COMBINED TRANSIENT VOLTAGE AND SNEAK CURRENT PROTECTOR

Inventors: John A. Siemon; Howard Reynolds, Waterbury, both of Conn.

Assignee: The Siemon Company, Watertown, Conn.

Filed: May 4, 1988

References Cited

U.S. PATENT DOCUMENTS

4,318,153 3/1982 Pasano 361/119
4,327,370 4/1982 Kessler, Jr. 357/79

ABSTRACT

A combined transient voltage and sneak current protector is presented. The protector device comprises a two-piece substantially rectangular insulative housing. The housing has four spaced and aligned openings at the bottom thereof for receiving upstanding terminals from a terminal block. The interior of the housing is loaded with four contact members which are adapted to effect electrical connection with a three element surge suppressor (e.g. transistor) and a pair of small cylindrical fuse elements. Each of the four contact members include a female connector communicating with the four aligned openings in the housing. The housing interior also includes a ground contact which electrically connects to the middle element on the surge suppressor. The ground contact passes through a lateral opening in the housing for mating with a novel plug-on grounding bus connector.

34 Claims, 9 Drawing Sheets
<table>
<thead>
<tr>
<th>U.S. PATENT DOCUMENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4,328,524 5/1982 Nozick</td>
<td>361/119</td>
</tr>
<tr>
<td>4,331,839 5/1982 Baumbach</td>
<td>361/104</td>
</tr>
<tr>
<td>4,333,121 6/1982 Schwarz</td>
<td>361/104</td>
</tr>
<tr>
<td>4,388,665 6/1983 Prütz</td>
<td>361/119</td>
</tr>
<tr>
<td>4,390,921 6/1983 Baumbach</td>
<td>361/119</td>
</tr>
<tr>
<td>4,391,485 7/1983 Urani</td>
<td>361/119</td>
</tr>
<tr>
<td>4,422,121 12/1983 Baumbach</td>
<td>361/119</td>
</tr>
<tr>
<td>4,434,449 2/1984 Dickey</td>
<td>361/124</td>
</tr>
<tr>
<td>4,458,288 7/1984 Chapman, Jr. et al</td>
<td>361/124</td>
</tr>
<tr>
<td>4,502,088 2/1985 Baumbach</td>
<td>361/124</td>
</tr>
<tr>
<td>4,586,104 4/1986 Standler</td>
<td>361/91</td>
</tr>
<tr>
<td>4,639,820 1/1987 Dolansky et al</td>
<td>361/124</td>
</tr>
<tr>
<td>4,654,743 3/1987 Ruehl et al</td>
<td>361/111</td>
</tr>
<tr>
<td>4,703,983 11/1987 Nabeil et al</td>
<td>439/92</td>
</tr>
<tr>
<td>4,741,711 5/1988 Singer, Jr</td>
<td>439/620</td>
</tr>
<tr>
<td>4,758,921 7/1988 Hung</td>
<td>361/119</td>
</tr>
</tbody>
</table>
COMBINED TRANSIENT VOLTAGE AND SNEAK CURRENT PROTECTOR

BACKGROUND OF THE INVENTION:

This invention relates generally to telephone line protector devices. More particularly, this invention relates to a new and improved telephone line protector device which incorporates protection against both transient voltages and high current fluctuations. The protective device is adapted to be insertable directly onto terminals extending upwardly from a terminal block.

Telephone and communications terminal blocks having a plurality of individual finger-like terminals extending therefrom, such as the well known 66-type connector blocks, connect equipment which requires protection from damaging high voltages and current levels. For many years, protective devices utilizing gas tube or carbon mechanisms have been used to protect telephone circuitry from high voltage and current damage. Such "primary" protective devices are located at the juncture between the outside telephone lines and the lines leading into the building known as outside plant (OSP).

Even with the use of primary voltage protective devices, the leading edge of a voltage spike from a lightning strike, by a momentary contact with a high voltage line or by other causes, will pass through the primary device due to the inherent delay in the gas tube or carbon protector. As the nature of telephone switching equipment shifts from the mechanical relay type to electronic and as sensitive computer equipment is added to the communications network, it is increasingly desirable to protect low voltage telephone and data circuits from high transient voltages at the terminal blocks wherein connections are made between the primary protective devices and equipment inside the building. Protective devices of this type are known as "secondary" protectors. A secondary device is used with the primary protector as a second line of defense against any surge currents or transient voltage spikes that pass through the primary Protection. Also, the secondary device is located as close as possible to the equipment connection point such that any transients generated between building entrance and the main distribution point are clamped as well.

