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DESCRIPTION

FIELD OF THE INVENTION

[0001] The present invention comprises a nanosensor for detecting and quantifying lactate in different types of samples, such as
tissues, intra-cellular and even in subcellular compartments, with high spatial and temporal resolution, across four orders of
concentration magnitude, and methods that make use of this nanosensor for the quantification of the activity of lactate
transporters, for the quantification of the rates of cellular lactate production and cellular lactate consumption, and for the
quantification of the rate of mitochondrial pyruvate consumption. Additionally, the invention comprises a method to quantify the
transformation in energy metabolism that characterizes cancer cells with single-cell resolution and a method to detect interference
of candidate drugs with mitochondrial energetics.

BACKGROUND OF THE INVENTION

[0002] Lactate is an organic chemical compound that participates in the metabolism of eukaryotic and prokaryotic cells. Lactate
is exchanged between organelles, cells and organs as fuel or waste product, and also plays important signaling and biosynthetic
roles, being involved in the physiology of exercise, inflammation, wound healing, neurovascular coupling and also in diseases
such as cancer, hypoxic/ischemic disease and microbial infection. In addition, lactate is of industrial interest as a food additive, as
a detergent, for the detection and control of microbial growth and for the production of biodegradable polymers.

[0003] Lactate is in dynamic flux between subcellular compartments, between the cell and the extracellular space and between
cells. Because the concentration of lactate in the cell compartments is unknown, the dynamics of lactate in the living body is a
largely unknown area.

[0004] Standard methods to measure lactate are based on enzymatic reactions, which have to be followed by photometric,
amperometric or other devices. Enzyme-based electrodes have been developed that can detect lactate with high-temporal
resolution. Another approach to measure lactate is high performance liquid chromatography (HPLC), where lactate is separated
from other compounds by passing the sample through a stationary phase stored in a column. There is a problem in the prior art,
however, that the existing methods are invasive as they require the extraction of samples or consume lactate, and therefore, they
change the concentration of lactate in the sample. A second problem is their sensitivity, since they can not detect the minute
amount of lactate present in a single cell or a single subcellular organelle.

[0005] The transport of lactate across cellular and subcellular membranes is mediated by the monocarboxylate transporter
(MCT), a molecule involved in the pathogenesis of several diseases and an important target for pharmacological intervention in
cancer and diabetes. There are no available methods to measure the transport of lactate in single cells. More specifically, current
and common techniques used to measure the transport of lactate using radioactive isotopes cannot resolve single cells and have
poor temporal resolution, which hampers the study of fast phenomena and normal tissues, which are heterogeneous in their
cellular composition. An existing technique infers the transport of lactate in single cells from changes in pH that accompany the
transport of lactate, but this technique is limited insofar as requires prior knowedge of the usually unknown buffering capacity of
the cell and is not easily applicable in the presence of physiological bicarbonate buffers.

[0006] The rates of lactate production and lactate consumption are important parameters of cell metabolism, with relevance for
hypoxia/ischemia, cancer, diabetes and other pathological conditions. There are no available methods to measure the rates of
lactate production and consumption in single cells. More specifically, current and common techniques used to measure the rates
of lactate production and consumption are enzyme-based methods that cannot resolve single cells, have poor temporal
resolution, and cannot be applied in the presence of physiological concentrations of lactate. Particularly, measurements using
isotopes cannot resolve single cells and have poor sensitivity and temporal resolution. Other currently available technique infers
the production of lactate by a cell population by following changes in pH that accompany the production of lactate, but this indirect
technique is limited insofar as it is affected by other mechanisms affecting extracellular pH and is not easily applicable in the
presence of physiological bicarbonate buffers.

[0007] The rate of pyruvate consumption by mitochondria, equivalent under some conditions to the rate of the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation, is one of the fundamental parameters of cell metabolism and is affected in several
diseases including hypoxc/ischemia, cancer, diabetes and other conditions. There are no available methods to measure the rates
of the mitochondrial metabolism in single cells. More specifically, current and common techniques to measure the rates of the
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mitochondrial metabolism use cannot resolve single cells and have poor sensitivity and low temporal resolution.

[0008] In the state of the art there is no evidence of an optical tool or nanosensor for detecting and quantifying lactate in
samples, in tissues and in cellular and subcellular compartments, with high spatial and temporal resolution. Also, there are no
available techniques to quantitate single-cell resolution lactate transport or the rates of lactate consumption/production or the rate
of mitochondrial metabolism or the Warburg effect, the metabolic transformation that underlies cancer. Nevertheless there are
related documents in the art, which will be described below. Sensors for different metabolites are described in WO2006096213A1,
WO02006096214A1, WO2006044612A2 and WO2007046786A2 that involve a FRET donor, a FRET acceptor and a member of
the class of periplasmic binding proteins (PBPs), proteins located in outside bacterial plasma membranes involved in chemotaxis.
The periplasmic binding protein serves as the specific recognition element. As there is no known rule to predict whether a given
protein may serve as an effective recognition element, these proteins have been the result of informed trial and error, semi-
rational design. The current invention does not used any of the recognition elements described WO2006096213A1,
W02006096214A1, WO2006044612A2 or WO2007046786A2. Moreover, the current invention is not based on any members of
the periplasmic binding protein family but rather on a member of the GntR family, a subclass of transcription factors involved in
adaptation of bacteria to changing environmental conditions. Surprisingly, the sensor described in the present invention was
found to detect its ligand over 4 orders of magnitude, which makes it unique. PBP-based sensors can only quantify ligands over 2
orders of magnitude only.

[0009] WO2001033199A2 discloses a probe based on a target binding site peptide (i) attached to a first fluorescent polypeptide
capable of binding to (i) and attached to a second fluorescent polypeptide. The probe includes a linker connecting the two
fluorescent polypeptides which allows the distance between them to vary, the fluorescent polypeptides display fluorescence
resonance energy transfer (FRET) between them. The probe described in WO2001033199A2 is qualitatively different from the
probe described in the current invention insofar as the current invention does not involve displacement of binding between two
peptides but rather a conformational change elicited by the ligand in a whole protein.

[0010] WO2008008149 describes a method to measure the rates of glycolysis and mitochondrial metabolism in cell populations
by recording the rate of extracellular oxygen depletion and the rate of extracellular acidification over minutes using a specific
dedicated apparatus. The current invention differs from W02008008149 as it does not need a dedicated apparatus and can be
used with standard multi-well plate readers. It also differs in terms of spatial resolution as it can measure single cells and temporal
resolution, which is in the order of seconds. The current invention measures the rate of lactate production directly, whereas
W02008008149 provides an indirect estimate by recording the accumulation of extracellular protons, a parameter that is affected
by other processes unrelated to metabolism and that required unphysiological pH buffering conditions.

[0011] WO/2012/002963 describes a method to estimate the rate of glucose consumption in single cells or cell population with
high temporal resolution using a FRET glucose nanosensor. The current invention differs from WO/2012/002963 as is does not
measure glucose or the rate of glucose consumption but the rates of lactate production/consumption and the rate of
mitochondrial metabolism, rates that are independent of the rate of glucose consumption, being a completely different technical
application. Moreover, the present method allows an estimation of the Warburg effect, which is not possible with a glucose
nanosensor.

DISCLOSURE OF THE INVENTION

[0012] The subject of the present invention is to provide a nanosensor, which allows minimally-invasive measurement of lactate
over an extended range of lactate concentration with high sensitivity regardless of the concentration of the probe, which does not
consume lactate during measurement, and that can be used to measure lactate in samples, in cells and in subcellular
compartments. Further, the subject of the present invention is to provide a measuring method of lactate using the nanosensor.
Said method can be used to measure the activity of the lactate transporters, to measure the rates of cellular lactate production
and lactate consumption, and to measure the rate of pyruvate consumption by mitochondria, which under certain conditions is
equivalent to the rate of the tricarboxylic acid (TCA) cycle, a method for single-cell quantification of the Warburg effect, a
transformation of metabolism that characterizes cancer cells, and a method to detect interference between drugs and
bioenergetic pathways.

BRIEF DESCRIPTION OF THE INVENTION

[0013] The present invention is related to a genetically-encoded Forster resonance energy transfer (FRET)-based indicator
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composed of the bacterial LIJR transcription factor sandwiched between any suitable donor and acceptor fluorescent proteins
moieties that are capable in combination of serving as donor and acceptor moieties in FRET. Preferred donor and acceptor
moieties are selected from the group consisting of mTFP (monomeric teal fluorescent protein), CFP (cyan fluorescent protein),
BFP (blue fluorescent protein), GFP (green fluorescent protein), YFP (yellow fluorescent protein), enhanced variations thereof
such as enhanced YFP (EYFP), Citrine or Venus, or infrared fluorescent proteins from bacterial phytochromes, with a particularly
preferred embodiment provided by the donor/acceptor mTFP/YFP Venus, a variant of YFP with improved pH tolerance and
maturation time (Nagai et al., 2002). Criteria to consider when selecting donor and acceptor fluorescent moieties is known in the
art, for instance as disclosed in U.S. Pat. No 6,197, 928. An alternative is the use of a single fluorescent moiety such as circularly-
permuted variations of GFP (Akerboom et al., 2008) inserted into the backbone of LIdR or other suitable lactate-binding protein,
which undergoes a change in fluorescence intensity in response to binding of lactate to the LIDR moiety or to other suitable
lactate-binding protein. In a more preferred embodiment, the fluorescent proteins are mTFP and Venus.

[0014] Unexpectedly, the lactate sensor of the present invention shows a biphasic dose response curve with apparent
dissociation constants for lactate of 8 yM and 800 pM, which allows quantitation of lactate over four orders of magnitude (from 10~

6 to 10'2M), and differs from all existing FRET metabolite nanosensors, which only allow measurement over two orders of
magnitude, for example W0O2006096213A1, WO2006096214A1, WO2006044612A2 and WO2007046786A2. The invention also
comprises methods that exploit the high spatiotemporal resolution of the lactate sensor of the present invention for the
measurement of lactate, which, depending on the configuration of the method, allows the measurement of transport activity and of
two metabolic rates, the rate of lactate production/consumption and the rate of pyruvate consumption by mitochondria and a
method to quantify the Warburg phenomenon in single-cells. These methods can be applied to single cells or cell populations,
adherent cells or in suspension, to a cell culture, a tissue culture, a mixed cell culture, or a tissue explant. The method comprises
the expression of the lactate sensor of the present invention in individual cells.

[0015] The nanosensor of the present invention is expressed in single cells or cell populations, adherent cells or in suspension,
in a cell culture, a tissue culture, a mixed cell culture, or a tissue explant. The gene expression can be attained by any suitable
method to transfer the sensor gene information to the host cell. Examples of gene transfer methodologies are plasmid transfer for
instance using liposomal delivery, virus transfer and transgenesis.

[0016] Once the sensor is expressed in single cells or cell populations, adherent cells or in suspension, in a cell culture, a tissue
culture, a mixed cell culture, or a tissue explant, the sensor is calibrated according to preestablished conditions. In order to
express fluorescence data in terms of lactate concentration, a single-point calibration protocol is applied at the end of each
experiment. Briefly, intracellular lactate is first lowered by depriving the cells of lactate and glucose, a maneuver that inhibits
lactate production at Lactate dehydrogenase (LDH). To ensure that cytosolic lactate is indeed negligible, cells are exposed to
pyruvate, which on entering via MCT, increases in the number of inward-facing binding sites available for lactate extrusion,
effectively "pumping out" the residual lactate. With the value for the fluorescence ratio at this "zero" lactate condition, the kinetic
constants determined in vitro, and the maximum change of fluorescence ratio of 38% or the value determined for a each cell type,
fluorescence data are converted into lactate concentration as shown in Fig. 12.

[0017] The nanosensor of the invention, is further used in a method for determination of lactate concentrations as described
before in single cells or cell populations, adherent cells or in suspension, in a cell culture, a tissue culture, a mixed cell culture, or
a tissue explant. Depending on the configuration of the method for determination of lactate concentrations, in a first embodiment,
the use of the nanosensor of the invention, in a method allows the determination of the lactate transporter activity (i.e. estimation
of kinetic parameters of lactate transporter).

[0018] In a second embodiment, the use of the nanosensor of the invention, in a method allows determination of lactate
production and/or consumption rates.

[0019] In a third embodiment, the use of the nanosensor of the invention, in a method allows the measurement of mitochondrial
pyruvate consumption and/or production rates.

[0020] In a further embodiment, the use of the nanosensor of the invention, in a method for single-cell quantification of the
Warburg effect.

[0021] Both the foregoing summary and the following detailed description provide examples and are explanatory only.
Accordingly, the foregoing summary and the following detailed description should not be considered to be restrictive. Further,
features or variations may be provided in addition to those set forth herein. For example, certain embodiments may be directed to
various feature combinations and sub-combinations described in the detailed description.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The invention is illustrated by the accompanying drawings wherein:
Figure 1 shows the tridimensional structures of the transcriptional regulator LIdR from E. coli and C. glutamicum.
Figure 2 shows the amino acid sequences of LIdR from E. coli and C. glutamicum.

Figure 3 shows the alignment of the amino acid sequences of sixteen variants of the lactate sensor, SEQ ID NO 1 corresponding
to variant 1, SEQ ID NO 2 corresponding to variant 2, SEQ ID NO 3 corresponding to variant 3, SEQ ID NO 4 corresponding to
variant 4, SEQ ID NO 5 corresponding to variant 5, SEQ ID NO 6 corresponding to variant 6, SEQ ID NO 7 corresponding to
variant 7, SEQ ID NO 8 corresponding to variant 8, SEQ ID NO 9 corresponding to variant 9, SEQ ID NO 10 corresponding to
variant 10, SEQ ID NO 11 corresponding to variant 11, SEQ ID NO 12 corresponding to variant 12, SEQ ID NO 13 corresponding
to variant 13, SEQ ID NO 14 corresponding to variant 14, SEQ ID NO 15 corresponding to variant 15, SEQ ID NO 16
corresponding to variant 16.

Figure 4 shows the response to lactate of sixteen variants of the lactate sensor, wherein the black filled bars correspond to the
variants 1, 3, 5,7, 9, 11, 13, 15, and the grey filled bars correspond to variants 2, 4, 6, 8, 10, 12, 14, and 16.

Figure 5 shows the effect of lactate on the fluorescence emission spectrum of the most responsive variant of the sensor, Variant
7, which is encoded by SEQ ID NO 7.

Figure 6 presents the change in fluorescence ratio of Variant 7,, in response to increasing concentrations of lactate.

Figure 7 summarizes the effect of several molecules on the fluorescence ratio of Variant 7, showing the specificity of the
Nanosensors.

Figure 8 shows the effect of pH on the fluorescence ratio of the lactate sensor of the present invention.

Figure 9 shows the effect of extracellular lactate on the fluorescence ratio of Variant 7, expressed in HEK293 cells and astrocytes.
Figure 10 shows that sensor concentration does not affect the response of Variant 7, to lactate.

Figure 11 shows the emission spectra and dose-response of Variant 7, encoded by SEQ ID NO 1, expressed in HEK293 cells.
Figure 12 illustrates a one-point calibration protocol for Variant 7, encoded by SEQ ID NO 1.

Figure 13 compares the uses of lactate and pH measurements for the characterization of the lactate transporter in astrocytes.
Figure 14 depicts the main biochemical pathways for lactate in mammalian cells.

Figure 15 demonstrates the measurement of cellular lactate production rate and mitochondrial pyruvate consumption rate in
single astrocytes and HEK293 cells.

Figure 16 compares metabolic rates measured experimentally with those obtained by fitting a mathematical model to the data. In
the equation shown in Figure 16:

Pyruvate concentration, [Pyr] (uM)
Lactate, [Lac] (M)
Glycolytic pyruvate production, G (uM/s)

Lactate dexydrogenase forward reaction, LDHf (s-1) Lactate dehydrogenase reverse reaction, LDHr (s-1) Cellular lactate release,
MCT (uM/s)

Mitochondrial pyruvate uptake, PT (uM/s)
Figure 17 shows the acute activation of lactate production by inhibition of oxidative phosphorylation.
Figure 18 shows the effect of lactate on Variant 7, expressed in T98G glioma cells.

Figure 19 plots the lactate production rate and mitochondrial metabolism in individual astrocytes, HEK293 cells and T98G glioma
cells.
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Figure 20 shows the Warburg Index of astrocytes and glioma cells.

DETAILED DESCRIPTION OF THE INVENTION

[0023] The following detailed description refers to the accompanying drawings. While embodiments of the nanosensor of the
invention may be described, modifications, adaptations, and other implementations are possible. For example, substitutions,
additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be
modified by substituting, reordering, or adding stages to the disclosed methods. Accordingly, the following detailed description
does not limit the scope of the invention. While the nanosensor and the methods are described in terms of "comprising" various
elements or steps, the nanosensor and the methods can also "consist essentially of" or "consist of" the various elements or steps,
unless stated otherwise. Additionally, the terms "a," "an," and "the" are intended to include plural alternatives, e.g., at least one,
unless stated otherwise.

[0024] The nanosensor quantifies lactate between 1 uM and 10 mM, allowing single-cell measurement of lactate concentration,
lactate transporter (MCT) activity, lactate production and the rate of mitochondrial metabolism, as well as detection of the
Warburg effect in individual cells.

[0025] The nanosensor of the present invention is a Forster Resonance Energy Transfer (FRET)-based lactate nanosensor
further based on LIdR, a bacterial transcription regulator that has two modules, a lactate-binding/regulatory domain and a DNA-
binding domain. The LIdR genes were selected from Corynebacterium glutamicum and from Escherichia coli.

