

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
1 December 2005 (01.12.2005)

PCT

(10) International Publication Number
WO 2005/113889 A1

(51) International Patent Classification⁷: D21F 1/00, 7/10

(74) Agent: SANTUCCI, Ronald, R.; Frommer Lawrence & Haug, LLP, 745 Fifth Avenue, New York, NY 10151 (US).

(21) International Application Number:

PCT/US2005/015562

(22) International Filing Date: 4 May 2005 (04.05.2005)

(25) Filing Language: English

(26) Publication Language: English

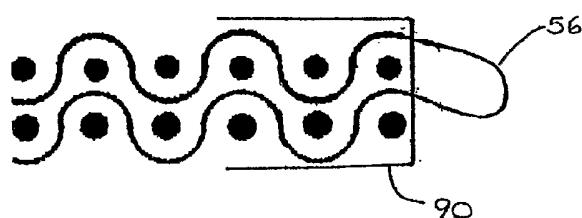
(30) Priority Data:
10/843,745 12 May 2004 (12.05.2004) US

(71) Applicant (for all designated States except US): ALBANY INTERNATIONAL CORP. [US/US]; 1373 Broadway, Albany, NY 12204 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KORNETT, Glenn [US/US]; P.O. Box 564, 123 Porcher Lane, Bonneau, NC 29431 (US). RYDIN, Bjorn [SE/SE]; Brunnslöv 1155, S-242 97 Hörby (SE). JONASSON, Bodil [SE/SE]; Falckens väg 32, S-302 34 Halmstad (SE). RAE, Sandra [AU/AU]; "Manwood" RMB 5641, McGarry Avenue, Matcham, NSW 2250 (AU). OXLEY, Frank [AU/AU]; 239 Steyne Road, Saratoga, NSW 2251 (AU). KREBS, Dave [US/US]; P.O. Box 81, East Schodaek, NY 12063 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SEAM FOR MULTIAXIAL PAPERMAKING FABRICS

WO 2005/113889 A1

(57) Abstract: A method of seaming an on-machine-seamable multiaxial papermaker's fabric to prevent yarn migration. The multiaxial fabric (22) is in the form of an endless loop flattened into two layers (40, 42) along fold lines (38). CD yarns (28) are removed from the folds (38) to create extended ravel areas. This leaves the MD yarns (26) unbound in the ravel areas. Seam loops (56) are then formed from the unbound MD yarns (26) at the folds (38). CD materials (82, 84) (e.g. continuous CD yarns) are affixed to (rewoven into) the fabric along the edges of the ravel area at each fold (38). The affixed CD materials bind the CD yarn tails along the edges of the ravel areas to prevent migration of CD yarn tails into the seam area.

IMPROVED SEAM FOR MULTIAXIAL PAPERMAKING FABRICS

BACKGROUND OF THE INVENTION

Field of the Invention

5 The present invention relates to the seaming of multiaxial fabrics on a papermaking machine.

Description of the Prior Art

10 During the papermaking process, a cellulosic fibrous web is formed by depositing a fibrous slurry, that is, an aqueous dispersion of cellulose fibers, onto a moving forming fabric in the forming section of a paper machine. A large amount of water is drained from the slurry through the forming fabric, leaving the cellulosic fibrous web on the surface of the forming fabric.

15 The newly formed cellulosic fibrous web proceeds from the forming section to a press section, which includes a series of press nips. The cellulosic fibrous web passes through the press nips supported by a press fabric, or, as is often the case, between two such press fabrics. In the press nips, the cellulosic fibrous web is subjected to compressive forces which squeeze water therefrom, and which adhere the cellulosic fibers in the web to one another to turn the 20 cellulosic fibrous web into a paper sheet. The water is accepted by the press fabric or fabrics and, ideally, does not return to the paper sheet.

25 The paper sheet finally proceeds to a dryer section, which includes at least one series of rotatable dryer drums or cylinders, which are internally heated by steam. The newly formed paper sheet is directed in a serpentine path sequentially around each in the series of drums by a dryer fabric, which holds the paper sheet closely against the surfaces of the drums. The heated drums reduce the water content of the paper sheet to a desirable level through evaporation.

30 It should be appreciated that the forming, press and dryer fabrics all take the form of endless loops on the paper machine and function in the manner of conveyors. It should further be appreciated that paper manufacture is a continuous process which proceeds at considerable speeds. That is to say, the

fibrous slurry is continuously deposited onto the forming fabric in the forming section, while a newly manufactured paper sheet is continuously wound onto rolls after it exits from the dryer section.

The present invention relates primarily to the fabrics used in the press section, generally known as press fabrics, but it may also find application in the fabrics used in the forming and dryer sections, as well as in those used as bases for polymer-coated paper industry process belts, such as, for example, long nip press belts.

Press fabrics play a critical role during the paper manufacturing process. 10 One of their functions, as implied above, is to support and to carry the paper product being manufactured through the press nips.

Press fabrics also participate in the finishing of the surface of the paper sheet. That is, press fabrics are designed to have smooth surfaces and uniformly 15 resilient structures, so that, in the course of passing through the press nips, a smooth, mark-free surface is imparted to the paper.

Perhaps most importantly, the press fabrics accept the large quantities of water extracted from the wet paper in the press nip. In order to fulfill this function, there literally must be space, commonly referred to as void volume, within the press fabric for the water to go, and the fabric must have adequate 20 permeability to water for its entire useful life. Finally, press fabrics must be able to prevent the water accepted from the wet paper from returning to and rewetting the paper upon exit from the press nip.

Contemporary press fabrics are used in a wide variety of styles designed to meet the requirements of the paper machines on which they are installed for 25 the paper grades being manufactured. Generally, they comprise a woven base fabric into which has been needled a batting of fine, non-woven fibrous material. The base fabrics may be woven from monofilament, plied monofilament, multifilament or plied multifilament yarns, and may be single-layered, multi-layered or laminated. The yarns are typically extruded from any 30 one of several synthetic polymeric resins, such as polyamide and polyester resins, used for this purpose by those of ordinary skill in the paper machine clothing arts.

Woven fabrics take many different forms. For example, they may be woven endless, or flat woven and subsequently rendered into endless form with a seam. Alternatively, they may be produced by a process commonly known as modified endless weaving, wherein the widthwise edges of the base fabric are 5 provided with seaming loops using the machine-direction (MD) yarns thereof. In this process, the MD yarns weave continuously back and forth between the widthwise edges of the fabric, at each edge turning back and forming a seaming loop. A base fabric produced in this fashion is placed into endless form during installation on a paper machine, and for this reason is referred to as an on- 10 machine-seamable fabric. To place such a fabric into endless form, the two widthwise edges are seamed together. To facilitate seaming, many current fabrics have seaming loops on the crosswise edges of the two ends of the fabric. The seaming loops themselves are often formed by the machine-direction (MD) 15 yarns of the fabric. The seam is typically formed by bringing the two ends of the press fabric together, by interdigitating the seaming loops at the two ends of the fabric, and by directing a so-called pin, or pindle, through the passage defined by the interdigitated seaming loops to lock the two ends of the fabric 20 together.

Further, the woven base fabrics may be laminated by placing one base 25 fabric within the endless loop formed by another, and by needling a staple fiber batting through both base fabrics to join them to one another. One or both woven base fabrics may be of the on-machine-seamable type.

In any event, the woven base fabrics are in the form of endless loops, or are seamable into such forms, having a specific length, measured longitudinally 25 therearound, and a specific width, measured transversely thereacross. Because paper machine configurations vary widely, paper machine clothing manufacturers are required to produce press fabrics, and other paper machine clothing, to the dimensions required to fit particular positions in the paper machines of their customers. Needless to say, this requirement makes it difficult 30 to streamline the manufacturing process, as each press fabric must typically be made to order.

Fabrics in modern papermaking machines may have a width of from 5 to over 33 feet, a length of from 40 to over 400 feet and weigh from approximately 100 to over 3,000 pounds. These fabrics wear out and require replacement.

Replacement of fabrics often involves taking the machine out of service, 5 removing the worn fabric, setting up to install a fabric and installing the new fabric. While many fabrics are endless, about half of those used in press sections of the paper machines today are on-machine-seamable. Some Paper Industry Process Belts (PIPBs) are contemplated to have an on machine seam capability, such as some transfer belts, known as Transbelt®. Installation of the 10 fabric includes pulling the fabric body onto a machine and joining the fabric ends to form an endless belt.

In response to this need to produce press fabrics in a variety of lengths and widths more quickly and efficiently, press fabrics have been produced in recent years using a spiral winding technique disclosed in commonly assigned 15 U.S. Patent No. 5,360,656 to Rexfelt et al., the teachings of which are incorporated herein by reference.

U.S. Patent No. 5,360,656 shows a press fabric comprising a base fabric having one or more layers of staple fiber material needled thereinto. The base fabric comprises at least one layer composed of a spirally wound strip of woven 20 fabric having a width which is smaller than the width of the base fabric. The base fabric is endless in the longitudinal, or machine, direction. Lengthwise threads of the spirally wound strip make an angle with the longitudinal direction of the press fabric. The strip of woven fabric may be flat-woven on a loom which is narrower than those typically used in the production of paper machine 25 clothing.

The base fabric comprises a plurality of spirally wound and joined turns of the relatively narrow woven fabric strip. The fabric strip is woven from lengthwise (warp) and crosswise (filling) yarns. Adjacent turns of the spirally wound fabric strip may be abutted against one another, and the spirally 30 continuous seam so produced may be closed by sewing, stitching, melting, welding (e.g. ultrasonic) or gluing. Alternatively, adjacent longitudinal edge portions of adjoining spiral turns may be arranged overlappingly, so long as the

edges have a reduced thickness, so as not to give rise to an increased thickness in the area of the overlap. Alternatively still, the spacing between lengthwise yarns may be increased at the edges of the strip, so that, when adjoining spiral turns are arranged overlappingly, there may be an unchanged spacing between 5 lengthwise threads in the area of the overlap.

In any case, a base fabric, taking the form of an endless loop and having an inner surface, a longitudinal (machine) direction and a transverse (cross-machine) direction, is the result. The lateral edges of the base fabric are then trimmed to render them parallel to its longitudinal (machine) direction. The 10 angle between the machine direction of the base fabric and the spirally continuous seam may be relatively small, that is, typically less than 10°. By the same token, the lengthwise (warp) yarns of the fabric strip make the same relatively small angle with the longitudinal (machine) direction of the base fabric. Similarly, the crosswise (filling) yarns of the fabric strip, being 15 substantially perpendicular to the lengthwise (warp) yarns, make the same relatively small angle with the transverse (cross-machine) direction of the base fabric. Note, the crosswise and lengthwise yarns in the fabric strip may slip such that they are not always perpendicular to one another. In short, neither the lengthwise (warp) nor the crosswise (filling) yarns of the fabric strip align with 20 the longitudinal (machine) or transverse (cross-machine) directions of the base fabric.

A press fabric having such a base fabric may be referred to as a multiaxial press fabric. Whereas the standard press fabrics of the prior art have three axes: one in the machine direction (MD), one in the cross-machine 25 direction (CD), and one in the z-direction, which is through the thickness of the fabric, a multiaxial press fabric has not only these three axes, but also has at least two more axes defined by the directions of the yarn systems in its spirally wound layer or layers. Moreover, there are multiple flow paths in the z-direction of a multiaxial press fabric. As a consequence, a multiaxial press 30 fabric has at least five axes. Because of its multiaxial structure, a multiaxial press fabric having more than one layer exhibits superior resistance to nesting and/or to collapse in response to compression in a press nip during the

papermaking process as compared to one having base fabric layers whose yarn systems are parallel to one another.

Until recently, multiaxial press fabrics of the foregoing type had been produced only in endless form. As such, their use had been limited to press

5 sections having cantilevered press rolls and other components, which permit an endless press fabric to be installed from the side of the press section. However, their relative ease of manufacture and superior resistance to compaction contributed to an increased interest and a growing need for a multiaxial press fabric which could be seamed into endless form during installation on a press
10 section, thereby making such press fabric available for use on paper machines lacking cantilevered components. On-machine-seamable multiaxial press fabrics, developed to meet this need, are shown in commonly assigned U.S. Patents Nos. 5,916,421; 5,939,176; and 6,117,274 to Yook, the teachings of which are incorporated herein by reference.

15 U.S. Patent No. 5,916,421 shows an on-machine-seamable multiaxial press fabric for the press section of a paper machine made from a base fabric layer assembled by spirally winding a fabric strip in a plurality of contiguous turns, each of which abuts against and is attached to those adjacent thereto. The resulting endless base fabric layer is flattened to produce first and second plies
20 joined to one another at folds at their widthwise edges. Crosswise yarns are removed from each turn of the fabric strip at folds at the widthwise edges to produce unbound sections of lengthwise yarns. A seaming element, having seaming loops along one of its widthwise edges, is disposed between the first and second fabric plies at each of the folds at the two widthwise edges of the
25 flattened base fabric layer. The seaming loops extend outwardly between the unbound sections of the lengthwise yarns from between the first and second fabric plies. The first and second fabric plies are laminated to one another by needling staple fiber batting material therethrough. The press fabric is joined into endless form during installation on a paper machine by directing a pintle
30 through the passage formed by the interdigitation of the seaming loops at the two widthwise edges.