Such "secondary" protective devices are known which include electrical components for protecting against high transient voltages and which plug directly onto the terminals of a terminal block. Examples of plug-on transient voltage protectors are disclosed in U.S. Pat. Nos. 4,113,340, 4,116,524, 4,126,369, 4,554,609 and 4,654,743.

Discrete devices have also been utilized to protect telephone circuits from high currents (as opposed to high voltages) which manage to pass through the "primary" protection. These secondary protectors are known as "sneak current protectors". An early sneak current protector manufactured by Western Electric Company is known in the communications field as a type 60 D fuse. The 60 D fuse is a relatively large and bulky fuse which attaches to the fanning strip of a 66 M type connecting block. When attached, the 60 D fuse both extends laterally from the block and above the top of the block. As a result, the use of this fuse precludes efficient terminal block spacing and the use of block covers. In addition, the type 60 D fuse necessitates intricate and time consuming handwiring.

U.S. Pat. Nos. 4,126,369 and 4,447,105 disclose an improved sneak current protector which is installed directly onto adjacent terminals of a 66 type terminal block. However, there are several important disadvantages and drawbacks to this device. For example, these sneak current protectors may comprise a rectangular housing having a relatively large cylindrical attachment (housing a fuse) attached to one side of the housing and extending upwardly from the housing. The presence of the bulky cylinder necessitates alternate mounting of the devices, precludes side to side stacking and precludes the use of a cover. Moreover, the unit is relatively difficult to assemble and install due to its multiplicity of parts, all of which leads to higher manufacturing and installation costs. Also, when the fuse breaks, the entire unit must be discarded and replaced.

An improved sneak current protector specifically adapted for plugging directly to a terminal block is disclosed in U.S. application Ser. No. 115,531 filed Oct. 30, 1987, assigned to the assignee hereof, all of the contents of which are incorporated herein by reference. This improved sneak current protector comprises a plastic housing which incorporates a pair of small, easily replaceable cylindrical fuse elements.

Notwithstanding the above-mentioned prior art protective devices, there continues to be a need for improved economical plug-on protectors which combine protection from both damaging transient voltages and current overloads.

SUMMARY OF THE INVENTION:

The above-discussed and other problems and deficiencies of the prior art are overcome or alleviated by the combined transient voltage and sneak current protector of the present invention. In accordance with the present invention, the protector device comprises a two-piece substantially rectangular insulative housing. The housing has four spaced and aligned openings at the bottom thereof for receiving upstanding terminals from a terminal block. The interior of the housing is loaded with four contact members which are adapted to effect electrical connection with a three element surge suppressor (e.g. transistor) and a pair of small cylindrical fuse elements. Each of the four contact members include a female connector communicating with the four aligned openings in the housing. The housing interior also includes a ground contact which electrically connects to the middle element on the surge suppressor. The ground contact passes through a lateral opening in the housing for mating with a novel plug-on grounding bus connector or well known discrete wire termination means such as female crimp type terminals.

The protective device of the present invention includes many features and advantages over prior art plug-on protective devices for telephone terminal blocks such as the well known 66 type connector block. For example, unlike the prior art devices, the present invention combines both high speed transient voltage and sneak current protection in a single plug-on unit.

Also, the present invention utilizes a three element voltage surge suppressor (e.g. transistor) rather than a two element device as is commonly found in prior art protectors. It will be appreciated that better line balance (voltage differential between tip and ring is minimized) is achieved with three rather than two element suppressors.
The plug-on bus bar ground connector permits the connection of all the ground contacts simultaneously instead of individually as in the screw-on prior art devices such as disclosed in U.S. Pat. No. 4,554,609. The bus bar ground also permits access from above the terminal block so that individual protector units may be removed for servicing without disturbing adjacent lines.