[0026] The tridimensional structure of the two proteins is virtually superimposable (Fig. 1), yet they are only 19.4% identical,
differing in numerous charged residues (Fig. 2), which may alter surface charge scanning and possibly FRET efficiency. The
FRET-based lactate nanosensor of the invention may incorporate any suitable donor and acceptor fluorescent proteins moieties
that are capable in combination of serving as donor and acceptor moieties in FRET. Preferred donor and acceptor moieties are
selected from the group consisting of mTFP (monomeric teal fluorescent protein), CFP (cyan fluorescent protein), BFP (blue
fluorescent protein), GFP (green fluorescent protein), YFP (yellow fluorescent protein), enhanced variations thereof such as
enhanced YFP (EYFP), Citrine or Venus, or infrared fluorescent proteins from bacterial phytochromes, with a particularly
preferred embodiment provided by the donor/acceptor mTFP/YFP Venus, a variant of YFP with improved pH tolerance and
maturation time (Nagai et al., 2002). Criteria to consider when selecting donor and acceptor fluorescent moieties is known in the
art, for instance as disclosed in U.S. Pat. No 6,197, 928. An alternative is the use of a single fluorescent moiety such as circularly-
permuted variations of GFP (Akerboom et al., 2008) inserted into the backbone of LIdR or other suitable lactate-binding protein,
which undergoes a change in fluorescence intensity in response to binding of lactate to the LIAR moiety or to other suitable
lactate-binding protein. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.
Nagai T, lbata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. Nat Biotechnol. 2002 Jan;20(1):87-90 . Crystal structures of the
GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. Akerboom J, Rivera JD,
Guilbe MM, Malavé EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER. J Biol Chem. 2009 Mar
6;284(10):6455-64. Epub 2008 Dec 18.

[0027] In a more preferred embodiment, the FRET pair selected was mTFP and Venus, which compared with CFP and YFP are
respectively brighter and less pH-sensitive.

[0028] The general architecture search for structural combinations of the sensors is shown in Fig. 1a, with mTFP located at the
N-terminus, the LIdR flanked by linkers, and Venus located at the C-terminus.

[0029] Three constructs were generated for each bacterial species, differing with respect to the presence of DNA binding domain
and linkers (Fig. 3). A comparative analysis showed that three proteins that changed their fluorescence in response to lactate,
showed that constructs with LIdR from E. coli changed their fluorescence ratio much more than those from C. glutamicum. The list
of sequences comprises different embodiments of the invention, which should not be considered as limiting of the invention.

[0030] In a further embodiment, the present invention includes lactate nanosensors described according to the amino acid
sequences and have at least 60%, 70%, 80% 85%, 90%, 95%, or 99% sequence identity with SEQ ID NO 1, SEQ ID NO 2, SEQ ID
NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ
ID NO 12, SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15, or SEQ ID NO 16.
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[0031] The present invention also considers the nucleic acid sequences having at least 60%, 70%, 80% 85%, 90%, 95%, or 99%
sequence identity with SEQ ID NO 17, SEQ ID NO 18, SEQ ID NO 19, SEQ ID NO 20, SEQ ID NO 21, SEQ ID NO 22, SEQ ID NO
23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28, SEQ ID NO 29, SEQ ID NO 30, SEQ ID NO 31,
or SEQ ID NO 32.

[0032] The sequences described in SEQ ID NO 1 to SEQ ID NO 16 are only particular embodiments of the present invention
provided as way of exemplification of the present invention, and should not be considered to limit the scope of the invention.

[0033] Also surprising was the observation that the DNA-binding domain is important for the FRET change, and that the sensors
with no linkers are more responsive (Fig. 4). The most responsive variant, arrowed in Fig. 4, was chosen for further
characterization. It contains the full length LIdR from E. coli and no linkers. The emission spectrum of this nanosensor showed the
expected peaks of mTFP and Venus at 492 nm and 526 nm, respectively (Fig. 5). The affinity constant of LIdR for L-lactate is not
known. Figure 6 shows that this nanosensor responded to a wide range of the ratio between mTFP and Venus. Fluorescence (at
430 nm excitation) was measured at increasing lactate concentrations, behavior well represented by a double rectangular
hyperbola, with apparent dissociation constant (KD) values of 8 + 2 pM and 830 + 160 pM, and respective maximum AR values of
8+ 0.4 % and 11 £ 0.4 %. This unique property of LIdR confers the lactate sensor the desirable ability of reporting across four
orders of magnitude (from 1 pM to 10 mM), instead of the two orders afforded by one-site sensors.

[0034] When used in vitro, the sensitivity of this nanosensor is similar to at least the most sensitive enzyme-based commercially
available kit (50 pmoles).

[0035] The specificity was investigated by exposing the sensor to millimolar levels of several organic acids and glucose, of which
only lactate induced a significant change in FRET (Fig. 7). The sensor showed a modest sensitivity to pH in the physiological
range (Fig. 8). Expressed in mammalian cells, the lactate sensor of the present invention distributed in the cytosol and was
excluded from nuclei and organelles (Fig. 9). Compared to the glucose sensor, its distribution was more heterogeneous, possibly
due to LIdR multimerization, but this did not affect the response to lactate (Supplementary Fig. 10). Expressed in cells, the sensor
showed emission spectra and two-component dose-response curve similar to that observed in vitro, but with a larger change in
FRET ratio (Fig. 11). In order to express fluorescence data in terms of lactate concentration, a single-point calibration protocol is
applied at the end of each experiment. Briefly, intracellular lactate is first lowered by depriving the cells of lactate and glucose, a
maneuver that decreases the glycolytic flux and lowers the cytosolic NADH:NAD+ ratio (Hung et al., 2011; Zhao et al., 2011),
inhibiting lactate production at Lactate dehydrogenase (LDH). To ensure that cytosolic lactate is indeed negligible, we use a
property of MCTs termed trans-acceleration or accelerated exchange (Halestrap and Price, 1999). Cells are exposed to pyruvate,
which on entering via MCT, increases in the number of inward-facing binding sites available for lactate extrusion, effectively
"pumping out" the residual lactate. With the value for the fluorescence ratio at this "zero" lactate condition, the kinetic constants
determined in vitro, and the maximum change of fluorescence ratio of 38% or the value determined in the specific cell type,
fluorescence data were converted into lactate concentration as shown in Fig. 12. After 20 minutes of glucose/lactate deprivation
in HEK293 cells or neurons, or 1 hour deprivation in astrocytes, intracellular lactate is undetectable (data not shown), consistent
with the very low NADH:NAD+ ratio present under such conditions (Hung et al., 2011; Zhao et al., 2011).

[0036] The invention further comprises methods using the aforementioned nanosensor for determination of lactate
concentrations in single cells or cell populations, adherent cells or in suspension, in a cell culture, a tissue culture, a mixed cell
culture, a tissue explant, or in animal tissues in vivo.

[0037] The method comprises the general steps of:

1. a) Expressing the nanosensor of the invention, in a desired host, such as single cells or cell populations, adherent cells or
in suspension, in a cell culture, a tissue culture, a mixed cell culture, a tissue explant, or in animal tissues in vivo;

2. b) Calibrating the host with predetermined values of intracellular, extracellular, subcellular lactate concentrations, recording
lactate concentrations in time;

3. c) Disrupting the steady-state of lactate entering the cell;

4. d) Recording the output from the nanosensor calculating the lactate concentration at different time points;

[0038] In the step b), corresponding to calibrating the host, the nanosensor of the invention is calibrated in cells using the kinetic
constants of the sensor obtained in vifro and a zero-lactate level determined in the presence of pyruvate. Pyruvate can be in the
range of 5 mM to 20mM, preferentially 10 mM.
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[0039] The general method can be applied in different configurations, for example, in a first embodiment, the nanosensor is used
in a method for the measurement of the activity of the lactate transporter.

[0040] In this first embodiment, with the information obtained in the calibration step, the disruption of the steady-state of lactate
entering the cell is carried out by altering the extracellular concentration of lactate, thus exposing the cells to lactate. This causes
a rise in intracellular lactate that is monitored with the lactate sensor and whose initial rate is independent of lactate metabolism
and can be used to estimate kinetic parameters. Exposure of the cells to increasing concentrations of lactate allows the estimation
of kinetic parameters for the lactate transporter. Kinetic parameters are also obtained from the decrease in intracellular lactate
after removal of extracellular lactate.

[0041] In a second embodiment, the general method can be applied to a method to measure the rates of lactate production and
lactate consumption.

In this second embodiment, with the information obtained in the calibration step, the steady-state of lactate is disrupted by altering
the function of lactate transporter, for example by addition of a blocker of the lactate transporter. In mammalian cells, the lactate
transporter is the MCT and can be blocked with phloretin, parachloromercurybenzoate or other suitable compounds. If the cell is a
net lactate producer, application of the MCT-blocker causes an increase in intracellular lactate concentration, the initial rate of
which is equal to the rate of cellular lactate production in the steady-state. If the cell is a net lactate importer, application of the
MCT-blocker causes a fall in intracellular lactate concentration, the initial rate of which is equal to the rate of lactate consumption
on the steady-state. In a more particular embodiment, the disruption of the steady-state is attained by adding an inhibitor of the
MCT, such as, but not limited to phloretin, parachloromercurybenzoate, anti-MCT antisera, etc. In cells where lactate transport is
mediated by other transporters, the method can be applied using their respective inhibitors. A critical property of this nanosensor
that allows quantitation of these rates is its high temporal resolution, for only the initial rate of lactate accumulation is informative
and after a few seconds other non-linear processes like inhibition of glycolysis by the increasing lactate or changes in
mitochondrial pyruvate uptake may interfere with the measurement. Because of its low temporal resolution, extracellular lactate
measurement by existing techniques cannot be used in combination with MCT-blockage to estimate the rates of lactate production
or lactate consumption.

[0042] In a third embodiment, the general method can be applied to a method to measure the rate of mitochondrial pyruvate
consumption.

[0043] In this third embodiment, with the information obtained in the calibration step, the disruption in the lactate steady-state is
caused by disrupting the flux of lactate. To quantitate the rate of mitochondrial pyruvate consumption, the steady-state is
disrupted by addition of a blocker of the mitochondrial pyruvate transporter. In mammalian cells, the mitochondrial pyruvate
transporter can be blocked with low concentration of 4-CIN. In cells, the concentration of pyruvate and lactate move together as a
single pool because of fast interconversion by the high activity enzyme lactate dehydrogenase (LDH), with lactate representing
over 90% of the pool. Application of the pyruvate transporter-blocker 4-CIN or other suitable inhibitor of the mitochondrial
pyruvate transporter, causes an increase in the intracellular lactate concentration, the initial rate of which is equal to the rate of
pyruvate uptake in the steady-state. In cells were pyruvate uptake into mitochondria were mediated by other transporters, the
method could be applied using their respective inhibitors. A critical property of this nanosensor that allows quantitation of these
rates is its high temporal resolution, for only the initial rate of lactate accumulation is informative and after a few seconds other
non-linear processes MCT-transport and inhibition of glycolysis by increasing lactate may interfere with the measurement. In the
steady-state and in the presence of glucose and lactate as exclusive oxidative substrates, the rate of pyruvate consumption by
mitochondria is equal to the rate of the tricarboxylic acid (TCA) cycle and equal to rate of oxidative phosphorylation (OXPHOS).

[0044] A fourth particular embodiment of the method of the present invention is determination of cancer staging by estimation of
the ratio between lactate production and the rate of the TCA cycle in a sample. Cancer cells are less oxidative than normal cells,
a phenomenon known as the Warburg effect, which is receiving renewed attention regarding cancer pathogenesis, diagnosis and
possibly treatment. Robust flux through glycolysis and pentose phosphate pathways in these cells are thought to provide building
blocks for proliferation and a high redox tone, while the lactic acid exported acidifies the environment and facilitates tumor
migration and metastasis. A plot of lactate production versus TCA cycle rate shows that T98G glioma cells can be distinguished
from normal astrocytes (Fig. 3a-b), but a more sensitive parameter is the ratio between lactate production and the rate of the TCA
cycle, which we have termed Warburg Index (Fig. 3c). In an alternative embodiment, the Warburg Index is estimated by calculating
the ratio between lactate production (with phloretin or other MCT blocker) and the rate of intracellular lactate increase in
response to inhibition of oxidative phosphorylation with azide or other suitable compound (Fig. 17), which is a parameter of how
oxidative is the cell. This alternative version of the Warburg index gives a different value but is also very sensitive to the
mitochondrial defects that characterize cancer cells, senescent cells and other conditions that produce the Warburg
phenomenon.
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[0045] These tools allow the functional study of cancer metabolism with single-cell resolution and are also readily adaptable to
multi-well format for high-throughput analysis of metabolism in cancer and other diseases. The development of a sensor based on
LIdR provides the basis for creating a wide variety of novel indicators because the GntR superfamily, of which LIdR is a member,
has 270 other transcription factors that bind pyruvate, fatty acids, amino acids, TCA cycle intermediates, etc., which are possible
candidates to serve as templates for genetically-encoded nanosensors.

[0046] Based on the lactate nanosensor of this invention, methods are presented that allow for the first time single-cell real-time
quantification of the rates of lactate production and of the tricarboxylic acid (TCA) cycle. Both methods follow cytosolic
accumulation of lactate immediately after blockage of selected transporters, in analogous fashion to the measurement of the rate
of glucose consumption with a glucose sensor. In the steady-state, the intracellular concentration of lactate is kept constant by a
dynamic balance between glycolytic production and lactate efflux (Fig. 2c). Perturbation of the steady-state by addition of an MCT
blocker like phloretin is expected to cause intracellular lactate accumulation at a rate equal to the rate of lactate production. For
net lactate importers, like liver cells and possibly neurons, the MCT blocker should decrease intracellular lactate at a rate equal to
the rate of lactate consumption. A similar rationale can be applied to the quantification of pyruvate consumption by mitochondria.
The high activity of lactate dehydrogenase (LDH) in mammalian cells, couples the concentrations of lactate and pyruvate, which
for this purposes can be considered as a single pool, with lactate representing > 90%. Acute inhibition of the mitochondrial
pyruvate transporter (PT) with a low concentration of a-Cyano-4-hydroxycinnamate (4-CIN) should produce an accumulation of
intracellular lactate, at the rate of pyruvate consumption, which in the absence of alternative mitochondrial substrates is
equivalent to the rates of the TCA cycle and oxidative phosphorylation. Experimental demonstration of these methods is provided
in Fig. 2d. On average, astrocytes presented a lactate production rate of 2 uM/s and a TCA cycle rate of 7.6 pM/s, consistent with

their rate of glucose consumption of 2 - 6 pM/s”. Typical of cell lines, HEK293 cells were more glycolytic and less oxidative than
astrocytes, with respective rates of lactate production and TCA cycle of 5.4 and 2.1 pM/s. Inhibition of mitochondrial ATP
production with sodium azide caused a 26 + 4 fold increase in the rate of lactate production, fitting the deviation of all pyruvate
flux towards lactate production and the 3 - 4 fold increase observed in glucose consumption (Fig. 2e). Fitting a mathematical
model to actual lactate measurements indicated that the initial slopes of the changes in lactate concentration triggered by the
transport blockers underestimate the actual rates of lactate production and TCA cycle by less than 10% (Supplementary Fig. 7).

[0047] The following examples are provided to help in the understanding of the present invention, and should not be considered
a limitation to the scope of the invention.

EXAMPLES

[0048] In order to help understanding the invention, the present invention will be explained with reference to specific examples:

Protein Purification. Plasmid constructs were transformed into E. coli BL21 (DE3). A single colony was inoculated in 100 ml of LB
medium with 100 mg/ml ampicillin (without IPTG) and shaken in the dark for 2-3 days. Cells were collected by centrifugation at
5000 rpm (4°C) for 10 min and disrupted by sonication (Hielscher Utrasound Technology) in 5 mL of Tris-HCI buffer pH 8.0. A
cell-free extract was obtained by centrifugation at 10,000 rpm (4°C) for 1 hour and filtering of the supernatant (0.45 um). Proteins
were purified using a Nickel resin (His Bin® from Novagen) as recommended by the manufacturer. Eluted proteins were quantified
using the Biuret method and stored at -20°C in 20% glycerol. The variant that showed the largest change in fluorescence ratio,
was cloned into pcDNA3.1(-) for expression in eukaryotic cells using the restriction sites BamHI and Hindlll.

[0049] Animals and Cell Cultures. Animals used were mixed F1 male mice (C57BL/6J x CBA/J), kept in an animal room under
Specific Pathogen Free (SPF) conditions at a room temperature of 20 £ 2°C, in a 12/12 h light/dark cycle with free access to food
and water. Experiments were approved by the Centro de Estudios Cientificos Animal Care and Use Committee. Mixed cortical
cultures of neuronal and glial cells (1-3 day-old neonates) were prepared as described (Loaiza et al., 2003). HEK293 and T98G
glioma cells were acquired from the American Tissue Culture Collection and cultured at 37°C in 95% air/5% CO2 in DMEM/F12
10% fetal bovine serum. Cultures were transfected at 60% confluence using Lipofectamine 2000 (Gibco) or alternatively, exposed

to 5x 10° PFU of Ad lactate sensor of the present invention (Vector Biolab), and studied after 24-72 h.

[0050] Fluorescence Measurements. Nickel-purified proteins were resuspended at 100 nM in an intracellular buffer containing
(mM): 10 NaCl, 130 KCI, 1.25 MgSO4 and 10 HEPES, pH 7.0, and measured with a microplate reader analyzer (En Vision,
PerkinElmer). The proteins were excited at 430 nm and the intensity of fluorescence emission of mTFP and Venus were recorded
at 485 nm (FmTFP) and 528 nm (FVenus), respectively. The ratio (R) between FmTFP and FVenus was used to characterize the
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sensors. Emission spectra were obtained at 430 nm excitation, with 2 nm windows. Cells were imaged at room temperature (22 -
25°C) in a 95% air/5% CO2-gassed solution of the following composition (in mM): 112 NaCl, 1.25 CaClp, 1.25 MgSO4, 1-2

glucose, 10 HEPES, 24 NaHCO3, pH 7.4, with 3 mM KCI (astrocytes) or 5 mM KCI (HEK and T98G) using an upright Olympus
FV1000 Confocal Microscope equipped with a 20x water immersion objective (N.A. 1.0) and a 440 nm solid-state laser.
Alternatively, cells were imaged with an Olympus IX70 or with an Olympus BX51 microscope equipped with a 40x oil-immersion
objective (NA 1.3) or with a 20x water-immersion objective (NA 0.95). Microscopes were equipped with CAIRN monochromators
(Faversham, UK), and either a Hamamatsu Orca camera controlled by Kinetics software or a Rollera camera controlled with
Metafluor software, respectively. For nanosensor ratio measurements, cells were excited at 430 nm for 0.2-0.8 s. Emission was
divided with a CAIRN Optosplit, equipped with band pass filters at 480 £ 20 (FmTFP) and 535 + 15 nm (FVenus). The ratio
between FmTFP and FVenus was used to measure lactate. The pH-sensitive dye BCECF was ester loaded at 0.1 pM for 3-4 min
and the signal was calibrated by exposing the cultures to solutions of different pH after permeabilizing the cells with 10 pug/ml
nigericin and 20 pg/ml gramicidin in an intracellular buffer. BCECF was sequentially excited at 440 and 490 nm (0.05 s) and
imaged at 535 + 15 nm.

