefix is used is determined by the state of the flip-flops
BPL and BPH. Flip-flops BPL and BPH comprise a
two bit field which is drawn from a relocation register
instruction which will load, store, push or pop the con
tents of a specified relocation register. The BASE prefix
allows the actual relocation register, which is normally
assumed by program convention for use by an instruc
tion accessing a relocation register, to be changed to
that designated in the BASE prefix byte. Flip-flop BPL
and BPH in prefix control circuitry 146 are coupled
directly to the bit field corresponding to the relocation
register designated within the BASE prefix and will be
loaded when BPE has been enabled. On the next fol
lowing instruction, BPE will be disenabled together
with BPL and BPH and will remain disenabled until
flip-flop BPE is again enabled by the occurrence of a
base prefix byte.

Suitable interrupt control circuitry 148 may also be
provided to service interrupt requests and to check the
state of instruction execution to determine when CPU
10 could acknowledge an interrupt request. Interrupt
control circuitry 148 is described in greater detail in the
co-pending application entitled “APPARATUS AND
METHOD FOR COOPERATIVE AND CON
CURRED COPROCESSING OF DIGITAL INFOR
MATION', filed June 30, 1978, Serial No. 921,082
assigned to same assignee of the present invention. This
circuitry, as well as other circuitry described below,
comprise the main functional blocks of lower control
unit 14 whose internal operation and cooperation with
upper control unit 12 may now be described and under
stood.
The present invention employs a six byte, first-in

first-out queue 48. CPU 10 is a two-level fetch ahead
system. Inasmuch as there is no advantage in upper
control unit 12 of fetching bytes faster than lower con
trol unit 14 can execute them, and inasmuch as there is
no advantage in lower control unit 14 executing faster
than upper control unit 12 can fetch them, the queue is
only so large as to allow enough bytes to be stockpiled
so that the queue will be able to fetch enough bytes
during the slow instructions to allow the fast instruc
tions to run at full speed. The only other requirement is
that at least two bytes of the queue must be empty be
fore a new instruction is fetched inasmuch as two byte
instructions are permitted. When these factors are con
sidered, together with the execution time for the in
struction set, the optimum queue length is six. It is to be
understood that other queue lengths may be optimal
depending upon the nature of the instruction set, and
the execution speeds of the CPU according to the prin
ciples disclosed herein.
Upper control unit 12 and the lower control unit 14

are essentially unsynchronized in their operation with
one another, although they both run from clock 150.
The function of upper unit 12 is to run all external cy

10

15

20

25

35

45

50

55

65

8
cles, to maintain a program counter, PC 42 and reloca
tion registers 34-40 at the proper relocation offset for all
addresses, and to maintain the six byte instruction
stream look ahead queue 48. Lower control unit 14
executes all instructions, reset and interrupt sequences,
provides data and basic 16 bit addresses to upper con
trol unit 12, and maintains main register file 78 and PSW
136. Interface to the outside world is almost exclusively
the domain of upper control unit 12 with the exception
of certain interrupt functions handled directly in lower
control unit 14.
The microprocessor of the present invention, al

though an ambidextrous 8 or 16 bit machine, operates in
an extended memory space, which in the presently illus
trated embodiment is accessed through a 20 bit address.
Adder 60, which is a dedicated adder, performs the
function of adding the relocation number to the base
address and incrementing or decrementing the ad
dresses if required by offset 16 bit accesses. Adder 60 is
also used to provide a post-fetch correction to any
given address and to apply corrections to PC 42 de
scribed in greater detail below.
PC 42 is not a real or true program counter in that it

does not, nor does any other register within CPU 10,
maintain the actual execution point at any time. PC 42
actually points to the next byte to be input into queue
48. The real program counter is calculated by instruc
tion whenever a relative jump or call is required by
subtracting the number of accessed instructions still
remaining unused in queue 48 from PC 42. However, it
is to be understood that in other embodiments a true
program counter could be included within the CPU
organization if desired.
The memory space used in combination with the

present invention organizes digital information into 8 bit
bytes. Any two consecutive bytes can be paired-up to
form a 16 bit word without the necessity that the bytes
be stored on even address boundaries. The convention
used in the present invention is that the most significant
8 bits of the word are stored in the byte having the
higher numerical memory address.

Relocation registers 34-40 are used to obtain an ad
dress in an extended memory space as follows. Four
low order bits are appended to the 16 bits of any one of
the relocation registers thereby providing the 20 bit
base address of a page. RC register 34 serves as a code
relocation register; RD location register 36 serves as a
data relocation register; RS relocation register 38 serves
as a stack relocation register; and RA relocation register
40 serves as an alternate relocation register accessible
with the base prefix instruction as described and by
block move instructions. A 20 bit memory address cor
responding to a 16 bit data stack or code address is
obtained by adding a 16 bit base address to the appropri
ate relocation register. For example, the memory code
address is obtained from adding the 16 bits of the pro
gram counter, PC 42, with RC register 34. In general,
address lines A0-A3 are therefore directly tapped from
register file 32 via C bus 28 and the least significant 4
bits of the selected register whose contents is added to
the contents of the relocation register, are directly cou
pled to the address/data pins A0-A3. The next 12 bits
from the selected register are then added to the 16 bits
of the chosen relocation register in adder 60 and cou
pled through crossover circuit 30 to latch and input
buffer 26, Consequently, the memory space is divided
into pages of 16 words each, each word having a 16 bit
length. Data is then accessed from the memory and

4,363,091
9

placed upon C bus 28 to the appropriate register of
upper file 32, namely one of the Q registers 48.
According to a command signal generated by loader

circuit 130, described in greater detail below, one of the
bytes from queue 48 will be accessed and coupled to Q
bus 22 while Q control circuitry 74 maintains the proper
fetch rate and control of upper control circuit 12 func
tions. The three least significant bits of the fetched byte
will be inserted into M register 104 whose basic func
tion is to hold the source bus code of the main operand
of the instruction. Register 104 translates the register
field of the first byte into the proper S and D bus code.
Similarly, bits 3 through 5 are loaded into N register 106
whose basic function is to hold the destination bus code
of the second operand of the instruction. X register 108
loads bits 3-6 of the byte and assumes that the opcode of
the instruction is an ALU opcode. The entire byte is
loaded into AR register 112. Since some of the instruc
tions do not contain ALU opcodes, and since some
instructions are two byte instructions, the assumptions
made with respect to the significance of information
loaded into registers 104, 106, 108 and 112 are some
times incorrect. Any incorrect assumption is later cor
rected after the byte, which was loaded into instruction
register 102, is properly decoded by group decode
ROM 116. The correction scheme and procedure will
be described in greater detail below.
Microcode control of the present invention consists

principally of a main PLA or ROM 114 supported by
two others, namely translation ROM 122 used to de
code full length microcode jump addresses and a group
decode ROM 116 to decode machine language opcodes
for purposes of higher level organization. Nevertheless,
many control functions are not handled through the
ROMS but by random logic such as the prefix instruc
tions described below, one clock non-ALU instructions,
opcode decoding, direction bit, the l bit, various idio
syncrasies in flag handling, and certain differences be
tween 8 or 16 bit data operations.
The opcode inserted into register AR is translated

into a ROM starting address by treating the first stage of
ROM 14 as a PLA by using the opcode itself directly as
the ROM address for that instruction's microcode se
quence. Each opcode is provided with a space in ROM
114 for the microcode sequence associated with that
opcode. The opcode address itself cannot be incre
mented because of the danger of overflowing into the
instruction opcode space of an adjoining opcode. Thus,
a four bit incrementing register 124 is added and initially
zeroed when the opcode is loaded into register AR 112.
A ninth bit is added to register 112 to provide more
programming space. The extra bit, ARX, is also initially
reset. CR register 124 is then incremented across the 16
separate microcode states allowed each instruction
while AR remains fixed and can only be changed by a
long jump or return. A microcode subroutine is pro
vided by register 126 used in combination with ROM
122 which encodes a 13 bit long jump address from a 5
bit microcode tag applied by ROM 114 through multi
plexer 120.
The ROM microcode program does not control its

own cycling. When the microcode routine for an in
struction has been executed, ROM 114 passes lower unit
control 14 back to the master timing circuit, loader 130,
whose function is to load the next instruction from Q
bus 22 into the appropriate lower unit control registers.
When all new opcode and field information is loaded
into lower control unit 14 and the ROM starting address

10

5

20

25

30

35

40

45

SO

55

65

10
for ROM 114 is properly initialized, loader 130 enables
ROM 114 and passes control of lower control unit 14 to
it.
The lower unit control thus alternates between a

master four-state counter, loader circuit 130, and main
microcode ROM 114. The function of the loader is to
move instruction bytes containing opcode and register
fields from instruction queue 48, across Q bus 22 and
into the appropriate lower unit registers IR 104, M 104,
N 106, X 108 and AR 112. Once ROM 114 is properly
initialized, loader 130 permits ROM 114 to run by rais
ing a ROM enable signal, ROME, to a binary 1. Main
microcode ROM 114 does not have legitimate "off"
states. Execution is stopped by resetting ROME to zero
which will gate-off the key ROM outputs. The incre
menting register CR 124 will continue counting regard
less of the state of ROME. If ROM 114 is running, it
must sense the end of an instruction execution sequence
and send a discrete command signal, run the next in
struction, RNI, to loader 130 to indicate that the current
sequence of microcode instructions is over and that a
new instruction is to be loaded.
An instruction decode overlap is maintained by an

other discrete control signal next, NXT. If ROM 114
can identify the unique next-to-last clock of the micro
code sequence, it will send signal NXT to loader 130. If
such is effected, the loading of the new instruction will
overlap the execution of the last, thereby increasing
throughput. Under these conditions loader 130 and
ROM 114 will operate simultaneously without any
break of ROM operation. The first execution clock of
the new instruction will be directly followed by the last
execution clock of the prior instruction.

