Title: ANTENNA FOR TRANSPONDER

Abstract: Antenna for sending and receiving microwave radiation, e.g. for use in a transponder in a transponder system for wireless payment of tolls, or the like. It has an excited antenna element (13) placed on a dielectric antenna carrier or substratum (11), e.g. on a printed circuit board laminate with a copper covered plastic basis suitable for manufacturing of so-called printed circuits. To increase the performance of the antenna for high production rates with cheap materials, the antenna element is placed such that it gets a directional effect mainly perpendicular to a bearing plane (12) of the substratum (11).
ANTENNA FOR TRANSPONDER
Antenna for a transponder as claimed in the introductory part of claim 1.

Background of the invention
The present invention is connected with transponder systems for wireless payment, e.g. for payment of a toll for vehicles. Q-Free ASA has manufactured such systems for many years. These systems are used in several countries named as the "Q-free box". The expression "box" is related to the transponder element in this system provided in every individual vehicle. The transponder receives data from a device placed near the road, and as an answer it sends individual data back to the road device.

The technological development within this area has in the meantime moved towards active transponders operating with microwave radiation in the area of 5.8 Hz, that is wavelengths in the area of centimeters, which have a battery and an active communication controller. The transponder receives data as amplitude modulated radiation and sends data as phase modulated radiation.

The simplest embodiment of such a transponder is a diode coupled into an antenna, leading to amplitude demodulation by rectifying the carrier wave. By sending, a current is sent alternately in the diode, and its reflection coefficient is thus changing, and accordingly this gives phase modulation. The principle makes it possible to send without use of a local-oscillator on the transponder and it is known as "back-scattering".

Because of the large production rate for such transponders it is a difficult task to make transponder antennas which have little scattering and which may be produced as simple and cheap as possible.

Known antennas which are easy to manufacture are microstrip antennas. These are antennas which are easily realizable on a substratum together with the rest of the circuitry. The problem regarding microstrip antennas is that they are based on resonance where a large e-field concentration along the edge of the antenna element arises towards the earth plane. The effectiveness of the antenna and the resonance frequency are very dependant on the dielectric constant in the substratum and the thickness of the substratum. Accordingly, a usual printed circuit board laminate, such as "FR-4" glass fibre laminate, is not suitable for the production of such antennas. Good microwave laminate based on PTFE (teflon) is the most common in use, but this laminate is
expensive, complicated to manufacture and uses few environmentally friendly processes during the manufacturing.

Lately, laminates have become available that are something between glass fibre laminate (FR-4) and PTFE laminate, such as "ROGERS 4300", but still this is not an alternative able to compete with standard laminate.

Object of the invention

The main object of the present invention is to make an antenna of the mentioned kind, that despite of good antenna performances still makes them possible to be manufactured using standard laminate (FR-4), which is suitable for frequencies considerable above 20 GHz, also by volume production of such systems.

The invention

The invention is stated in claim 1, with the new elements being stated in the characterizing part. Further advantageous features of the invention are stated in the claims 2 to 18.

Independent of the details of the structure chosen, this solution has a considerable advantage compared to known antennas where the direction effect for the antenna extends at least substantially transverse to the plate shaped carrier (the substratum). This results in the antenna according to the invention having a higher efficiency factor and antenna gain. Moreover, the resonance frequency of the antenna becomes less dependant on the dielectric of the antenna carrier. High concentrations of electrical field in the dielectric of the antenna carrier, which appear with known antennas, do not appear with antennas according the invention. Together with a carrier having a high dielectric quality, such as PTFE (teflon), it is also possible to use the antenna according to the invention in areas of millimeter waves (30 - 300 GHz).

The dielectric constant and the dielectric losses of the substratum have little influence on the resonance frequency of the antenna and dielectric losses. This gives little scattering due to volume production and thus it is suitable for products with high production rates.
Another advantage with regard to the antenna according to the present invention is that it is very broad banded, typically 10 - 20% of the center frequency. Thus, it is very favorable regarding broadband applications.

5 Example

The invention is further described below, with reference to the drawings, where fig. 1 shows a part of a printed card which supports an antenna element in a side view, fig. 2 shows the printed card with the antenna element in fig. 1 together with an additional antenna element which affects the directional effect, and fig. 3 shows a perspective view of the printed card in fig. 1 together with an additional antenna element which affects the directional effect of the antenna, together with a polarization transformer for transforming the polarization in the radiation received respectively sent from the antenna element.

Fig. 1 shows a part of a printed card or substratum 11 of a dielectric material, for example of glass fibre laminate "FR-4", which is used to manufacture printed circuits. The printed card 11 may be in a transponder of the kind mentioned in the introduction and has the function of an antenna supporter, which on its bearing surface 12 supports an antenna element 13. The antenna element 13 is connected to a communication controller via an antenna cable (not shown) and is in the present case the excited element in the antenna according to the invention.