[0051] Mathematical Modeling of Lactate Dynamics. A model of intracellular lactate dynamics was generated according to the flux

diagram in Fig. 14 and 16, in the absence of extracellular lactate,
d[Pyr}/dt = (G + [Lac]*LDHr — [Pyr]*LDHf — PT)/vol

d[Lac}/dt = ([Pyr]*LDHf — [Lac}*LDHr ~VMCT/{KMCT+[Lac]})/vol

where [Pyr] is cytosolic pyruvate concentration, [Lac] is cytosolic lactate concentration, G is glycolytic pyruvate production, LDHf
and LDHr are the lactate dehydrogenase forward and reverse reactions and PT is mitochondrial pyruvate uptake. MCT efflux
obeys Michaelis-Menten kinetics with maximum rate VMCT and an apparent affinity KMCT (5 mM). The kinetic model was solved
numerically with the computer software Berkeley Madonna using the Rosenbrock method.

[0052] Statistical Analysis. All time courses correspond to single cells. Experiments were repeated three to six times, with 6-12
cells per experiment. Regression analyses were carried out with the computer program SigmaPlot (Jandel). Differences in mean
values of paired samples were evaluated with the Student's t-test. P values < 0.05 were considered significant and are indicated
with an asterisk (*).

[0053] Sixteen different variants of the lactate nanosensor, according to different embodiments of the present invention were
produced. Figure 4 shows the response to lactate of the sixteen variants of the lactate sensor, wherein the black filled bars
correspond to the variants 1, 3, 5, 7, 9, 11, 13, 15, and the grey filled bars correspond to variants 2, 4, 6, 8, 10, 12, 14, and 16.
Each of the produced variants of the lactate nanosensor of the present invention are encoded by the aminoacid sequence
described in the list, SEQ ID NO 1 corresponding to variant 1, SEQ ID NO 2 corresponding to variant 2, SEQ ID NO 3
corresponding to variant 3, SEQ ID NO 4 corresponding to variant 4, SEQ ID NO 5 corresponding to variant 5, SEQ ID NO 6
corresponding to variant 6, SEQ ID NO 7 corresponding to variant 7, SEQ ID NO 8 corresponding to variant 8, SEQ ID NO 9
corresponding to variant 9, SEQ ID NO 10 corresponding to variant 10, SEQ ID NO 11 corresponding to variant 11, SEQ ID NO 12
corresponding to variant 12, SEQ ID NO 13 corresponding to variant 13, SEQ ID NO 14 corresponding to variant 14, SEQ ID NO
15 corresponding to variant 15, SEQ ID NO 16 corresponding to variant 16.

Most of the variants showed a measureable change in fluorescence ratio in response to lactate and may be used for the different
methods described in the present invention. The high rate of successful sensor generation shows a surprising robustness of LIdR
as a scaffold for FRET-based sensor generation.

Example 1. Method for the measurement of lactate transporter activity with high spatiotemporal resolution.

[0054] By controlling the exchange of lactate between cells and the interstitial space, MCTs are nodal points of tissue
metabolism. MCTs catalyze the stoichiometric translocation of lactate and a proton and their activity can be measured with single-
cell resolution by monitoring intracellular pH with a dye such as BCECF. However, 99.9% of protons are bound to proteins,
phospholipids and other sites, and are exchanged through many transporters other than the MCT, which makes pH an imperfect
proxy for lactate. To compare the performances of the lactate sensor of the present invention and BCECF, we chose astrocytes.
When expressed in astrocytes, the lactate sensor of the present invention responded well to extracellular lactate, allowing real-
time monitoring of lactate influx and efflux (Fig. 13). Consistent with an MCT-mediated process, the initial rate of astrocytic uptake
of 1 mM lactate of 1.6 £ 0.5 pM/s was inhibited by 96 £ 1 % in the presence of the MCT blocker phloretin (50 pM). In contrast,
exposure to extracellular lactate produced only a small change in intracellular pH as detected with BCECF (Fig. 15). Thus, the
lactate sensor can be used to measure MCT, allowing a more sensitive and physiological characterization of their function.
Lactate may also be transported independently of protons through gap junctions (Rouach et al., 2008) and possibly through
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connexin hemichannels and pannexin channels, fluxes that are invisible to pH measurements and that may now be measured with
the present invention.

Example 2. Metabolic rate of pyruvate consumption by mitochondria.

[0055] The diagram in Fig. 14 illustrates how the intracellular concentration of lactate is determined by the dynamic balance
between pyruvate production by glycolysis, pyruvate consumption by mitochondria and lactate exchange through MCTs. In cells
that are exporting lactate, perturbation of the steady state by addition of a blocker of the MCT is expected to cause lactate
accumulation. In cells that are net lactate importers, an MCT-blocker is expected to cause depletion in intracellular lactate. In both
cases, the rate of change will be equal to the rate of lactate production or consumption. As a demonstration of the principle in
HEK293 cells and in astrocytes, MCT inhibition with phloretin (50 pM) caused the expected increase in intracellular lactate,
indicative of lactate production (Fig. 15). Phloretin is also known to inhibit GLUT glucose transporters, however this should not
compromise the analysis of astrocytes, neurons, or the cell lines so far characterized, which maintain resting intracellular glucose
at levels well above the Km of hexokinase (Bittner et al., 2010; Takanaga et al., 2008; Fehr et al., 2003). In these cells, glucose
consumption remains constant for several minutes in the presence of glucose transporter blockers like phloretin or cytochalasin B
(Bittner et al., 2010). Thus, during the first few minutes of phloretin application, the rate of lactate accumulation is not diminished
by lack of glucose supply. In muscle cells and adipocytes, which maintain low levels of intracellular glucose, a more selective MCT
inhibitor may be used (Ovens et al., 2010).

Example 3. Method to measure the rate of mitochondrial metabolism with high spatiotemporal re solution.

[0056] Because the reaction catalyzed by LDH is relatively fast, the cytosolic pools of lactate and pyruvate are tightly linked, and
variations in pyruvate are faithfully mimicked by lactate. Accordingly, perturbation of the steady-state by addition of a blocker of
the mitochondrial pyruvate transporter (PT) will cause intracellular lactate accumulation at a rate equal to the rate of pyruvate
consumption by mitochondria. As predicted by the kinetic model, inhibition of the mitochondrial pyruvate transporter in HEK293
cells with a-cyano-4-hydroxycinnamate (4-CIN) at a concentration that does not affect MCT function (Halestrap and Denton,
1975), led to an increase in intracellular lactate (Fig. 15). As typical of cell lines, HEK293 cells were more glycolytic than oxidative,
having respective rates of lactate production and pyruvate uptake of 5.4 and 2.1 uM/s, whereas on average, astrocytes
demonstrated a lactate production of 2 yM/s and pyruvate uptake of 7.6 pM/s (Fig. 15), consistent with their rate of glucose
consumption of 2 - 6 uM/s (Bittner et al., 2010; Bittner et al., 2011).

[0057] To further validate methods 2 and 3, the blockers were applied sequentially and a mathematical model based on the
kinetic model described in Fig. 14 was fitted to the data. The responses of intracellular lactate to transient inhibitions of the PT
with 4-CIN (200 pM) and the MCTs with phloretin (50 pM) were measured in the same HEK293 cell in the presence of 25 mM
glucose and no extracellular lactate. The straight lines represent the slopes of the lactate increases fitted by linear regression
during the first minute (4-CIN) or during the whole exposure (phloretin). The red line represents the best fit of the kinetic model to
the data, as described in Experimental Procedures, assuming full inhibition of the transporters. Fitted parameters were: G = 10.3
uM/s, PT = 4.8 uyM/s, LDHf = 9 s-1, LDHr = 0.45 s-1, Vmax= 186 uM/s, G-PT (lactate production)= 5.5 pM/s. PT and lactate
release rates respectively estimated from the initial slopes of lactate increase after transporter inhibition were over 90% of those
estimated by modeling. As shown in Fig. 16, the rate of lactate accumulation induced by 4-CIN was maximal at the onset of
inhibition and then declined, due to increased efflux through the MCT as lactate accumulated. Therefore, only the initial rate of
lactate accumulation will represent mitochondrial metabolism accurately. In contrast, MCT blockage resulted in sustained
accumulation of lactate, a finding that is consistent with the accepted notions that glycolytic pyruvate production and mitochondrial
pyruvate consumption are not modulated by cytosolic pyruvate. On the other hand, the limited accumulation of lactate caused by
4-CIN confirms that 4-CIN did not block MCTs to a significant extent. The best fit of the model to the data showed that the initial
slopes of the changes in lactate concentration triggered by the transport blockers underestimate the actual rates of mitochondrial
pyruvate uptake and lactate production by less than 10%.

Example 4. Detection of drugs that interfere with mitochondrial metabolism with high spatiote mporal resolution.

[0058] The screening for unwanted effects is an important part of the process of drug discovery. One possibility to be ruled out
before the drug is tested in animals or humans is the possibility that a candidate drug may exert undesirable effects on cellular
energy metabolism. An inhibition of mitochondrial ATP production is compensated by increase in glycolytic ATP production and
lactate production. Typically, a 3-4 fold increase in the rate of glucose consumption is observed (Bittner et al., 2010). However,
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the increase in lactate production can be much higher, because without the mitochondrial pyruvate sink, all glucose is now
converted into lactate. Taking advantage of the improved resolution of the lactate sensor of the present invention, a method is
presented that detects mitochondrial poisoning with very high sensitivity. As an example of this method, an acute inhibition of
oxidative phosphorylation in astrocytes with 5 mM azide caused a 26 * 4 -fold increase in the rate of lactate production measured
with the lactate sensor of the present invention (Fig 17a). Fig. 17b shows the acute effect of azde 5 mM on the intracellular
concentration of lactate. Used in multi-well plate format, both protocols may be incorporated in high throughput applications for
the screening of mitochondrial interference.

Example 5. Detection of the Warburg effect in single cells with high temporal resolution.

[0059] Augmented flux through glycolysis and the pentose phosphate pathway in cancer cells provides the building blocks for
proliferation and a high redox state that protects them against free radicals released during chemotherapy, while the lactic acid
exported via MCTs acidifies the tumor environment and facilitates cell migration and metastasis. The glycolytic nature of cancer
cells even in the presence of oxygen, a phenomenon known as the Warburg effect, is detected by comparing lactate production
with oxygen consumption, measurements that demand large numbers of cells and overlook tissue heterogeneity. The reversible
nature of mitochondrial flux and lactate production measurements with the lactate sensor allowed a more refined characterization
of the Warburg phenotype. A comparison of astrocytes with T98G glioblastoma cells, showed that the non-transformed cells are
more oxdative than their tumor counterparts (Figs. 18 and 19). The difference between normal and cancerous cells was
dramatically amplified by lactate production and pyruvate uptake, to give a parameter of cell metabolism that we have termed
Warburg Index (WI). Some glioblastoma cells behaved almost like an astrocyte but some presented Warburg Index values that
were 100 times higher than that of a normal astrocyte (Fig. 20). Tumors are known to be metabolically heterogeneous, which is
expected given unequal access of their cells to oxygen and nutrients, but it seems remarkable that a cell line like T98G, cultured
under carefully controlled conditions at high oxygen levels be also so heterogeneous from the metabolic point of view. The single-
cell real-time capability of the lactate sensor should allow a metabolic characterization of individual cells and cell lineages in
tumors and tissue explants. Used in cell populations with a multi-well plate reader, it is readily amenable for high throughput
applications. An alternative embodiment of Example 5 replaces 4-CIN with an inhibitor of oxidative phosphorylation like azide or
rotenone.

[0060] While certain embodiments of the invention have been described, other embodiments may exist. Further, any disclosed
method steps or stages may be modified in any manner, including by reordering steps and/or inserting or deleting steps, without
departing from the invention. While the specification includes a detailed description of the nanosensor and the associated
drawings, the invention's scope is indicated by the following claims. Furthermore, while the specification has been described in a
specific language, the claims are not limited to the features or acts described above. Rather, the specific features and acts
described above are disclosed as illustrative aspects and embodiments of the invention.
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Arg

225

Gly

val

Ala

Ala

Leu
305

Leu

Asp

Tzp

Ser

Lys

130

Thr

Leu

His

Leu

Asp

210

Asn

Gln

Gly

Ala

Leu

290

Arg

Thr

Asp

Glu

Asp

115

Gly

Gly

Lys

Arg

Pro

195

Lys

Ser

Ala

His

Leu

275

Leu

Phe

Thr

Ile

Arg

100

Ile

Glu

Trp

Gly

Val

180

Asp

Asp

Thr

Leu

His

260

His

Glu

Asp

Ala

Pro

85

Thr

Ser

Asn

Asp

Asp

165

Asp

Tyr

Tyr

Asp

Ser

245

Asp

Ser

Lys

Ala

Phe

70

Asn

Met

Met

Phe

Ala

150

val

Phe

His

Asn

Gly

230

Leu

Ile

Ser

Met

Glu
310

Ala

Tyr

Thr

Glu

Pro

135

Ser

Lys

Lys

Phe

Lys

215

Met

Ser

Tyr

Ala

Asp

295

Phe

Tyr

Phe

Phe

Glu

120

Pro

Thr

His

Thr

val

200

val

Asp

val

Glu

Glu

280

Asp

His

Gly

Lys

Glu

105

Asp

Asn

Glu

Lys

Ile

185

Asp

Thr

Glu

Thr

Thr

265

Arg

Pro

Vval

Asn

Gln

90

Asp

Ser

Gly

Leu

170

Tyr

His

val

Leu

Leu

250

Arg

Gly

Ser

val

Arg

75

Ser

Lys

Phe

Pro

Met

155

Leu

Arg

Arg

Tyr

Tyr

235

Gln

Gln

Asp

Leu

Ile
315

Ala

Phe

Gly

Ile

val

140

Tyr

Leu

Ala

Ile

Glu

220

Lys

Leun

Leu

Trp

Pro

300

Ser

Phe

Pro

Ile

Tyr

125

Met

val

Glu

Lys

Glu

205

Ser

val

Leu

Asp

285

Leu

Lys

Thr

Glu

val

110

Glu

Gln

Arg

Gly

Lys

190

Ile

Ala

Ser

Thr

Glu

270

val

Glu

Gly

Lys

Gly

95

Lys

Ile

Lys

Asp

Gly

175

Ala

Leu

val

Gly

Asn

255

Gly

Ala

Asp

aAla

55

Tyr

80

Tyr

val

His

Lys

Gly

160

Gly

Vval

Asn

Ala

Thr

240

Gln

Trp

Glu

Phe

Glu
320
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Asn

Asp

Ser

Ala

Gly

385

Met

Val

Glu

Cys

Leu

485

Gln

Arg

val

Ile

Asn

545

Gly

Val

Pro

Ser

val
625

Pro

His

Ala

Gly

370

Tyr

Vval

Glu

Gly

Thr

450

Gly

His

Thr

Lys

Asp

530

Tyr

Ile

Gln

Vval

Lys
610

Thr

Leu

Thr

Arg

355

Glu

Tyr

Ser

Leu

Glu

435

Thr

Tyr

Asp

Ile

Phe

515

Phe

Asn

Lys

Leu

Leu
595

Asp

Ala

<210> 17

<211> 2319
<212> DNA
<213> Synthetic

<400> 17

Ile Ser Thr
325

Val Ala Arg
340

Leu Gln Lys
Ser Thr Val

Glu Glu Thr
390

Lys Gly Glu
405

Asp Gly Asp
420

Gly Asp Ala
Gly Lys Leu

Gly Leu Gln
470

Phe Phe Lys
485

Phe Phe Lys
500

Glu Gly Asp
Lys Glu Asp

Ser His Asn
550

Ala Asn Phe
565

Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly

580

Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu
600

Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe
615

Leu

Ala

Glu

Ala

375

Ala

Glu

Val

Thr

Pro

455

Cys

Ser

Asp

Thr

Gly

535

val

Lys

Met

His

360

Ala

Ala

Leu

Asn

Tyr

440

val

Phe

Ala

Asp

Leu

520

Asn

Tyr

Ile

Glu

Ala

345

Arg

Thr

Ala

Phe

Gly

425

cly

Pro

Ala

Met

Gly

505

Val

Ile

Ile

Arg

Ala

330

Leu

Ala

Leu

Glu

Thr

410

His

Lys

Trp

Arg

Pro

490

Asn

Asn

Leu

Thr

His
570

585

Leu

Pro

Ile

Ile

Ala

395

Gly

Lys

Leu

Pro

Tyr

475

Glu

Tyr

Arg

Gly

Ala

555

Asn

Axrg

Asp

Leu

1ys

380

Leu

Vval

Phe

Thr

Thr

460

Pro

Gly

Lys

Ile

His

540

Asp

Ile

Leu

Trp

Ala

365

Glu

Lys

val

Ser

Leu

445

Leu

Asp

Tyr

Thr

Glu

525

Lys

Lys

Glu

Ser

Arg

val

335

350

Ala

His

Pro

Vval

Ala

Leu

Ile

Ser

Ile

415

430

Lys

val

His

val

Arg

Ser

Leu

Thr

Met

Gln

495

510

Leu

Leu

Gln

Asp

605

620

Ala

Lys

Glu

Lys

575

590

Ala

Thr

arg

Glu

Thr

400

Leu

Gly

Ile

Thr

Lys

480

Glu

Glu

Gly

Tyr

Asn
560

Gly Gly

Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys
635

630

56
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atggtgagca
ctgaagatgg
aagccctacyg
ttctcctacg
cccgacgaca
accatgacct
gactccttea
atgcagaaga
gtgctgaagg
gacttcaaga
gaccacegea
agcgcegtgg
acaagtttgt
agacgectgt
gaagcgggea
aattcactge
ggcggcggga
ccgctaaaaa
tacgcecattg

gaaaagattc

gcggacgtte
accatgegeg
tatctggtge
atttttgeeg
cacaccacca
cccggtgage
ccagcetttet
ctgttcaccg
ttecagegtgt
atctgecacca
ggcctgeagt
geecatgeceg
aagacccgcg
ggcatcgact
agccacaacg
atccgccaca
cccatcggeg
ctgagcaaag
gccgggatca
<210> 18