Loader 130 generates two key timing signals for
every sequence in lower control unit 14. These signals
are a first clock, FC, indicating the first step of a load
procedure and a second clock, SC, following FC at the
next or some later clock indicating the second step of
the load procedure. The first byte of an opcode is
clocked across Q bus 22 at FC. The second byte, if any,
will move across at SC. The significance of SC is
greater than merely the loading of the second byte
because it is only under and after the timing signal SC,
that the output of group decoder ROM 116 is valid for
the instruction being loaded. Thus, timing signal SC
occurs regardless of how many bytes actually move
across Q bus 22. The state diagram of loader 130 is
diagrammatically illustrated in FIG. 2 and is simplified
and depicted logically in the following equations:

2 BR is a decoded command signal generated by group
decode ROM 116 indicating that the instruction at hand
has at least two bytes and requires use of ROM 114 for
decoding. MT is a signal generated by Q control cir
cuitry 74 indicating that queue 48 is empty and that
more bytes need to be fetched.

Referring now to FIG. 2, it should be noted that the
operation of loader 130 is based upon two flip-flops in a
manner well known to the art. In the zero state 152, the
flip-flops are set at (00), the lower control unit 14 is not
executing, and the first byte of the new instruction has
not been located. The timing signal, FC, occurs on the
transition out of zero state 152. In first order state 154,
defined by (O1) on the loader flip-flops, no instruction is

4,363,091
11

being executed, the timing signal FC has occurred for
the new instruction and the timing signal SC has not
occurred. SC is generated on transition out of first state
154. If the internal command signal one byte logic, 1
BL, is generated from group decode ROM 116, loader
130 returns to zero state 152. The command signal 1BL
indicates that the current instruction is recognized as a
one byte logic instruction, in other words a one byte
instruction which is not decoded by the use of ROM
114 but by random logic. However, upon generation of 10
the timing signal SC and the nonoccurrence of 1BL,
loader 130 will move to second state 156 defined by the
flip-flop condition (10). The second condition is the run
or execution state wherein the timing signals SC and FC
have occurred and loader 130 is waiting for the com
mand signals NXT or RNI from ROM 114 to indicate
that a new instruction is to be run or the next to the last
clock pulse has been executed of the microcode se
quence,
As indicated in the above logic equation, when in the

second state if either the internal command signals in
NXT or RNI are generated by ROM 114, loader 130
will either return to the first state in the case of the
validity of RNI or to a third state in the case of receipt
of NXT. Third state 158, defined by flip-flop configura
tion (11), is a mirror image of the first state with the
exception that the prior instruction is still executing. If
the timing signal FC is no longer active and ROM 114
indicates a new instruction is to be run, loader 130 re
turns to the zeroeth state to begin the fetch anew. While
in the third state if the instruction is not a one byte logic
type instruction and the timing signal SC is still valid,
that is the instruction is a two byte ROM type instruc
tion or queue 48 is not empty, loader 130 returns to the
second state. If the timing signal SC has gone inactive,
loader 130 returns to the first state configuration, other
wise if the next instruction is a one byte logic, loader
130 will be forced to the zeroeth state to turn and main
tain ROM 116 off. The timing signals FC and SC are
also used throughout the various registers within lower
control unit 14 to set the time at which the register
operates in its intended function according to well
known principles.

Execution is enhanced in CPU 10 of the present in
vention by eliminating much of the instruction over
head as possible. In other words, the opcodes are as
signed so that almost in all cases only the first byte of a
multiple byte instruction is required to form the entire
microcode address. The timing signal FC represents the
only clock pulse in which the first byte is read by lower
control unit 14. Since instruction register 102 still has its
prior value, there is no current information as to the
nature of the new instruction. Therefore, all lower con
trol unit registers attached to Q bus 22 make a probablis
tic guess as to the nature of the new instruction and load
from the first byte on the timing signal, FC accordingly.
More particularly, instruction register IR 102 loads the
first byte normally. M register 104 assumes the instruc
tion could be a one byte instruction and thus it forms up
the 16 bit register source bus code by taking the three
least significant bits of byte one as a register field. N
register 106 assumes that the instruction is a relocation
register instruction by forming up a 16 bit relocation
register destination bus code from bits 3 and 4 of the
first byte as a relocation register field. X register 108
assumes the first byte may have ALU opcodes in bits 3
through 6 and loads these bits accordingly. AR register
112 and CR register 124 assume that byte one is a suffi

15

20

25

30

45

55

65

12
cient starting address and loads byte one into register
AR 112, resets CR register 124 and starts accessing the
microcode location in ROM 114. If any first guess was
incorrect, it is corrected at the timing signal SC since at
that time the output of group decode ROM 116 is then
available as discrete command signals coupled to se
lected decoders and the above registers to cause the bit
field to be redecoded under a different interpretation if
necessary.
CPU 10 of the present invention has nine distinct

addressing modes. The location of an operand in an
instruction employed by the present invention is speci
fied by various fields in the instruction. In particular,
these fields include a register field or a combination of a
mode field and an R/M field. The register field is a
three bit field which specifies one of the 8 or 16 bit
registers described above to be the location of the oper
and, hence the first two addressing modes. The regis
ter/memory field or R/M field is a three bit field in the
instruction which specifies an 8 or 16 bit register or
registers which are contained or used to locate the oper
and. The three bits designate eight ways in which cer
tain registers can be employed for operand accessing in
possible combination with two displacement bytes in
the instruction. The mode field is a two bit field in the
instruction which specifies whether the operand is con
tained in the indicated register or at a memory location
pointed at by the register contents, and indicates the
manipulation to be made on the displacement bits, if
any. In particular, a register which is indicated can be
either the location of the operand or can point to the
location of the operand in memory. AW or word field
is a one bit field in the instruction used in combination
with one of the mode field codes to specify whether the
operand is a byte or work quantity. Any of the registers
and combinations of the 8 bit registers in upper file 78
may be the location, and certain ones may point to the
location in memory of the operand specified in the in
struction. An automatic address subroutine is intialized
by loader circuit 130 at clock SC when required, that is
whenever the instruction is a two bit ROM instruction
and obtains the operand from a location in memory.
The steps followed by the address subroutine are sub
stantially similar to a normal long jump wherein the
microcode address is saved except that movement of
data into and out of AR register 112, CR register 124
and SR register 126 are under the control of loader
circuit 130 rather than ROM 114. The mode and regis
ter/memory fields are directly loaded into translation
ROM 122 through multiplexer 120 from Q bus 22 to
obtain one of the nine starting subroutine microcode
addresses by a direct decode. As a result the addressed
operand is automatically loaded into the appropriate
upper file registers, usually OPR register 46 in the same
manner as a normal instruction fetch as described
above.
The operation and organization of the present inven

tion can be better understood by considering in detail
the execution of a number of specific instructions which
are particularly unique to a CPU utilizing the present
invention.
CPU 10 may execute what is defined as string instruc

tions consisting of a set of primitive one byte instruc
tions which can be performed either once or repeatedly.
When used as a repeated operation the string instruc
tions permit a complete string or loop operation to be
hardware executed as opposed to typical software exe
cution. When used in the form of a single operation, the

4,363,091 13
string instructions permit the writing of a tight software
loop which could be used to perform more complex
string instructions. All primitive string instructions use
BC registers 84 and 92 respectively as a loop counter
and IJ register 103 and if necessary IK register 105 as
pointers to operands in memory. If a direction flag in
PSW 136 has been cleared, the operand pointers are
incremented after being used, otherwise they are decre
mented automatically by ALU 134. Other software
instructions are provided in the instruction set for set
ting or clearing the direction flag in PSW 136.
The primitive string instructions are MOVE, COM

PARE, SEARCH, LOAD, and STORE. The MOVE
primitive moves a string of characters, i.e. 8 bit bytes,
from one block of memory to another. The COMPARE
primitive permits comparing two character strings to
determine after which character the strings become
unequal and thus help to establish a lexigraphical order
ing between the strings. The SEARCH primitive per
mits searching for a given character in a character
string. The STORE primitive is used for filling in a
string of characters with a given value. Typically, the
STORE primitive and the LOAD primitive are used as
building block instructions to form tight software loops
that perform complex string instructions. Each of the
primitive instructions also has the ability to operate on
words as well as characters or bytes. Included among
the string instructions is a prefix, REPEAT, which
provides for rapid loop control in a hardware repeated
string operation. Any of the primitive instructions can
be preceded with the one byte prefix, REPEAT, which
will repeat the instruction as long as the loop count is
not zero. The test for the loop count is made prior
rather than after each repetition of the loop so that the
initial loop count of zero will not cause any executions
of the primitive string instruction. During each repeti
tion of the loop, the loop counter is decremented. Dur

10

15

20

25

35

14
ing the repetition of any string instruction the PC pro
gram counter 42 remains pointing at the repeat prefix
byte and is not updated until after the last repetition of
the string instruction. This fact, together with the con
tinuous updating of the operand pointers and count
register, allow that the repeated instruction to be cor
rectly resumed if it is interrupted. External interrupt
will be permitted prior to each repetition of the primi
tive string instruction.
A loop instruction provides the same control as the

REPEAT prefix but in tight software loops to perform
complex string operations. A loop instruction decre
ments the loop count in register BC and performs a
relative branch, typically to the start of the loop, if
either the count has not become zero or the zero flag of
PSW 136 is not at a specified setting. A form of loop
instruction is also available that does not test the Zero
flag. The loop instruction is typically placed at the end
of the loop and tests for loop repetitions after each
execution of the loop. This means that if the loop counts
were initially zero, the loop will still be executed. A
SKIP instruction is introduced to prevent undesireable
repetitions. A SKIP instruction performs a relative
branch if register BC contains a zero and does so with
out altering the contents of BC. Translate, XLAT, is
another primitive string instruction used as a building
block in tight loops. The XLAT instruction allows a
byte fetch from one string to be translated before being
stored into a second string or compared to a given byte.
Translation is performed by using the value in the A
register 90 to index into a table pointed at by HL regis
ter 88 and 96. The translated value obtained from the
table then replaces the value initially held in a register
90.
The machine language code for the string instruc

tions are set forth below in summary form.