The antenna element is in this embodiment made as a Quad antenna, however, as the antenna element not only consists of a simple, quadratic shaped frame, but consists of two frames 14 and 15 (fig. 3) situated in the same plane, one in the other. The frames 14 and 15 are made of copper tracks (not further described) having a fixed width and height, situated in the plane of the bearing surface 12 of the printed card 11. The individual frame parts in the two frames 14 and 15, which extend in parallel, have a predetermined mutual distance. The circumference of the two frames 14 and 15 may be utilized to achieve a significant directional effect, without additional antenna elements amplifying this effect being necessary, and in size is near the wavelength λ. The relatively small difference between the size of the circumferences of the two frames 14 and 15 also means that the resonance frequency of these two frame elements are
correspondingly different, such that a certain broad band effect is already achieved through this special combination of two Quad antenna elements. This broad band effect may be increased by shaping the two frames 14 and 15 aperiodic.

As an additional antenna element, a reflector 16 is shown in fig. 2 and 3, arranged on the opposite side of the printed card 11 compared to the excited antenna element, and having a predetermined distance from this antenna element. Further, fig. 2 shows examples of parasite elements or directors 17, 18 and 19, whose purpose is to amplify the directional effect of the antenna, extending across the bearing plane 12 according to the Yagu-Uda principle.

The arrows 20 and 21, inclusive of the curves lying above and below in fig. 1, symbolizes electrical waves schematically, and illustrate the directional effect intended by the antenna according the invention, consequently extending across the printed card 11. The reception and the radiation of the radiation energy in the direction of the arrow 21 is to be suppressed, and instead, the use of a reflector 16 will amplify the radiation in the direction of the arrow 20.

The directional characteristic which is achieved using the described elements and precautions, has the consequence that the dielectric material in the printed card has no influence on the frequency of the antenna any longer, and that losses arising in the dielectric under influence of the antenna are kept low.

Fig. 3 shows a polarizer or polarization transformer 22 placed in front of the substratum 11, while the reflector 16 is placed on the back side. The polarizer serves to transform the linearly polarized microwave radiation radiated from the antenna element 13 to circular polarized waves, and to transform circular polarized waves received to linearly polarized waves respectively.

The mentioned antenna elements, i.e. the antenna element 13, the reflector 16, the parasite elements 17 to 19 and the polarization transformer 22, are preferably radiation connected to each other via air as the dielectric. However, a foam material having a low dielectric constant and low dielectric losses may also be used, as this foam material then operates as a holder for the different antenna elements.

To achieve good performance according to the object of the invention it is important that no high concentration occur in the electric field in the substratum 11. The antenna
element therefore becomes a resonator having a relatively low Q-factor, preferably a Q-factor between 5 and 10.

The two branches in the antenna are connected to a coupling capacitor 23 at the connection of the two feeding lines 24. A diode 25 connected between the two frames 14, 15 towards the point of connection serves as a receiver rectifying the carrier wave. The direct voltage component is laid over the coupling capacitor 23 and is led out over the feeding lines 24.
Claims:

1. Antenna for sending and receiving microwave radiation, e.g. for use in a transponder in a transponder system for wireless payment of a toll or the like, having a excited antenna element (13) extending mainly as a surface, specially in a plane, the said antenna being placed on a dielectric antenna supporter or substratum (11), e.g. on a printed circuit board laminate with a copper covered plastic basis suitable for manufacturing so-called printed circuits, characterized in that the antenna element is placed in such a way that it gets a directional effect mainly perpendicular to a bearing plane (12) of the substratum (11).

2. Antenna according to claim 1, characterized in that the antenna in addition to the excited antenna element (13) comprises one or more parasite elements (16 -19, 22) after the Yagu-Uda principle.

3. Antenna according to claims 1 or 2, characterized in that the excited antenna element (13) is assigned to a reflector (16) lying at a predetermined distance from the excited antenna element.

4. Antenna according to claim 2, characterized in that the excited antenna element (13) is assigned to one or more directors (17 -19), placed in a predetermined distance from the excited antenna element.

5. Antenna according to claim 1, characterized in that the excited, at least mainly linearly polarized, antenna element (13) is assigned in a predetermined distance to a antenna element (22) operating as a polarization transformer, to transform linearly polarized radiation to circular or elliptical polarized radiation, or vice versa.

6. Antenna according to claim 5, characterized in that the polarization transformer (22) is made to operate as a director.
7. Antenna according to claim 2 or 5,
characterized in that the additional antenna elements (the reflector 16, the directors 17 -
19, the polarization transformer 22) assigned to the excited antenna element (13), is
radiative connected to the excited antenna element via a medium having a dielectric
constant as much as possible near air, preferably by mainly using air or a foam plastic
with a low dielectric constant and low electrical losses, to give the lowest relative
dielectric rate possible.