<211> 2238
<212> DNA

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tccccaacta
tcgaggacaa
tctacgagat
agaccaccgg
gcgacgtcaa
ccatctacag
tcgagatect
cccgcaacte
acaaaaaagc
cagacgaggt
tgaagttgee
gegaggeget
cgtttattcg
cactgatggce
aagccagecac

agctttgett

gttttcatct
gtttettega
caccggtttt
gtgatgctga
tgaaacgatt
ataatgagca
tgtacaaagt
ggétggtgcc
ccggcgaggy
ccggcaaget
gettegeceg
aaggctacgt
ccgaggtgaa
tcaaggagga
tctatatcac
acatcgagga
acggccecegt
accccaacga

ctcteoggeat

<213> Synthetic

<400> 18

gaccacaatg
gaatggceac

caccatcaac

‘caccgegttc

cttcaagecag
gggcatcgtg
acacctcaag
ctgggacgcce
gcacaagctg
ggccaagaag
gaaccacgac
caccgacggce
aggctececgaa
tgecegatcgt
cgetgagege
ggcaaaactyg
ctggcgtcat
cgatgatecy
cgcatggeat

tgaagcaacg

ggcgattgce
tgtoctgeaa
ttcacaactg
cggggcgegt
cgatgaagat
ttcgagggag
ggtgecttaag
catcctggte
cgagggcgat
gcecgtgeee
ctaccecgac
ccaggagege
gttcgaggge
cggcaacatc
cgcegacaag
cggcggegty
gctgetgeee
gaagcgcgat

ggacgagctg

ggegtaatcea
gcecttegtga
ctggaggtga
gectacggea
tecctteceeg

aaggtgaagt

agcccgacat
tcgagggega
aggagggage
acagggectt
agggctactc

ccgacatete

gYCe act
tccaccgaga
ctgctggagy
gcggtgaage
aaggactaca
atggacgagc
ttegeecttyg
gtgcgggcge
caactggega
gtgagtgaag
gacacatggt
gattacagtt
geggeaatge

ctaagtgaag

gaagcctcac
tecteagtga
accgaacaac
aaagcaatga
caggetegece
aaaaacgcac
agatctacca
gagctggacg
gecacctacy
tggcccacce
cacatgaagce
accatcttet
gacaccctgg
ctggggcaca
cagaagaacqg
cagetegeeyg
gacaaccact
cacatggtcc

tacaagtaa

tecceeccaa
ggatgtacgt
gcggeggeca
tgceccgacta
acaaggtgac
tgtacaagag
gtaccatgat
tgattgatga
tgcaactcgg
gegtgetget
cggagcaaaa
tegatattet
gegecacace

acccggatat

ataacatecgt
agcatagceg
atcaggctgt
tggcgcacct
acgcacggat
ttaagaaggg
tggtgagcaa
gcgacgtaaa
gcaagctgac
tegtgaccac
agcacgactt
tcaaggacga
tgaaccgcat
agctggagta
gecatcaagge
accactacca
acctgageta

tgctggagtt

gaagatcaag
gggcgaggge
ceceetgece
caccaagtac
ttgggagcge
catggaggag
cggeccegtg
gcgegacgge
ccaccgegtt
tcactttgtg
‘cgtttacgag
atctggtace
tgttttacce
aaaaaacctg
cgtatcacgt
cagtcgacge
catcgtecag
ggaagcccge
tggegacaaa

cgectcacaa

gctgectgeaa
tecageggatyg
cattgacgee
tagttttgtt
taceccgectg
cgaattegac
gggcgaggag
cggccacaag
cctgaagety
cctgggetac
cttecaagtee
cggcaactac
cgagctgaag
caactacaac
caacttcaag
gcagaacacc
ccagtecgee

cgtgaccgee

57

60
120
180
240
300
360
420
480
540
600
660
720
780

840

960
1020
1080
1140

1200

1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2280

2319
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atggtgageca
ctgaagatgg
aagccctacg
ttctectacg
cccgacgaca
accatgacct
gactecttca
atgcagaaga

gtgctgaagg

gacttcaaga
gaccaccgca
agegeegtgg
acaagtttgt
catgaatctg
gaccacctcece
cgcgaggege
cegeggtetyg
ctgecagttgg
gaaggctggg
ttgctggaaa
gaatteccacg
gcectecgtt
cgagecacct
ggcgaatcea
accgetgeeg
gtgcttaaga
atcctggtcg
gagggcgatg
ccegtgecet
taccecgace
caggagegea
ttcgagggeg
ggcaacatcc
gccgacaagc
ggeggegtge
ctgctgeccyg
aagcgcegatce
gacgagctgt
<210> 19

<211> 2274
<212> DNA

agggegagga
agggcaacgt
acggcaccaa
acattctgac
teccccaacta
tegaggacaa
tctacgagat
agaccaccgg

gcgacgtcaa

ccatctacag
tcgagatcct
ccagcaacte
acaaaaaagc
tcatggattyg
ccagcgaacyg
ttegtgtget
gcaccatcat
tcaccaacca
ctgecectgea
agatggacga
ttgttatctc
tgtccgtgge
cggegegtet
cagtggeege
ccgaggecct
gatctaccat
agctggacgg
ccacctacgg
ggcccacect
acatgaagca
ccatettett
acaccctggt
tggggcacaa
agaagaacgg
agctc@ccga
acaaccacta
acatggtcct

acaagtaa

<213> Synthetic

<400> 19

gaccacaatg
gaatggccac
caccatcaac
caccgegtte
cttcaagcag
gggcategtg
acacctcaag
ctgggacgcc

gcacaagetg

ggccaagaag
gaaccacgac
caccgacgge
aggctccgaa
ggtcaccgag
ggcgctctee
cgaageccte
cactgetgee
ggtcggecac
ttecagegee
ccectageta
caaaggcgcg
agatcacacc
gcagaaagaa
aaccttgate
taagaagggce
ggtgagcaag
cgacgtaaac
caagctgacc
cgtgaccacc
gcacgactte
caaggacgac
gaaccgeatc
gctggagtac
catcaaggcce
ccactaccag
cctgagectac

gcetggagttc

ggcgtaatca
gccttegtga
ctggaggtga
gcctacggea
teccttceceg
aaggtgaagt
ggcgagaact
tcocaccgaga

ctgctggagg

gcggtgaage
aaggactaca
atggacgage
ttegeecttg
gagctecgea
gaaacccteg
ggcaccattt
cctggecagyg
cacgatattt
gaacgtggeg
cegetogagg
gaaaacccéc
gttgccaggg
caccgcegcaa
aaagaacaca
gaattcgacc
ggcgaggage
ggccacaagt
ctgaagctga
ctgggctacyg
ttcaagteeg
ggcaactaca
gagctgaagy
aactacaaca
aacttcaaga
cagaacaccc
cagtcegecec

gtgaccgecyg

agcccgacat
tcgagggega
aggagggage
acagggectt
agggctactc
ccgacatctce
tececceoccecaa
ggatgtacgt

gcggcecggeca

tgeocegacta
acaaggtgac
tgtacaagag
gtaccatgag
gcggtegect
gagtttcceyg
ccaccgecac
cgetttecct
atgaaacccgyg
actgggacgt
attttttgeg
tgatcagtac
ccegggeget
tceetegeage
tegaaggeta
cagctttett
tgttcaccegy
tcagegtgte
tctgcaccac
gcctgeagtg
ccatgccega
agacccgege
gcatcgactt
gccacaacgt
tccgecacaa
ccatcggcga
tgagcaaaga

ccgggatecac

gaagatcaag
gggcgagggce
ccccctgace
caccaagtac
ttgggagege
catggaggag
cggceeegty
gcgogacgge

ccaccgegtt

tcactttgtyg
cgtttacgag
atctggtacc
tgtgaaagca
aaaaatcggt
aagctccctg
cggeteegge
ctcegtgacyg
ccaactcett
ggcagaagcyg
tttegacgee
gctcaﬁggaa
cceegattgg
acttegegea
ctacgaagaa
gtacaaagtg
ggtggtgece
cggcgaggge
cggcaagcetg
cttcgeccge
aggctacgtc
cgaggtgaag
caaggaggac
ctatatcacc
catcgaggac
cggcececegtg
ccccaacgag

tcteggeatyg

58

60
120
180
240
300
360
420
480

540

600
660
720
780
840
900

960

1020

1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220

2238
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atggtgagca
ctgaagatgg
aagccctacg
ttctectacg
cccgacgaca
accatgacct
gacteccttea
atgcagaaga
gtgctgaagg
gacttcaaga
gaccaccgca
agegeegtgg
atgattgttt
gatgaaaaaa
cteggegtat
ctgetecagte
caaaacateg
attctggaag
acacctggeg
gatatcgect
atcgtgctge
agcegtcage
getgtcattg
caccttagtt
cggattacce
aagggcgaat
agcaagggcyg
gtaaacggec
ctgaccctga

accaccetgg

gacttcttea
gacgacggca
cgcatcgage
gagtacaact
aaggccaact
taccagcaga
agctaccagt
gagttcgtga
<210> 20

<211> 2193
<212> DNA

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tcceccaacta
tecgaggacaa
tctacgagat
agaccaccgyg
gcgacgtcaa
ccatctacag
tcgagatecet
ccegeaacte
tacccagacyg
acctggaage
cacgtaattce
gacgeggegy
tcecageeget
ceegetacge
acaaagaaaa
cacaagcgga
tgcaaaccat
ggatgtatct
acgccatttt
ttgttecacac
gcetgecegy
tcgacccage
aggagetgtt
acaagttcag
agctgatctg

gctacggecet

agtcegecat
actacaagac
tgaagggcat
acaacagcca
tcaagatccg
acacccccat
cecgecctgag

ccgccgecgy

<213> Synthetic

<400> 20

gaccacaatg
gaatggccac
caccatcaac
caccgegtte
cttcaagcayg
gggeatcgtg
acacctcaag
ctgggacgcce
gcacaagcetg
ggccaagaag
gaaccacgac
caccgacggce
cetgteagac
gggcatgaag
actgcgegag
cgggacgttt
‘aaaaacactg
cattgaagece
gattcagctt
cgttegtttt
gcgcggttte
ggtgccaccg
tgeceggtgat
caccatgaaa
tgagcataat
tttcttgtac
caccggggty
cgtgtccgge
caccaccggce

gcagtgette

gccecgaagge
ccgecgoegag
cgacttcaag
caacgtctat
ccacaacatc
cggcgacgge
caaagaccce

gatcactete

ggcgtaatca
gecttegtga
ctggaggtga
gcctacggea
toctteecceg
aaggtgaagt
ggcgagaact
tccaccgaga
ctgetggagg
geggtgaage
aaggactaca
atggacgage
gaggttgeeg
ttgecegetyg
gcgetggeaa
attegetgge
atggccgatg
agcaccgeat
tgctttgaag
catctggega
ttcgatgtce
gttttttcac
gctgacgggg
cgattcgatg
gagcattcga
aaagtggtgc
gtgcccatcce
gagggcgagg
aagctgcceg

geecegetace

tacgtcecagg
gtgaagttcg
gaggacggca
atcaccgecyg
gaggacggcyg
ceegtgetge
aacgagaagc

ggcatggacg

agcccgacat
tcgagggega
aggagggage
acagggcctt
agggctactce
ccgacatctc
tceeccecccaa
ggatgtacgt
gcggeggeca
tgececegacta
acaaggtgac
tgtacaagag
atcgtgtgcg
agcgccaact
aactggtgag
gtecatgacace
atccggatta
ggcatgegge
caacgctaag
ttgccgaage
tgcaatccte
aactgaccga
cgcgtaaage
aagatcaggc
gggagaaaaa
ttaagagatc
tggtcgaget
gcegatgecac
tgeoctggee

cegaccacat

agcgeaccat
agggcgacac
acatcctggg
acaagcagaa
gcgtgeaget
tgcecgacaa
gcgatcacat

agctgtacaa

gaagatcaag
gggcgaggge
coccetgeca
caccaagtac
ttgggagege
catggaggag
cggcececgtg
gagegacgge
ccaccgegtt
tcactttgtyg
cgtttacgag
atctggtace
ggcgetgatt
ggcgatgcaa
tgaaggcgtg
atggtcggag
cagtttcegat
aatgegegece
tgaagacccg
ctcacataac
agtgaagcat
acaacatcag
aatgatggeg
tecgeccacgca
cgcacttaag
taccatggtg
ggacggcgac
ctacggcaag
caccctegtg

gaagcagcac

cttettcaag
cctggtgaac
gcacaagctg
gaacggcate
cgccgaceac
ccactacctg
ggtcctgetg

gtaa

59

60
120
180
240
300
360
420
480
540
600
660
720
780
840
300
960

1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740

1800

1860

1920

1980

2040

2100

2160

2220

2274
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atggtgagca
ctgaagatgg
aagcecctacg
ttctectacg
cccgacgaca
accatgacct
gactccttea
atgcagaaga
gtgctgaagg
gacttcaaga
gaccaccegea
agcegeegtgg
atgagtgtga
cgcctaaaaa
tcoecgaaget
gecaccgget
tcectectecyg
accagcecaac
gacgtggcag

ttgcgtttcg

agtacgctca
gaegetacceg
gcagecactte
ggctactacg
ttcttgtaca
accggggtgy
gtgtceggeg
accaccggca
cagtgectteg
cccgaagget
cgcgecgagy
gacttcaagg
aacgtctata
cacaacatcg
ggegacggece
aaagacccca
atcactcteg
<210> 21

<211> 2274
<212> DNA

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tcecccaacta
tegaggacaa
tctacgagat
agaccacogg
gcgacgtcaa
ccatctacag
tegagatect
cccegeaacte
aagcacatga
tcggtgacca
cectgegega
coggeccgeyg
tgacgctgea
tecttgaagy
aagcgttget

acgccgaatt

tggaagccct
attggegage
gcgeaggega
aagaaaccgc
aagtggtget
tgcccaécct
agggcgaggyg
agctgeccegt
cecgetacce
acgtecagga
tgaagttega
aggacggcaa
tcaccgeccga
aggacggegy
ccgtgetget
acgagaagcg

gcatggacga

<213> Synthetic

<400> 21

gaccacaatg
gaatggccac
caccatcaac
cacegegtte
cttcaagcag
gggcatcgtg
acacctcaag
ctgggacgec
gcacaagetg
ggccaagaag

gaaccacgac

‘caccgacgge

atctgtcatg
cctecececage
ggegettogt
gtetggecace
gttggtcacc
ctgggetgee
ggaaaagatg

ccacgttgtt

ccgtttgtec
caccteggeg
atccacagtg
tgcecgeegag
taagagatct
ggtcgagetg
cgatgccace
gececetggecee
cgaccacatg
gcgcaccate
gggcgacace
catcctgggy
caagcagaag
egtgeagete
gccecgacaac
cgatcacatg

gctgtacaag

ggcgtaatca
gccttegtga
ctggaggtga
gcctacggea
tecttecceg
aaggtgaagt
ggcgagaact
tcacaccgaga
ctgctggagy
geggtgaage
aaggactaca
atggacgagc
gattgggtca
gaacgggege
gtgcetcgaag
atcatcactg
aaccaggtcg
ctgeatteca
gacgacccct

atctccaaag

gtggcagatc
cgtetgeaga
gecgcaaccet
gcccttaaga
accatggtga
gacggegacqg
tacggcaagce
accctegtga
aagcagcacqg
ttcttcaagg
ctggtgaace
cacaagctgg
aacggcatca
gecgaccact
cactacctga
gtcctgetgyg

taa

agcccgacat
tegagggega
aggagggage
acagggcctt
agggctactce
ccgacatcte
tcecececccaa
ggatgtacgt
geggeggeca
tgcccgacta
acaaggtgac
tgtacaagag
ccgaggagcet
tcteccgaaac
cceteoggeac
ctgeeecctgyg
gccaccacga
gcgocgaacy
cgctaceget

gcgcggaaaa

acaccgttge
aagaacaccg
tgatcaaaga
agggcgaatt
gcaagggcga
taaacggcca
tgaccctgaa
ccaccctggg
acttctteaa
acgacggcaa
gcategaget
agtacaacta
aggccaactt
accagcagaa
gctaccagtc

agttcgtgac

gaagatcaag
gggcgaggge
ccecectgece
caccaagtac
ttgggagege
catggaggag
cggececgtyg
gcgegacgge
ccaccgegtt
tcactttgtg
cgtttacgag
atctggtace
ccgecageggt
ccteggagtt
catttecace
ccaggegett
tatttatgaa
tggcgactgg
cgaggatttt

ccetctgate

cagggcccegyg
cgcaatccte
acacatcgaa
cgacccagcet
ggagctgttc
caagttcage
gctgatctge
ctacggectg
gtccgecatg
ctacaagacc
gaagggcate
caacagccac
caagatccge
cacccecate
cgcecctgage

cgeegeeggy
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atggtgagca agggcgagga
ctgaagatgg agggcaacgt
aagccctacg acggcaccaa
ttctectacg acattetgac
cccgacgaca tccccaacta
accatgacct tcgaggacaa
gactccttca tctacgagat
atgcagaaga agaccaccgyg
gtgctgaagg gcgacgtcaa
gacttcaaga ccatctacag

gaccaccgca tcgagatcct

agcgeegtgg cccgeaactce
acaagtttgt acaaaaaagc
agacgcctgt cagacgaggt
gaagcgggca tgaagttgeo
aattcactgc gcgaggeget
ggcggeggga cgtttattceg
ccgetaaaaa cactgatgge
tacgccattg aagccagcac
gaaaagatte agctttgett
geggacgtte gtttteatcet
accatgegeg gtttettega
tatctggtgc caccggtttt
atttttgceg gtgatgetga
cacaccacca tgaaacgatt
cceggtgage ataatgagea
agcaagggeg aggagcetgtt
gtaaacggee acaagttcag
ctgaccctga agectgatctg
accaccctgg gctacggect
gacttcttca.agtccgccat
gacgacggca actacaagac
cgecatcgage tgaagggceat
gagtacaact acaacagcca
aaggccaact tcaagatccey
taccagcaga acaccccceat
agctaccagt ccgecctgag
gagttcgtga ccgeccgecgg
<210> 22