TABLE 1.
STRING INSTRUCTIONS

STRING LOAD
7 6 5 4 3 2 O

Mnemonic:
LDS (w =0)
LDSW (w = 1) Description:

if (DIRECTION)=1 then (IJ)-(1+w) - G) (IJ)
else (IJ) + (1 + w) - G) (IJ)

Flags Affected:
None

STRING STORE
7 6 5 4 3 2 1 0

Mnemonic:
STS (w =O)
STSW (w = 1) Description:

if w=0 then (A) - G-((IK))
else (XA) - Gd(IK))+1,(IK))

if (DIRECTION)=1 then (IK)-(1+w) - Ge(IK)
else (IK) + (1+w) - Gd(IK)

17
4,363,091

18
TABLE ll-continued
STRING INSTRUCTIONS

LOOP

Mnemonic:

Description:

Flags Affected:

SKIP

Mnemonic:

Description:

Flags Affected:

TIGHT LOOP NSTRUCTIONS
Translate:

Mnemonic:

Description:

service pending interrupt (if any) here
perform primitive string instruction
in succeeding byte

(BC)- 1 - G(BC)
if primitive instruction is one specified
to affect ZERO flag
and (ZERO) <> z
then exit "while' loop
end-of-while

(PC)+2 -G (PC)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
00 0 1 0

LP

(BC)- 1 - G(BC)

if (BC) <> 0 then

(PC) + displacement -Ge(PC)
where "displacement" is an 8-bit signed number

None

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SKP disp

if (BC)=0 then (PC) + displacement - G)(PC)
where "displacement' is an 8-bit signed number

None

7 6 5 4 3 2 1 0

XLAT

(HL)+(A)) - G)(A)
Flags Affected:

LOOP AND TEST ZERO

Mnemonic:

Description:

Flags Affected:

None

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
000 Oz

LPW disp for z = 1 (means Loop While)
LPU disp for z = 0 (means LooP Until)

(BC)- 1 - Gd(BC)
if (ZERO) = z and (BC) <> 0 then
(PC) -- displacement -G(PC)
where "displacement" is an 8-bit signed number

None

As can be seen the general form the primitive string
instruction consists of one byte having a 7 bit opcode 60
and a w bit which is used to signify whether the string and register BC is initialized to contain the length of the
instruction is to operate on a character or a byte (w = 0) input string. The direction flag is cleared in PSW 136
or on a word (w = 1). and the HL register has been loaded with the first ad

Consider the following example as a use of string dress of a translation table. The translation table con
instructions to write a tight software loop. The task is to 6' tains one byte for every possible character. Every char
scan over a string of input characters until a character is acter which is an alphanumeric character has been as
encountered that is not alphanumeric. IJ register 103 is signed a unique arbitrary code. This same code is placed
initialized to point to the beginning of the input string into E register 94. The software loop using a string

4,363,091
19

instruction to scan for a first nonalphanumeric charac
ter is as follows:

SKPX1
X2:

LDS
XLAT
CMP AE

The routine above causes the following to occur.
With the instruction SKPX1 the program will skip to
X1 if the count register is zero by adding the displace
ment X1 indicated in the SKIP instruction to the pro
gram counter as can be verified by reference to TABLE
1 above. If the contents of the counter is nonzero, then
the next byte is accessed, namely the string load instruc
tion LDS. As verifiable from TABLE 1 the contents of
the memory location pointed at by the contents of regis
ter IJ, in other words the first character in the input
string of characters will be loaded into the A register or
accumulator 90. The character loaded into the accumu
lator will be added to the first address of the translation
table which is contained in register HL to form a mem
ory address. That address will be the location in the
translation table which corresponds to the character
read from the input string of characters. The code into
which the character is translated will then be retrieved
from that location and put into accumulator 90. The
COMPARE instruction, CMP AE by definition will
subtract the contents of register E from the contents of
register A which was previously loaded with the alpha
numeric translated code. If the first character of the
string of characters is not an alphanumeric code the
subtraction will result in a positive or negative nonzero
number. However, if it is equal to an alphanumeric code
the sum will be zero thereby affecting a zero flag bit in
PSW 136. The loop and test zero instruction, LPW, will
subtract one from the contents of the count register BC.
If the zero flag is set and the BC register is still nonzero,
then the displacement X2 contained in the loop in the
test zero instruction will be added to the program
counter and reinserted into the program counter. Inas
much as the displacement can be a negative number the
program counter can be backed up by the proper num
ber of bytes to re-enter the program at the first step with
the string load instruction, LDS. It will be noted that
the string load, LDS, will increment IJ register 103 by
one since it was assumed that W=0. As a result the next
character from the string of input characters will be
loaded into the accumulator for comparison.
Now consider the situation in which it is desired to

search a string of characters to identify which one is the
given one, such as would occur during an ordinary
operation to look up and identify specific data in a
search file. To accomplish this register IK is initialized
to point to the beginning of the file of input characters
to be searched, BC is initialized to contain the length of
the input file and a reset flag is reset or cleared. The
hardware loop would consist simply of the following:

SKPX1
X2:

RPI
SRCHS

X1:

10

15

20

25

30

35

45

60

20
The SKIP instruction would skip the loop if the counter
register BC is zero. If not, the repeat prefix, RPT, is
read to indicate that as long as the BC register is not
zero, the primitive string instruction which follows is to
be performed and only when the zero flag and Z bit of
the repeat instruction are equal is the loop to be exited
at X1. When exited, the program counter is incre
mented by 2. In the example chosen, the primitive string
instruction which follows the repeat prefix is the string
SEARCH which, as is verified by TABLE 1, will take
the contents of A register 90 into which the particular
character which is being sought has been loaded and
subtract it from the contents of the location pointed at
by the contents of IK register 105. As long as these two
characters are different, the difference will be nonzero
and the zero flag uneffected. Thus, it can be appreciated
that a "hardware loop' can be written by use of the
repeat prefix. The string instructions may be used in
"hardware" loops and tight software loops because the
string primitives COMPARE, SEARCH, LOAD and
STORE each contain an incrementing or decrementing
function among the operations which are performed.
The microcode structure of each the string instructions
is described in greater detail below.

Decimal instructions are handled by CPU 10 both in
packed BCD and unpacked BCD form. Packed BCD
instructions deal with BCD information which is coded
to contain two decimal digits per byte. Unpacked BCD
digital information contains one decimal digit per byte.
ASCII code is a special case of unpacked BCD. ASCII
information is in byte form and coded in such a manner
that the four most significant bits of the byte are only
the parity bit and the code 011 to designate that the
following information is a numerical character. The
least significant four bits of the ASCII byte in such a
case is the binary coded decimal digit. CPU 10 of the
present invention is capable of executing arithmetic
operations with respect to ASCII information with
greater ease and facility than in the prior art.
The basis of the ASCII instructions revolves about an

adjust cycle. Addition and subtraction adjustment ac
cording to an ASCII instruction used in the present
invention is similar to the corresponding packed BCD
adjustments except that the X register is updated if an
adjustment on the accumulator, register A, is required.
(Consider the addition and subtraction adjustments as set
forth in TABLE 2 below.

TABLE 2

ASCII Addition a + b - G) c.

o-Go (CARRY)
DO i = to N

(ai) - G- (A)
(A) + (bi) --Go (A)

where '-' denotes add with carry
add-adjust (A) -G (XA)
(A) - G(c)

ASCII Subtraction a - b - G) c

4,363,091
21

TABLE 2-continued

(a) - G- (A)
(A) - (b(i)) - G- (A)

where "-" denotes subtraction with borrow
subtract-adjust (A) -Ge. (XA)
(A) - G) (c(i))

ASCII (unpacked BCD) Adjust for Addition

7 6 5 4 3 2 1 0

Mnemonic:
AAA
Description:
if (A).low-nibble > 9 or (AUX-CARRY) = 1 then

(A) + 6 - G- (A)
(X) + 1 - G (X)
1 -G (AUX-CARRY)

(AUX-CARRY) - G (CARRY)
(A) AND OFH-Ge (A)
Flags Affected:
CARRY, AUX-CARRY, SIGN, ZERO, PARITY based on (A)
OWERFLOW undefined
ASCII (unpacked BCD) Adjust for Subtraction

7 6 5 4 3 2 1 0.

Mnemonic:
AAS
Description:
if (A).low-nibble > 9 or (AUX-CARRY) = 1 then

(A) - 6 - G- (A)
(X) - 1 -G (X)
-G (AUX-CARRY)

(AUX-CARRY) - Ge (CARRY
(A) AND OFH -G (A)
Flags Affected:
CARRY, AUX-CARRY, SIGN, ZERO, PARITY based on (A),
OWERFLOW undefined

A and B represent two multiple character ASCII num
bers. N represents the number of ASCII characters in
the longer of the two numbers. In the ASCII addition
instruction the carry flag is first set to zero and then the
loop is entered. Beginning with the first character of the
ASCII numbers, the first character is loaded into A
register or accumulator 90. The first character of the
second sum is then added to the contents of accumula
tor 90 in an add-with-carry operation. Obviously the
high order nibble, the most significant four bits, will be
a meaningless sum since it will be the addition of the
two ASCII codes and the parity bit for each character.
An excess six code adjustment is made by testing the
low nibble of accumulator 90 to determine whether or
not the number there is greater than 9 or if the auxiliary
carry flag in PSW 136, AUX-CARRY, has been set. If
so then six is added to the contents of accumulator 90
and one is added to the contents of X register 82. The
flag AUX-CARRY is then set and the carry flag is set to
match AUX-CARRY. The contents of accumulator 90
is then logically combined with the hexidecimal number
OF in an AND function in order to set the high order
nibble to zero and to carry forward the low order nibble
which contains the meaningful numerical information.
The contents of accumulator 90 is then stored in the

O

15

25

35

45

50

55

60

22
location corresponding to the sum for that character.
The loop then repeats the operation with respect to the
next higher order ASCII characters of the addends.