U.S. Patent No. 5,939,176 also shows an on-machine-seamable multiaxial press fabric. Again, the press fabric is made from a base fabric layer assembled by spirally winding a fabric strip in a plurality of contiguous turns, each of which abuts against and is attached to those adjacent thereto. The 5 resulting endless fabric layer is flattened to produce a first and second fabric plies joined to one another at folds at their widthwise edges. Crosswise yarns are removed from each turn of the fabric strip at the folds at the widthwise edges to produce seaming loops. The first and second plies are laminated to one another by needling staple fiber batting material therethrough. The press fabric 10 is joined into endless form during installation on a paper machine by directing a pintle through the passage formed by the interdigitation of the seaming loops at the two widthwise edges.

Finally, in U.S. Patent No. 6,117,274, another on-machine-seamable multiaxial press fabric is shown. Again, the press fabric is made from a base 15 fabric layer assembled by spirally winding a fabric strip in a plurality of contiguous turns, each of which abuts against and is attached to those adjacent thereto. The resulting endless fabric layer is flattened to produce a first and second fabric plies joined to one another at folds at their widthwise edges. Crosswise yarns are removed from each turn of the fabric strip at the folds at 20 the widthwise edges to produce unbound sections of lengthwise yarns. Subsequently, an on-machine-seamable base fabric, having seaming loops along its widthwise edges, is disposed between the first and second fabric plies of the flattened base fabric layer. The seaming loops extend outwardly between the unbound sections of the lengthwise yarns from between the first and second 25 fabric plies. The first fabric ply, the on-machine-seamable base fabric and the second fabric ply are laminated to one another by needling staple fiber batting material therethrough. The press fabric is joined into endless form during installation on a paper machine by directing a pintle through the passage formed by the interdigitation of the seaming loops at the two widthwise edges.

30 A seam is generally a critical part of a seamed fabric, since uniform paper quality, low marking and excellent runnability of the fabric require a seam which is as similar as possible to the rest of the fabric in respect of

properties such as thickness, structure, strength, permeability etc. It is important that the seam region of any workable fabric behave under load and have the same permeability to water and to air as the rest of the fabric, thereby preventing periodic marking of the paper product being manufactured by the 5 seam region. Despite the considerable technical obstacles presented by these seaming requirements, it is highly desirable to develop seamable fabrics, because of the comparative ease and safety with which they can be installed.

As discussed above in reference to U.S. Patent No. 5,939,176, a CD area of the multiaxial fabric is raveled out and the fabric is then folded over in this 10 raveled area to produce seaming loops. A drawback to this approach of creating a seam in the multiaxial fabric structure is the CD yarn tails that result in the seam area. These tails are a function of the CD yarn angle which is linked to the panel width, fabric length and panel skew. These yarn tails are not anchored into the base weave and are free to move or "migrate" into the seam area. This 15 problem is known as yarn migration. When this migration occurs, the CD ends move into the seam area and impede seaming (sometimes significantly). In addition, these unbound yarns do not provide suitable uniform support for the fiber batting material in the seam area.

Attempts have been made to use certain adhesives to bind these yarns 20 and prevent migration, but with limited success. Therefore, a need exists for an improved seam to prevent yarn migration in multiaxial fabrics.

SUMMARY OF THE INVENTION

The present invention is an improved seam for multiaxial fabrics. The 25 method provides a solution to the problem of yarn migration in the seam area. Further, the improved seam provides suitable uniform support for the fiber batting material in the seam area.

It is therefore an object of the invention to overcome the above 30 mentioned problems when seaming a papermaking fabric.

Accordingly, the present invention is both a method for seaming a papermaker's fabric, and the fabric seam made in accordance with the method.

The present invention is a method of seaming an on-machine-seamable multiaxial papermaker's fabric. The fabric is in the form of an endless loop flattened into two layers along a first fold and a second fold. Yarns in the cross-machine direction (CD) are removed from the first and second folds to create 5 ravel areas. This leaves the yarns in the machine direction (MD) unbound in the ravel areas. Seam loops are formed from the unbound MD yarns at the first and second folds. CD materials (e.g. continuous CD yarns) are affixed, rewoven or sewn into the fabric along the edges of the ravel area at each fold. The affixed CD materials act to bind the body yarn segments along the CD 10 edges of the ravel areas. The fabric is seamed by interdigitating the seam loops from the first and second folds and inserting a pindle therethrough.

The method may further comprise a step of reweaving at least one additional CD yarn into the ravel areas to impart desired characteristics to the seam area of the fabric. This additional CD yarn may be a yarn or yarns or 15 string material as set forth in U.S. Patent No. 5,476,123, sometimes referred to herein as "Circumflex", a trademark of Albany International. The affixed CD materials may be made of yarn having a thermofusible sheath or pre-attached layer of thermofusible fiber, or a spun yarn of thermofusible material. The diameter of the affixed CD materials may be less than the diameter of the CD 20 yarns in the fabric, thereby reducing the plane difference in the seam. Also, the ravel areas may be made wider than normal to accommodate the rewoven affixed CD materials in the seam loops.

Other aspects of the present invention include that the yarns in the fabric are at a slight angle with respect to the CD and MD; and therefore some of the 25 yarns removed in the CD along the edges of the ravel areas do not extend across the entire width of the fabric, leaving both complete yarns and small segments in the CD which are problematic if they migrate into the seam loop area. The fabric is formed of a woven fabric strip having a width that is less than a width of the fabric, the fabric strip being in the form of a multi-layer weave with two 30 lateral edges; wherein the lateral edges are formed such that when the fabric strip is wound around in a continuous spiral fashion to form the fabric, the lateral edges abutting or overlapping one another to form a spiral seam.

Still further aspects of the present invention include that the fabric is preferably an on-machine-seamable multiaxial press fabric for the press section of a paper machine. At least one layer of staple fiber batting material may be needled into the fabric. At least some of the yarns may be one of polyamide, 5 polyester, polybutylene terephthalate (PBT), or other resins commonly used to form yarns used in the manufacture of papermaking fabrics. Any of the yarns may have a circular cross-sectional shape, a rectangular cross-sectional shape or a non-round cross-sectional shape.

The present invention will now be described in more complete detail 10 with frequent reference being made to the drawing figures, which are identified below.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the invention, reference is made 15 to the following description and accompanying drawings, in which:

FIG. 1 is a top plan view of a multiaxial base fabric in a flattened condition;

FIG. 2 is a plan view of a portion of the surface of the multiaxial base fabric layer;

20 FIG. 3 is a schematic cross-sectional view of the flattened base fabric layer taken as indicated by line 6--6 in FIG. 1;

FIG. 4 is a schematic cross-sectional view, analogous to that provided in FIG. 3, following folding along the ravel area;

25 FIG. 5 is a plan view of the portion of the surface of the base fabric layer shown in FIG. 2 following the removal of crosswise yarns to form a ravel area;

FIG. 5A is a top view of the ravel area in a multiaxial base fabric layer as shown in FIG. 5;

30 FIG. 6 is a schematic cross-sectional view of the flattened base fabric showing the formation of seaming loops along the fold;

FIG. 7 is a schematic cross-sectional view of a seamed multiaxial press fabric as installed on a papermaking machine;

FIG. 8 is a top view of the seam area of a seamed multiaxial press fabric as shown in FIG. 7;

FIG. 9 is an enlarged schematic cross-sectional view of the seam loop area of the flattened base fabric;

5 FIG. 10 is an enlarged schematic cross-sectional view of the seam loop area of the flattened base fabric showing a rewoven continuous CD yarn to prevent yarn migration in accordance with the present invention;

10 FIG. 11 is a plan view of the portion of the surface of the base fabric layer similar to that shown in FIG. 5 showing reweaving of continuous CD yarns in the raveled area to prevent yarn migration in accordance with the present invention;

FIG. 12 is a top view of a multiaxial base fabric layer having a yarn sewn in a zigzag pattern into the raveled seam area to prevent yarn migration in accordance with an embodiment of the present invention;

15 FIG. 13 is a top view of a seam loop edge of a multiaxial base fabric layer showing a yarn blanket-stitched along the seam edge to prevent yarn migration in accordance with another embodiment of the present invention;

20 FIG. 14 is a top view of a seam loop edge of a multiaxial base fabric layer showing a yarn stitched in a zigzag pattern along the seam edge to prevent yarn migration in accordance with another embodiment of the present invention;

25 FIG. 15 is a top view of a low melt nonwoven layer inserted into the fold area of a multiaxial base fabric layer prior to heat-setting the seam loops to prevent yarn migration in accordance with still another embodiment of the present invention;

FIG. 16 is a plan view of a multiaxial base fabric layer having a Circumflex yarn sewn into the vertical raveled seam area and held in place by a fine monofilament in a zigzag pattern in accordance with the teachings of the present invention;

30 FIG. 17 is a plan view of a multiaxial base fabric layer having a Circumflex yarn sewn into an edge of the vertical raveled seam area and held in

place by a fine monofilament in a zigzag pattern in accordance with the teachings of the present invention;

FIG. 18 is a plan view of a multiaxial base fabric layer having a thin monofilament or fine sheath/core yarn straight stitched into the vertical raveled seam area in accordance with the teachings of the present invention;

FIG. 19 is a plan view of a multiaxial base fabric layer having two different yarns sewn into an edge of the vertical raveled seam area by two rows of stitching in accordance with the teachings of the present invention;

FIG. 20 is a plan view of a multiaxial base fabric layer having two different yarns sewn into the vertical raveled seam area by one row of stitching in a two-step zigzag pattern in accordance with the teachings of the present invention;

FIG. 21 is a plan view of a multiaxial base fabric layer having a Circumflex yarn sewn into an edge of the vertical raveled seam area and held in place by a fine monofilament in another stitching pattern in accordance with the teachings of the present invention;

FIG. 22 is a plan view of a multiaxial base fabric layer having two Circumflex yarns sewn on top of the vertical raveled seam area and held in place by a monofilament on the backside in a zigzag pattern using twin needles in accordance with the teachings of the present invention; and

FIG. 23 is a plan view of a multiaxial base fabric layer having a Circumflex yarns sewn into the backside of the vertical raveled seam area and held in place by a monofilament on the top and bottom using twin needles in accordance with the teachings of the present invention.

25

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The preferred embodiments of the present invention will now be described by reference to Figure 1. Figure 1 is a top plan view of a multiaxial base fabric in a flattened condition. Once the base fabric 22 has been assembled, as taught in commonly assigned U.S. Patents Nos. 5,916,421; 5,939,176; and 6,117,274 to Yook described hereinabove, it is flattened as shown in the plan view presented in FIG. 1. This places base fabric layer 22

into the form of a two-ply fabric of length, L, which is equal to one half of the total length, C, of the base fabric layer 22 and width, W. Seam 20 between adjacent turns of woven fabric strip 16 slants in one direction in the topmost of the two plies, and in the opposite direction in the bottom ply, as suggested by 5 the dashed lines in FIG. 1. Flattened base fabric layer 22 has two widthwise edges 36.

FIG. 3 is a schematic cross-sectional view taken as indicated by line 6--6 in FIG. 1. In accordance with the present invention, a plurality of crosswise 10 yarns 28 of fabric strip 16 and of segments thereof are removed from adjacent the folds 38 to produce a first fabric ply 40 and a second fabric ply 42 joined to one another at their widthwise edges 36 by unbound sections of lengthwise 15 yarns 26. FIG. 4 is a schematic cross-sectional view, analogous to that provided in FIG. 3, of one of the two widthwise edges 36 of the flattened base fabric layer 22 following the removal of the crosswise yarns. These unbound sections 44 of lengthwise yarns 26 ultimately form seaming loops for use in joining the papermaker's fabric to be produced from base fabric layer 22 into endless form during installation on a paper machine, as taught in the Yook '176 patent.

FIG. 2 is a plan view of a portion of the surface of the multiaxial base 20 fabric layer at a point on one of the folds 38 near the spirally continuous seam 25 between two adjacent spiral turns of fabric strip 16. Lengthwise yarns 26 and crosswise yarns 28 are at slight angles with respect to the machine direction (MD) and cross-machine direction (CD), respectively.

The fold 38, which is flattened during the removal of the neighboring 25 crosswise yarns 28, is represented by a dashed line in FIG. 2. In practice, the base fabric layer 22 would be flattened, as described above, and the folds 38 at its two widthwise edges 36 marked in some manner, so that its location would be clear when it was flattened. In order to provide the required unbound 30 sections of lengthwise yarns 26 at the fold 38, it is necessary to remove the crosswise yarns 28 from a region, defined by dashed lines 46,48 equally separated from fold 38 on opposite sides thereof. This process, called raveling, creates a ravel area in the fabric.