<211> 2193

<212> DNA
<213> Synthetic

<400> 22

gaccacaatg
gaatggccac
caccatcaac
caccgegtte
cttcaagcag

gggcategty

acacctcaag
ctgggacgec
géacaagctg
ggccaagaag

gaaccacgac

caccgacggc
aggctccgaa
tgccgategt
cgctgagege
ggcaaaactg
ctggcgtcat
cgatgatccg
cgcatggeat
tgaagcaacg
ggcgattgece
tgtcctgeaa
ttcacaactg
cggggegegt
cgatgaagat
ttcgagggag
cacegaggtyg
cgtgtecgge
caccaccggc
gcagtgctte
gcccgaagge
cegegecgag
cgacttcaag
caacgtctat
ccacaacatce
cggcgacgge
caaagacccc

gatcactcte

ggcgtaatea
gcecttegtga
ctggaggtga
gcctacggea
tcetteeceg
aaggtgaagt
ggcgagaact
tccaccgaga
ctgctggagg
goggtgaage

aaggactaca

atggacgagce
ttegecettg
gtgegggege
caactggega
gtgagtgaag
gacacatggt
gattacagtt
geggeaatge
ctaagtgaag
gaagcctcac
tcctcagtga
accgaacaac
aaagcaatga
caggctegece
aaaaacgcac
gtgeecatcee
gagggegagyg
aagctgecceg
gecegetace
tacgtccagy
gtgaagtteg
gaggacggea
atcaccgeeg
gaggacggceg
ccegtgetge
aacgagaagc

ggcatggacg

agcccgacat gaagatcaag

tcgagggcyga gggegaggge

aggagggagce ccccetgoce

acagggcctt caccaagtac

agggctacte ttgggagcge

cegacatete catggaggag

tcecceacaa cggeccagtyg

ggatgtacgt gcgcgacgge

gcggeggeca ccaccgegtt

tgecegacta tcactttgty

acaaggtgac cgtttacgag

tgtacaagag
gtaccatgat
tgattgatga
tgcaactegg
gcgtgctget
cggagcaaaa
tecgatattet
gcgccacace
acccggatat
ataacatcgt
agcatageceg
atcaggctgt
tggcgeacct
acgcacggat
ttaagagatce
tggtcgaget
gcgatgecace
tgeeetggee
ccgaccacat
agecgcaccat
agggcgacac
acatcctagg
acaagcagaa
gegtgeaget
tgccogacaa
gegatcacat

agctgtacaa

atctggtacce
tgttttacce
aaaaaacctg
cgtatcacgt
cagtcgacge
catcgtecag
ggaagcccge
tggcgacaaa
cgcctcacaa
gctgotgeaa
tcagcggatyg
cattgacgece
tagttttgtt
tacccgectg
taccatggtg
ggacggcgac
ctacggcaag
caccctegtg
gaagcagcac
cttettcaag
cctggtgaac
gcacaagctg
gaacggcatce
cgeegaceac
ccactacctg
ggtcectgetyg

gtaa

atggtgagca agggcgagga gaccacaatg ggcgtaatca agcccgacat gaagatcaag
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ctgaagatgg
aagccctacg
tteotectacg
cccgacgaca
accatgacct
gactccttca
atgcagaaga
gtgctgaagg
gacttcaaga
gaccaccgca
agcgecgtgg
acaagtttgt
catgaatctg
gaccacctcc
cgcgaggege
ccgeggtetg
ctgecagttgg
gaaggetggg
ttgctggaaa
gaattccacg
gcectoegtt
cgagccacct
ggegaatcca
accgetgeceyg
accgggatgg
gtgteccggeg
accaccggea
cagtgctteg
ccegaagget
cgegecgagg
gacttcaagy

aacgtctata

cacaacatcg
ggcgacggec
aaagacccca

atcactcteg

<210> 23

<211> 2229

<212> DNA

agggcaacgt gaatggccac goecttegtga tcgagggcga gggcgagyge 120
acggcaccaa caccatcaac ctggaggtga aggagggagc ccccctgecce 180
acattotgac caccegegtte gectacggea acagggectt caccaagtac 240
tccccaacta cttecaageag tectteccoeg agggctacte ttgggagege 300
tcgaggacaa gggcategtg aaggtgaagt cegacatcte catggaggag 360
tctacgagat acacctcaag ggegagaact tccccocccaa cggcecceegtg 420
agaccaccgg ctgggacgec tccaccgaga ggatgtacgt gcgcgacgge 480
gcgacgtcaa gcacaagctg ctgcetggagg geggeggeca ccaccgegtt 540
ccatctacag ggccaagaag geggtgaage tgoccgacta tcactttgtg 600
tcgagatcct gaaccacgac aaggactaca acaaggtgac cgtttacgag 660
cccgcaacte caccgacgge atggacgagc tgtacaagag atctggtacc 720
acaaaaaagc aggctccgaa ttegceccttg gtaccatgag tgtgaaagea 780
tcatggattg ggtcaccgag gagctcecgea geggtegect aaaaatcggt 840
ccagcgaacg ggcgctctec gaaacccteg gagtttccecg aagctceoctg 200
ttcgtgtget cgaagccctc ggcaccattt ccaccgecac cggetccgge 960
gcaccatcat cactgctgece cctggecagg cgctttcect ctcocegtgacg 1020
tcaccaacca ggtcggccac cacgatattt atgaaacccg ccaactcoctt 1080
ctgccectgea ttocagegee gaacgtggeg actgggacgt ggeagaageg 1140
agatggacga cccctcegeta ccgectocgagg attttttgeg tttogacgece 1200
ttgttatctc caaaggcgcecg gaaaaccctc tgatcagtac gcocteatggaa 1260
tgtecgtgge agatcacacce gttgccaggg cccgggegcet ccccgattgg 1320
cggegegtct gecagaaagaa caccgoegeaa tectegeage acttogegea 1380
cagtggccge aaccttgatc aaagaacaca tcgaaggcta ctacgaagaa 1440
ccgaggeccet taagagatct accatggtga gcaagggcega ggagectgttc 1500
tgcccatect ggtcgagctg gacggegacg taaacggecca caagttcage 1560
agggegaggg cgatgeocace tacggcaage tgaccctgaa getgatcetge 1620
agctgececegt gecetggece accctegtga ccaceectggyg ctacggectg 1680
cccgetacce cgaccacatg aagcagcacg acttettcaa gtoegecatg 1740
acgtccagga gcgcaccatc ttcttcaagg acgacggcaa ctacaagacce 1800
tgaagttega gggagacace ctggtgaace geatcegaget gaagggeatce 1860
aggacggcaa catcctgggyg cacaagetgg agtacaacta caacagcocac 1920
tecacegecga caageagaag aacggcatca aggeccaactt caagatccge 1980
aggacggegg cgtgcagete gecgaccact accagcagaa cacecccate 2040
cegtgetget geccgacaac cactacctga getaccagte cgecctgage 2100
acgagaagcg cgatcacatg gtcctgetgg agttcogtgac cgecgecggg 2160
gcatggacga gctgtacaag taa 2193

<213> Synthetic

<400> 23
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atggtgagca
ctgaagatgg
aagccctacg
ttectectacg
cccgacgaca
accatgacct
gactccttea
atgcagaaga
gtgctgaagg
gacttcaaga
gaccaccgca
agcgeegtgg
atgattgttt
gatgaadaaa
ctcggegtat
ctgctcagte
caaaacatcg
attctggaag
acacctggey
gatategecet
ategtgetge
agccgtcage
gctgtcattg

caccttagtt

cggattaccce
agatctacca
gagctggacg
gccacctacg
tggcccacce
cacatgaagc
accatcttct
gacaccaetgg
ctggggcaca
cagaagaacg
cagctcgecg
gacaaccact
cacatggtcc
tacaagtaa
<210>24

<211> 2148
<212> DNA

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tccccaacta
tcgaggacaa
tctacgagAt
agaccaccgg
gcgacgtcaa
ccatctacag
tegagatcect
ccegeaacte
tacccagacyg
acctggaagce
cacgtaattc
gacgeggegg
teccageoget
cccgetacge
acaaagaaaa
cacaagegga
tgcaaaccat
ggatgtatct
acgccatttt

ttgttcacac

gecctgeceegy
tggtgagcaa
gcgacgtaaa
gcaagctgac
tcgtgaccac
agcacgactt
tcaaggacga
tgaaccgeat
agetggagta
gcatcaagge
accactacca
acctgageta

tgctggagtt

<213> Synthetic

<400> 24

gaccacaatg
gaatggceac
caccatcaac
caccgegtte
cttcaagcag
gggcatcgtg
acacctcaag
ctgggacgcc
gcacaagctg
ggccaagaag
gaaccacgac
caccgacgygce
cctgtecagac
gggcatgaag
actgcegegag
cgggacgttt
aaaaacactg
cattgaagcc
gattcagett
cgttegtttt
gegeggttte
ggtgccacceg
tgceggtgat

caccatgaaa

tgagcataat
gggcgaggag
cggacacaag
cctgaagetg
cctgggectac
cttcaagtce
cggcaactac
cgagctgaag
caactacaac
caacttcaag
gcagaacacc
ccagteecgee

cgtgaccgcc

ggcgtaatca
gccttegtga
ctggaggtga
gcctacggea
tocttecceg
aaggtgaagt
ggcgagaact
tccaccgaga
ctgctggagg
gcggtgaage
aaggactaca
atggacgagc
gaggttgeeg
ttgccegetg
gcgctggeaa
attegetgge
atggccgatg
agcaccgcat
tgctttgaag
catctggcga
ttegatgtec
gttttttcac
gctgacgggg

cgattcgatg

gagcattcga
ctgttcaccg
ttecagegtgt
atctgcacca
ggcctgcagt
gccatgceceeg
aagacccgeg
ggcatcgact
agccacaacg
atecgecaca
cccatcggeg
ctgagcaaag

gccgggatca

agaccgacat
tcgagggega
aggagggage
acagggcctt
agggctacte
ccgacatcte
tcceccecaa
ggatgtacgt
gcggeggeca
tgecegacta
acaaggtgac
tgtacaagag
atcgtgtgeg
agcgccaact
aactggtgag
gtcatgacac
atcecggatta
ggcatgegge
caacgctaag
ttgccgaage
tgcaatccte
aactgaccga
cgcgtaaage

aagatcaggc

gggagaaaaa
gggtggtgee
cecggegagyy
ccggcaagct
gcttcgeeceg
aaggctacgt
ccgaggtgaa
tcaaggagga
tetatatcac
acatecgagga
acggccccgt
accccaacga

ctcteggeat

gaagatcaag
gggcgagggce
cceccetgece
caccaagtac
ttgggagege
catggaggag
cggccecgtg
gcgcgacgge
ccaccgegtt
tcactttgtg
cgtttacgag
atctggtacc
ggcgctgatt
ggcgatgcaa
tgaaggegtg
atggtcggag
cagtttegat
aatgegegee
tgaagacccg
ctcacataac
agtgaagcat
acaacatcag
aatgatggcg

tcgeccacgea

cgcacttaag
catcctggtc
cgagggegat
gecccgtgece
ctacccoegac
ccaggagcegc
gttcgaggge
cggcaacatce
cgocgacaag
cggeggegty
gctgectgeee
gaagcgcgat

ggacgagctg

63

60
120
180
240
300
360
420
480
540
600
660

720

840

9200

960
1020
1080
1140
1200
1260
1320
1380

1440

1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220

2229

DKJ/EP 2836503 T3



atggtgagca agggcgagga
ctgaagatgg agggcaacgt
aagccctacg acggcaccaa
ttctectacg acattctgac
ccegacgaca tccccaacta
accatgacct tcgaggacaa
gactccttca tctacgagat
atgcagaaga agaccaccgg
gtgctgaagg gcgacgtcaa
gacttcaaga ccatctacag
gaccaccgea tcgagatect
agcgeegtgg cccgcaactce
atgagtgtga aagcacatga

cgectaaaaa tcggtgacca

teccecgaaget
gecacegget
tecctetecg
acccgccaac
gacgtggcag
ttgegttteg
agtacgctca
gegeteecey
gcagcactte
ggctactacg
ggcgaggage
ggccacaagt
ctgaagctga
ctgggctacg
ttecaagteceg
ggcaactaca
gagctgaagg
aactacaaca
aacttcaaga
cagaacaccce
cagtecgece
gtgaccgeeg
<210> 25

<211> 2082
<212> DNA

ccctgegega
coggoccgeg
tgacgetgea
tcettgaagg
aagegttget
acgecgaatt
tggaageccct
attggcgage
gcgeaggega
aagaaaccgc
tgttcaccgg
tcagegtgte
tctgecaccac
gcctgecagtg
ccatgecega
agacccgcge
geategactt
gccacaacgt
tecegecacaa
ccatcggega
tgagcaaaga

ccgggatcac

<213> Synthetic

<400> 25

atggtgagca agggcgagga
ctgaagatgg agggcaacgt
aagccctacg aéggcaccaa
ttctcctacg acattcectgac
cccgacgaca tccccaacta

accatgacct tcgaggacaa

gaccacaatg
gaatggccac
caccatcaac
caccgegtte
cttcaagcag
gggcatcgty
acacctcaag
ctgggacgece
gcacaagetg
ggccaagaag
gaaccacgac
caccgacggc
atctgtcatg

ccteoeccage

gaccacaatg
gaatggeccac
caccatcaac
caccgegtte
ctteaageag

gggcatcgtg

ggcgecttegt
gtctggeace
gttggtecace
ctgggetgece
ggaaaagatg
ccacgttgtt
cegtttgtee
caccteggeyg
atccacagtg
tgccgecgag
ggtggtgeec
cggcegaggge
cggcaagctg
cttegeccge
aggctacgtc
cgaggtgaag
caaggaggac
ctatatcacce
catcgaggac
cggcececgtyg
ccccaacgag

tctcoggeatyg

ggcgtaatca
gcettegtga
ctggaggtga
gactacggea
tccttececeg
aaggtgaagt
ggcgagaact
tccaccgaga
ctgetggagy
gcggtgaage
aaggactaca
atggacgagc
gattgggtca

gaacgggcgce

ggegtaatca
gccttegtga
ctggaggtga
gectacggea
tectteeceg

aaggtgaagt

agcccgacat
tcgagggega
aggagggage
acagggcctt
agggctactc
ccgacatcte
tecececccaa
ggatgtacgt
geggeggeca
tgcecgacta
acaaggtgac
tgtacaagag

ccgaggagct

gaagatcaag
gggcgaggge
cccectgece
caccaagtac
ttgggagcge
catggaggag
cggecacgty
gecgegacgge
ccaccgegtt
tcactttgtg
cgtttacgag
atctggtace
ccgecageggt

tctcegaaac ccteggagtt

gtgetegaag ceccteggeace catttecacce

atcatcactg
aaccaggteg
ctgcattcca
gacgacccct
atcteccaaag
gtggcagate
cgtetgeaga
gccgcaacct
gcccttaaga
atcctggtcg
gagggcgaty
ceegtgecct
taccecgace
caggagcgca
ttegagggey
ggcaacatce
gccgacaage
ggeggegtge
ctgctgeecyg
aagcgcgatc

gacgagctgt

agcccgacat
tegagggega
aggagggagce
acagggectt
agggctactc

ccgacatcte

ctgcecctgg
gcecaccacga
gcgecgaacg
cgetaceget
gegeggaaaa
acaccgttgc
aagaacaccg
tgatcaaaga
gatctaccat
agctggacgg
ccacctécgg
ggcccaccect
acatgaagca
ccatcttctt
acaccetggt
tggggcacaa
agaagaacgg
agctcgecga
acaaccacta
acatggtcct

acaagtaa

ccaggegcett
tatttatgaa
tggcgactgg
cgaggatttt
ccctetgate
cagggcccgg
cgcaatcctce
acacatcgaa
ggtgagcaag
cgacgtaaac
caagctgace
cgtgaccacc
gcacgacttc
caaggacgac
gaacageate
getggagtac
catcaaggecc
ccactaccag
cctgagetac

gctggagttc

gaagatcaag
gggcgagggce
cceectgeee
caccaagtac
ttgggagege

catggaggag
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gactccttca
atgcagaaga
gtgctgaagg
gacttcaagé
gaccaccgca
agcgeegtgg
acaagtttgt
cagccgctaa
cgctacgeca
aaagaaaaga
caagcggacg
caaaccatgc
atgtatctgg
gcecatttttyg
gttcacacca
ctgeeceggtg
gacccagett
gagctgttca
aagttcageg
ctgatctgeca
tacggectge
tccgecatge
tacaagaccce
aagggcatecg
aacagccaca
aagatecegee
acccccatcg
gcoctgagea
geccgecggga
<210> 26