8. Antenna according to claim 3 to 5,
characterized in that the excited antenna element (13) and/or the additional antenna
elements (16 - 19, 22) are arranged with strip-line technology on a thin plastic film, said
film being held in a predetermined distance from the bearing plane (12) of the antenna
carrier or substratum (11) in the transponder.

9. Antenna according to claim 1,
characterized in that the said antenna is such shaped, that e.g. by increasing the antenna
capacity or increasing the antenna resistance, to achieve a certain bandwidth it has a
relatively low Q-factor, e.g. about the size of 5 - 10.

10. Antenna according to claim 1,
characterized in that the excited antenna element (13) is shaped as a mainly balanced
exciting element, without the occurrence of an electrical field strength to the ground
worth mentioning.

11. Antenna according to claim 1,
characterized in that the excited antenna element (13) is shaped as a frame or loop
antenna.

12. Antenna according to claim 10 or 11,
characterized in that the frame or loop antenna comprises two substantially equal
shaped frames or loops, which are placed at a predetermined distance as the frames or
loops (14, 15) for the purpose of demodulation are preferably connected to a diode (25).
13. Antenna according to claim 12, characterized in that the frames or loops (14, 15) are connected to a capacitor (23).

14. Antenna according to claim 3, characterized in that the reflector (16) is a metallic plate or the like.

15. Antenna according to claim 5, characterized in that an octagonally shaped metallic plate or the like is used as polarization transformer (22).

16. Antenna according to claim 11 or 12, characterized in that the frame or loop antenna is shaped as a Quad antenna having one or more quadratic frames or loops (14, 15).

17. Antenna according to claim 11 or 12, characterized in that the frame or loop antenna is shaped with one or more ring-shaped, elliptical or polygonal frames or loops.

18. Antenna according to claim 3, characterized in that the circumference of the frames or the loops is in the size of the wavelength (λ) of the received and respectively sent microwave radiation.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H01 Q 1/38
According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H01Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

ISE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5565875 A (BERNARD BURALLI ET AL), 15 October 1996 (15.10.96), figures 1,6,8, abstract</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2-4</td>
</tr>
<tr>
<td>X</td>
<td>US 5874919 A (JAMES J. RAWNICK ET AL), 23 February 1999 (23.02.99), abstract</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2-4</td>
</tr>
<tr>
<td>A</td>
<td>US 5307075 A (TAN D. HUYNH), 26 April 1994 (26.04.94), figure 1, abstract</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search: 30 May 2001

Date of mailing of the international search report: 06-06-2001

Name and mailing address of the ISA:
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer:
Rune Bengtsson/mj
Telephone No. +46 8 782 25 00

Form PCT/ISA/213 (seventh sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 9850977 A1 (TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)), 12 November 1998 (12.11.98), abstract</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>US 4486758 A (FRANS C. DE RONDE), 4 December 1984 (04.12.84), figure 16, abstract</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>GB 2142475 A (DECCALIMITED (UNITED KINGDOM)), 16 January 1985 (16.01.85), see the whole document</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>US 5241321 A (CHICH-HSING A. TSAO), 31 August 1993 (31.08.93), abstract</td>
<td>5</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5565875 A</td>
<td>15/10/96</td>
<td>DE 69315624 D,T</td>
<td>09/04/98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0575211 A,B</td>
<td>22/12/93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2692404 A,B</td>
<td>17/12/93</td>
</tr>
<tr>
<td>US 5874919 A</td>
<td>23/02/99</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5307075 A</td>
<td>26/04/94</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0932452 A</td>
<td>04/08/99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001502230 T</td>
<td>20/02/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 509448 C</td>
<td>21/01/99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 9701738 A</td>
<td>08/11/98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6104347 A</td>
<td>15/08/00</td>
</tr>
<tr>
<td>US 4486758 A</td>
<td>04/12/84</td>
<td>AU 549062 B</td>
<td>09/01/86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8320582 A</td>
<td>11/11/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1186405 A</td>
<td>30/04/85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3272279 D</td>
<td>06/00/00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 8212076 U</td>
<td>02/12/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 195882 A</td>
<td>05/11/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0064313 A,B</td>
<td>10/11/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 0064313 T3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2505097 A,B</td>
<td>05/11/82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1630716 C</td>
<td>26/12/91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2059642 B</td>
<td>13/12/90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57185704 A</td>
<td>16/11/82</td>
</tr>
<tr>
<td>GB 2142475 A</td>
<td>16/01/85</td>
<td>GB 8317639 D</td>
<td>00/00/00</td>
</tr>
<tr>
<td>US 5241321 A</td>
<td>31/08/93</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 1998)