FIG. 5 is a plan view of the portion of the surface of the base fabric layer shown in FIG. 2 following the removal of crosswise yarns from the region centered about the fold 38. Unbound sections 44 of lengthwise yarns 26 extend between dashed lines 46,48 in the region of the fold 38. The portion of 5 crosswise yarn 50 which extended past dashed line 46 has been removed, as noted above.

The provision of the unbound sections of lengthwise yarns 26 at the two widthwise edges 36 of the flattened base fabric layer 22 is complicated by two factors. Firstly, because the fabric strip 16 has a smaller width than the base 10 fabric layer 22, its crosswise yarns 28 do not extend for the full width of the base fabric layer 22. Secondly, and more importantly, because the fabric strip 16 is spirally wound to produce base fabric layer 22, its crosswise yarns do not lie in the cross-machine direction of the base fabric layer 22 and therefore are not parallel to the folds 38. Instead, the crosswise yarns 28 make a slight angle, 15 typically less than 10 degrees, with respect to the cross-machine direction of the base fabric layer 22. Accordingly, in order to provide the unbound sections of lengthwise yarns 26 at folds 38, crosswise yarns 28 must be removed in a stepwise fashion from the folds 38 across the width, W , of the base fabric layer 22.

20 In other words, since the crosswise yarns 28 are not parallel to fold 38 or dashed lines 46,48, in multiaxial fabrics it is often necessary to remove only a portion of a given crosswise yarn 28, such as in the case with crosswise yarn 50 in FIG. 2, in order to clear the space between dashed lines 46,48 of crosswise yarns 28.

25 FIG. 5A is a top view of the ravel area in a multiaxial base fabric layer as shown in FIG. 5. Note the CD yarns (horizontal in this view) along the edges of the ravel area do not extend across the entire fabric, but are clipped at some point as they angle into the ravel area. These clipped CD yarns 50 are referred to as CD tails. Because the CD tails do not fully extend across the fabric, they 30 are particularly susceptible to migration into the ravel/seam loop area.

FIG. 6 is a schematic cross-sectional view of the flattened base fabric showing an exemplary method of forming seaming loops along the fold. In this

particular method, a loop-forming cable 52 is installed between first fabric ply 40 and second fabric ply 42 and against unbound sections of lengthwise yarns 26. Stitches 54, for example, may be made to connect first fabric ply 40 to second fabric ply 42 adjacent to loop-forming cable 52 to form seaming loops 56 from the unbound sections of the lengthwise yarns 26. Alternatively, first fabric ply 40 may be connected to second fabric ply 42 adjacent to loop-forming cable 52 by any of the other means used for such a purpose by those of ordinary skill in the art. Loop-forming cable 52 is then removed leaving the seaming loops 56 formed in the foregoing manner at the two widthwise edges 10 36 of the flattened base fabric layer 22.

FIG. 7 is a schematic cross-sectional view of a seamed multiaxial press fabric as installed on a papermaking machine. Figure 7 shows a laminated fabric comprising the flattened base fabric layer 22 raveled at both folds with projecting seam loops resulting in on-machine-seamable base fabric 60. The 15 ends of on-machine-seamable base fabric 60 are joined to one another by one or more layers of staple fiber batting material 80 needled into and through the base fabric 60 to complete the manufacture of the present on-machine-seamable laminated multiaxial press fabric. The staple fiber batting material 80 is of a polymeric resin material, and preferably is of a polyamide or polyester resin. 20 The seaming loops 56 of the base fabric layer are interdigitated together and a seam is formed by the insertion of pindle 58.

FIG. 8 is a top view of the seam area of a seamed multiaxial press fabric as shown in FIG. 7. As discussed above, a major drawback of creating a seam in the multiaxial structure are the CD tails that result in the seam area. Figure 8 25 shows CD tails 100 which have migrated into the seam area. The tails are a function of the CD yarn angle which is linked to the panel width, fabric length and panel skew of the multiaxial fabric base. These CD yarns are not anchored into the base weave, but free to move or "migrate." Certain adhesive systems have been tried to cement the yarns in place, but with limited success. When 30 migration occurs, the CD ends move into the seam area and impede seaming (sometimes significantly).

FIG. 9 is an enlarged schematic cross-sectional view of the seam loop area of the flattened base fabric. CD yarns or tails 70 and 72 are unbound and may migrate into the seam loop area. Specifically, CD yarn 70 is free to migrate into the seam loop 56 and impede seaming. In addition, CD yarn 72 5 may also shift around in the seam area and result in further uneven support for the batting material in the seam area. These migrating yarns or yarn tails cause many difficulties when seaming the fabric on the paper machine.

FIG. 10 is an enlarged schematic cross-sectional view of the seam loop area of the flattened base fabric showing a rewoven continuous CD yarn to 10 prevent yarn migration in accordance with the present invention. To prevent yarn migration, one embodiment of the present invention weaves a continuous CD yarn 82 across the width of the fabric along each edge of the ravel area. When the fabric is folded and the seam loops are formed, this continuous CD 15 yarn 82 effectively blocks the unbound CD tail yarns from migrating into the seam loops 56. Additional continuous CD yarns 84 can also be woven into the ravel area to impart desired characteristics to the fabric in the seam area. For example, a yarn, yarns, or string material may be added after the continuous CD 20 yarn to provide batting support in the seam area, among other things.

The present invention uses CD materials affixed along the edge(s) of the 25 ravel area to prevent yarn migration. The CD materials include continuous CD yarns, CD yarn segments, CD strips of material, and other suitable materials commonly used in the art. The materials may be affixed to the base fabric by reweaving, sewing/stitching, stapling, gluing, melting, or any other suitable technique known to those skilled in the art. For those embodiments involving woven materials, the CD materials may be rewoven with higher/lower floats on either side of the base fabric. In addition, various CD materials may be affixed 30 in different sequences and/or patterns.

FIG. 11 is a plan view of the portion of the surface of the base fabric layer similar to that shown in FIG. 5 showing reweaving of one or more 35 continuous CD yarns 55 into the fabric body without tails on both the roll and sheet-side of the raveled area to prevent yarn migration in accordance with the present invention. Additionally, a Circumflex yarn 57 may be woven into the

body on one or both sides of the raveled area. This embodiment of the present invention essentially uses the benefits of conventional woven technology to reweave yarns into the seam area of a multiaxial product. In order to prevent the migration of CD tails while maintaining the desirable features inherent in woven seamed products, the present invention re-weaves several yarns back into the seam loop area of the multiaxial fabric. First, the raveled area is made wider than normal in order to accept additional CD materials. The width of the ravel is easily controlled as understood by those skilled in the art. The new ravel width may be any width desired to accept the seam enhancements of the present invention. At a minimum, the ravel area is increased by at least the width of two CD yarns, but this may be as many yarn widths as desired. A shed is then opened in the raveled area (the means of doing this are not considered part of the invention and this may be done either by hand or be completely mechanized across the full width of the fabric). Once the shed is opened, a desired weave pattern is selected (which does not have to be the same pattern as the body weave in the seamed multiaxial base). For example, a two shed weave in phase sequence with the last CD ends or tails may be used to insert two continuous full width yarns across the edges of the raveled area. Both yarns are inserted simultaneously and positioned to either side of the ravel. The existing CD tails cannot migrate past these woven in yarns.

FIG. 12 is a top view of a multiaxial base fabric layer having low melt yarns 120 sewn in a zigzag pattern into both sides of a raveled seam area to prevent yarn migration in accordance with an embodiment of the present invention. “Low melt” is defined as a yarn having a component material with a melting point lower than the polymer used in the fabric yarns. The raveled area is then folded over for the seam formation, stapling, and line sewing processes. When the entire fabric is heat-set to stabilize the fabric dimensions, the low melt yarns are fused together thereby holding the CD end yarns and tails in place. Alternatively, the sewn zigzag yarn can be ultrasonically spot welded to the fabric at various points.

Other embodiments of the invention may be applied after the seam has been formed, stapled, and sewn along the alignment lines. As shown in FIG.

13, a yarn 130 may be blanket stitched along a seam loop edge of a multiaxial base fabric layer to prevent yarn migration. Another embodiment of the present invention, as shown in FIG. 14, is a yarn 140 stitched in a zigzag pattern along the seam loop edge of a multiaxial base fabric layer to prevent yarn migration.

5 Further, yarn 130 in FIG. 13 and yarn 140 in FIG. 14 may be low melt yarns similar to yarn 120 disclosed above in reference to FIG. 12.

Another embodiment of the invention is to insert a low melt nonwoven strip 150 into the fold/raveled area of a multiaxial base fabric layer prior to heat-setting the seam loops to prevent yarn migration as shown in FIG. 15.

10 When the loops are heat set, the strip forms an adhesive which when cooled holds the CD yarns in place, thereby preventing yarn migration. Alternatively, before the fabric is folded to form the seam, the low melt nonwoven strip 150 may be affixed (e.g. ironed or glued) onto one side of the raveled area, such that when the fabric is folded to form the seam loops the nonwoven strip is inside

15 the seamed area.

The yarn material may be any material desired that would reduce seam wear, reduce seam popping or noise at the uhole box, and/or reduce seam plane difference, to improve seaming times, etc. The yarn diameters may be less than the CD body yarn diameters thereby reducing the plane difference imparted to

20 the seam. The yarns may also be of a much smaller diameter but with a thermofusible sheath or layer of thermofusible fiber pre-attached, or be a spun yarn of thermofusible material, or simply be of a standard monofilament material. These rewoven yarns can then be fused into place.

25 Any yarns added to prevent yarn migration, as taught herein, may be inserted, woven, and/or sewn by hand or by machine as required. In addition, these yarns may be added and/or stitched in numerous patterns including, but not limited to, the zigzag and blanket stitch patterns disclosed herein.

If necessary, additional CD yarns can be inserted continuously on each side of the ravel to produce any desired fabric properties or required width. For

30 example, it may be desirable to insert another yarn as a Circumflex yarn as aforementioned to further reduce seam wear, marking and noise. This

Circumflex yarn is optional, but would be inserted in the same manner to further improve the seamed product.

As mentioned previously, the improved seam may be produced to ensure suitable uniform support for fiber batting material in the seam area. This 5 may be accomplished through the addition of one or more additional yarns in the raveled area. Essentially, the additional yarns act as a substitute for the different caliper and properties of the seam area resulting at least in part from the removal of the original CD body yarns to create the ravel. These yarns may be any suitable combination of Circumflex and other type yarns. Further, 10 various stitching and other techniques may be used to secure the yarns. Figures 16-23 show a number of exemplary suitable combinations in accordance with the teachings of the present invention. Each figure shows a plan view of a multiaxial base fabric layer having a vertical raveled seam area. In FIG. 16, a Circumflex yarn 160 is sewn into the raveled seam area and held in place by a 15 fine monofilament yarn 170 sewn in a zigzag pattern. Note the Circumflex yarn may be positioned at any location between the edges of the raveled area. In FIG. 17, the Circumflex yarn 160 is sewn into the edge of the raveled seam area. FIG. 18 shows a thin monofilament or fine sheath/core yarn 180 straight stitched into the raveled seam area. Again, this yarn may be positioned at any 20 location between the edges of the raveled area. FIG. 19 shows two different yarns sewn into an edge of the raveled seam area by two rows of stitching 190. The different yarns may be of differing coarseness, size, and material. FIG. 20 shows two different yarns sewn into the raveled seam area and held in place by one row of stitching sewn in a two-step zigzag pattern 200. FIG. 21 shows an 25 additional yarn sewn into an edge of the raveled seam area by a fine monofilament using another stitching pattern 210. Any suitable type of stitching may be used as deemed appropriate. In FIG. 22, two Circumflex yarns are sewn on top of the raveled seam area and held in place by a monofilament on the backside in a zigzag pattern using twin needles (not shown) in patterns 30 220. Similarly, FIG. 23 shows a Circumflex yarns sewn into the backside of the vertical raveled seam area and held in place by a monofilament on the top and bottom using twin needles in pattern 230.

The present invention not only prevents CD yarn migration that impedes seaming the fabric, but the width of the ravel area and weave pattern of the inserted yarns can be selected to impart diverse properties to the seam area that were not previously possible with multiaxial seamed products, but are often 5 inherent in woven seamed products. Hence, the present invention provides the ability to combine the inherent advantages of a multiaxial base design with the inherent advantages of a woven seam fabric.

For example, thermofusible monofilament yarns are often not desirable as CD yarns for a fabric body (especially before bonding) and sheath/core 10 thermofusible yarn technology is also expensive. However, thermofusible or adhesive activated yarns can be both advantageous and cost effective when introduced into the seam area before the loop heatset. The melting point of these materials can be chosen so that these yarns are not activated during the loop heatset, but rather during the final curing when all CD ends are ready for 15 bonding and fixing before cutting the seam and shipping the fabric to the customer.