Similarly, ASCII subtraction is shown in TABLE 2.
The subtract adjustment is done in an excess six code in
the same manner as the adjust addition except that a six
is subtracted from the contents of accumulator 90 and
the contents of X register 82 is decremented by one. It
will be noted that in neither the subtraction nor addition
routine as shown in TABLE 2 does the contents of X
register 82 figure in. However, the add adjustment will
be used in the ASCII multiplication scheme as diagram
matically shown in TABLE 3.
The ASCII instructions of the present invention are

particularly useful with respect to multiplication and
division. Consider for example, the multiplication rou
tine as shown in TABLE 3.

TABLE 3

ASCII Multiplication a b - G) c

(b) AND OFH - Ge (b)
O-Ge (c(t))
DO i = 1 to N

(all) AND OFG - G- (A)

(A) * (b) - Ge (XA)

multiply-adjust(A) -G (XA)

(A) + (c(i)) - G- (A)

add-adjust(A) -G (XA)

(A) - G) (c(i))

(X) - G) (ci+1))

ASCII Division a y b -G c

(b) AND OFH - Ge (b)

O-Ge (X)
DO i = N to 1

(a) AND OFH -G (A)

divide-adjust (XA) - G) (A)

(A) / (b) -G (A)
with quotient going into (X)

(A) - G) (c(i))

ASCII (unpacked BCD) Adjust for Multiplication

7 6 5 4 3 2 1 0. 7 6 5 4 3 2 1 0
1 0 1 0 1 00 0000 1 0 1 0

4,363,091
23

TABLE 3-continued
Mnemonic:
AAM
Description:

(A) / 10 -G (X)

(A) mod 10 - G- (A)

Flags Affected:
CARRY, AUX-CARRY undefined, SIGN, ZERO, PARITY
based on (A), OWERFLOW undefined
ASCII (unpacked BCD). Adjust for Division

10

7 6 5 4 3 2 1 0 15 2 10
1 1 0 1 0 1 0 . 0 0-0 0 1 0 1 0.

Mnemonic:
AAD
Description: 20

(X) * 10 - (A) - Ge (A)

O-G) (X)

Flags Affected:
CARRY, AUX-CARRY undefined, SIGN, ZERO, PARITY
based on (A), OVERFLOW undefined

25

The ASCII number b is contained in an AND function 30
with the hexidecimal number OF to zero the most sig
nificant four bits. The contents of the c(1) location, the
product, are set to zero. The loop is entered by zeroing
the most significant four bits of the ASCII multiplicand
and setting the result in accumulator 90. The routine
which is set forth in TABLE 3 is a routine which multi
plies a multiple character multiplicand by a single char
acter multiplier. For multiple character multipliers the
routine would be repeated to obtain a plurality of prod
ucts which would then be combined in appropriate
form according to the normal multiplication algorithm
for decimal numbers.
The contents of accumulator 90 are then multiplied

by the ASCII multiplier and the product loaded into the
16 bit XA register 82 and 90. The 16 bit binary product
is then subjected to a multiply adjust ASCII instruction.
A multiplication adjust, AAM, first divides the contents
of accumulator 90 by 10 and places the results in X
register 82. The contents of accumulator 90 are then
reduced modulo 10 in order to place the remainder of 50
the division into accumulator 90. The result is that the
product of b with the number a(1) is presented in un
packed BCD form in 16 bit register XA. The contents
of accumulator 90 are then added to the product c(1)
which in the first transit through the do loop had been
set at zero. The results of sum are loaded back into
accumulator 90. A binary sum is now represented in
accumulator 90 and is adjusted to BCD unpacked form
by an addition adjustment, AAA, of the type previously
described. The contents of accumulator 90 are then
loaded into the c(1) location and the contents of X regis
ter 82 loaded into the c(2) location.
The do loop repeats by multiplying the second char

acter a(2) by the multiplier and placing the product in
16 bit register XA. The multiply adjustment instruction
converts the contents of accumulator 90 into an un
packed BCD form and loads register XA with the re
sult. The accumulator 90 is then added to the contents

45

55

65

24
of location c(2) which contains the carry from the pre
vious multiplication. The result is loaded into accumula
tor 90. Since the binary sum may be in excess of nine,
the add adjustment instruction previously described
follows with the BCD result appearing in register XA.
The incrementation of X register 82 automatically
carries over any carry from the BCD adjustment. The
results in X register 82 and accumulator 90 are loaded
into the proper product locations. Thus, the contents of
X register 82 which was immaterial to the ASCII addi
tion routine becomes an integral part of the ASCII
multiplication routine through the addition adjustment
instruction.
The ASCII routine for division is similarly shown in

TABLE 3 and consists of a do loop repeated from the
highest order character to the lowest. The routine
shows a single character divisor and a multiple charac
ter dividend. The routine shown in TABLE 3 can be
appropriately used as a subroutine in a larger scheme to
accommodate multiple character divisors according to
principles well known to the art. The high order nibble
of the ASCII coded divisor is first zeroed. X register 82
is similarly zeroed. Then the do loop is entered begin
ning with the highest ordered character. The highest
order character of the dividend, a(N) has its four most
significant bits similarly zeroed and loaded into accu
mulator 90. An ASCII instruction divide adjust, AAD,
is then executed with respect to the contents of register
XA.
The adjustment for division first takes the contents of

X register 82 and multiplies it by 10 and adds the prod
uct to the contents of accumulator 90 and places the
result into accumulator 90. In other words, the BCD
unpacked coded number is converted into binary form
and placed into accumulator 90. Zeros are again written
into X register 82. The divisor is then divided into the
contents of accumulator 90 with the quotient being
placed in accumulator 90 and the remainder being
placed in X register 82. The contents of accumulator 90,
the quotient, is then loaded into the appropriate location
for the highest order character of the quotient. The
count is decremented and the next lower order ASCII
character, is loaded into accumulator 90. The contents
of register XA is again subject to a divide adjust as
described above to place the binary equivalent into
accumulator 90. The division is made with the result
being loaded into appropriate quotient location and the
remainder reinserted into X register 82 for the next
lower order of character, if any.

It should be noted that in the multiplication and divi
sion routines the multiply adjust and divide adjust steps
are in a different sequence with respect to the actual
multiplication or division. The actual arithmetic opera
tion is computed in binary form. Since the ASCII code
is an unpacked BCD and zeroed for actual computation,
the numbers are actually in binary form and the multi
plication adjustment need only be made after the prod
uct is obtained. However, since the remainder of a divi
sion is put into X register 82 after each character divi
sion, a divide adjustment must be made in each instance
before the actual division is executed. The microcode
format for the ASCII adjust instructions is described in
greater detail below.
The CPU of the present invention also employs an

additional bit in the opcode in two classes of instruc
tions. A d bit is included in the opcode in the class of
two operand instructions and an 1 bit is included in the

4,363,091
25

opcode in the class of immediate instructions. Consider,
for example, the add instruction shown below in tabular
form in TABLE 4.

TABLE 4 5
NSTRUCTION SET OETAILS
Add

7 6 5 4 3 2 O 7 6 5 4 3 2 1 0
0 00 000 dw modeg An O

Mnemonic:

ADD regea (w = 0)
ADDW regea (w = 1)
reverse ea and reg if d = 1
Description: 15
if w=0 then

if d= 1 then (REG8) -- (EA8) -Ge. (REG 8)

else (EA8) + (REG8) -G (EA8) 2O

else

if d = 1 then (REG16) + (EA 16) - Ge (REG16)
25

else (EA 16) + (REG16) -G (EA 16)

Flags Affected:
30 CARRY, AUX-CARRY, SIGN, ZERO, PARTY, OVERFLOW

The six most significant bits of the opcode uniquely
provide the addition instruction opcode address. Bit 1
of the opcode is the d bit and bit 0 of the opcode is the 35
w bit which indicates whether an 8 or 16 bit operation
is to follow. The d bit provides for software program
ming of the direction in which the operation is to pro
ceed. In other words, as shown in TABLE 4 above, if
the d bit has been set at 1 the contents of a first register 40
and a second register or memory location are added and
inserted into the first register. However, if the d bit is
zero then the memory location or second register is
added to the first register and the result placed in the
second register or memory location. The facility by 5
which CPU 10 processes the d bit is particularly advan
tageous. The d bit is not microcode decoded but is
decoded using conventional random logic. Group de
code ROM 116 generates an internal discrete command
signal, DACT, which indicates that the current instruc
tions loaded in the various registers has ad field. DACT
is directly coupled to a cross-over circuit 172 shown in
FIG. 1B, Normally, the output from M register 104 and
N register 106 are treated as designating the source and
destination in an assumed order. In other words, nor
mally M register 104 generates the source code to select
the appropriate source register while N register 106
selectively generates an enable signal and the destina
tion code for the destination register. However, the d
bit provides an additional coding capacity to reverse the
assumed source and destination assignment by reversing
the outputs of M register 104 and N register 106 by
conventional means within a cross-over circuit 172 in
response to DACT.
Now consider the use of the bit in the opcode of an

add immediate instruction as diagrammatically shown
in TABLE 5 below.

SO

55

65

26
TABLE 5

Add Immediate
6 5 4 3 2 1 0 7 6 5 4 3 2 O

1000 001 w modOOO Am

7 6 5 4 3 2 O
data if w. = 1.0

Mnemonic:

ADDI ea,data (w = 0)
ADDIW ea,data (w = 1)

If ea = d8 or d16 then
data is the contents of the byte(s) following the
d8 or d6 byte(s)
else
data is the contents of the byte(s) following the
instruction
if w=0 then data is the contents of a byte
if w, 1 = 1, then
data is the contents of a byte sign extended to
form a 6-bit quantity
if w, 1 = 0 then
data is the contents of a pair of consecutive
bytes with the low-order byte preceding the
high-order byte

w=0 then (EA8) -- data -G (EA8)

else (EA 16) + data - G) (EA 16)
Flags Affected:
CARRY, AUX-CARRY, SIGN, ZERO, PARITY, OWERFLOW

The opcode of the add immediate instruction is simi
larly identified in the six most significant bits of the
opcode, bit 1 is the 1 bit and bit 0 is the w bit as before,
The add immediate instruction may consists of four
bytes. The first byte pertains to the opcode, the second
byte pertains to the register or memory location EA,
and the last two bytes hold the immediate data.
Assume for simplicity that the quantities be added are

single bytes, i.e. w=0. The data, in the instruction, is
then the contents of a byte. The register or memory
location (EA8) is then added to the data byte and the
result placed in that memory location or register.