The above-discussed and other features and advantages of the present invention will be appreciated and understood by a person of ordinary skill in the art from the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS:

Referring now to the drawings, wherein like elements are numbered alike in the several FIGURES:

- FIG. 1 is a front elevation view of the combined transient voltages and sneak current protector of the present invention;
- FIG. 2 is a side elevation view of the protector of FIG. 1;
- FIG. 3 is a plan view of the protector of FIG. 1;
- FIG. 4 is an elevation view, partly in cross section, along the line 4-4 of FIG. 3;
- FIG. 5 is an elevation view, partly in cross section, along the line 5-5 of FIG. 2;
- FIG. 6 is an elevation view, partly in cross section, along the line 6-6 of FIG. 3;
- FIG. 7 is an elevation view, partly in cross section, along the line 7-7 of FIG. 1;
- FIG. 8 is an elevation view, partly in cross section, along the line 8-8 of FIG. 1;
- FIG. 9 is an exploded front elevation view of the protector of FIG. 1;
- FIG. 10 is an exploded side elevation view of the protector of FIG. 1;
- FIG. 11 is a schematic electrical diagram of the protector of FIG. 1;
- FIG. 12 is a plan view of the grounding bus connector used with the protector of FIG. 1;
- FIG. 13 is a side elevation view of the bus connector of FIG. 12;
- FIG. 14 is a cross-sectional elevation view along the line 14-14 of FIG. 12;
- FIG. 15 is a cross-sectional elevation view along the line 15-15 of FIG. 13;
- FIG. 16 is a bottom view of a portion of the bus connector of FIG. 12;
- FIG. 17 is a side elevation view showing a pair of grounding bus connectors mounted on a terminal block;
- FIG. 18 is an exploded perspective view of the protective device and grounding bus connector of the present invention prior to connection to a terminal block; and
- FIG. 19 is a perspective view of the components of FIG. 18 subsequent to assembly on a terminal block.

DESCRIPTION OF THE PREFERRED EMBODIMENT:

Referring simultaneously to FIGS. 1-10, a combined transient voltage and sneak current protector in accordance with the present invention is shown generally at 10. Protector 10 comprises an insulative, preferably plastic molded housing 12. Housing 12 is substantially rectangular and comprises two pieces including a lower 65 noise section 14 and an upper section 16. Lower section 14 includes an upper portion 18 of lesser wall thickness which defines a shoulder 20. Similarly, upper section 16 includes a lower portion 22 having a shoulder 24. During assembly, upper portion 18 is received within lower portion 22 so that shoulder 20 of housing section 14 bears up against lower portion 22 of housing section 16; and shoulder 24 of housing section 16 bears up against upper portion 18 of housing section 14.

Upper housing section 16 also includes a pair of opposed depending lips 26 (see FIG. 1) having spaced, aligned openings 28 therethrough. Openings 28 are sized to receive corresponding detents 30 positioned in upper portion 18 of housing section 14 so that upon assembly of the two housing sections 14 and 16, lips 26 will flex outwardly slightly and then snap inwardly as openings 28 are aligned with detents 30 to effect a strong attachment theretbetween.

Housing section 14 includes four spaced and mutually aligned openings 30, 32, 34 and 36 on the bottom surface 38 which provides communication between the exterior and interior of housing 12. Each of the openings 30, 32, 34 and 36 include a ramped lead-in area to facilitate receipt of an upstanding terminal from a terminal block (see FIGS. 18 and 19). Each opening in bottom surface 38 also leads to a discrete cavity defined by transverse walls 40 and 42 and identified as lower cavities 44, 46, 48 and 50 (see FIGS. 4-7). Bottom surface 38 of housing section 14 also includes four depending spacer members 51 which act to space protector 10 off the bottom of a terminal block subsequent to attachment.

The interior of housing 12 includes eight separate components including a pair of identical line contacts 52 and 54, a pair of differently configured load contacts 56 and 58, a ground contact 60, a pair of small cylindrical fuse elements 62 and 64 and a three element voltage surge suppressor 66.

Cylindrical fuse elements 62 and 64 are of the type disclosed in previously discussed U.S. application Ser. No. 115,531 and includes opposed conductive end terminations 68 interconnected by a thin metal filament 70 encased in a cylindrical glass housing 72. Fuse elements 62, 64 are supported in discrete upper cavities 74, 76, respectively defined by transverse bottom wall 78 and side wall 80. Fuse elements 62, 64 are loaded in respective cavities 74, 76 through appropriately sized openings 82 in housing 16. In addition, openings 84 of smaller diameter are provided to cavities 74, 76 for insertion of a rod which will push each fuse out of housing 16 through larger openings 82 in the event fuse elements 62, 64 need to be replaced. Windows 77 are provided through opposed sides of housing 12 to assist the user in determining whether the fuse element is operational.