The fabric being woven to provide the on-machine-seamable base fabric may be either single or multi-layer, and may be woven from monofilament, plied monofilament or multifilament yarns of a synthetic polymeric resin, such 20 as polyester or polyamide. The yarns which form the seaming loops 56 and are ultimately the lengthwise yarns, are preferably monofilament yarns.

The fabric according to the present invention comprises yarns preferably of polyester, polyamide, polybutylene terephthalate (PBT) or other polymers known to those skilled in the art. Bicomponent or sheath/core yarns can also be 25 employed. Any combination of polymers for any of the yarns can be used as identified by one of ordinary skill in the art. The CD and MD yarns may have a circular cross-sectional shape with one or more different diameters. Further, in addition to a circular cross-sectional shape, one or more of the CD, MD, or rewoven/sewn-in yarns may have other cross-sectional shapes such as a 30 rectangular cross-sectional shape or a non-round cross-sectional shape.

Modifications to the above would be obvious to those of ordinary skill in the art, but would not bring the invention so modified beyond the scope of the present invention. The claims to follow should be construed to cover such situations.

WHAT IS CLAIMED IS:

1. A method of seaming an on-machine-seamable multiaxial papermaker's fabric, the fabric being in the form of an endless loop flattened into two layers along a first fold and a second fold; comprising the steps of:
 - 5 removing yarns in the cross-machine direction (CD) from the first and second folds to create ravel areas; yarns in the machine direction (MD) being unbound in the ravel areas;
 - 10 forming seam loops from the unbound MD yarns at the first and second folds;
 - 15 affixing CD materials along the edges of the ravel area at each fold, thereby binding the yarns along the CD edges of the ravel areas; and
 - 20 seaming the fabric by interdigitating the seam loops from the first and second folds and inserting a pindle therethrough.
2. The method of claim 1, further comprising a step of reweaving at least one additional CD yarn into the ravel areas to impart desired characteristics to the seam area of the fabric.
3. The method of claim 2, wherein the additional CD yarn is a Circumflex yarn.
4. The method of claim 1, wherein the affixing CD materials are yarns having a thermofusible sheath/core or pre-attached layer of thermofusible fiber, or a spun yarn of thermofusible material.
5. The method of claim 1 wherein the affixing CD materials comprises a flat strip of material.
- 30 6. The method of claim 1, wherein the affixing CD materials are affixed CD yarns and the diameter of the affixing CD yarns is less than the

diameter of the CD yarns in the fabric, thereby reducing the plane difference of the seam.

7. The method of claim 1, wherein yarns in the fabric are at a slight
5 angle with respect to the CD and MD; and therefore at least some of the yarns removed in the CD along the edges of the ravel areas do not extend across the entire width of the fabric.

8. The method of claim 1, wherein the fabric is formed of a woven
10 fabric strip having a width that is less than a width of the fabric, the fabric strip being woven with two lateral edges; wherein the lateral edges are formed such that when the fabric strip is wound around in a continuous spiral fashion to form the fabric, adjacent lateral edges of the woven fabric strip are overlapping to form a spirally-wound seam.

15 9. The method of claim 1, further comprising the step of needling at least one layer of staple fiber batting material into the fabric.

10. The method of claim 9, wherein the fabric is an on-machine-
20 seamable laminated multiaxial press fabric for the press section of a paper machine.

11. The method of claim 1, wherein the affixing CD materials are
25 yarns and at least some of the yarns are polyamide, polyester, polybutylene terephthalate (PBT), or bi-component sheath/core yarns.

12. The method of claim 1, wherein the affixing CD materials are
30 yarns and at least some of the yarns have a circular cross-sectional shape, a rectangular cross-sectional shape or a non-round cross-sectional shape.

13. The method of claim 1, wherein the affixing step involves
reweaving continuous CD yarns along the edges of the ravel area.

14. The method of claim 13, wherein the ravel areas are made wider to accommodate the rewoven continuous CD yarns in the seam loops.

5 15. A papermaker's fabric, comprising:
 a multiaxial fabric base in the form of an endless loop flattened
 into two layers along a first fold and a second fold;
 the fabric base having seam loops formed from unbound
 machine direction (MD) yarns in ravel areas along the first and second
10 folds; the ravel areas being formed by removing yarns in the cross-
 machine direction (CD), thereby leaving yarns in the MD unbound in the
 ravel areas; and
 CD materials being affixed to the fabric base along the edges of
 the ravel area at each fold, thereby binding the yarns along the CD edges
15 of the ravel areas.

16. The papermaker's fabric of claim 15, wherein the fabric is seamed by interdigitating the seam loops from the first and second folds and inserting a pintle therethrough.

20 17. The papermaker's fabric of claim 15, further comprising at least one additional CD yarn rewoven into the ravel areas to impart desired characteristics to the seam area of the fabric.

25 18. The papermaker's fabric of claim 17, wherein the additional CD yarn is a Circumflex yarn.

30 19. The papermaker's fabric of claim 15, wherein the affixed CD materials are yarns having a thermofusible sheath or pre-attached layer of thermofusible fiber, or a spun yarn of thermofusible material.

20. The papermaker's fabric of claim 15 wherein the affixed CD materials comprises a flat strip of material.

5 21. The papermaker's fabric of claim 15, wherein the affixed CD materials is affixed CD yarns and the diameter of the affixed CD yarns is less than the diameter of the CD yarns in the fabric base, thereby reducing a plane difference of the seam.

10 22. The papermaker's fabric of claim 15, wherein yarns in the fabric base are at a slight angle with respect to the CD and MD; and therefore at least some of the yarns removed in the CD along the edges of the ravel areas do not extend across the entire width of the fabric.

15 23. The papermaker's fabric of claim 15, wherein the fabric base is formed of a woven fabric strip having a width that is less than a width of the fabric, the fabric strip being in the form of a multi-layer weave with two lateral edges; wherein the lateral edges are formed such that when the fabric strip is wound around in a continuous spiral fashion to form the fabric base, adjacent lateral edges of the woven fabric strip are overlapping to form a spirally-wound 20 seam.

25 24. The papermaker's fabric of claim 15, wherein the fabric is an on-machine-seamable laminated multiaxial press fabric for the press section of a paper machine.

25. The papermaker's fabric of claim 15, further comprising at least one layer of staple fiber batting material needled into the fabric.

30 26. The papermaker's fabric of claim 15, wherein the affixed CD materials are yarns and at least some of the yarns are polyamide, polyester, or polybutylene terephthalate (PBT) yarns.

27. The papermaker's fabric of claim 15, wherein the affixed CD materials are yarns and at least some of the yarns have a circular cross-sectional shape, a rectangular cross-sectional shape or a non-round cross-sectional shape.

5 28. The papermaker's fabric of claim 15, wherein the CD materials affixed to the fabric base are continuous CD yarns rewoven into the fabric base.

10 29. The papermaker's fabric of claim 28, wherein the ravel areas are made wider to accommodate the rewoven continuous CD yarns in the seam loops.

30. The method of claim 1, wherein the CD materials are affixed along the edges of the ravel area using a zigzag stitching pattern.

15 31. The method of claim 1, wherein the CD materials are affixed along the edges of the ravel area using a blanket stitching pattern.

20 32. The papermaker's fabric of claim 15, wherein the CD materials are affixed along the edges of the ravel area using a zigzag stitching pattern.

33. The papermaker's fabric of claim 15, wherein the CD materials are affixed along the edges of the ravel area using a blanket stitching pattern.

25 34. A method of seaming an on-machine-seamable multiaxial papermaker's fabric, the fabric being in the form of an endless loop flattened into two layers along a first fold and a second fold; comprising the steps of:

30 removing yarns in the cross-machine direction (CD) from the first and second folds to create ravel areas; yarns in the machine direction (MD) being unbound in the ravel areas;
forming seam loops from the unbound MD yarns at the first and second folds;

affixing the edges of the ravel area in the CD at each fold using a stitching pattern, thereby binding the yarns along the CD edges of the ravel areas; and

5 seaming the fabric by interdigitating the seam loops from the first and second folds and inserting a pindle therethrough.

35. The method of claim 34, wherein the stitching pattern is a zigzag stitching pattern.

10 36. The method of claim 34, wherein the stitching pattern is a blanket stitching pattern.

37. The method of claim 34, wherein CD materials are affixed along the edges of the ravel area using the stitching pattern.

15 38. A papermaker's fabric, comprising:
a multiaxial fabric base in the form of an endless loop flattened into two layers along a first fold and a second fold;
the fabric base having seam loops formed from unbound machine direction (MD) yarns in ravel areas along the first and second folds; the ravel areas being formed by removing yarns in the cross-machine direction (CD), thereby leaving yarns in the MD unbound in the ravel areas; and

20 25 wherein the edges of the ravel area in the CD are affixed at each fold using a stitching pattern, thereby binding the yarns along the CD edges of the ravel areas.

39. The papermaker's fabric of claim 38, wherein the stitching pattern is a zigzag stitching pattern.

30 40. The papermaker's fabric of claim 38, wherein the stitching pattern is a blanket stitching pattern.

41. The papermaker's fabric of claim 38, wherein CD materials are affixed along the edges of the ravel area using the stitching pattern.