If, however, the information to be added is of word
length, then the contents of the 16 bit memory or regis
ter location will be added to the immediate data in the
instruction and placed back in that memory location or
register (EA16). The l bit permits the use of both 8 and
16 bit data in a word length addition. If the l bit is set at
l then the immediate data is the contents of the single
byte in the instruction with the sign bit extended to form
a 16 bit quantity. This is done in dedicated hardware in
ALU 134 according to design principles well known to
the art. However, if the bit is set at a binary zero, then
the data which is manipulated is the 16 bit quantity in
the pair of consecutive bytes forming the last pair of a
multiple byte instruction with the low order preceding
the high order byte. The bit then allows both 8 and 16
data words to be handled in an identical manner in data
immediate instructions in a form which is hardware
identical.

Finally, CPU 10 of the present invention is capable of
operating in a mode utilizing a floating point hook to
coordinate operation of the present invention with a
separate chip, such as a math chip, which will perform
floating point operations to thus allow hardware exe
cuted floating point operations rather than by use of
software subroutines. The math chip has the ability to
monitor the address/data bus and to be constantly

4,363,091
27

aware of the current instruction being executed. In
particular, the math chip is set to detect a special in
struction, FLOAT, and will perform the necessary
actions in response thereto. In order for the math chip
to know the address of the instruction which it is to 5
access, CPU 10 will react to a FLOAT instruction by
performing a read operation without transferring the
results of the read operation to lower control unit 14.
The address read will be taken from the operand ad
dress specified in the FLOAT instruction thereby plac- 10
ing the address on the address/data bus for the math
chip to see. While the math chip is executing its rou
times, CPU 10 may enter an idle state during which it
must wait for the math chip to release the use of the
address/data bus. An external test pin on CPU 10 is 15
used to indicate to CPU 10 whether or not the math
chip is ready to execute another instruction. Otherwise,
the instruction, WAIT, will cause CPU 10 to idle. In the
illustrated embodiment the specific form of FLOAT
and WAIT is indicated below in TABLE 6.

TABLE 6
FLOATING POINT HOOK

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
10 xxx modxxx Am

Mnemonic:
FLOAT ea
Description:

(EA 16) -Gnowhere except address is sent out
on bus 30
Flags Affected:
None
WAT
7 6 5 4 3 2 10
OO1 1 0 1 1

Mnemonic: 35
WAIT
Description:
if no signal on "test pin" then reexecute this
instruction
Flags Affected:
None

The microcode routines for the above instructions
can now be understood.
Although the present embodiment is described with 45

respect to a particular instruction set coding and micro
coding in relation to operation of the above described
hardware, it is to be expressly understood that all equiv
alent types of hardware components which relate one to
the other in a logically equivalent manner, may be em- 50
ployed and included within the scope and spirit of the
present invention by those having ordinary skill in the
art. Consider for example the microcode routine for the
ASCII add adjust instruction, AAA. TABLE 7 below
summarizes the ASCII addition and subtraction adjust- 55

25

28
bits 1 through 10, contain the source and destination
field allowing a general move between any two data
sources on ALU bus 16. The second operation, which
occurs in parallel with the first, may be any one of the
six following types of instruction contained in the mi
crocode fields TYP, A, B and F:

a short-range jump;
an ALU conditioning command;
a general control bookkeeping pair;
a memory cycle request;
a long-range jump; and
a long-range jump with SAVE, i.e. a call.
The ROM address as stored within AR register 112 is

shown in bits 0 through 7 and the extra added bit ARX
in TABLE 7. The contents of the incrementing register
CR is shown in decimal form in a column to the right of
the ROM address. The columns S, D, TYPE, A, B, and
F represent in mnemonic form the 21 bit microcode
which is stored in ROM 114 corresponding to the
ASCII adjust and subtract. The source and destination
fields occupy bits 1 through 10 and, according to a
source and destination bus code assignment, uniquely
identify one of the registers in upper or lower files 48,78
or one of the ALU registers.
There are six types of microcode instructions in the

present invention. Type 1 is an ALU conditioning in
struction which sets up ALU 134, which is taken to
include PSW 136, to perform a specified function. A
type 0 microcode instruction is a short jump which
provides for a conditional jump within the microcode
burst or sequence. A type 4 instruction is a bookkeeping
instruction. Other types include a type 6 memory cycle,
type 5 jump cycle and type 6 long jump cycle with an
address save.

In the case of the ASCII addition adjust and subtract
adjust, as shown in TABLE 7, the microcode burst
consists of 8 microcode instructions. The first micro
code instruction, moves the contents of A to the lower
8 bits of the 16 bit temporary register TMPA 138. The
second half of the microcode instruction is an ALU
conditioning command which preconditions ALU 134
to add without carry the contents of TMP A 138 and
TMP B 142. The opcode symbolically represented by
XI consists of bits 13 through 17, which five bits are
loaded in opcode register 110 and decoded through
ROM 132 to ALU 134. The opcode will either be a
unique ASCII adjustment for addition or subtraction to
be performed upon the contents of the microcode b
field, which field includes bits 18 through 20 in the case
of an ALU instruction. Bit 21 is a flag bit which indi
cates whether or not the PSW flags are to be updated.
The ALU is preconditioned to test the contents oftem
porary register A to determine whether or not they
exceed 9 or whether the auxiliary carry flag is set. The
precharged ALU bus 16 is set at the beginning of each

ments. clock cycle to a full complement of ones and is selec
TABLE 7

AR X 7 6 5 4 3 2 1 is CR S D Typ a b F
AAA O 0 0 1 1 X 1 1 1 0. A timpal 1 XI timp2
AAS 1 ONES timpb

2 X A. 1 DEC tmpb F
3 0. Xdb 5
4. INC trmpb
s X tmpb O NCY 7
6 X. X 4 none RN
7 4. none RN

Each microcode instruction consists of two halves
which are allowed to operate in parallel. The first half,

4,363,091
29

tively pulled down by microcode instruction 1, by en
abling appropriate pull down circuitry 160 diagrammat
ically shown in FIG. 2 to discharge selected lines of
ALU bus 16 and to load a binary 6 into TMP B 142. A
conventional comparator circuit 162 tests the contents
of temporary register A to determine whether or not
the contents is greater than 9. If so the output of com
parator 162 is true and combined in OR gate 164 with
the AUX-CARRY bit from PSW 136. The output of
OR gate 164 enables adder 166 which then adds the
contents of TMP A 138 and TMP B 142. The circuitry
of FIG. 2 or its equivalent is included within ALU 134
and is enabled by the corresponding ALU opcode.
Microcode instruction 2 takes the contents of the sum

from ALU 134 and reloads the sum into accumulator
90. ALU 134 is then preconditioned by the second half
of microcode instruction 2 to decrement the contents of
TMP B. The least significant bit of X register 108, X0,
is then tested in microcode instruction 3, namely bit 3 of
the instruction address. If true, the microcode instruc
tion will follow a short jump to microcode instruction 5
wherein the contents of X register 82 will be loaded into
register TMP B 142. ALU 134 having been precondi
tioned by microcode instruction 2, will decrement the
contents of TEMP B142. The second half of microcode
instruction 5 will then cause a short jump to the end of
the microcode instruction if the inverse of the carry flag
is true indicating no carry, NCY, otherwise microcode
instruction 6 will be executed wherein the sum will be

5

10

15

20

25

30
to loader 130 to run the next machine language instruc
tion.

If, however, an ASCII add instruction is indicated,
microcode instruction 3 will be omitted and ALU 134
preconditioned to increment contents of TMP B.
Again, microcode instruction 5 will insert the contents
of temporary register 82 into TMP B with the result
that the incremented contents of X register 82 may be
loaded into X register 82 as required and an ASCII
multiplication division. Hardware circuitry performs
the other remaining operations required in the ASCII
addition and subtraction adjustment, such as setting the
auxiliary carry flag by the use of pull up circuitry 168 in
combining the sum with hexidecimal OF in AND gate
170 shown in FIG, 2. The logical equivalent circuitry
employed by the ASCII addition and subtraction has
been shown diagrammatically in FIG. 2. However, it is
to be understood that the circuitry is for the purposes of
illustration only and represents an equivalent to the way
in which general purpose circuitry within ALU 134
performs the required hardwired logical operations in a
manner well known to the art. It it is to be understood
that the actual circuitry may have a distinct architecture
and only assumes an equivalent configuration to that of
FIG. 2, in reponse to the microcode instructions dis
cussed above.
The ASCII division and multiplication adjustment

instructions, AAM and AAD, are diagrammatically
illustrated below in TABLE 8.

TABLE 8
X 7 6 4 2) db CR S D Typ a b F

AAM 0 1 1 0 1 1 O 0 O Q tmpb
1 ZERO trnpa
2 A. tmpc 7 UNC 3
3 1 COM1 timpc

O O 0 0 4 X. X PASS trmpa,
NX

ASCF 5 X. A 4. One RNI F
6
7

INCR, 0 0 1 X 0 X X X X 0 M tmpb XI tmpb,
DECR NX

XE M 4. One RNI
2

CORX 3 ZERO inpa RRCY trmpic
0 0 X 0 X X X X 4. X tmpic 4 MAXC none

5 O NCY 8
6 1 ADD trmpa
7 X tmpa F

O 0 1 X 0 X X X X 8 1 RRCY timpa
9 X timpa 1 RRCY trmpc
O X tmpic O NCZ 5
11 4 ce RTN

CORD 1 0 0 1 0 0 1 0 O SUBT trmpa
1 X. no dest 4 MAXC none F
2 s NCY 7
3. 1 LRCY trnpc

1 0 O 0 0 1 0 4. XE timpic LRCY trnpa
s s tmpa SUBT trmpa
6 O CY 13
7 X. no dest F

0 0 1 0 O 0 1 0. 8 O NCY 4
9 O NCZ. 3
10 1 LRCY trnpc
1 X. tmpic

1 0 0 1 0 O 0 1 0 12 X. no dest 4 none RTN
13 4 RCY One
14 s tmpa O NCZ 3
15 O UNC O

65 As shown for AAD in TABLE 3, the 8 bit binary num placed in X register 82. In either case, the bookkeeping
instruction will generate a ROM control signal, RNI,
from circuit 144 to run the next instruction, i.e. indicate

ber for 10 is drawn from the queue as the second byte of
the instruction and placed within the TMP C 140. The
contents of X register 82 is placed within TMP B 142.