The top surface 86 of housing 12 includes a handle 88 for assisting in the insertion and retraction of the present invention onto a terminal block. Four aligned apertures 90 are provided through top surface for communication between both ends of the fuse elements 62 and 64 in each respective cavity 74, 76 and a test probe.

As shown in FIGS. 5 and 6, line contact 52 includes a female connecting portion 90 which resides in a lower cavity 44 and is adapted for frictionally mating with a male terminal from a terminal block. Contact 52 further includes an elongated section 92 which terminates at an arcuate connector 94. Arcuate connector 94 is adapted to form a friction fit with an end termination 96 of fuse element 64 in upper cavity 76. Similarly, line contact 54 includes a female connecting portion 96 in lower cavity 46, an elongated central portion 98 and an arcuate terminal connector 100 for frictionally mating with an end termination 68 of fuse element 62.
Surge suppressor 66 is preferably a three element transistor, but may alternatively comprise a three element gas tube or similar device. Surge suppressor 66 is preferably cylindrical and includes a pair of opposed end rod contacts 102, 104 and a centrally positioned lateral rod contact 106. Surge suppressor 66 is positioned in about the center of housing 12 between lower cavities 44-50 and upper cavities 74, 76. Preferably, the opposed sides of suppressor 66 have flattened surfaces 108 which permit ease of loading between the side walls of housing 12.

Load contact 58 (see FIGS. 5, 7, 9 and 10) includes a female connector 110 which resides in cavity 50. Contact 58 further includes an elongated central member 112 which terminates at an arcuate connector 113 for connecting to an end termination 68 of fuse element 64 in cavity 76. At about the center of elongated member 112 is a transverse flattened extension 114 having a groove 116 formed from the lower portion toward the upper portion. It will be appreciated that groove 116 is configured to frictionally engage and retain surge suppressor rod contact 104 (see FIG. 7) to effect both a mechanical and electrical connection therewith.

Load contact 56 (see FIGS. 4, 6, 7, 9 and 10) has a configuration similar to load contact 58, but includes an extension arm to permit connection with rod contact 102 of suppressor 66. Thus, load contact 56 includes a lower female connector 118 in lower cavity 48, a central elongated member 120 and an upper arcuate connector 122. In addition, a lateral member 124 extends outwardly from member 120 directly below arcuate connector 122. Lateral member 124 has a ninety degree bend and extends downwardly at 126 parallel to member 120. Member 126 then terminates at an extension 128 which is transverse to member 126 and which includes a groove 130 similar to groove 116 in extension 114. Like groove 116, groove 130 is sized to frictionally engage and retain surge suppressor rod contact 102 (see FIG. 6) to effect both a mechanical and electrical connection therewith.

Ground conductor 60 is composed of three planar, mutually transverse sections. A first planar section 132 has a first opening 134 therethrough with a pair of opposed rear tabs 136 which cooperate to frictionally engage and retain central rod contact 106 from surge suppressor 66 to effect both a mechanical and electrical connection therewith. Planar section 132 also has a second opening 133 for receiving an alignment pin 135 which depends from wall 78. A second planar section 138 extends downwardly from section 132 at about ninety degrees and terminates at a third planar section 140 termed a ground contact. Ground contact 140 extends laterally through an opening of housing 12 so that ground conductor 60 communicates directly between the central rod contact 106 on surge suppressor 66 inside housing 12 and the exterior of housing 12. As will be discussed in more detail hereinafter, ground contact 140 is specially configured to mate with a novel plug-on grounding bus conductor (see FIGS. 12-15).

As is clear in FIG. 2, ground contact 140 has an undulating surface formed therein. This undulating surface makes the effective thickness of contact 140 larger for enhancing electrical connection with bridging clip 154 or other discrete wire means. In addition, this undulating surface adds stiffness. The undulating shape shown in FIG. 2 is particularly advantageous in its ability to mate with certain well known discrete wire connectors.