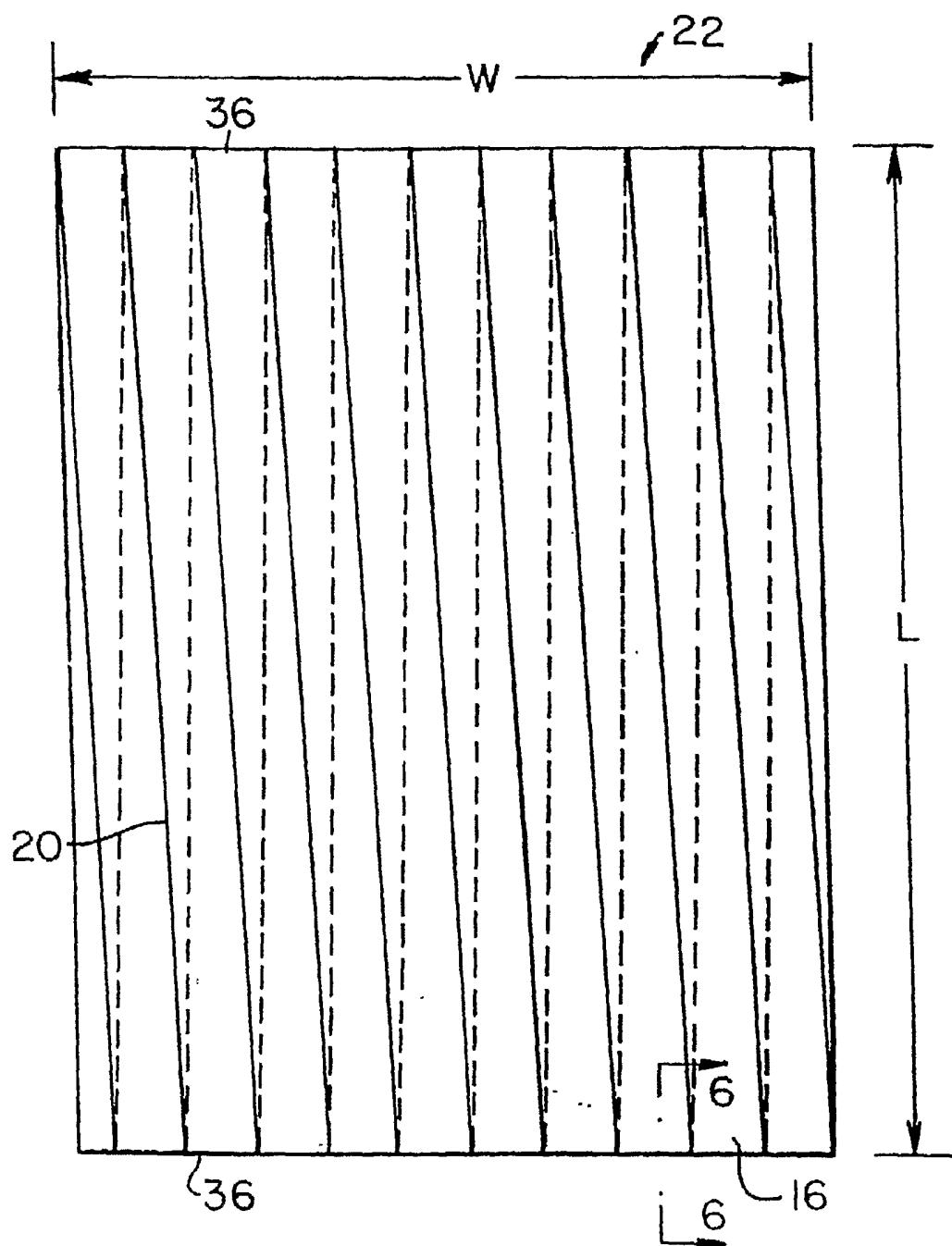


FIG. 1

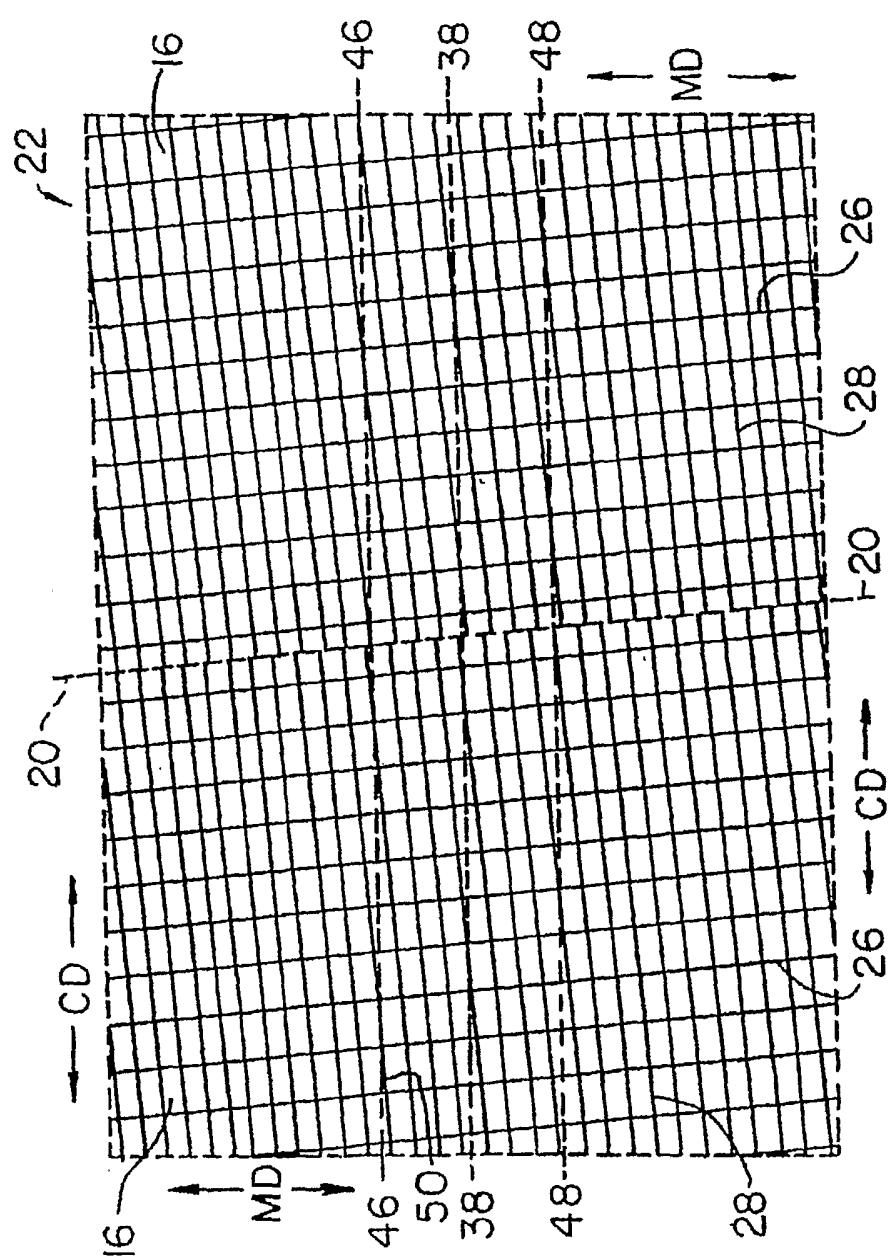


FIG. 2

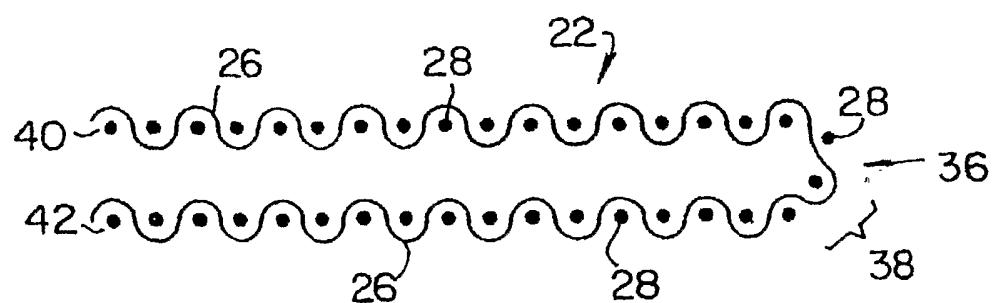


FIG. 3

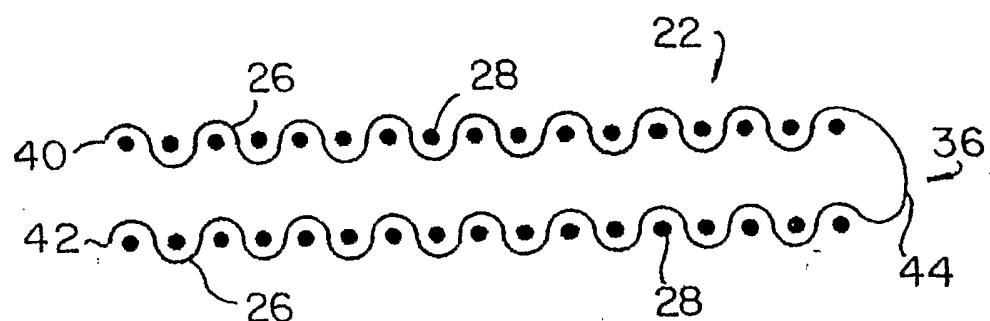
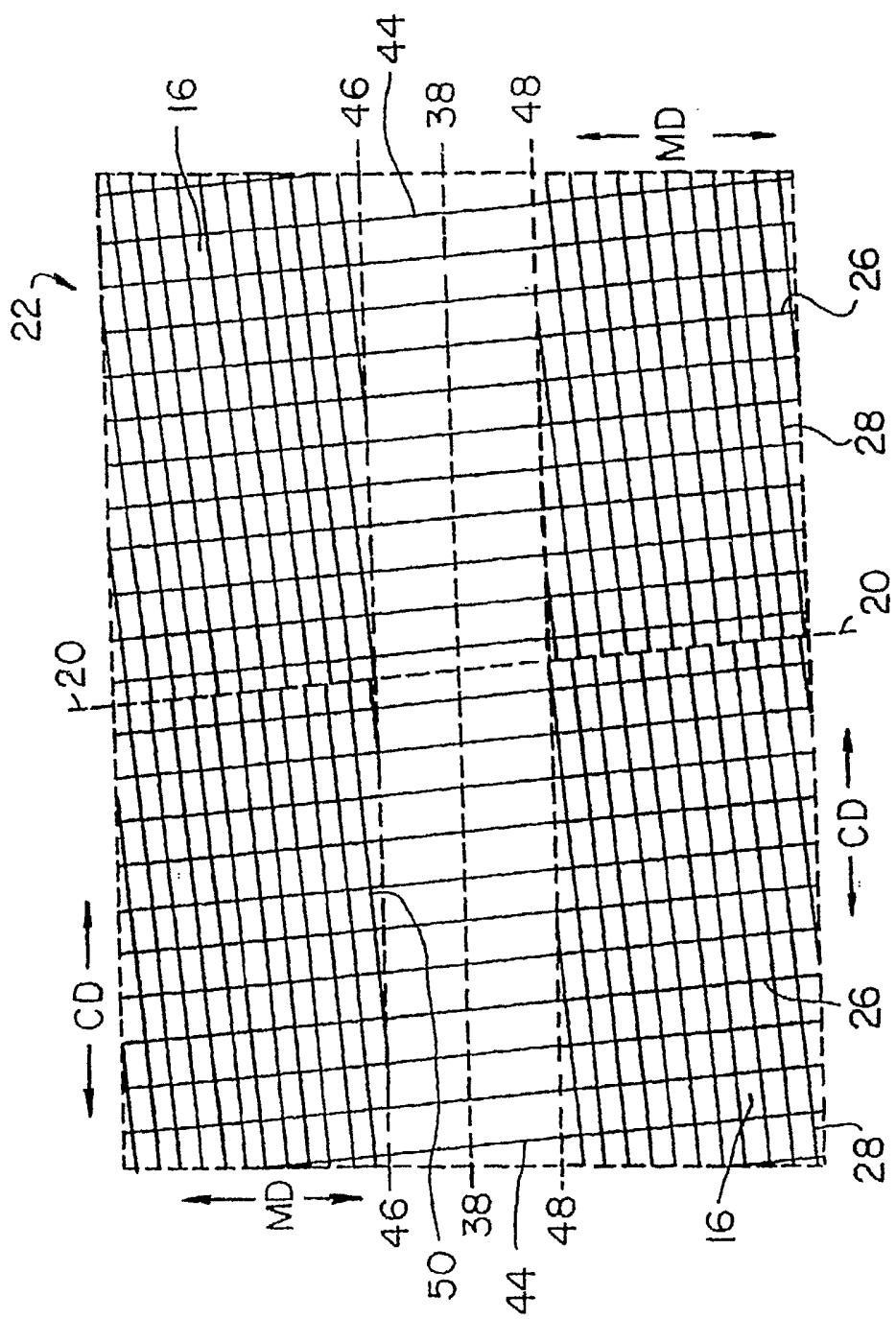
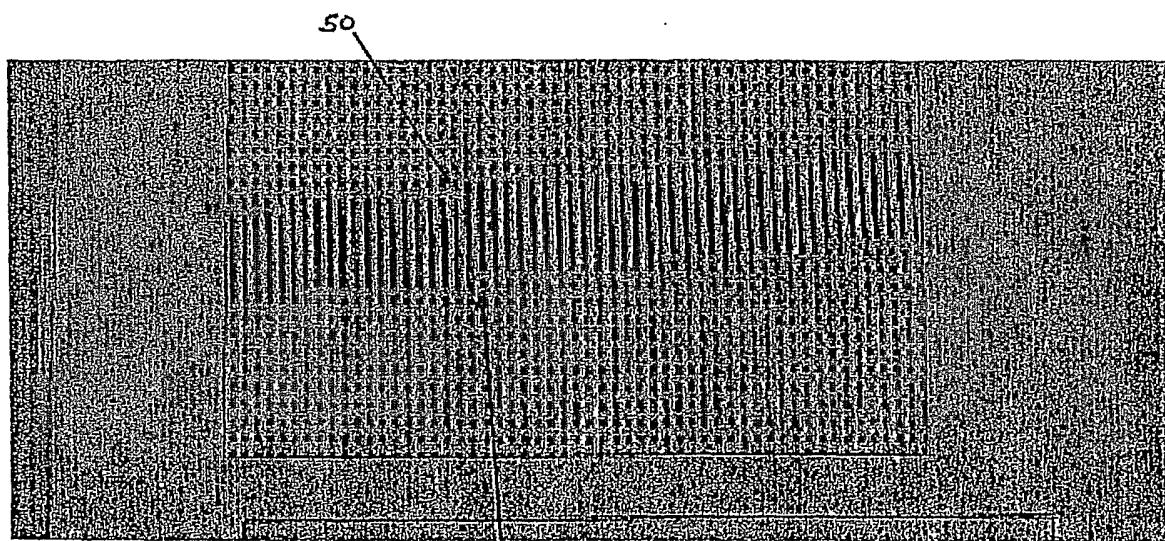
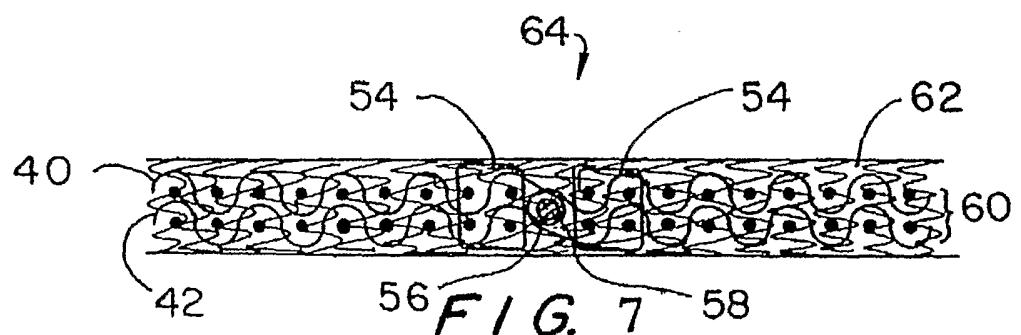
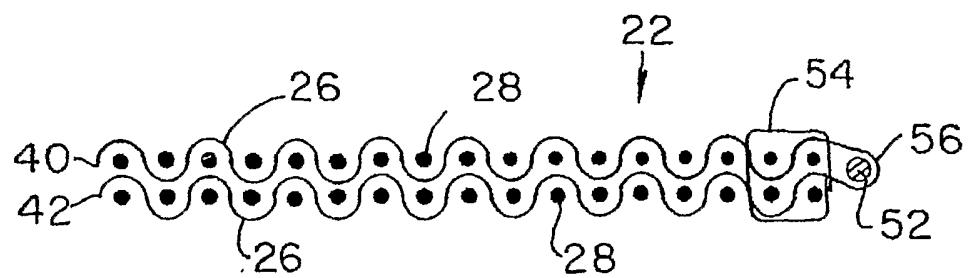