<211> 2010
<212> DNA

tctacgagat
agaccaccgg
gcgacgtcaa
ccatctacag
tecgagatcct
cccgcaacte
acaaaaaagc
aaacactgat
ttgaagccag
ttcagectttg
ttegttttea
geggtttett
tgccaccggt
ceggtgatge
ccatgaaacqg
agcataatga
tcttgtacaa
ccggggtggt
tgtccggega
ccaccggcaa
agtgettege
ccgaaggcta
gcgeagaggt
acttcaagga
acgtctatat
acaacatcga
gcgacggccc
aagaccccaa

tcactctcgg

<213> Synthetic

<400> 26

acacctcaag
ctgggacgee
gcacaagcetg
ggccaagaag
gaaccacgac
caccgacgge
aggctccgaa
ggccgatgat
caccgcatgyg
ctttgaagca
tctggegatt
cgatgtcetg
tttttcacaa
tgacggggeg
attcgatgaa
gcattecgagg
agtggtgett
gccecatecetg
gggcgagggce
gctgeecgty
cegetaceee
cgtccaggag
gaagttcgag
ggacggcaac
cacegecgac
ggacggegge
cgtgetgetg
cgagaagcgc

catggacgag

ggcgagaact
teocacagaga
ctgetggagg
gcggtgaage
aaggactaca
atggacgage
ttegeeettyg
ccggattaca
catgeggeaa
acgctaagtg
gocgaagect
caatcctecag
ctgaccgaac
cgtaaagcaa
gatcaggctc
gagaaaaacg
aagagatcta
gtcgagetgyg
gatgccacct
ccectggecca
gaccacétga
cgcaccatct
ggcgacacee
atcctgggge
aagcagaaga
gtgcagcteg
cccgacaace
gatcacatgg

ctgtacaagt

tcacecccaa
ggatgtacgt
gcggcggeca
tgcccgacta
acaaggtgac
tgtacaagag
gtaccgagea
gtttegatat
tgegegecac
aagacccgga
cacataacat
tgaagcatag
aacatcaggc
tgatggegeca
gccacgcacg
cacttaagaa
ccatggtgag
acggcgacgt
acggcaagct
cectegtgac
agcagcacga
tcttecaagga
tggtgaacey
acaagctgga
acggecatcaa
ccgaccacta
actacctgag
teectgetgga

aa

cggeccegtg
gcgecgacgge
ccaccgegtt
tcactttgtyg
cgtttacgag
atetggtace
aaacatcgte
tetggaagee
acctggegac
tategcctea
cgtgetgetg
ccgteagegg
tgtecattgac
ccttagtttt
gattacccge
gggcgaattc
caagggcgag
aaacggccac
gaccctgaag
caccctggge
cticttcaag
cgacggcaac
catecgagetyg
gtacaactac
ggccaactte
ccagcagaac
ctaccagtce

gttcgtgace
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atggtgagca
ctgaagatgg
aagccctacg
ttctectacyg
cecgacgaca
accatgacct
gactccttea
atgcagaaga
gtgctgaagg
gacttcaaga
gaccaccgca
agecgcegtgg
acaagtttgt
cteteegtga
cgccaactec
gtggcagaag
cgtttcgacg
acgcteatgg
ctccecgatt
gcacttcgeg
tactacgaag
ttgtacaaag
ggggtggtge
tecggegagg
accggcaage
tgcttegeee
gaaggctacg
gecgaggtga
ttcaaggagg

gtctatateca

aacatcgagg
gacggccceg
gaccccaacg
actcteggea
<210> 27

<211> 2037
<212> DNA

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tcceccaacta
tcgaggacaa
tctacgagat
agaccaccgyg
gcgacgtcaa
ccatctacég
tcgagatcct
ccecgecaacte
acaaaaaagc
cgetgeagtt
ttgaaggcetg
cgttgectgga
ccgaattceca
aagcocteeg
ggcgagccac
caggcgaatc
aaaccgctge
tggtgcttaa
ccatectggt
gcgagggega
tgcecegtgee
gctaceccga
tccaggageg
agttegagay
acggcaacat

ccgocgacaa

acggceggegt
tgctgetgee
agaagcgcga

tggacgagct

<213> Synthetic

<400> 27

gaccacaatg
gaatggccac
caccatcaac
caccgegtte
cttecaagcag
gggcatcgtg
acacctcaag
ctgggacgee
gcacaagctg
ggccaagaag
gaaccacgac
caccgacgge
aggctccgaa
ggtcaccaac
ggctgeectyg
aaagatggac
cgttgttatc
tttgtecgtg
ctecggecgegt
cacagtggcce
cgeecgaggec
gagatctacc
cgagctggac
tgccacctac
ctggcceccace
ccacatgaag
caccatcttc
cgacaccetg
cctggggeac

gcagaagaac

gcagctcgee
cgacaaccac
tcacatggtc

gtacaagtaa

ggcgtaatca
gccttegtga
ctggaggtga
gectacggea
teettecccg
aaggtgaagt
ggcgagaact
tocaccgaga
ctgctggagg
gaggtgaage
aaggactaca
atggacgagc
ttcgeecttg
caggteggec
cattccagcg
gaccoctoge
tccaaaggcg
gcagatcaca
ctgcagaaag
gcaaccttga
cttaagaagg
atggtgagca
ggcgacgtaa
ggcaagetga
ctegtgacca
cagcacgact
ttcaaggacg
gtgaaccgca
aagctggagt

ggcatcaagyg

gaccactacc
tacctgaget

ctgctggagt

agcccgacat
tcgagggcga
aggagggage
acagggectt
agggctacte
ccgacatcecte
teecceccaa
ggatgtacgt
geggeggeca
tgccegacta
acaaggtgac
tgtacaagag
gtaccggeca
accacgatat
ccgaacgtgg
taccgetega
cggaaaaccc
cegttgecag
aacaccgcgc
tcaaagaaca
gcgaattecga
agggcgagga
acggccacaa
ccctgaaget
ccctgggeta
tcttcaagte
acggcaacta
tcgagetgaa
acaactacaa

ccaacttcaa

agcagaacac
accagtcege

tcgtgaccge

gaagatcaag
gggcgagggc
cccectgece
caccaagtac
ttgggagcge
catggaggag
cggeceegty
gegegacgge
ccaccgegtt
tcactttgtg
cgtttacgag
atctggtace
ggegetttee
ttatgaaace
cgactgggac
ggattttttg
tctgatcagt
ggeccgggeg
aatcctcegea
catcgaaggce
ccecagettte
gctgttcace
gttecagegtyg
gatctgceace
cggectgeag
cgeecatgecee
caagaccogce
gggcatcgac
cagccacaac

gatcegecac

ccccatcgge
cctgagcaaa

cgeccgggate
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atggtgagca
ctgaagatgg
aagcectacyg
ttetectacg
cccgacgaca
accatgacct
gactccttea
atgcagaaga
gtgetgaagg
gacttcaaga
gaccaccgca
agcgccgtgg
gagcaaaaca
gatattctgy
geccacacctyg
ccggatateg
aacatcgtge
catagccgte
caggctgtca
gegecacctta
gcacggatta
aagaagggceyg
gtgageaagg

gacgtaaacg

aagctgacce
gtgaccacecc
cacgacttet
aaggacgacg
aaccgcateg
ctggagtaca
atcaaggcca
cactaccagc
ctgagctacce
ctggagtteg
<210> 28

<211> 1965
<212> DNA

agggegagga
agggcaacgt
acggcaccaa
acattctgac
tcceccaacta
tegaggacaa
tctacgagat
agaccaccgyg
gegacgtcaa
ccatctacag
tcgagatcet
ccecgeaacte
tegtecagee
aagcecegeta
gcgacaaaga
actcacaaga
tgctgcaaac
agcggatgta
ttgacgeccat
gttttgttca
ccegectgee
aattegacce
gegaggaget

gccacaagtt

tgaagcetgat
tgggctacgyg
tcaagtccge
gcaactacaa
agctgaaggg
actacaacag
acttcaagat
agaacaccce
agtcegeect

tgaccgeage

<213> Synthetic

<400> 28

gaccacaatg
gaatggecac
caccatcaac
caccgegtte
cttcaagcag
gggcategtg
acacctcaag
ctgggacgec
gcacaagetg
ggccaagaag
gaaccacgac
caccgacggce

gctaaaaaca

cgecattgaa-

aaagattcag
ggacgttegt
catgcgeggt
tctggtgeca
ttttgecggt
caccaccatg
cggtgageat
agettteottg
gtteaceggy

cagegtgtec

ctgeaccace
cctgecagtge
catgcccgaa
gacccgegec
catcgacttc
ccacaacgte
ccgccacaac
catcggegac
gagcaéagac

cgggatcact

ggcgtaatca
gcecttegtga
ctggaggtga
gectacggea
tecttcocceg
aaggtgaagt
ggcgagaact
teccaccgaga
ctgetggagg
geggtgaage
aaggactaca
atggacgage
ctgatggccg
gccagcaccy
ctttgctttg
tttecatetgg
ttettegatg
ceggtttttt
gatgctgacg
aaacgatteg
aatgagcatt
tacaaagtgg
gtggtgcecca

ggcgagggcyg

ggcaagctge
ttegeceget
ggctacgtee
gaggtgaagt
aaggaggacg
tatatcaccg
atcgaggacg
ggeeccegtge
cccaacgaga

cteggecatgg

agcccgacat
tegagggcga
aggagggagc
acagggecctt
agggcetacte
ccgacatcete
tcceccccaa
ggatgtacgt
gcggcggcecea
tgecegacta
acaaggtgac
tgtacaagag
atgatccgga
catggcatgce
aagcaacgct
cgattgecga
tcctgeaate
cacaactgac
gggcgcegtaa
atgaagatca
cgagggagaa
tgettaagag
tecctggtcga

agggcgatge

ccgtgecoetg
accccegacca
aggagcgcac
tecgagggega
gcaacatcct
ccgacaagca
gcggegtgea
tgetgecega
agcgcgatca

acgagctgta

gaagatcaag
gggcgaggge
ccecectgece
caccaagtac
ttgggagege
catggaggag
cggccccgtg
gcgecgacgge
ccaccgegtt
tcactttgtg
cgtttacgag
atctggtace
ttacagttte
ggcaatgcege
aagtgaagac
agcctcacat
ctcagtgaag
cgaacaacat
agcaatgatg
ggctcgecac
aaacgcactt
atctaccatg
gctggacgge

cacctacgge

gceccacecte
catgaagcag
catcttette
caccctggtyg
ggggcacaag
gaagaacggce
gctegecgac
caaccactac
catggtectg

caagtaa
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atggtgagea
ctgaagatgg
aagccctacg
ttctectacg
cacgacgaca
accatgacct
gactccttca
atgecagaaga
gtgctgaagy
gacttcaaga
gaccaccgca
agcgeegtgg
ggccaggege
gatatttatg
cgtggcgact
ctcgaggatt
aacccteotga

gacagggcec

cgcegeaatee
gaacacatcg
ttegacccag
gaggagctgt
cacaagttca
aagctgatct
ggctacggcce
aagtccgcca
aactacaaga
ctgaagggca
tacaacagcc
ttcaagat;c
aacaccccca
tcecgeectga
accgecgecy
<210> 29

<211> 2037
<212> DNA

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tccecaacta
tcgaggacaa
tctacgagat
agaccaccegg
gcgacgtcaa
ccatctacag
tegagatect
cccegeaacte
ttteccectete
aaacccgeca
gggacgtggc
ttttgegttt
tecagtacget

gggcgectece

tegeageact
aaggctacta
ctttcttgta
tcaccggggt
gcgtgteegg
gcaccaccgy
tgecagtgcett
tgcccgaagg
ccogegecga
tcgacttcaa
acaacgtcta
gccacaacat
teggegacgy
gcaaagacce

ggatcactcet

<213> Synthetic

<400> 29

gaccacaatg
gaatggccac
caccatcaac
caccgegtte
cttcaagcag
gggcatcgtg
acacctcaag
ctgggacgee
gcacaagetg
ggccaagaag
gaaccacgac
caccgacggc
cgtgacgetg
actccttgaa
agaagcgttg
cgacgecgaa
catggaagca

cgattggega

tegegeagge
cgaagaaacc
caaagtggtg
ggtgcccate
cgagggegag
caagctgece
cgcccgctac
ctacgteocag
ggtgaagttc
ggaggacggce
tatcaccgce
cgaggacggce
cacegtygety
caacgagaag

cggeatggac

ggcgtaatca
gccttegtga
ctggaggtga
gectacggea
tcctteecceg
aaggtgaagt
ggcgagaact
tccacecgaga
ctgetggagg
gcggtgaage
aaggactaca
atggacgagc
cagttggteca
ggctgggctyg
ctggaaaaga
ttccacgttg
ctcegtttgt

gccacctegg

gaatccacag
gctgeegeeg
cttaagagat
ctggtcgagce
ggcgatgecca
gtgceetgge
cccgaccaca
gagcgcaccea
gagggcgaca
aacatcctgg
gacaagcaga
ggegtgeage
ctgeecgaca
cgcgatcaca

gagetgtaca

agcccgacat
tegagggega
aggagggage
acagggectt
agggctactc
ccgacatctc
tcceccccecaa
ggatgtacgt
geggeggeca
tgcecgacta
acaaggtgac
tgtacaagag
ccaaccaggt
ccectgecattce
tggacgaccc
ttatctccaa
ccgtggcaga

cgegtotgea

tggccgeaac
aggccecttaa
ctaccatggt
tggacggcga
cctacggecaa
ccaccctegt
tgaagcagca
tottetteaa
ccctggtgaa
ggcacaagcet
agaacggcat
tegecgacca
accactacct
tggtcctget

agtaa

gaagatcaag
gggcgaggge
cccectgeee
caccaagtac
ttgggagege
catggaggag
cggececgtg
gecgegacgge
ccaccgegtt
tcactttgtg
cgtttacgag
atctggtace
cggccaccac
cagcgccgaa
ctcgctacceg
aggcgceggaa
tcacaccgtt

gaaagaacac

cttgatcaaa
gaagggcgaa
gagcaaggge
cgtaaacgge
gctgaccetg
gaccaccctg
cgacttctte
ggacgacgge
ccgéatcgag
ggagtacaac
caaggccaac
ctaccagcag
gagctaccag

ggagttegtg
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atggtgagca agggcgagga
ctgaagatgg agggcaacgt
aagccctacg acggcaccaa
ttctecctacg acattctgac
cccgacgaca tceocccaacta
accatgacct tcgaggacaa
gactecctteca tctacgagat
atgcagaaga agaccaccgyg
gtgetgaagg gcgacgtcaa
gacttcaaga ccatctacag
gaccaccgca tcgagatect
agcgecgtgg cccgcaactc

acaagtttgt acaaaaaagc

cagccegetaa

cgctacgcca ttgaagccag
aaagaaaaga ttcagetttg
caagcggacg ttegttttcea
caaaccatgc geggtttett
atgtatetgg tgecaceggt
gecatttttg ccggtgatge
gttcacacca ccatgaaacg
ctgcecggtg agcataatga
gtgagcaagg gcgaggaget
gacgtaaacg gccacaagtt
aagctgacce tgaagctgat
gtgaccaccec tgggctacgg
cacgacttet tcaagtecge
aaggacgacg gcaactacaa
aaccgcatcg agotgaaggg
ctggagtaca actacaacag
atcaaggcca acttcaagat
cactaccagc agaacacccc
ctgagctace agtccgecct

ctggagtteg tgaccgecge

<210> 30
<211> 1965
<212> DNA

aaacactgat

<213> Synthetic

<400> 30
atggtgagea

ctgaagatgg
aagccctacyg
ttctectacg
cccgacgaca
accatgaccet

gactccttca

agggcgagga
agggcaacgt
acggcaccaa
acattctgac
tccccaacta
tcgaggacaa

tctacgagat

gaccacaatg
gaatggccac
caccatcaac
caccgegttc
cttcaagcag
gggcatcgtg
acacctcaag
ctgggacgcee
gcacaagcetg
ggccaagaag
gaaccacgac
caccgacggce

aggctccgaa

ggccgatgat
caccgcatgg
ctttgaageca
tetggegatt
cgatgtcctg
tttttecacaa
tgacggageg
attcgatgaa
gcattcgagyg
gttcaccggg
cagegtgteoc
ctgcaccacce
cctgeagtge
catgceegaa
gaceecgegece
catcgactte
ccacaacgte
ccgecacaac
catcggcgac
gagcaaagac

cgggatcact

gaccacaatg
gaatggccac
caccatcaac
caccgegttce
cttcaagcag
gggcategtg

acaccteaag

ggcgtaatca
gecttegtga
ctggaggtga
gcctacggea
tectteceeg
aaggtgaagt
ggcgagaact
tccacegaga
ctgetggagg
goggtgaage
aaggactaca
atggacgagc

ttecgececttg

ceggattaca
catgcggcaa
acgetaagtyg
gccgaagect
caatcctcag
ctgaccgaac
cgtaaagcaa
gatcaggctc
gagaaaaacg
gtggtgecca
ggcgagggceg
ggcaagctge
ttcgeceget
ggctacgtee
gaggtgaagt
aaggaggacg
tatatcaccg
atcgaggacg
ggcccegtge
cccaacgaga

cteggeatgg

ggegtaatea
gccttegtga
ctggaggtga
gcctacggcea
tececttecceg
aaggtgaagt

ggcgagaact

agcccgacat
tegagggega
aggagggage
acagggcctt
agggctacte

cegacatcte

tecececcacaa

gaagatcaag
gggegagggce
ccecectgeee
caccaagtac
ttgggagege

catggaggag

ggatgtacgt
geggeggeca
tgecegacta
acaaggtgac
tgtacaagag

gtaccgagca

gtttegatat
tgcgegecac
aagacccgga
cacataacat
tgaagcatag
aacatcaggce
tgatggegea
gccacgcacg
cacttaagag
tectggtcega
agggcgatge
cegtgeectyg
accccgacca
aggagcgeac
tcgagggega
gcaacatecct
ccgacaagca
geggegtgea
tgetgecega
agcgcegatca

acgagctgta

agccecgacat
tegagggega
aggagggagc
acagggcctt
agggctacte
ccgacatcte

tecceeccaa

cggeccegtyg
gcgegacgge
ccaccgegtt
tcactttgtyg
cgtttacgag
atctggtace

aaacatcgtce

tectggaagee
acctggcgac
tategectca
cgtgetgetg
ccgtcagegg
tgtcattgac
ccttagtttt
gattacccge
atctaccatg
gctggacgge
cacctacgge
gcccaccete
catgaagcag
catcttette
caccctggtyg
ggggcacaayg
gaagaacggc
gctegeegac
caaccactac
catggtcctg

caagtaa

gaagatcaag
gggcgagggc
ccceetgecc
caccaagtac
ttgggagcge
catggaggag

cggeeeccgtg
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atgcagaaga
gtgetgaagg
gacttcaaga
gaccaccgca
agcgeegtgg
acaagtttgt
ctctcecgtga
cgccaactce
gtggcagaag
cgtttegacg
acgctcatgg
ctcceegatt
gcacttegeg
tactacgaag
gaggagctgt
cacaagttca
aagctgatct
ggctacggee
aagtccgcca
aactacaaga
ctgaagggca
tacaacagee
ttcaagatcc
aacaccccca
teegeectga
accgcegecg
<210> 31