Housing 12 also includes a triangularly shaped protrusion 200 which extends outwardly from the same side surface of housing 12 as ground contact 140. Protrusion 200 is positioned over ground contact 140 to fully cover the entire ground contact. Protrusion 200 has several important functions. In a first function, protrusion 200 acts as an insulative protector to avoid electrical contact with ground 140 or bridge clip 154 (when the unit is fully installed as will be discussed below). The protrusion 200 also functions as a protective barrier to assure that ground contact 140 is not bent or damaged during shipping or handling. Still another important function of protrusion 200 is to provide a mean for providing circuit designation. This is accomplished by applying appropriate indicia to top planar surface 202 of protrusion 200. Preferably, planar surface 202 is matted to provide a good writing surface.

Referring now to FIG. 11, a schematic diagram of the present invention is shown. During operation, the protector 10 is plugged onto four male terminals from a telephone terminal block. These four terminals correspond to "Tip In" or T1, "Tip Out" or T2, "Ring In" or R1 and "Ring Out" or R0. Line contact 52 is connected to T1 via female connector 90 and line contact 54 is connected to R1 via female connector 96. Load contact 58 is connected to T2 via female connector 110 and load contact 56 is connected to R2 via female connector 118. Fuse element 62 electrically bridges line contact 54 and load contact 56 while fuse element 64 electrically bridges line contact 52 and load contact 58. In addition, three element surge suppressor 66 electrically communicates between load contacts 56 and 58 while ground connector 60 communicates between surge suppressor 66 within housing 12 and the exterior of housing 12.

It will be appreciated that in the event of a deleterious current overload, fuse elements 62 and 64 will blow thereby breaking the circuit between T1 and T2 and between R1 and R2. Similarly, in the event of a voltage surge, three element transistor 66 will act like a zener diode to minimize the voltage differential between (1) Tip and Ring, (2) tip and ground, and (3) between ring and ground, in a known manner thereby avoiding damage to any electronic switch or similar equipment down line of the terminal block.

Turning now to FIGS. 12-16, an important feature of the present invention is a novel ground bus conductor 142 for plug-on connection to a plurality of protective devices 10. Grounding bus 142 comprises an elongated plastic housing 144 having a plurality of slotted apertures 146 evenly spaced therealong. Each aperture 146 is accessible from both a side surface 148 of housing 144 and the top surface 150 of housing 144. The interior of housing 144 is defined by an elongated cavity 152 which houses a plurality of bridge clips 154. A bridge clip 154 is positioned in each aperture 146. Each bridge clip 154 has a well known construction which is generally U-shaped, the opposed sides of the U converging to a point and then diverging outwardly. This diverging section is positioned in aperture 146 to face outwardly toward sidewalk 148. The bridge clips 154 are all electrically interconnected by a rod 156 which passes through the top of each bridge clip. Thus, all of the bridge clips 154 are electrically interconnected so that ground conductor housing 144 functions as a bus connector. The connection between bridge clip 154 and rod 156 is clearly shown and described in U.S. Pat. No. 4,029,376, assigned to the assignee hereof, all of the contents of which are incorporated herein by reference.

Each bridge clip 154 includes an opening 155 through at least one sidewalk for receiving a corresponding de-
The ground bus connector 142 also includes a second locking means which utilizes tabs 178. This second locking means takes effect when bus connector 142 is in the second position shown in the left hand side of FIG. 17. In this latter position, bus connector 142 is angled toward the fanning strip such that stops 172 will receive the contoured backs of the fanning strip. Next, connector 142 is pivoted downwardly whereupon stop 172 is slightly displaced to provide a tight fit with fanning strip 165. Simultaneously, tabs 178 will be lowered so as to straddle between rows of terminals 180. When ground connector 142 is fully seated as shown in FIG. 17, the rearward surface 182 of tab 178 will prevent lateral withdrawal of connector 142. Also, a small step 184 is provided on each side of tabs 178 as shown in FIG. 16. Steps 184 will interlock with the top portions of resilient members 170 to prevent vertical withdrawal of connector 142.

Referring again to FIG. 17, it will be appreciated that the first connection position (right hand side) of ground bus connector 142 will permit connection with a protector module when the protector module is connected to the two outermost rows of terminals (see FIG. 19) in a terminal block. The second connection position (left hand side) of ground bus connector 142 will permit connection with the second and third outermost rows of terminals in a terminal block. Thus, the difference in spacing between the first and second positions is equivalent to the spacing of a column of terminals on a connector block such as a 66-type connector block.