FIG. 4

50 FIG. 5A

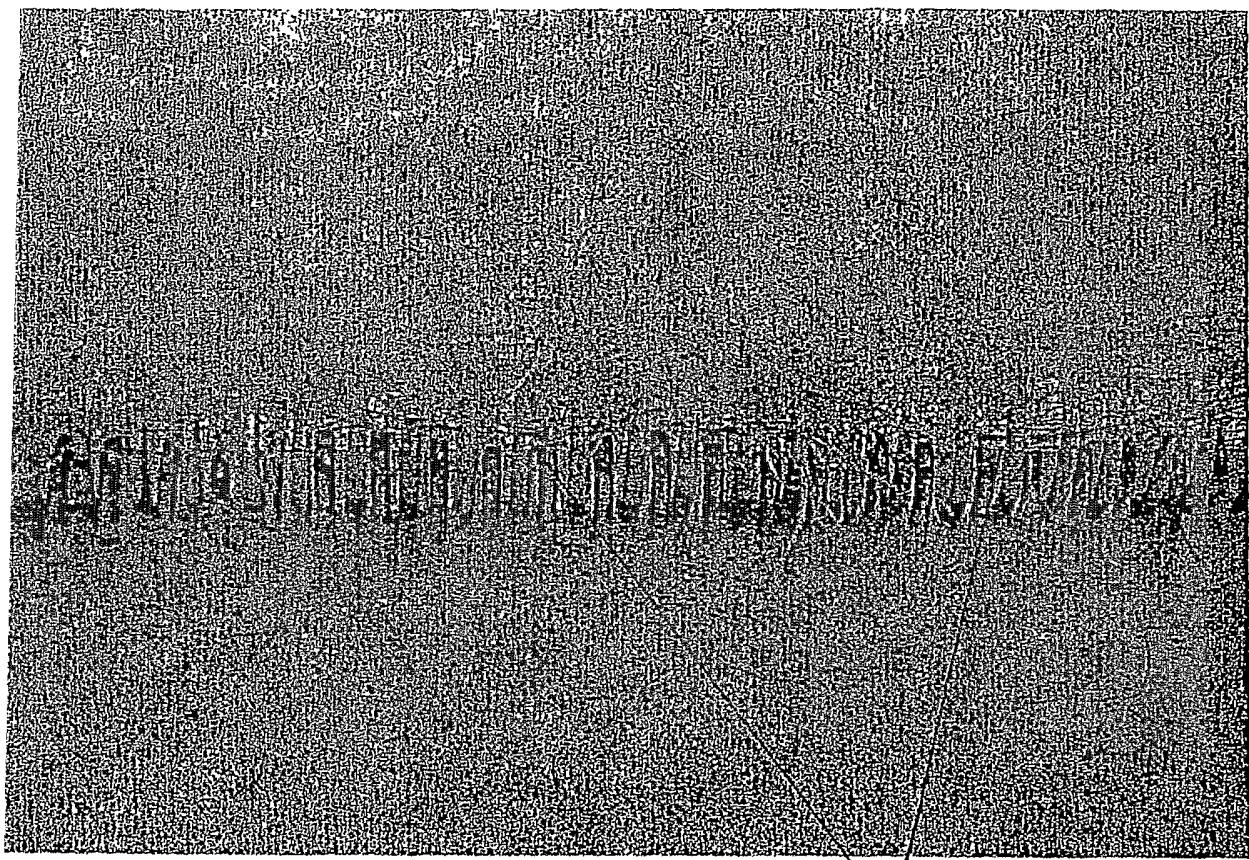


FIG. 8

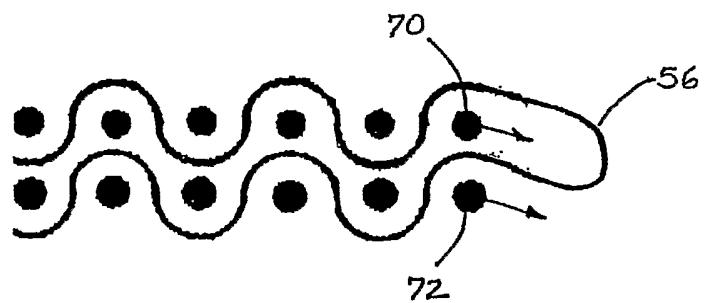


FIG. 9

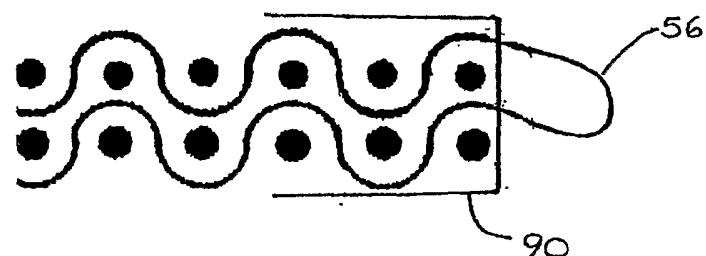


FIG. 10

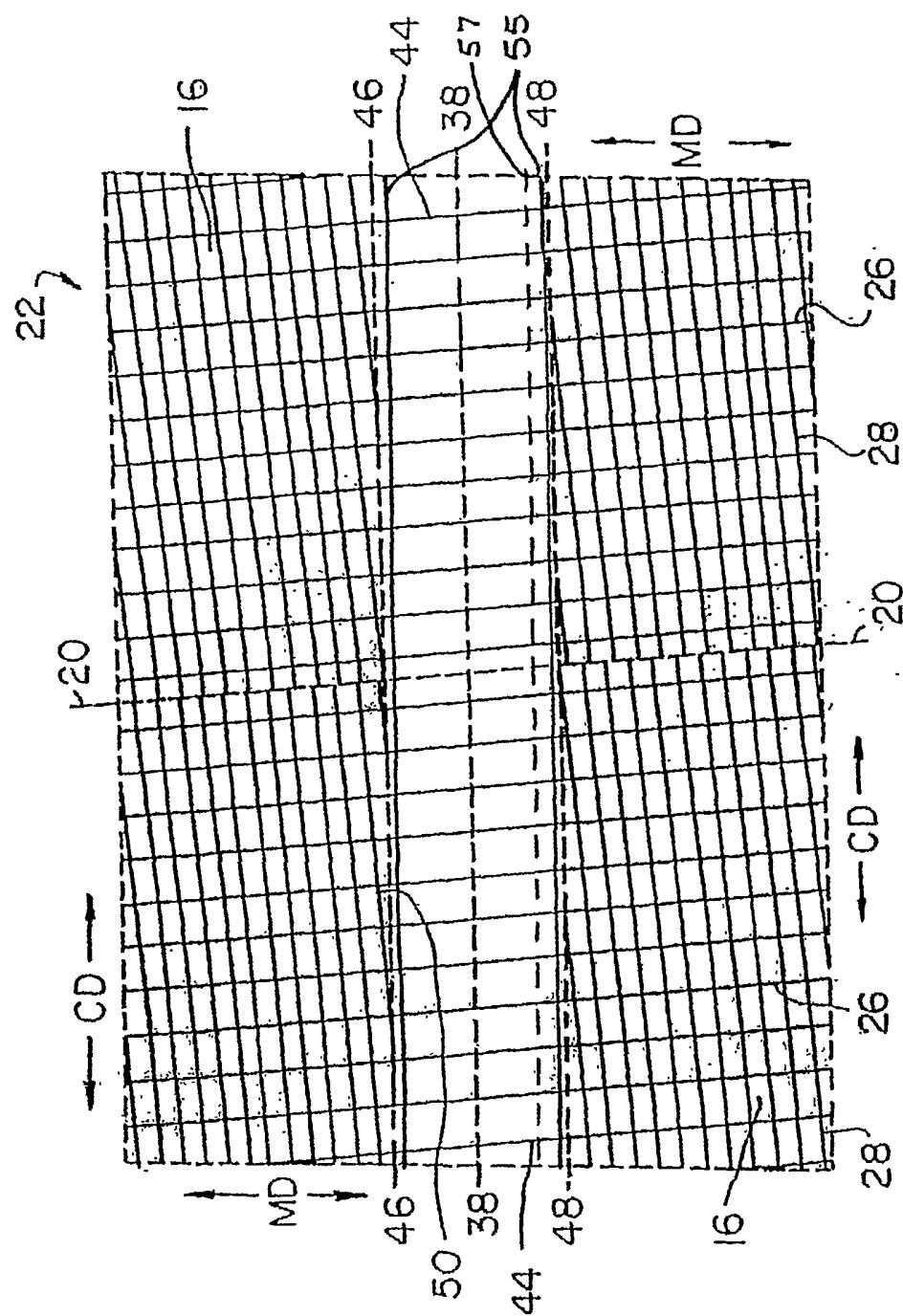


FIG. 11

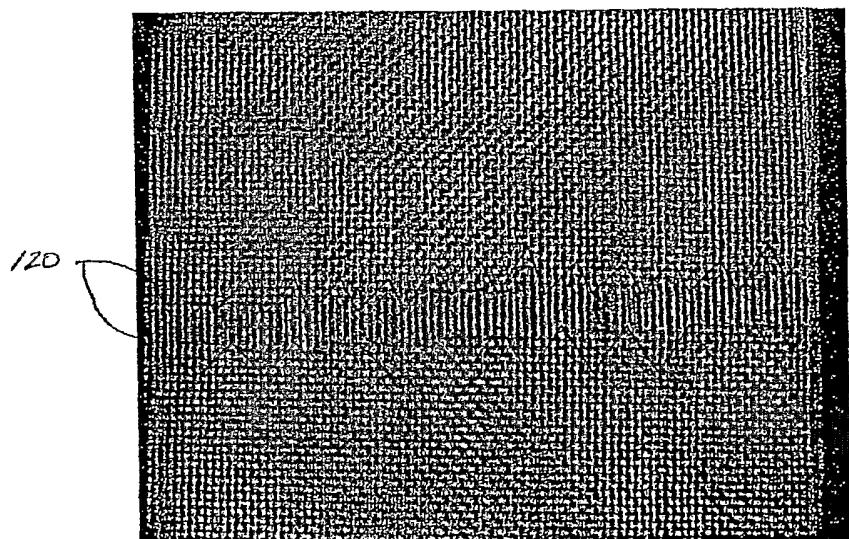