<211> 1992
<212> DNA

agaccacegg
gcgacgtcaa
ccatctacag
tegagatecet
cccgcaacte
acaaaaaagc
cgctgcagtt
ttgaaggctg
cgttgetgga
ccgaattcoca
aagcecctecg
ggcgagccac
c;ggcgaatc
aaaccgcetge
tcaccgagat
gcgtgteegg
gcaccaccgg
tgecagtgett
tgececcgaagy
ccegogecga
tcgacttcaa
acaacgtceta
gccacaacat
tcggegacgg
gcaaagaccc

ggatcactct

<213> Synthetic

<400> 31

atggtgagca agggcgagga gaccacaatg ggcgtaatca agcccgacat gaagatcaag

ctgggacgec
gcacaagcetg
ggccaagaag
gaaccacgac
caccgacggc
aggctecgaa
ggtcaccaac
ggctgecetyg
aaagatggac
cgttgttatc
tttgteegtg
ctcggegegt
cacagtggee
cgccgaggcee
ggtgeccate
cgagggcgag
caagctgccc
cgceccgetac
ctacgtccag
ggtgaagtte
ggaggacgge
tatcaccgece
cgaggacggce
ccecegtgetg
caacgagaag

cggecatggac

tcacaccgaga
ctgotggagg
gcggtgaage
aaggactaca
atggacgage
ttegeccttyg
caggtceggec
cattccageg
gaccactcege
tccaaaggeg
gcagatcaca
ctgcagaaag
gcaaccttga
cttaagagat
ctggtcgage
ggcgatgcca
gtgccctgge
cccgaccaca
gagcgcacca
gagggcgaca
aacatcectgg
gacaagcaga
ggegtgeage
ctgcecgaca
cgcgatcaca

gagctgtaca

ggatgtacgt
gecggeggeca
tgceccgacta
acaaggtgac
tgtacaagag
gtaccggeca
accacgatat
ccgaacgtgg
tacegetega
cggaaaaccc
cegttgecag
aacaccgcgce
tcaaagaaca
ctaccatggt
tggacggcega
cctacggcaa
ccaccctcgt
tgaagcagca
tcttcttcaa
ccctggtgaa
ggcacaagcet
agaacggcat
tegecgacca
accactacct
tggtectget

agtaa

gcgegacgge
ccaccegegtt
tcactttgtg
cgtttacgag
atctggtacc
ggcegettteo
ttatgaaacce
cgactgggac
ggattttttg
tectgatcagt
ggeecgggcyg
aatcctcgeca
categaagge
gagcaaggge
cgtaaacgge
gctgaccctyg
gaccaccctg
cgacttette
ggacgacgge
ccogeategag
ggagtaéaac
caaggccaac
ctaccagcag
gagctaccag

ggagttegtg

ctgaagatgg agggcaacgt gaatggccac geocttegtga tegagggega gggegaggge

70

480
540
600
660
720

780

900

960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920

1965

60

120

DKJ/EP 2836503 T3



aagecctacy
ttctectacy
cccgacgaca
accatgacct
gactcctteca
atgcagaaga
gtgctgaagy
gacttcaaga
gaccaccgea
agcgecgtgy
gagcaaaaca
gatattctgg
gccacacctyg
ccggatatcg
aacatcgtge
catagecgte
caggctgtca
gagcacctta
gecacggatta
aagagatcta
gtegagetgy
gatgccacct
ccctggecca
gaccacatga
cgcaccatet
ggcgacacce
atcctgggge
aagcagaaga
gtgcagctcg
cccgacaace
gatcacatgg

ctgtacaagt

<210> 32

<211> 1920
<212> DNA

acggcaccaa
acattctgac
tcecccaacta
tcgaggacaa
tctacgagat
agaccaccgg
gcgacgtcaa
ccatctacag
tcgagatcct
cccgcaacte
tegteccagee
aagcccgcta
gcgacaaaga
cctcacaagce
tgcotgcaaac
ageggatgta
ttgacgccat
gttttgttca
cccgectgec
ccatggtgag
acggcgacgt
acggcaagct
ccctegtgac
agcagcacga
tcttcaagga
tggtgaaccg
acaagctgga
acggcatcaa
ccgaccacta
actacctgag
tcctgetgga

aa

<213> Synthetic

<400> 32

caccatcaac
caccgegttce
cttecaagecag
gggcategtg
acacctcaag
ctgggacgce
gcacaagcetg
ggccaagaag
gaaccacgac
caccgacgge
gctaaaaaca
cgccattgaa
aaagattcag
ggacgttcgt
catgagoggt
tetggtgeca
ttttgeceggt
caccaccatg
cggtgagcat
caagggegag
aaacggccac
gaccctgaag
caccctggge
cttcttcaag
cgacggcaac
catcgagetg
gtacaactac
ggccaactte
ccagcagaac
ctaccagtcc

gttegtgace

ctggaggtga
gcctacggca
teocttecceg
aaggtgaagt
ggcgagaact
tccaccgaga
ctgetggagg
geggtgaage
aaggactaca
atggacgagc
ctgatggeceg
gccagcaccg
ctttgetttg
tttcatctgg
ttcttegatg
ceggtttttt
gatgctgacg
aaacgatteg
aatgagcatt
gagctgttea
aagttcagcg
ctgatctgca
tacggectge
teccgecatge
tacaagaccce
aagggcatcg
aacagccaca
aagatcecgee
acccccateg
gccctgagea

gecgecggga

aggagggage
acagggcctt
agggctactc
cegacatcte
tcccecccaa
ggatgtacgt
geggcggeca
tgcccgacta
acaaggtgac
tgtacaagag
atgatccgga
catggcatge
aagcaacgct
cgattgccga
tcctgcaate
cacaactgac
gggegegtaa
atgaagatca
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ctcagtgaag
cgaacaacat
agcaatgatg
ggctcgeccac
aaacgcactt
geceatecty
gggcgagggce
gctgeecegtg
cegcetaccece
cgtecaggag
gaagttcgag
ggacggcaac
cacegecgac
ggacggegge
cgtgetgety
cgagaagege

catggacgag

71

180
240
300

540
600
660
720
780
840
900
960
1020
1080
1140
1200
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980

1992

DKJ/EP 2836503 T3



atggtgagca
ctgaagatgg
aagccctacy
ttcteoctacg
cccgacgaca
accatgacct
gactccttca
atgcagaaga
gtgctgaagy
gacttcaaga
gaccaccgca
agcgecegtgg
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gtgaaccgca

aagctggagt

ggcatcaagg
gaccactace
tacctgagct

ctgctggagt
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PATENTKRAYV

1.

Forster-ResonansEnergioverforing (FRET)-baseret lactatnanosensor, om-
fattende en bakteriel Lidr-transkriptionsfaktor mellem hver egnet donor-
0og akceptor-rest af fluorescerende proteiner, som er i stand til, i kombina-
tion, at fungere som donor- og acceptor-rester i FRET, og som kan expri-
meres i enkelte celler eller cellepopulationer, adheerente celler eller i su-
spensioner, i en cellekultur, en vaevskultur, en blandet cellekultur eller i et

veevs-explantat.

FRET-baseret lactatnanosensor ifglge krav 1, hvorved resterne af fluore-
scerende proteiner fra gruppen, der bestar af mTFP (monomert, blagrent
fluorescerende protein), CFP (cyan fluorescerende protein), BFP (bla fluo-
rescerende protein), GFP (gren fluorescerende protein), YFP (gul fluoresce-
rende protein), forsteerkede variationer af samme, tillige med forsteaerkede
YFP (EYFP), YFP-citrin, venus eller infrarad fluorescerende proteiner fra

bakterielle phytocromer.

FRET-baseret lactatnanosensor ifglge krav 1, hvorved resterne af fluore-

scerende proteiner er en TFP og Venus.

FRET-baseret lactatnanosensor ifglge krav 1 eller krav 3, omfattende i det
mindste 60 %, 70 %, 80 %, 85 %, 90 %, 95 % eller 99 % ami-
nosyresekvensidentitet med SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO3, SEQ
ID NO 4, SEQ ID NO 5, SEQ ID NO 6, SEQ ID NO 7, SEQ ID NO8, SEQ ID
NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 12, SEQ ID NO 13, SEQ
ID NO 14, SEQ ID NO 15, SEQ ID NO 16.

FRET-baseret lactatnanosensor ifalge krav 1 eller krav 3, kodet med
nukleinsyresekvenser pa i det mindste 60 %, 70 %, 80 %, 85 %, 90 %, 95
% eller 99 % sekvensidentitet med SEQ ID NO 17, SEQ ID NO 18, SEQ ID
NO 19, SEQ ID NO 20, SEQ ID NO 21, SEQ ID NO 22, SEQ ID NO 23, SEQ
ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28,
SEQ ID NO 29, SEQ ID NO 30, SEQ ID NO 31, SEQ ID NO 32.

Fremgangsmade til maling af lactat, hvorved fremgangsmaden omfatter de

folgende trin:
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2

a) Exprimering af den FRET-baserede lactatnanosensor ifglge et hvilket
som helst af kravene 1 til 5 i en gnsket veert, sdsom enkelte celler el-
ler cellepopulationer, adhaerente celler eller i suspension, i en cellekul-

tur, en veevskultur, en blandet cellekultur eller i et veevsimplantat;

b) kalibrering af vaerten med forudbestemte veaerdier af intracelluleere,
extracelluleere, subcelluleere lactatkoncentrationer, registrering af

tidsforlgbet for lactatkoncentrationerne;
c) afbrydelse af den stationeere tilstand for lactat i cellen;
d) registrering af outputtet fra nanosensoren, beregning af lactatkoncen-

trationen til forskellige tidspunkter og bestemmelse af transportha-

stighederne.

7. Fremgangsmade til maling af lactat ifelge krav 6, hvorved i trin b) den

FRET-baserede lactat-nanosensor i celler kalibreres ved anvendelse af sen-
sorens kinetiske konstanter, opndaet in vitro, og et nul-lactatniveau, be-

stemt under tilstedeveerelse af pyruvat.

Fremgangsmade til maling af lactat ifglge krav 7, hvorved i trin c¢) afbry-
delse af den stationeere tilstand for lactatet ved udseettelse af cellerne for

forskellige koncentrationer af extracelluleert lactat.

Fremgangsmade til maling af lactatproduktionen eller lactatforbruget,

hvorved fremgangsmaden omfatter trinnene:

a) Exprimering af den FRET-baserede lactatsensor ifglge et hvilket som
helst af kravene 1 til 5 i en gnsket veert, sasom enkelte celler eller
cellepopulationer, adharente celler eller i suspension, i en cellekultur,

en veevskultur, en blandet cellekultur, eller i et veevsimplantat;
b) kalibrering af veerten med forudbestemte veerdier af intracelluleere,
extracelluleere, subcelluleere lactatkoncentrationer, registrering af

tidsforlebet for lactatkoncentrationerne;

c) afbrydelse af den stationeere tilstand for lactat i cellen;
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d) registrering af outputtet fra nanosensoren, beregning af lactatkoncen-
trationen pa forskellige tidspunkter og bestemmelse af transportha-

stighederne.

Fremgangsmade til maling af hastigheden i lactatproduktionen eller i for-
bruget ifalge krav 9, hvorved i trin b) den FRET-baserede lactatnanosensor
i celler kalibreres ved anvendelse af sensorens kinetiske konstanter, opna-
et in vitro, og et nul-lactatniveau, som bestemmes under tilstadeveerelse

af pyruvat.

Fremgangsmade til maling af hastigheden i lactatproduktionen eller i for-
bruget ifelge krav 9, hvorved i trin ¢) afbrydelse af stationeer tilstand ved
tilfgjelse af MCT inhibitor, som maler hastighed for lactat-akkumulering lig
med hastighed for lactatproduktion, eller lactat-temning, som er lig med

lactatforbruget.

Fremgangsmade til maling af det mitochondriale pyruvatforbrug, hvorved

fremgangsmaden omfatter de fglgende trin:

a) Exprimering af den FRET-baserede lactatnanosensor ifglge et hvilket
som helst af kravene 1 til 5 i en gnsket veert, sdsom enkelte celler el-
ler cellepopulationer, adhaerente celler eller i suspension, i en cellekul-

tur, en veevskultur, en blandet cellekultur eller i et veevseksplantat;

b) kalibrering af veerten med forudbestemte veerdier af intracelluleere,
extracelluleere, subcelluleere lactatkoncentrationer, registrering af

tidsforlgbet for lactatkoncentrationerne;

c) afbrydelse af den stationeere tilstand for cellen;

d) registrering af outputtet fra nanosensoren, beregning af lactatkoncen-

trationen péa forskellige tidspunkter og bestemmelse af transportha-

stighederne.



10

15

20

25

30

35

13.

14.

15.

DKJ/EP 2836503 T3

4

Fremgangsmade til maling af hastigheden for det mitochondriale pyruvat-
forbrug ifelge krav 12, hvorved i trin b) den FRET-baserede lactatnanosen-
sor i celler kalibreres ved anvendelse af sensorens kinetiske konstanter,
opnaet in vitro, og et nul-lactatniveau, bestemt under tilstedeveerelse af

pyruvat.

Fremgangsmade til maling af hastigheden for det mitochondriale pyruvat-
forbrug ifglge krav 12, hvorved i trin ¢) afbrydelse af den stationeere til-
stand for lactat sker ved tilfgjelse af en neutralisator for den mitochondria-
le transporter og maling af begyndelseshastigheden for lactat-
akkumulering, som er lig med hastigheden for pyruvatforbrug med mito-

chondria.

Fremgangsmade til kvantificering af Warburg-faenomenet, hvorved frem-

gangsmaden omfatter trinnene:

a) Exprimering af den FRET-baserede lactatsensor ifglge et hvilket som
helst af kravene 1 til 5 i en gnsket veert, sdsom enkelte celler eller
cellepopulationer, adharente celler eller i suspension, i en cellekultur,

en blandet cellekultur eller i et vaevseksplantat;

b) kalibrering af vaerten med forudbestemte veerdier af intracelluleere,
extracellulere, subcelluleere lactatkoncentrationer, registrering af lac-

tatkoncentrationer tidsmeessigt under forlagbet;

c) afbrydelse af den stationeere tilstand for lactat i cellen;

d) registrering af outputtet fra nanosensoren, beregning af lactatkoncen-
trationen til forskellige tidspunkter og bestemmelse af transportha-

stighederne; og

e) kvantificering af Warburg-feenomenet ved beregning af forholdet mel-
lem hastigheden af lactat-akkumulering under tilstedeveerelse af en
MCT inhibitor, og hastigheden af vlactat-akkumulering under tilstede-

veerelse af en inhibitor for den mitochondriale pyruvattransportor.
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Fremgangsmade til kvantificering af Warburg-feenomen-forbruget ifalge
krav 15, hvorved i trin b) den FRET-baserede lactatnanosensor i celler ka-
libreres ved anvendelse af sensorens kinetiske konstanter, opnaet in vitro,

og et nul-lactatniveau, bestemt under tilstadeveerelse af pyruvat.

Fremgangsmade til kvantificering af Warburg-feenomenet ifglge krav 15,
hvorved i trin ¢) afbrydelsenaf stationeer tilstand for lactat sker ved tilfgjel-
se af en MCT-inhibitor, som maler hastighederne ved lactatproduktion eller
lactatforbrug, og tilfajelse af en neutralisator for den mitochondriale pyru-
vat-transporter, hvilken fremgangsmad ydermere omfatter maling af be-
gyndelseshastigheden for lactat-akkumulering, som er lig med hastigheden

for pyruvat-forbrug med mitochondrier.
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FIGURE 3

Alignment of Lactete nanosensor variants
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FIGURE 3 (Cont.)