During installation, ground bus connector 142 is mounted onto fanning strip 165 in either the first or second position depending upon which rows of terminals protector units 10 are to be mounted. FIGS. 18 and 19 depict the situation where protector 10 is mounted on the first two rows of terminals.

An important feature of the present invention is that protector 10 may be inserted onto bus connector 142 either before or after ground bus connector 142 has been installed on the fanning strip. This feature is permitted by the inclusion of slots 146 along the top surface 150 of connector 142. Also, lead-in ramps 159 on each bridge clip case receptacle 154 are extended over the surface of connector 142. As is shown in FIG. 19, after installation, protrusion 200 will provide a protective surface to ground contact 140 and bridge clip 154.

In certain circumstances, it may be desirable to use other discrete electronic components in place of fuse elements 62 and 64 as discussed in U.S. application Ser. No. 115,531, which has been incorporated herein by reference. Such components could include, for example, capacitors or resistors. Alternatively, a conductive rod could be used in place of fuse elements 62 and 64. In this latter case, the protective device of this invention would provide only transient voltage protection and no protection from current surges.

While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.

What is claimed is:

1. A protector module for a terminal block comprising:
 an insulative housing having opposed upper and lower surfaces, opposed first and second end sur-
4,924,345

faces and opposed first and second side surfaces, said housing having an upper portion and a lower portion;

at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;

first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;

second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;

three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact;

ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means having a blade portion which extends outwardly of said first end surface of said housing through a slot in said lower portion of said housing.

2. The device of claim 1 including:

handle means on said upper surface of said housing.

3. The device of claim 1 wherein said housing has upper and lower portions and including:
support means in said upper housing portion to support said first and second fuse means in a position which is substantially transverse to said first, second third and fourth conductive contacts.

4. The device of claim 1 wherein:
said four aligned slots terminate at four second openings through said upper surface of said housing, said four second openings communicate with said first and second fuse means.

5. The device of claim 1 wherein:
at least one of said first and second fuse means is cylindrical.

6. The device of claim 1 wherein at least one of said first, second, third and fourth contacts comprise:
a female connection portion in alignment with one of said openings:
a fuse means connecting portion; and
an elongated central portion between said female connection portion and said fuse means connection portion.

7. The device of claim 6 wherein:
said fuse means connecting portion is arcuate.

8. The device of claim 6 wherein:
said first and second contacts have substantially identical configurations.

9. The device of claim 1 wherein said ground contact means comprises:
at least a first and a second mutually transverse planar sections, said first planar section including means for mating with said third element of said suppressor means and said second planar section extending through said slot in said housing.

10. The device of claim 9 wherein said elements of said surge suppressor comprise rods and wherein said means for mating with said third element comprises:
an opening through said first planar section and shear tap means adjacent said opening for frictionally engaging said third element.

11. The device of claim 1 wherein:
said housing is two piece and include mating means for snap locking said two piece housing together.

12. The device of claim 11 wherein said mating means comprises:
a pair of depending resilient lips in said first housing piece, each of said lips having at last one opening therethrough; and
detent members in said second housing piece, said detent member interlocking with said opening in said lips to snap lock said tow housing pieces.

13. The device of claim 1 wherein:
said suppressor means comprises a transistor.

14. The device of claim 1 wherein:
said blade portion is defined by a substantially planar surface which is parallel to said opposed first and second side surfaces and transverse to said opposed upper and lower surfaces of said housing.

15. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces, said housing having an upper portion and a lower portion;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;

first electrically conductive component means in said housing, said first component means being electrically connected between said first contact and said third contact;

second electrically conductive component means in said housing, said second component means being electrically connected between said second contact and said fourth contact;

three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact;
ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means having a blade portion which extends outwardly of said first end surface of said housing through a slot in said lower portion of said housing.

16. The device of claim 15 wherein:
said electrically conductive component means comprises fuse means.

17. The device of claim 15 wherein:
said blade portion is defined by a substantially planar surface which is parallel to said opposed first and
11 second side surfaces and transverse to said opposed upper and lower surfaces of said housing.

18. A protector module for a terminal block comprising:

an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;
first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;
second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;
three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact;
ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing;
wherein at least one of said first, second, third and fourth contacts comprise;
a female connection portion in alignment with one of said openings;
a fuse means connecting portion; and
an elongated central portion between said female connection portion and said fuse means connection portion; and
wherein said third and fourth contacts further includes;
a suppressor means connector portion extending transversely from said elongated central portion.