Figure 12

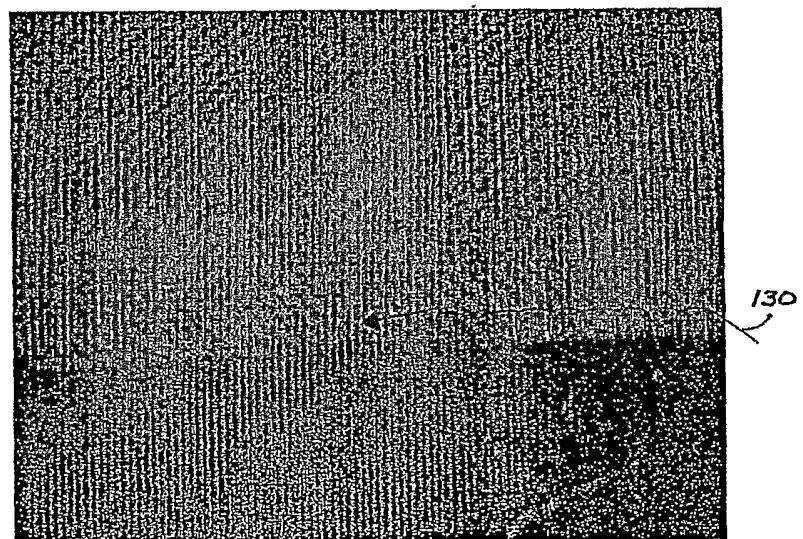


Figure 13

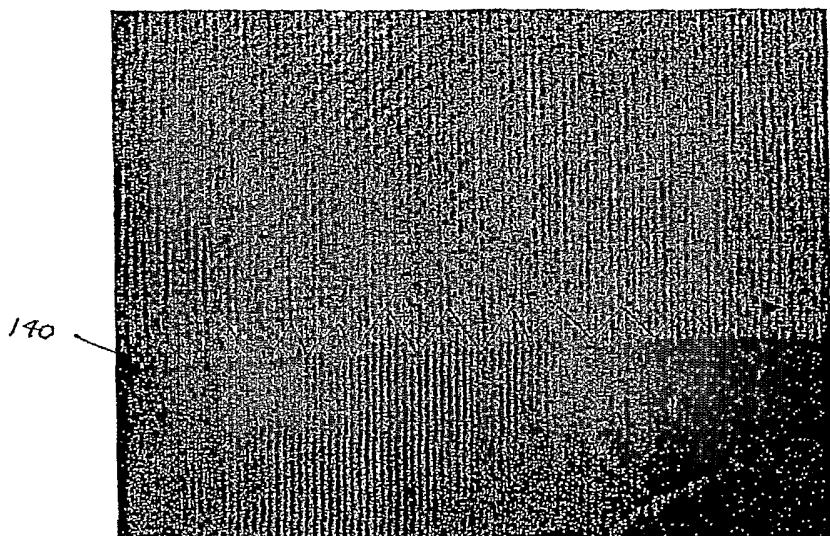


Figure 14

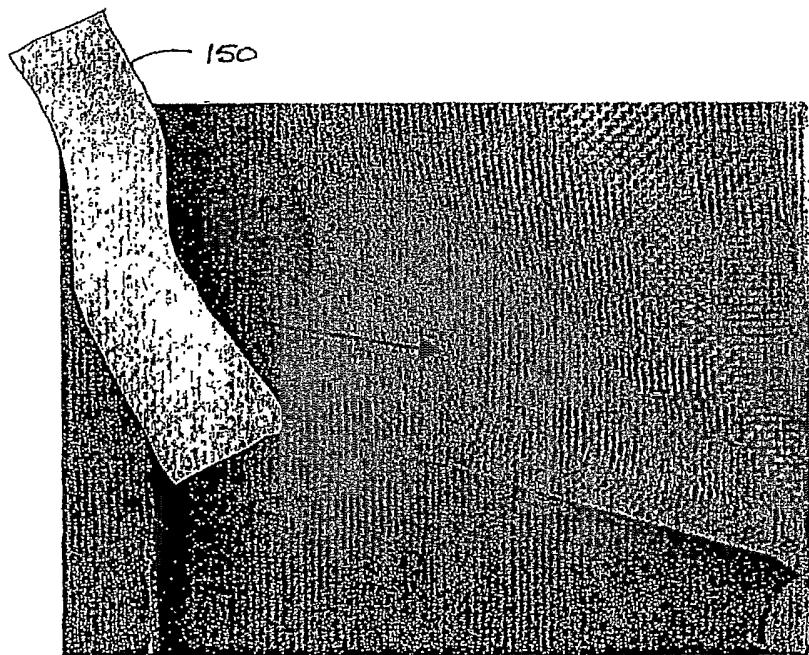


Figure 15

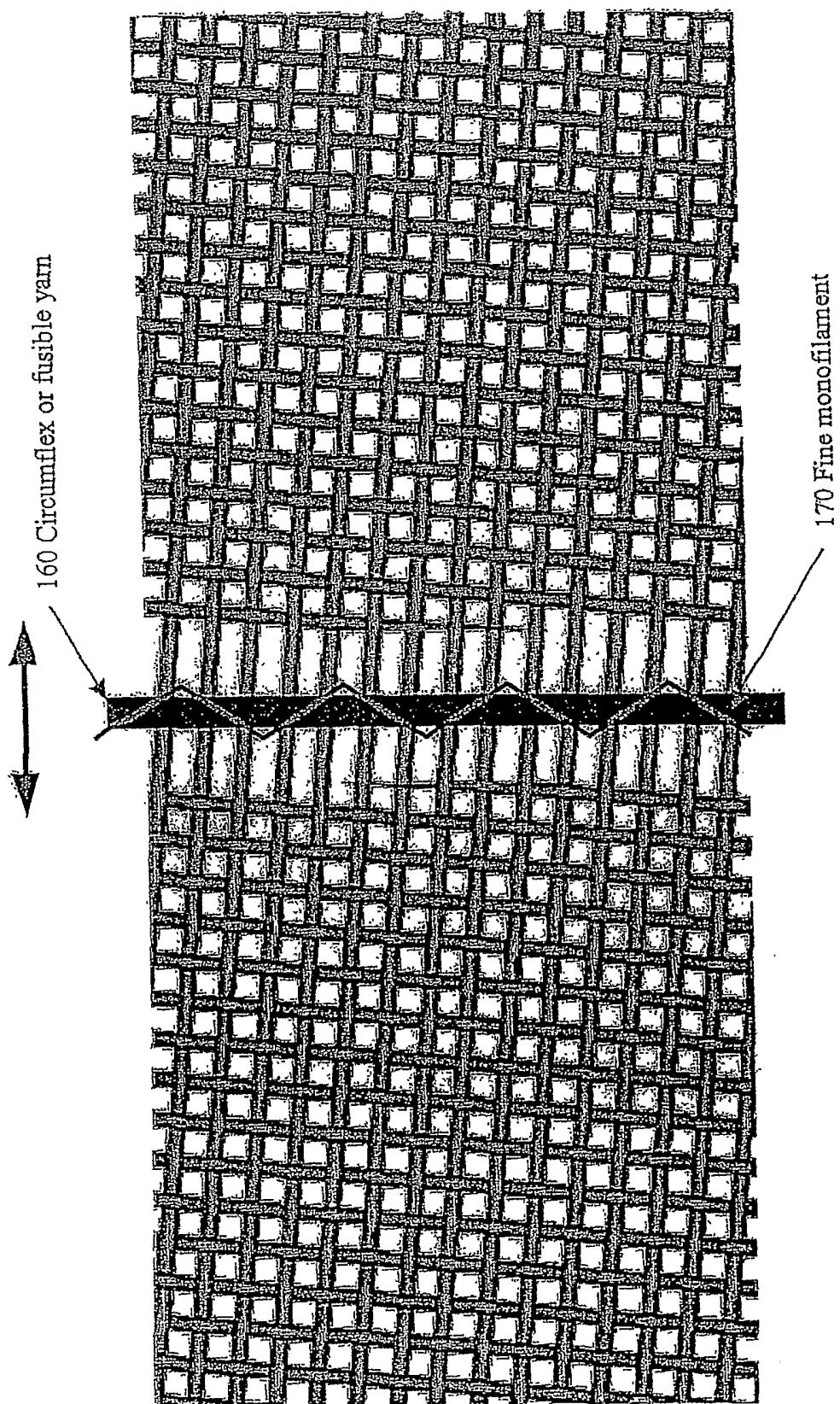


Figure 16