4,363,091
31

The unconditional long jump is then made to CORX,
which in the presently preferred embodiment is a por
tion of an increment and decrement instruction. Micro
code instructions 3 through 11 and CORX represent the
execution of the normal binary multiplication algorithm
wherein the TMP A is used as an accumulator. The
ALU opcode, RRCY, stands for a right rotation includ
ing the carry. The carry is included since ALU 134 of
the present invention is able only to test the carry bit
rather than one selected bit of the byte or word. Thus,
microcode instruction 3 of CORX clears temporary
register A and preconditions ALU 134 to right rotate
the contents of temporary register C. The actual rota
tion occurs at microcode instruction 4. In the second
half of microcode instruction 4 a bookkeeping instruc
tion sets an internal counter in ALU 134, well known to
the art, to either 15 or 7 depending upon whether the
quantity operated upon is a byte or word.
As will be seen below the counter is then decre

mented as a multiplication algorithm is continued. Mi
crocode instruction 5 is a short conditional jump in
which the carry bit is tested. If there is no carry then the
jump will be made to microcode instruction 8. The last
half of microcode instruction 8 and the first half of
microcode instruction 9 will right rotate with the carry
the contents of temporary register A followed by the
right rotation with carry of the contents of register
TMPC. In the last half of microcode instruction 10 a
short conditional jump is made whenever the condition,
NCZ, indicates that the contents of the counter within
ALU 134 has reached zero. If the contents is not zero
the loop returns to microcode instruction 5. At the end
of the loop return is made to the microcode burst per
taining to AAD wherein the contents of A register 90
are loaded into temporary register B 142 and ALU 134
is preconditioned to add the contents of temporary
register B and temporary register C which now holds
the product of 10 times the prior contents of X register
82. At microcode instruction 3,X register 82 is then
zeroed and an unconditional jump is made to ASCF
wherein the addition, preconditioned by microcode
instruction 2, is executed in ALU 134 the flags updated
and the ROM control signal, RNI generated. Compari
son with TABLE 3 will indicate that this is in fact the
ASCII adjustment for division.

Similarly, TABLE 8 also shows the ASCII adjust
ment for multiplication, AAM. The binary number for
10 is pulled from the queue and loaded into temporary
register B in microcode step 0. Temporary register A is
cleared at microcode instruction 1 and the contents of
accumulator 90 loaded into temporary register C at
microcode instruction 2 after which there is an uncondi
tional jump to the subroutine CORD which is com
prised of a 16 microcode burst.
The first microcode instruction of CORD precondi

tions ALU 134 to subtract the contents of temporary
register B from temporary register A and executes the
subtraction at microcode instruction 1 without setting
the results at any location. The carry flag is also set.
Therefore, if the contents of temporary register B is a
zero, it being assumed that all contents are of positive
numbers, no carry will be generated inasmuch as tem
porary register A has been cleared. In such a case, at
microcode instruction 2, a conditional jump NCY to a
conventional error subroutine, will flag to the user that
division by zero is being attempted. Normally the carry

10

15

20

25

30

35

45

SO

55

65

32
flag will be set at micricode instruction 1. As before the
bookkeeping instruction MAX C will set the contents of
an internal counter within ALU 134 to 15 to 7 depend
ing upon whether byte or word quantities are being
manipulated. A left rotation with carry is then executed
upon the contents of temporary register C at microcode
instructions 3 and 4. The result is that the set carry bit is
left rotated into temporary register C which initially
held the dividend. Similarly, the set carry bit is rotated
into temporary register A which was previously zeroed
by microcode instructions 4 and 5. ALU 134 is precon
ditioned to subtract the contents of temporary register
B from temporary register A in the second half of mi
crocode instruction 5. The carry bit is tested in a micro
code instruction 6, but will be zero on the first pass,
since a zero bit will have been shifted into the carry bit
from the zeroed contents of temporary register A. The
subtraction is executed in microcode instruction 7 with
out the differences being placed anywhere. However,
the carry bit flag is updated. If the divisor held in tem
porary register B, is greater than the contents of tempo
rary register A, which has now been rotated, the carry
bit will be set thus the conditional jump NCY and mi
crocode instruction 8 will be passed through. Micro
code instruction 9 carries a short jump back to micro
code instruction 3 together with the decrement of the
internal counter within ALU 134.
The process is continued in like manner until the

shifted contents of temporary register A is equal to or
exceeds the divisor held in temporary register B. How
ever, if the carry bit has been set by the shifting of a
binary 1 into the carry bit as a result of the left rotational
shift beginning in microcode instruction 4 from tempo
rary register A, microcode instruction 6 will cause a
jump to microcode instruction 13 which will reset the
carry bit. The difference between the divisor and divi
dend will be put into temporary register A in microcode
instruction 14 with a return in the second half of that
instruction to microcode instruction 3. If a binary 1 has
not been rotated into the carry bit, microcode instruc
tion 6 will be passed through and the subtraction exe
cuted at microcode instruction 7 as before. If the divi
dend is equal to or greater than the divisor, a carry flag
will be reset at instruction 7 with the result of a condi
tional jump at instruction 14 where again the sum is set
into temporary register A and the loop continued.
At the end of the loop either from instruction 9 or 14,

instruction 10 will be entered directly or through an
unconditional jump at instruction 15 to perform an
additional left rotation with the carry on the contents of
temporary register C. The contents of temporary regis
ter C is reloaded into ALU 134 at instruction 12 and
complemented in the main microcode routine for AAM
at microcode instruction 3. The complemented contents
of temporary register C, which is now the quotient of 10
divided into the dividend, is loaded into X register 82.
ALU 134 is preconditioned to pass the contents of tem
porary register A and loads its contents at microcode
instruction 5 into the accumulator register 90. The carry
flag is then updated and a run next instruction signal,
RNI, is generated. Comparison with TABLE 3 will
show that the routine for AAM is in fact executed by
the microcode burst described above.
The microcode subroutines for the string instruc

tions, MOVS and LDS, executed according to the pres
ent invention are listed below in TABLE 9.

4,363,091
33 34

TABLE 9
X 7 6 5 4 3 2 b CR S D Typ a b F

MOVS 0 1 0 1 0 X 0 X 0 7 F
LDS

1 IND 6 R DD,BL
2 ND J O Xdb 6
3 K IND 6 W DABL

0 1 0 1 0 x 1 0 x 4 IND IK O Fi o
5 4 none RNI
6 OPR M O F. O
7 4 none RNI

Each of the string instructions starts with a long jump
on the condition F1 which is true when the repeat pre
fix, RPT, described above, has been just previously
decoded. When present, the repeat subroutine, RPTS,
will be entered which will cause the string instruction to
be repeated the number of times as set forth in the con
tents of register BC.
The string MOVE an string LOAD commands,

MOVS and LDS, are shown as sharing the same micro 20

gether with the PSW direction flag to make a post
correction in IND by the correct increment or decre
ment. After the increment or decrement is made, the
result is moved from IND register 44 to IK register 105
and a conditional jump made upon the existence of a
repeat prefix, otherwise the RNI signal is generated.

Similarly, Table 10 shows that the string compare,
CMPS, and string search, SRCHS, share the same mi
crocode burst.

TABLE 10
X 7 6 5 4 2 1 d) CR S D Typ a b F

CMPS
SRCHS 0 1 0 1 0 X 1 1 X O 7 F1

(M) timp2 O Xdb 5
2 J IND 6 R DD,BL
3 IND IJ

0 1 0 1 0 X 1 1 X 4 OPR trnpa
s IK IND 6 R DABL
6 OPR trmpb SUBT timpa
7 X no dest F

0 1 0 1 0 X 1 X 8 IND IK
9 O FZZ O
O 4. none RNI

1.

code burst. In microcode instruction 1 the contents of IJ
register 102 are moved to indirect register 44 in upper
file 48. A memory read instruction is then executed. The
addressing subroutine, well known to the art, will then
take the address from IND 44 and read the contents into
the operand register OPR 46. Bits 17 through 20 contain
a code to indicate which relocation register to apply
and an address factor to correct the address in IND
register 44 after it is used. BL symbolically represents a
two bit code which cause external logic to examine the
byte or word line and the direction flag in PSW register
136 to generate, according to random logic well known
to the art, the address factor required. The address
factor will selectively increment or decrement the ad
dress contents of IND 44 by one or two depending on
whether one or two bytes were involved in the access.

In microcode instruction 2 the X0 bit of register 108
will be true if the instruction is a string load in which
case there is a short conditional jump to microcode
instruction 6. Microcode instruction 6 loads the con
tents of OPR register 46, which now contains the con
tents of the address location accessed and moves the
same to M register 104. In the last half of microcode
instruction 6 there is a conditional short jump back to
the zeroeth instruction should there by a repeat prefix,
otherwise the RNI signal is generated.

If the instruction is a string move then the conditional
jump from microcode instruction 2 is passed through
and the contents of IK register 105 is loaded into the
indirect register IND 44. A memory write operation
occupies the last half of microcode instruction 3 again
employing the two bit address correction factor utiliz
ing the w or word/byte input from the instruction to

40

45

50

55

65

As before, the zeroeth instruction is a long jump condi
tioned upon a repeat prefix. The microcode instruction
1 moves the contents of M register 104 to temporary
register A followed by a conditional jump to microcode
instruction 5 if the X0 bit of register 108 is true indicat
ing that the instruction is a string search. The contents
of IK register 105 is then loaded into IND register 44
followed by a memory read employing the w bit and
direction bit address correction factor described above.
The contents of the memory cell accessed is now stored
in OPR register 46 and is moved to temporary register
B. ALU 134 is preconditioned in microcode instruction
6 to subtract the contents of temporary register B from
temporary register A. The operation is executed in
microcode instruction 7 wherein the carry flag is up
dated. In the microcode instruction 8 the contents of
IND register 44, which now contains the post corrected
address, is moved back to IK register 105. At micro
code instruction 9 a short jump is conditioned upon the
logical product of the zero flag being preset to zeroeth
and the repeat prefix being present. In the case that this
occurs, the sequence is repeated by returning to the
zero microcode instruction, otherwise the RNI signal is
generated. Thus, the contents of the addressed memory
location is compared to the quantity loaded into the
register pointed at by M register 104, which in the case
of a string search, will be accumulator 90.