22. The device of claim 21 wherein said elements of said suppressor means comprise rods extending from said suppressor means and wherein:
said suppressor means connector portion comprises a flat plate having a groove extending partially therethrough, said groove frictionally engaging one of said elements from said suppressor means.

23. The device of claim 21 wherein said fourth contact further includes:
an extension arm between said elongated central portion and said suppressor means connector portion wherein said suppressor means connector portion is spaced from said elongated central portion.

24. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;
first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;
second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;
three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact;
ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing;
wherein at least one of said first, second, third and fourth contacts comprise;
a female connection portion in alignment with one of said openings;
a fuse means connecting portion; and
an elongated central portion between said female connection portion and said fuse means connection portion; and
wherein said third and fourth contacts further includes;
a suppressor means connector portion extending transversely from said elongated central portion.
said three element surge suppressor means being cylindrical and including first and second opposed ends and wherein said first element extends from said first opposed end, said second element extends from said second opposed end, and said third element extends laterally from said suppressor means; and

ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing;

25. The device of claim 24 wherein:
each of said first, second and third elements comprise rods.

26. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;

first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;

second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;

three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact; ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing;

wherein said ground contact means comprises at least a first and a second mutually transverse planar sections, said first planar section including means for mating with said third element of said suppressor means and said second planar section extending through said slot in said housing;
an alignment opening in said first planar section; and said alignment means fixed within said housing, said alignment means cooperating with said alignment opening to align said ground contact.

27. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots; a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;

first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;

second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;

three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact; ground contact means, said ground contact means extending outwardly of said housing through a slot in said housing;

wherein said ground contact means comprises at least a first and a second mutually transverse planar sections, said first planar section including means for mating with said third element of said suppressor means and said second planar section extending through said slot in said housing;
and wherein said second planar surface includes a detent bump.

29. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;
first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;
second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;
three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact;
ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing; and
window means through said opposed side surfaces of said housing in alignment with said first and second fuse means.

30. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;
first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;
second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;
three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact;
ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing; and
spacing means on said lower housing surface for spacing said housing from a terminal block.

33. A protector module for a terminal block comprising:
an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot;
first plug-in and replaceable fuse means slidably received through one of said end surfaces of said housing, said first fuse means being electrically connected between said first contact and said third contact;
second plug-in and replaceable fuse means slidably received through one of said end surfaces of said housing, said second fuse means being electrically connected between said second contact and said fourth contact;

three element voltage surge suppressor means in said housing, a first element of said suppressor means being electrically connected to said third contact and a second element of said suppressor means being electrically connected to said fourth contact; and

ground contact means, said ground contact means being electrically connected to a third element of said suppressor means, said ground contact means extending outwardly of said housing through a slot in said housing.

34. A protector module for a 66-type terminal block, the terminal block having a plurality of terminals extending upwardly therefrom and having at least one fanning strip along a longitudinal edge thereof, comprising:

an insulative housing having opposed upper and lower surfaces, opposed first and second end surfaces and opposed first and second side surfaces;
at least four mutually parallel slots defining a first slot, a second slot, a third slot and a fourth slot, said four mutually parallel slots extending through at least a portion of said housing, each of said slots terminating at said lower surface at first, second, third and fourth openings corresponding to said respective four aligned slots; said slots and openings being sized to receive terminals from the terminal block;
a first conductive contact in said first slot, a second conductive contact in said second slot, a third conductive contact in said third slot and a fourth conductive contact in said fourth slot, said contacts adapted to mate with terminals from the terminal block;

first fuse means in said housing, said first fuse means being electrically connected between said first contact and said third contact;

second fuse means in said housing, said second fuse means being electrically connected between said second contact and said fourth contact;
a three element voltage surge suppressor in said housing said suppressor comprising a single, one-piece unit, a first element of said suppressor being electrically connected to said third contact and a second element of said suppressor being electrically connected to said fourth contact;
ground contact means, said ground contact means being electrically connected to a third element of said suppressor, said ground contact means extending outwardly of said housing through a slot in said housing, said ground contact means being positioned to extend over the fanning strip on the terminal block.