Alignment of Lactate nanosensor variants
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Section

Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant
Variant

4

01
02
03
04
05
06
Q7
08
0g
10
11
12
13
14
15
16

o

o

01
02
03
04
kA
06
07
08
09
10
11
12
13
14
13
16

) 172 180 19¢C 200 210 228
) LEGGGHHRVDEXTLYRAKKAVKLPDYHFVDHRIEILNHDKDYNKVTVYESAVARNST
2) LEGGGHHRVDFXTIYRAKKAVKLPDYHFVDHRLIE1LNHDKDYNKVIVYESAVARNST
172) LEGGGHHRVDFKTIYRAKKAVKL?DYAFVDHRIEILNHDKDYNKVTVYESAVARNST
(172) LEGGGHHRVDIKTIYRAKKAVKLZDYAFVDHRIEILNHDKODYNKVTVYESAVARNST
(172) LEGGGHHRVDFKTIYRAKKAVKL?DYHFVDHRIEILNHDKDYNKVTVYESAVARNST
(172) LEGGGHHRVNFKTIYRAKKAVKLPDYHFVDHRIEILNHDKDYNKVIVYESAVARNST
(172) LEGGGHHRVDFKTIYRAKKAVKLPDYHFVDHRTEILNHDKDYNKVTVYESAVARNST
(172) LEGGGHHRVDFKTIYRAKKAVKLPDYHFVDHRIEILNEDKDYNKVTVYRSAVARNST
{172) LEGGGHHRVDFKTIYRAKKAVKLPDYHFVDHRIEILNHDKDYNKVTVYESAVARKST
(172) LEGGGHHRVLCFKTIYRAKXAVKLPDYEFVDHRIEILNHDKDYNKVTVYESAVARNST
{172) LEGGGHARVODFKTIYRAKXAVKLPDYHFVDHRLELLNADKCYNKVTVYZSAVARNST
(172) LEGGGHARVDFKTIYRAKKAVKLPDYHFVDHRIEILNADKDYNKVTVYZSAVARNST
(172) LEGGGHIRVDFKTIYRAKKAVXT.PRYHFVDHRIZILNIDKDYNKVTVYESAVARNST
(172) LEGGGHHRVDFKTIYRAKKAVXLPDYHFVDHRIZEILNHDKDYNKVTVYESAVARNST
(172) LEGGGHHRVDFKTIYRAKKAVKLPDYHFVDHRIEILNHDKDYNKVTVYESAVARNST
(172) LEGGGHHRVOFKTIYRAKKAVKLPDYHFVDHRIEILNHEDKDYNKVTVYESAVARNST

(229) 229 240 250 260 270 285
(229) DGMDELYKRSGTTSLYKKAGSEFALGTMIVLPRRLSLCEVADRVRALIDEKNLEAGMK
(229) DGMDELYKRSGTTSLYKXAGSEFAL---GIMSVKAHESYVMDWVTEELRSGRLKIGDH
(229) DGMDELYKRSGTM - IVLPRRLSDEVADRVRALIDEKNLEAGMK
{229) DGMDELYKR§--—-————-—-————==~ GTMSVKAHESVMDWVTEELRSGRLKIGDH
(229) DGMDELYKRSGTTSLYKKAGSEFALGTMIVLPRRLSDEVADRVRAT.TREKNTFRAGMK
(229) DGMDELYKRSGTTSLYKKAGSEFAL---GTMSVKAHESVMDWVTEELRSGRLKIGDH
—IVLPRRLSDEVADRVRALIDEKNLEAGMK
GTMSVKAHESVMDWVTEELRSGRLKIGDH

(229) DGMDELYKRSGTT-
(229) DGMDELYKRS
(229) DGMDELYKRS
(229) DGMDELYKRS
(229) DGMDELYKRSGTTSLYKKAGSEFALG-—
(229) DGMDELYKRS
(229) DGMDELYKRS
(229} DGMDELYKRS

(286} 286 300 310 320 330 342
(286} LPAEROLAMOLGVSRNSLREALAKLVSEGVLLSRRGGGTFIRWRHDIWSEQNIVQPL
(283} LPSERALSETLGVSRSSLREALRYLEALGTISTATGSGPRSGTIITAAPGOALSLSY
(271) LPAERQLAMOLGVSRNSLREALAKLVSEGVLLSRRGGGTFIRWRHDIWSEQNIVQPL
(268) LPSERALSETLGVSRSSIREALRVLEALGTISTATGSGPRSGTIITAAPGQALSLSY
(286) LPAERQLAMOLGVSRNSIREALAKLVSEGVLLSRRGGGTFIRWRHDIWSEQNIVOPL
(283) LPSERALSETLGVSRSSLREALRVLEALGTTSTATGSGPRSGTTITAARGQALSLSV
(271) LPAERQLAMOLGVSRNSLREALAKLVSEGVLLSRRGGGTFTRWRHDTWSFQNTVQPL
(268) LPSERALSETLGVSRSSLREALRVLEALGTISTATGSGPRSGTIITAARGQALSLSV

----------------------------------------------- GTEQNIVQPL
-TTSLYKKAGSEFALGTGQALSLSV
-GTEQNIVQPL
-GTGQUALSLSY
TEQNIVQPL
TTSLYKKAGSEFALGTGCALSLSV
TEQNIVOPL
——————————————————————————————————————————————— GTGOALSLSV
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£

0

oL
02
03

05
26
07
08
a9
10
11
12
13
14
15
16

(343)
(343)
(340)
(328)
(325)
(343)
(340}
(328)
{325
(264)
(264)
(249)
(249)
(264)
(264)
(249)
(249)

(400)
(400}
(397
{385
(382)
(400}
(397)
(385)
(382
(321)
{321
{306
(306
(321
(321)
(306)
(306}

(457}
(457)
(454)
(442)
(439}
(457)
(454
(442)
(439}
(378)
(378)
(363)
(363)
(378)
(378)
(363
(363)

343 350 360 370 380 399
KTLMADDPDYSFDILEARYAIEASTAWHAAMRATPGDKEKIQLCFEATLSEDPDIAS
TLOLVTNQVGHHDL Y ETROLLEGWAALHSSAERGDWDVAEALLEKMDDPS LELEDFL
KTLMADDPDYSFDILEARYAIEAS LAWHAAMRAT PGUKEK - QLCFEATLS EDPDIAS

TLOLVINQVGHHDIYETROLLEGWAALHS SAERGDWDVAEALLEKMDDPSLPLEDFL
KTLMADDPDYSFDILEARYAIEASTAWHAAMRAT PGDKEKIQLCFEAT:!

TLOLVTNQVGHHDIYETROLLEGWARLHSSAERGDWDVAEALLEKMDDPS LPLEDFL
KTLMADDPDYSFDILEARYATEAS TAWHAAMRATPGDKERIQLCFEATLSECPDIAS
TLOLVTNQVGHEDIYETRQLLEGWAALHSSAERGDWDVAEALLEKMDDPS LFLEDFL
KTLMADDPDYSFDILEARYAIEAS TAWHAAMRATPGDKEKIQLCFEATLSEDPDIAS
TLOLVTNQVGHHDIYETRQLLEGWAALHSSAERGDWDOVAEALLEKMDDPS LPLEDFL
KTLMADDPDYSFDILEARYAIEAS TAWHARMRATPGDKEKIQLCFEATLSEDPDIAS
TLQLVTNQVGHHDIYETRQLLEGWAALH:! ERGDWDVAEALLEKMDDPSLPLEDFL
KTLMADDPDYSFDILEARYA STAWHAAMRATPGDKEKIQLCFEATLSEDPDIAS
TLQLVTNQVGHHDIYETRQL WAALHSSAERGDWDVAEALLEKMDOPST.PLEDFL
KTLM_ADDPD{SFETE BY IEASTAWHAAMRATPGDKEKIQLCFEATLSEDPDIAS

TLOLVTHQVGHHDI YETRQLLEGWAALHSSAERGDHDVAEALLEXMDDPS LPLECFL,

400 410 420 430 440 456
OADVRFELAIAEASHNIVLLOTMRGEFDVLQSSVKHSRORMYLVPPVESQLTEQHQA
REDAEFEVVISKGAENPLISTLMEALRLSVADHTVARARALPDWRATSARLOKEHRA
QADVRFELAIAEASHNIVLLOTMRGFFDVLQSSVKHSRORMY LVPPVEFSQLTEQHOA
RFDAEFHVVISKGAENPLISTLMEALRLSVADATVARARALPDWRATSARLOKEHRA
QADVREHLAIAFASHNTVLLQTMRGFFDVLQSSVKHSRORMY LVPPVFSQLTEQHOA
RFDAEFHVVISKGAENPLISTLMEALRLSVADHTVARARALPDWRATSARLOKEHRA
QADVRFHLAIAEASHNTIVLLOTMRGFFDVLQSSVKASRORMY LVPPVFSQLTEQHOA
RFDAEFHVVISKGAENPLISTLMEALRLSVADHTVARARALPDWRATSARLOKEHRA
QADVRFHLAIAEASHNIVLLOTMRGFFDVLOSSVKASRORMY LVPPVFSQLTEQHOA
RFDAEFHVVISKGAENPLISTLYEALRLSVADHTVARARALPDWRATSARLOKEHRA
QADVRFHLAIAEASHNIVLLOTMRGFFDVLOSSVKHSRORMY LV PPVFSQLTEQHOA
RFDAEFHVVISKGAENPLISTLVEALRLSVADHTVARARALPDWRPTSARLQKEHRA
OADVRFHLAIAEASHNTVLLQTMRGFFDVLQSSVKHSRQRMY LV PPVFSQLTEQHOR
RFEAEEEVV;SKGAEEPLISTTgEALRLSVADHTVARARALPDWRATSAREQKEER&
OADVRFHLAIAEASHNIVLLQTMRGFFDVLOSSVKHSRORMY LV PPVFSQLTEQHOA
RFDAEFHVVISKGAENPLISTLYEALRLSVADHTVARARALPDWRATSARLOKEHRA

457 470 480 490 500 513
VIDATFAGDADGARKAMMAHLS FVHT TMXRFDEDCAREART TRLPGEHNEHSREKNA
ILAALRAGESTVAATLIKEHIEGYY--EZTAAREALKKG -EFDPAFLYKVV
VIDAIFAGDADGARKAMMAHLS FVHT TMKRF DEDQARHARITRLPGEANEHSREKNA
ILAALRAGESTVAATLIKEHIEGYY--ESTABAEALKKG-—~~--~ EFDPAFLYKVV
VIDAIFAGDADGARKAMMAHLS FVHT TMKRFDEDQAREARI TRLPGEHNEHSREKNA
TLAALRAGESTVAATLIKEHIEGYY--~EETARAFALKR-~———————~—— ===~
VIDATFAGDADGARKAMMAHLS FVHT TMKRFDEDQARHARITRLPG
ILAALRAGESTVAATLIKEHIEGYY--EETAAAEALKR
VIDAIFAGDADGARKAMMAHLSFVHT TMKRFDEDQAREARI TRLPGEHNEHSREKNA

ILAALRAGESTVAATLIKEHIEGYY--EETAAAFALKKG--~-~--~ EFDPAFLYRVV
VIDAIFAGDADGARKAMMAHLSFVHTTMKRFDOEDCAREARITRLPGEHNEHSREKNA
ILAALRAGESTVAATLIKEHIEGYY--EETAAREALKKG------- EFDPAFLYKVV

VIDAIFAGDADGARKAMMAHLSFVHT TMKRFDEDQAREARI TRLPGEHNEHSREKNA
TLAALRAGESTVAATLIKEHIEGYY--EETARAEALKR
VIDAIFAGDADGARKAMMAHLSFVHIZMKREDEDOARBARILIRLPGEHNEHSREKNA
ILAALRAGESTVAALLIKEHIEGYY -~ EELAAARALKR -~~~ =~ = ———=——cooon
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(420}
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(414)
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{399;

871
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03
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26
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09
10
11
12
13

15
16

12

o1
0z
03
24
05
06
07
08
09
10
11
12
13
14
15
138

(571
(544)
(556
(529
(556
(529)
(541)
(514
(492
(468)
(477)
(453)
(477)
(453
(462
(438)

(628)
(628
(601
(613)
(586)
(613
(586
(59¢8)
(571
(549
(525
(534
(510
(534
(510)
(519;
(495

514 520 530 540 550 560 570
LKKGEFDPAFLYKVVLKRSTMVSKGEELFTGVVPILVELDGDVNGHKESVSGEGEGD
LER-——===—=-——-———— STMVSKGEELFTGVVPILVELDGDVNGEKFSYSGEGEGD
LKKGEFDFPAFLYKVVLKRSTMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
LKR--—————————=~—= STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
STMVSKGEELFTGVV2TLVELDGDVHGHKFSVSGEGEGD
STMVSKGEELFTGVVPILVELNDGDVNGHKFSVSGEGEGD
—————————————————— STMVSKGEELFTGVVPTT.VELDGDVNGHKFSVSGEGEGD
LEKKGEFDPAFPLYKVVLEKRSTMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD

LKR-————====—~———— STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
LKKGEFDPAFLYKVVLKRSTMVSKGEELETGVVPILVELDGDVNGHKFSVSGEGEGD
LEKR-—————=———=---——, STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD

STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD
STMVSKGEELFTGVVPILVELDCDVNGHKFSVSGEGECD
STMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD

571 580 590 600 610 627
ATYGKLTLKLICTTGKLEVPWPTLVT TLGYSLQCFARY PDHMRQHDFFKSAMPEGYY
ATYGKLTLKLICTTGKLEVPWPTLVTTLGYGLOCFARY PDHMKQHDFFKSAMPEGYV
ATYGKLTLKZLICTTGKLPVPWPTLVTTLGYGLQCFARY PDHMKQHDE FKSAMPEGYY
ATYGKLTLKLIC TTGKLPVPWPTLVTTLGYGLQCFARY PDHMKQHDE FKSAMPEGYV
ATYGXLTLKLICTTGKLPVPWPTLVTTLGYGLQCFARY PDHMKQHNDFFKSAMPEGYV
ATYGKLTLKLICTTGKLEVPWETLVTTLGYGLQCFARY PDHMKQHDFFKSAMPEGYV
ATYGKLTLKLICTTGKLPYPWPTLVT TLGYGLQCFARY PDHMKQHDFFKSAMPEGYV
ATYGKLTLKLICTTGKLEPVEWPTLVTTLGYGLQCFARY PDHMKOHDE FKSAMPEGYV
ATYGKLTLKLICTTGKLPVPW2TLVTTLGYGLQCFARY PDHMKQHDF FKSAMPEGYV
ATYGKLTLKLICTTGKLPYPWSTLVTTLGY 3LOCFARY PDHMEQHDFFKSAMPEGYV
ATYGKLTLKLICITGKLEYPWET LVTTLGYGLQC FARY PDHMKOHDF FKSAMPEGYV
ATYGKLTLKLICTTGKLPY PWPTLVTTLGYGLQCFARY PDHMKQHDFFKSAMPEGYV
ATYGKLTLRLICTTGKLPYPWPTLVTTLGYGLOCFARY PDHMKQYDEFKSAMPEGYV
ATYCKLTLKLICTTGKLEVPWPTLVTTLGYGLOCFARY PDHMKQHDFFKSAMPEGYV
ATYGKLTLKLICTTGKLPVPWPTLVTTLGYGLQCFARY PDHMROHDEFKSAMPEGYV
ATYGKLTLKLICTTGKLPVPWPTLVTTLGYSLOCFARY PDHMKOHDE FKSAMPEGYV

628 640 650 660 670 684
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELXGIDFKEDGNI LGHKLEYNYNSHNV
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELXGIDFKEDGNILGHKLEYNYNSHNV
QER) [FFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGN ILGHKLEYNYNSHNV
QERTIFFEDDGNYKTRAEVKFEGCTLVNRIELKGIDFKEDGNI LGHKLEYNYNSHNY
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDEKEDGN I LGEKLEYNYNSHNYV
QERTIFFKDDGNYKTRARVKFEGDTLVNRIELKGIDFKEDGN T T.GERKLEYHNYNSHNV
QERTIFFKNDGNYKTRAEVKFREGDTLVNRTETLKGIDFKEDGNTLGEKT EYNYNSHNV
QERTIFFRDDGNYKTRAEVKFEGDTLVNRIELXGIDFKEDGN - LGEKLEYNYNSHNV
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELXGIDFKEDGN ILGEKLEYNYNSHNV
QERTIFFKDDGNYKTRAZVKFEGDTLVNRIELKGIDTKEDGNI LGHKLEYNYNSHENY
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGICFKEDGN I LGHKLEYNYNSHNV
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNV
QRRTIFFKDDGHYKTRAEVKFEGDTLVNRIELKGIDFKEDGN ILGHKLEYNYNSHNV
QERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGN I LGHKLEYNYNSHENV
QERTIFFKODDGNYKTRAEVKFEGDYTLVNRIELKG L DKECGN I LGHE. KYNSHNV
RERT1FFKDDGNYKTRAEVKFEGDTLYNRIELKGIDFKECGN I LGHKLSYKYNSHNV
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01
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(567)
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(552)

(742)
(742)
(715}
(727)
(700)
(727)
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(712)
(685)
(663)
(639)
(648)
(624)
(648)
(624)
(633)
(609)

685 690 700 710 . 720 730 741
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHY LSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKOKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQKNGIKANFKIRHNTEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNEYLSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHY LSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVOQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHY LSYQSAL
YITADKOKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL

YITADKOKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQKNGTKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL

YITADKOKNGITKANFKIRHNIEDGGVOLADHYQONTPIGDGPVLLPDNHYLSYQSAL
YITADKQRNGIKANFKIRHNIEDGGVOLADHYQONTPIGDGPVLLPDNHYLSYQSAL

YITADKQKNGIKANFKIRHNIEDGGVQLADHYQONTPIGDGPVLLPDNHYLSYQSAL

742 750 760 772
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK

SKDPNEXRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK

SKDPNEKRDHMVLLEFVTAAGITLGMDELYK

SKDPNEKRDHMVLLEFVTAAGI TLGMDELYK
SKDPNEKRDHMVLLEFVTAAGI TLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
SKDPNEKRDHMVLLEFVTAAGITLGMDELYK
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LD
Py = Lac

LDHr

Pyruvate concentration, [Pyr] (uM)

Lactate, [Lac] (uM)

Glycolytic pyruvate production, G (uM/s)

Lactate dexydrogenase forward reaction, LDHf (s)

Equations

d[Pyrl/dt = (G + [Lac]*LDHr — [Pyr]*LDHf -
PTyval

d[Lacy/dt = ([Pyr]*LDHf — [Lac]*LDHr —
MCT)ivol

MCT=Vycr'[Lack(Kycr + [Lac])

Kuer = 5000; Vol=1liter

Lactate dehydrogenase reverse reaction, LOHr (s1)
Cellular lactate release, MCT (uM/s) .
Mitochondrial pyruvate uptake, PT (uM/s)

2.0 4

16 4 Pt

1.2 4
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0.8 1
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phioretin
: Fitted parameters
G =103 ul¥s
factate BT =48 o
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ubldls
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