Similarly, the string compare will pass through the
conditional short jump at microcode instruction 1 and
load the contents of IJ register 103 into IND register 44.
A memory read cycle will then be executed using the
RD relocation register and the two bit w and direction

4,363,091
35

bit code for a post correction address factor. The post
corrected address is then taken from IND register 44 at
microcode instruction 3 and reloaded into IJ register
103. The contents of the accessed memory location is
then loaded into temporary register A in microcode
instruction 4. Contents of the IK register 105 is loaded
into IND register 44 with another memory read cycle

36
conditional short jump to the zeroeth instruction if a
repeat prefix is found, otherwise the RNI signal is gen
erated.
The repeat prefix, RPTS, includes a microcode burst

used as a conditional subroutine throughout each of the
string compare instructions. The repeat microcode sub
routine is shown in TABLE 12.

TABLE 12
X 7 6 5 4 3 2 1 d CR S D Typ a b F

XEAT 0 1 1 0 1 0 1 O ZERO trmpa
XA tinpal

2 HL tmpb AOD trapa
3 IND 6 R DD,P(b

O 1 0 1 0 1 4. OPR A. 4. RNI
5

RPTS s BC tmpb O INT 2
7 PASS tmpb

0 1 1 0 1 0 8 no dest DEC tmpb
9 O ZU 1
O s BC 4. Os RTN
11 4. e RN

0 1 1 0 1 0 12 4. te SUSP
13 4. CORR
14 PC tmpb DEC2 tmpb
15 E 4. FLUSH RN

using the RA relocation register and the w and direc- Beginning with microcode instruction 6, the contents of
tion bit for post address correction with the result that
the contents of the accessed memory cell is loaded into
OPR register 46. At microcode instruction 6 the con
tents of OPR register 46 is then moved to temporary
register B and ALU 134 preconditioned to subtract 30
temporary register B from temporary register A. The
operation is executed at microcode instruction 7
wherein the flags are set, including the zero flag. Thus,
the difference between the contents of the memory
location pointed at by IK register 105 and IJ register
103 is set up in ALU 134. If the difference is zero, the
zero flag will be preset to a binary zero. Microcode
instruction 8 restores the post corrected address in IND
register 44 to IK register 105 followed by a conditional
short jump at microcode instruction 9 if there was both
a repeat prefix and a nonzero compare, otherwise the
RNI signal is generated at microcode instruction 10.

Finally, Table l l illustrates the string store instruc
tion, STS, which is comprised of a four microcode
burst.

35

BC register 84 and 92 are loaded into temporary register
B followed by a conditional interrupt jump should an
external interrupt be received. The conditional jump to
microcode instruction 12, which is a bookkeeping in
struction, causes upper control unit 12 to stop doing the
instruction fetches thereby stopping the program
counter. The next bookkeeping instruction causes upper
control unit 12 to recompute a real program counter by
subtracting the number of bytes in the queue from the
then existing program counter and reloading the same
back into the program counter. This is accomplished by
random logic hardware well known to the art. The true
program counter contents are then moved to temporary
register B and ALU 134 preconditioned to decrement

40 the contents of temporary register B by two, corre

TABLE 11
X 7 6 5 4 3 2 1 lb CR S D Typ

STS 0 1 0 1 0 1 0 1 X 0 K IND
(M) OPR 6

2 IND K. O.
3 4.

In the zeroeth instruction the contents of IK register
105 are moved to IND register 44 followed by a long
jump conditioned upon the existence of a repeat prefix.
At microcode instruction 1, the contents of the register
pointed at by M register 104, which in the present em
bodiment is accumulator 90, is moved to OPR register
46. A memory write cycle using relocation register RA
and the direction and w bit post-address correction
factor is then executed. In the cases of a memory write
cycle the address is placed in IND register 44 with the
data to be written being placed in OPR register 46 dur
ing or prior to the memory write word. Thus, the data
from accumulator 90 is written into the memory loca
tion pointed at by IK register 105. The post-corrected
address in IND register 44 is then moved back to IK
register 105 and microcode instruction 2 followed by a

55

sponding to the world length. The contents of TMP B
is decremented in microcode instruction 15 and re
placed into the program counter. The bookkeeping
instruction, FLUSH, restarts the queue and erases all
bytes currently in the Q, restarts from the contents of

3. b F

F1
y DABL

F1 O
e RN

the current program counter, and generates the RNI
signal.

If however, there is no interrupt signal, ALU 134 is
conditioned to pass through the contents of temporary

60 register Bat microcode instruction 7 and then to decre

65

ment the contents of temporary register Bat microcode
instruction 8. A short conditional jump at microcode
instruction 9 will occur to microcode instruction 10 if
the contents is zero, otherwise the decremented count is
reloaded into BC register 84 and 92 followed by a re
turn to the call point. If the contents is zero, microcode
instruction 11 is executed by generation of the RNI
signal.

4,363,091
37

It should be noted that the immediate instructions
contained an 1 bit as discussed above. The l bit indicates
that when operating on a 16 bit quantity whether the
immediate data is 8 or 16 bits. Memory read instructions
employing an 1 bit contain as one microcode instruction
the following instruction pair as the first two instruc
tions of the microcode burst.

TMPBL O
TMP BH

L8 2

Namely, a bit is taken from the queue and put into the
least significant bits of temporary register B. ALU 134
then automatically extends, by conventional means, the
sign bit of the least significant byte to the 8 most signifi
cant bits of the 16 bit register. A conditional short jump
is then executed to the remaining microcode instruc
tions of the burst if the l bit has been set, i.e. L8. Other
wise, the next byte from the queue will be loaded into
the most significant bits of temporary register B and the
microcode instruction burst continued. Thus, in a 16 bit
instruction, i.e. w = 1, a signal L8 will be decoded in
ROM 116 and logically combined in an AND function
with the l bit. The signal is tested in a microcode in
struction to either load a second byte or to extend the
sign of a single byte immediate data in the immediate
instructions.
Although the present invention has been described in

conjunction with specific instructions, it must be under
stood that these instructions are discussed primarily as a
characterization of the apparatus and method of using
the apparatus of the present invention. A full instruction
set is provided in the ROMS, decoders, registers and
circuitry and is included within the spirit and scope of
the present invention. Thus, it must be understood that
many other modifications and alterations may be made
to the invention as disclosed herein without departing
from the breadth scope of the following claims.
What then been herein disclosed is a central proces

sor which is equally adept at manipulating 8 of 16 bit
quantities without duplication or repetition of hard
ware. In addition, the processor may address an ex
tended memory space which exceeds the addressable
space as defined by the maximum word lengths with the
registers of the microprocessor. Data throughput is
drammatically increased by providing for an instruction
overlap in combination with the queue whereby micro
processor is provided with a synchronously running
upper and lower control units. The organization of the
present invention further allows several classes of
unique instructions which are able to execute complex
functions with minimum amounts of software or micro
code programming without sacrafice of versatility and
generality,
We claim:
1. An improvement for generating an address word

for addressing an extended memory space, said im
provement being in a data processing system including
a memory unit for storing digital information and a
processor unit, including an adder, for processing digi
tal information communicated at least in part between
said processor unit and said memory unit, said improve
ment comprising:

O

15

20

25

30

35

45

SO

55

65

38
a plurality of registers in said processor unit, said

registers for storing words of digital information, at
least some of said registers being relocation regis
ters and being selectively coupled by said proces
sor unit to a first input of said adder, a selected one
of another one of said plurality of registers being
coupled by said processor unit to a second input of
said adder such that a subset of bits of said word
stored in said other selected register is numerically
added by said adder to said word stored in said
selected relocation register wherein the binary
order of magnitude of said subset of bits is unequal
to the binary order of magnitude of the bits of said
word from said relocation register, the remaining
bits of said word from said selected register being
appended to the sum of said adder to result in an
address word greater in bit length than the maxi
mum bit length stored in said plurality of registers,

whereby said data processing system is afforded an
extended memory space beyond the address word
length limitation of said plurality of registers.

2. The improvement of claim 1 wherein said plurality
of registers include at least one index register, and fur
ther comprises:

another plurality of registers in said processor unit for
storing bytes of digital information,

whereby said processor unit is able to process byte
and word length quantities of digital information in
an uninterrupted and undifferentiated processing
information stream.

3. The improvement of claim 2 wherein said plurality
of registers are 8 bit registers, wherein said plurality of
registers are 16 bit registers, and wherein said relocation
registers have been extended by associating therewith
four least significant bits to form a 20 bit memory ad
dress.

4. A data processing system having at least one inter
nal bus comprising:

a memory for storing digital information having an
addressable memory space;

a first plurality of registers coupled to said internal
bus for temporarily storing a corresponding plural
ity of single bytes of digital information;

a second plurality of registers coupled to said internal
bus for temporarily storing a corresponding plural
ity of multiple byte digital words having a maxi
mum bit length; and

control means coupled to said memory including an
arithmetic/logic unit for performing selected arith
metic and logical operations upon digital informa
tion, and coupled to said first and second plurality
of registers through said internal bus to selectively
transfer digital information therebetween and to
selectively generate a plurality of discrete com
mand signals thereto in response to a plurality of
instructions wherein said control means includes an
extended address means for generating an extended
digital word having a bit length greater than said
maximum bit length, said extended address means
being selectively coupled to said first and second
plurality of registers, said extended digital word
being generated by said extended address means
from selected ones of said single bytes and multiple
byte words stored in said first and second plurality
of registers respectively.

5. The data processing system of claim 4 wherein said
extended address means includes a dedicated adder and
said extended digital word is formed by said extended

4,363,091
39

address means by adding the contents of a first selected
one of said second plurality of registers to the offset
contents of a second selected one of said second plural
ity of registers to form a sum on an address bus having
a bit length greater than said maximum bit length, said
second selected one of said second plurality of registers
being designated by an extended address instruction.

6. The data processing system of claim 5 wherein said
control means includes a base prefix means for substitut
ing a third selected one of said second plurality of regis
ters in the stead of said second selected one of said
second plurality of registers designated by said ex
tended address instruction.

7. The data processing system of claim 4 used in com
bination with a separate data processing circuit wherein
said control means includes a floating point hook means
for selectively directly coupling a digital word from
said memory addressed by said control means to said
separate data processing circuit.

8. The data processing system of claim 7 wherein said
separate data processing circuit performs dedicated
mathematical operations.

9. The data processing system of claim 7 wherein said
floating point hook means also suspends operation of
said control means for a predetermined duration of
time.

10. The data processing system of claim 9 wherein
said duration of time is terminated by a test signal re
ceived by said control means from said separate data
processing circuit.

11. The data processing system of claim 4 wherein
said control means includes decimal arithmetic means
for performing arithmetic operations upon unpacked
binary coded decimal digital data.

12. The data processing system of claim 11 wherein
said arithmetic operations include multiplication and
division.

13. The data processing system of claim 12 wherein
said unpacked binary coded decimal digital data is
coded in ASCII code.

14. The data processing system of claim 4 wherein
said control means includes string instruction means for
processing a plurality of units of digital information in
said memory in a cyclic manner without reference to a
software instruction to update selected registers from
said second plurality of registers wherein at least some
of said selected registers contain source and destination
addresses of each one of said plurality of units of digital
information,
whereby hardware loops and tight software loops
may be employed to perform complex processing
operations.

15. The data processing system of claim 14 wherein
said string instruction means loads each said unit of
digital information into a selected register of said first
and second plurality of registers in a cyclic manner.

16. The data processing system of claim 14 wherein
said string instruction means stores each said unit of
digital information from said memory into a selected
register of said first and second plurality of registers in
a cyclic manner.

17. The data processing system of claim 14 wherein
said string instruction means reads and compares two
selected units of said digital information for equality in
a cyclic manner.

18. The data processing system of claim 14 wherein
said string instruction means reads and compares for
equality each said unit of digital information with the

10

5

20

25

30

35

45

SO

55

60

65

40
contents of a selected register from said first and second
plurality of registers in a cyclic manner.

19. The data processing system of claim 14 wherein
said string instruction means moves each said unit of
digital information to a selected location in a block of
locations within said memory in a cyclic manner.

20. The data processing system of claim 14 wherein
said string instruction means processes said plurality of
units of digital information in a cyclic manner by includ
ing a repeat means for enabling a counter to repeat
processing of said plurality of units digital information
for a selected number of times.

21. The data processing system of claim 4 wherein
said control means includes literal bit length means for
selectively indicating in response to an 1 bit in an in
struction in an operation upon digital information that
immediate data within an instruction has a word or byte
length, and for extending the bit length of said immedi
ate data when said immediate data has a byte length.

22. The data processing system of claim 4 wherein
said control means includes direction means for selec
tively designating the source and destination registers
from two selected ones of said first and second plurality
of registers in response to a d bit in an instruction.

23. The data processing system of claim 5 wherein
said extended address means selectively writes and
reads the contents of at least one of said first and second
selected ones of said second plurality of registers into
and from said memory in response to an instruction
whereby said contents is subject to processing as digital
information without distinction.

24. An improvement for generating an address word
for addressing an extended memory space, said in
provement being in a data processing system including
a memory unit for storing digital information and a
processor unit, including an adder, for processing digi
tal information communicated at least in part between
said processor unit and said memory unit, said improve
ment comprising:
a plurality of registers in said processor unit, said

registers for storing words of digital information, at
least some of said registers being relocation regis
ters and the remainder being non-relocation regis
ters, said relocation registers being selectively cou
pled by said processor unit to a first input of said
adder, said non-relocation registers being selec
tively coupled by said processor unit to a second
input of said adder such that a subset of bits of said
word stored in said selected non-relocation register
is numerically added by said adder to said word
stored in said relocation register wherein the bi
nary order of magnitude of said subset of bits is
unequal to the binary order of magnitude of the bits
of said word from said relocation register, the re
maining bits of said word from said non-relocation
register being appended to the sum of said adder to
result in an address word greater in bit length than
the maximum bit length stored in said plurality of
registers,

whereby said data processing system is afforded an
extended memory space beyond the address word
length limitation of said plurality of registers.

25. An improvement in a data processing system
including a memory unit for storing digital information
and a processor unit for processing digital information,
said digital information including an instruction having
a sign bit, 1 bit, and immediate data of word or byte
length having lower and higher order bits comprising:

4,363,091
41

means for recognizing the presence of a 1 bit in an
instruction;

means for determining whether an operation upon
immediate data within an instruction has a word or
byte length in response to said 1 bit; and

means for extending the bit length of said immediate
data to all higher order bit positions by copying
said sign bit in all said higher order bit positions
when said immediate data has a byte length so that
operation upon said immediate data can be hard
ware identical regardless of the bit length of said
immediate data.

26. A method for processing digital information in a
system including a memory unit for storing digital infor

10

5

20

25

30

35

45

SO

55

65.

42
mation and a processor unit for processing digital infor
mation, said digital information including an instruction
having a sign bit, 1 bit and immediate data having word
or byte length with lower and higher order bits corre
sponding thereto including the steps within said proces
sor unit of determining whether an operation upon
immediate data within said instruction has word or byte
length by decoding said 1 bit in said instruction, and
extending the bit length of said immediate data when
said immediate data has a byte length by copying the
value of said sign bit in all higher order bit positions
whereby operation upon data can be hardware identical
regardless of bit length of said immediate data.

at 2 x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 4,363,091 Page 1 of 5
DATED : December 7, 1982
INVENTOR(S) : William B. Pohlman, III et al.

It is certified that error appears in the above-identified patent and that said letters Patent is hereby
corrected as shown below:

The title page should be deleted to appear as per attached title
page

The sheets of drawing containing Figs. 1A, 1B and 3 should appear
as shown on the attached sheets.
On the title page, "No Drawings" should read - 4 Drawing Figures --.

eigned and sealed this
Thirteenth Day of August 1985

(SEAL)
Attest:

DONALD J. QUIGG

Attesting Officer Acting Commissioner of Patents and Trademarks

United States Patent (19)
Pohlman, III et al.

(54)

(75)

(73)
(21)
(22)
(51)
(52)
(58)

56)

EXTENDED ADDRESS, SINGLE AND
MULTIPLE BIT MCROPROCESSOR

inventors: William B. Pohlman, III, Los Gatos;
Bruce W. Ravenel, III, Sunnyvale;
James F. McKevitt, III, San Jose;
Stephen P. Morse, San Francisco, all
of Calif.

Assignee: Intel Corporation, Santa Clara, Calif.
Appl. No.: 873,777
Filed: Jan. 31, 1978
nt. C. G06F 7/50; G06F 13/00
U.S.C. .. 364/200
Field of Search ... 364/200 MS File, 900 MS File,

364/748, 749; 340/347 DD
References Cited

U.S. PATENT DOCUMENTS
3,657,705 4/1972 Mekota, Jr. et al. 364/200
3,786,436 1/1974 Zelinski et al. 364/200
3,818,460 6/1974 Beard et al. 364/200
3,938,096 2/1976 Brown et al. 364/200
3,949,378 4/1976 Crabb et al. 364/200
3,976,976 8/1976 Khosharian 364/200
4,037,21 1 7/1977 Ikuta et al. 364/200
4,042,911 8/1977 Bourke et al. ... 364/200
4,079,455 3/1978 Ozga 364/200
4,092,715 5/1978 Scriver 364/200

Al AO As
R (: MuED Actor a DAIA O O O-66 --

-A all.
24 - LACES E effers TC4

26 2
FFER

s 1

A2

32 - c coast
Rotorcase

se-assac Ase
o-RA AllenAE

4. C
No

opin

o
Os

4.

A

ArtAs of

NST

sect at
selecTw

Page 2 of 5
(11)
45

4,363,091
Dec. 7, 1982

Primary Examiner-Gareth D. Shaw
Assistant Examiner-Thomas M. Heckler
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

(57) ABSTRACT
The addressable memory space within the retrievable
capacity of the microprocessor is necessarily limited by
the bit length of the address word. This in turn, is lim
ited by the bit length of the word which the micro
processor may compute or manipulate. By appropriate
organization of multiple registers, an extended or ex
panded memory space may be achieved without the
necessity of increasing the word length of the digital
information manipulated by the microprocessor. In
addition, the microprocessor can be fabricated to be
capable of both eight bit and sixteen bit operation by
appropriate organization and coordination of a plurality
of register f"es. By virtue of this register file organiza
tion and coordination additional improved operations
may be achieved, such as direct coupling by the micro
processor between the memory and separate dedicated
data processing chips, simplified string instructions and
the condensation of entire classes of instructions into
single generic instruction formats.

26 Clains, No Drawings

well-ry PE
ECISION
L90 ic S

a

to FG TAKEN
A is -

Page 3 of

Sheet 1 of 3 4,363,091 Dec. 7, 1982 U.S. Patent

OWN

wnx

TlOH 1N OO

2 !|

IN?IOD O

2 (9 OT

b & b &

99

4,363,091

Page 4 of 5

Sheet 2 of 3 Dec. 7, 1982 U.S. Patent

WAO

Page 5 of 5

U.S. Patent Dec. 7, 1982 Sheet 3 of 3 4,363,091

S2 COMPARAOR

Aux - CARRY

FROM
PSW 36

Aux-CARRY

68

B

FC - RNI

wa- OTHER WISE S3 SC - B Q