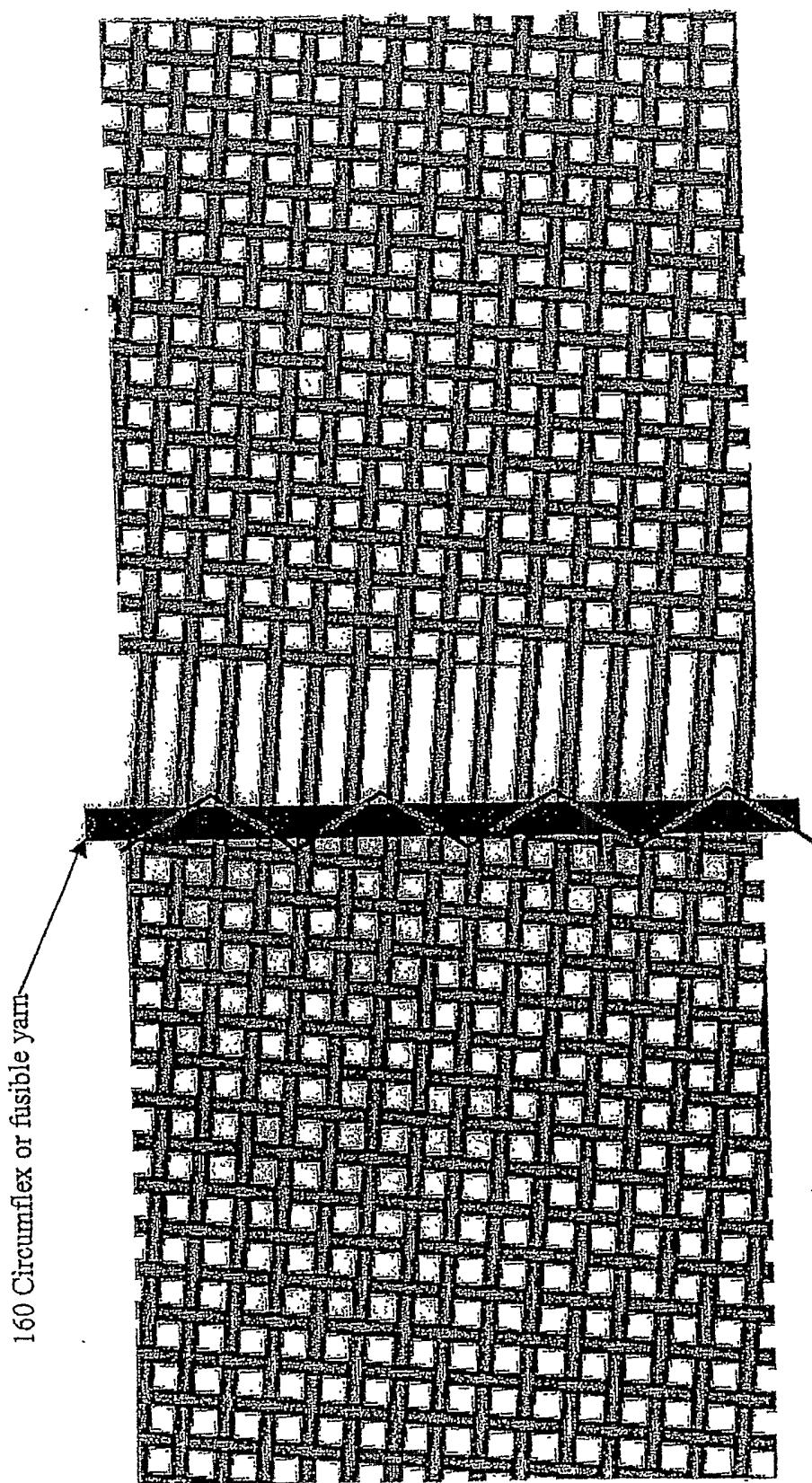


Figure 17

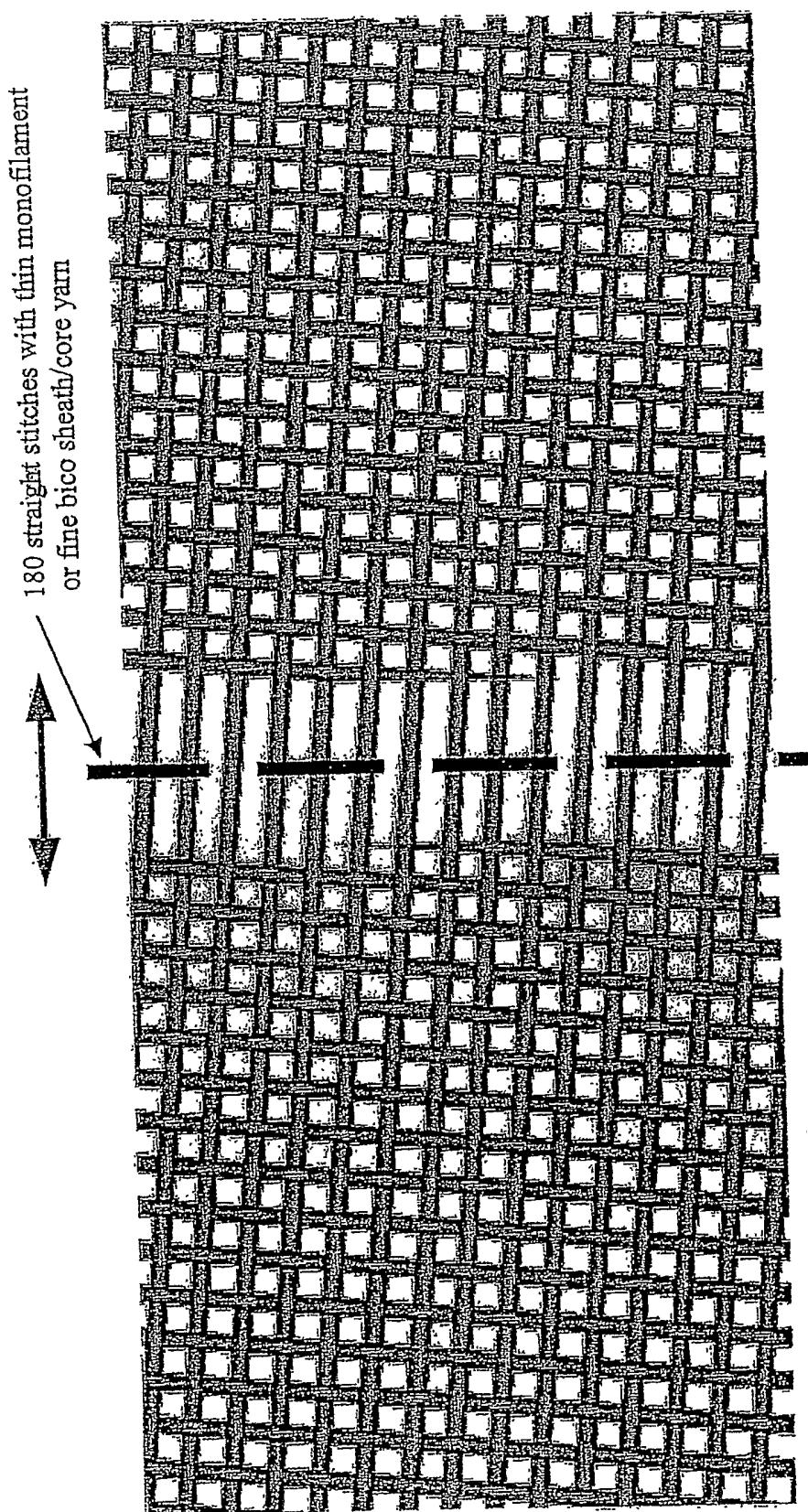
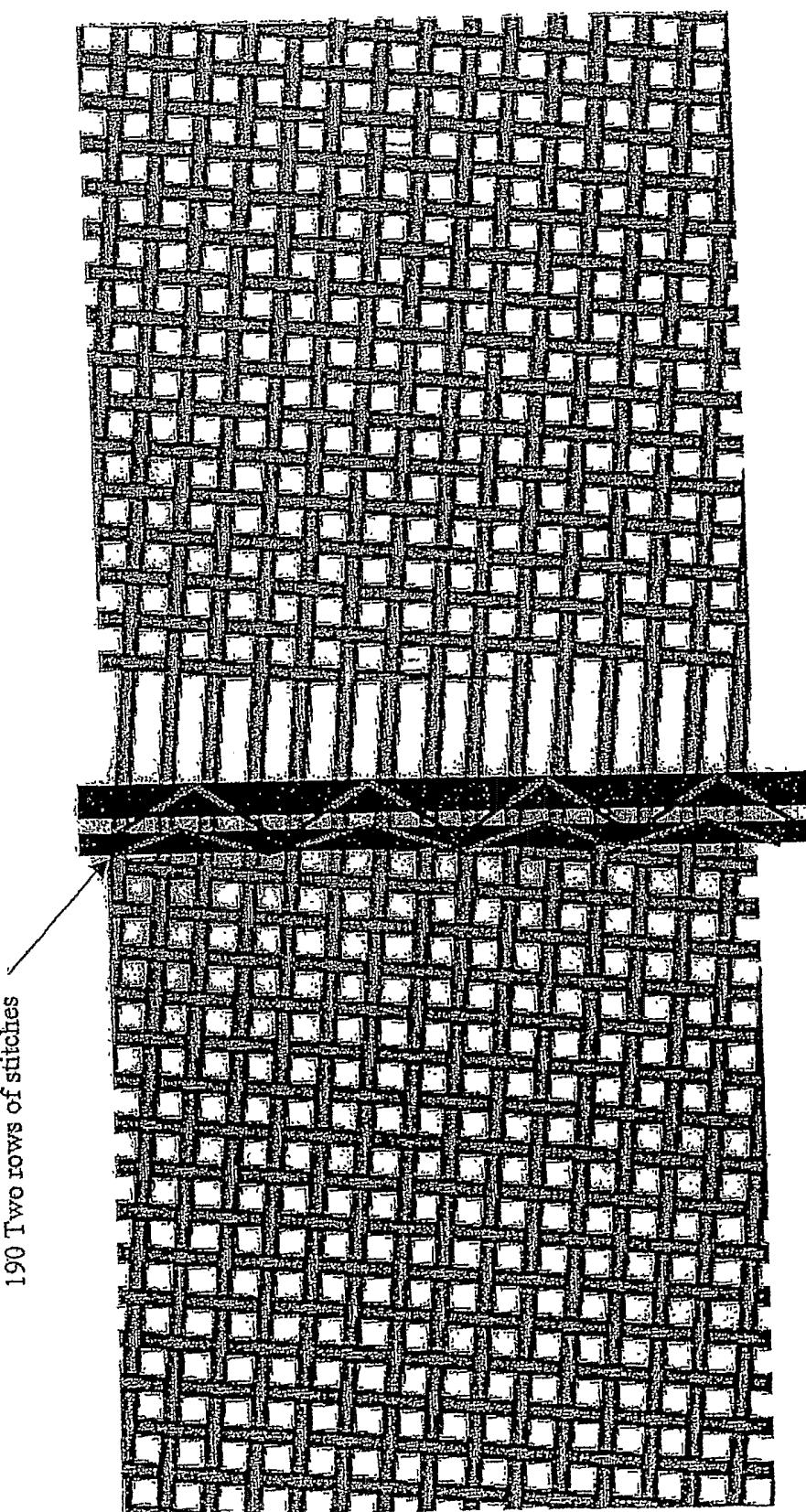



Figure 18

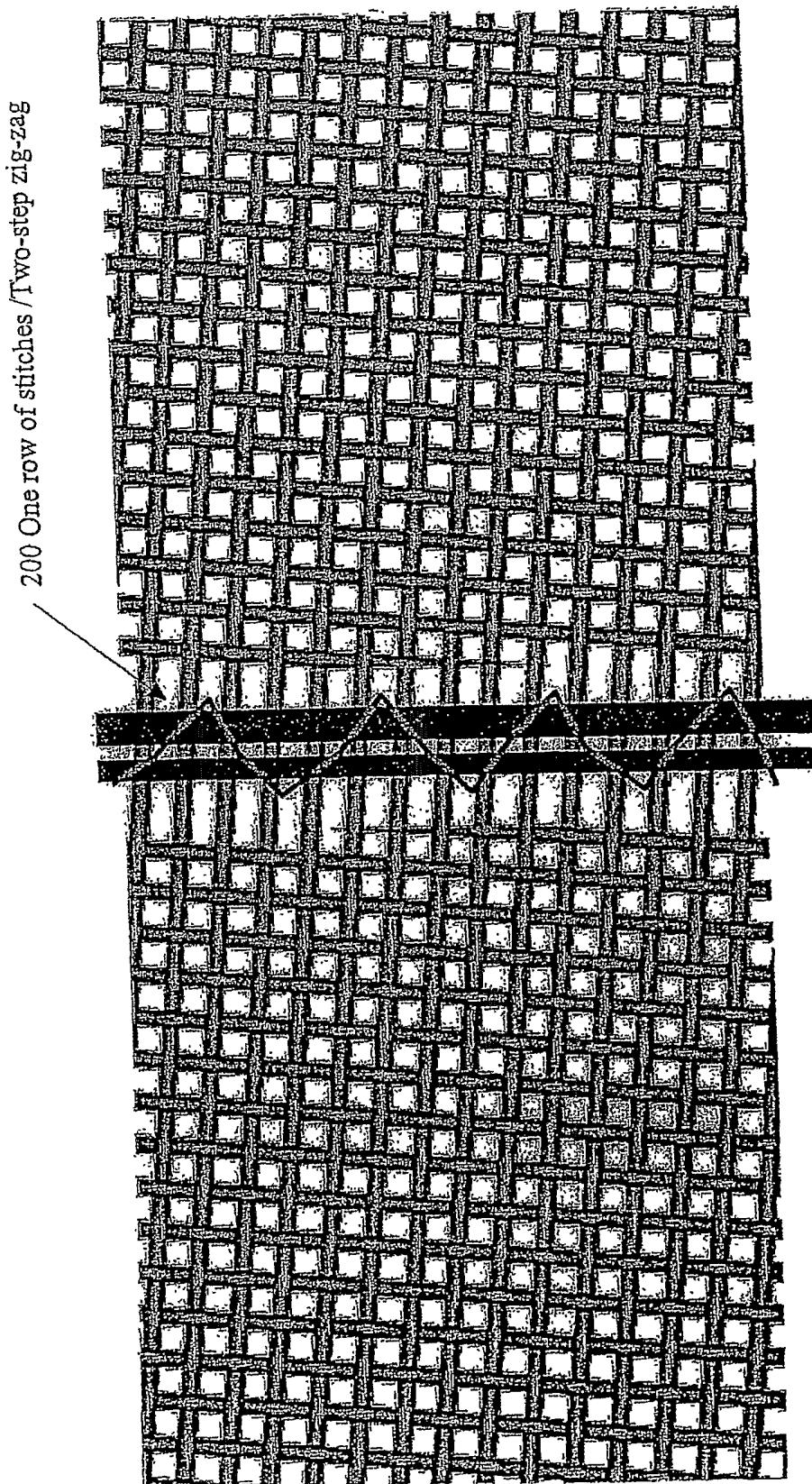


Figure 20

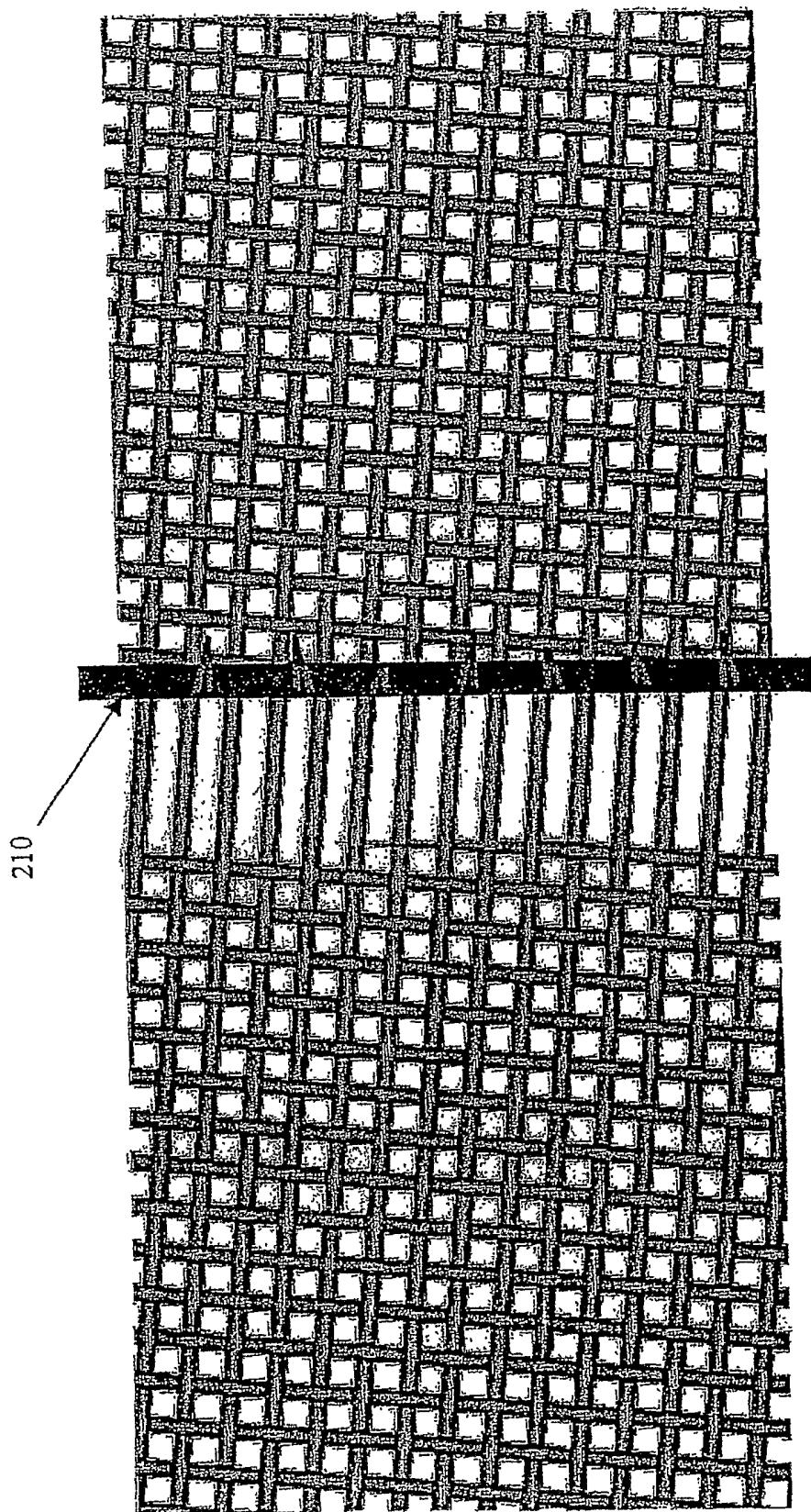


Figure 21

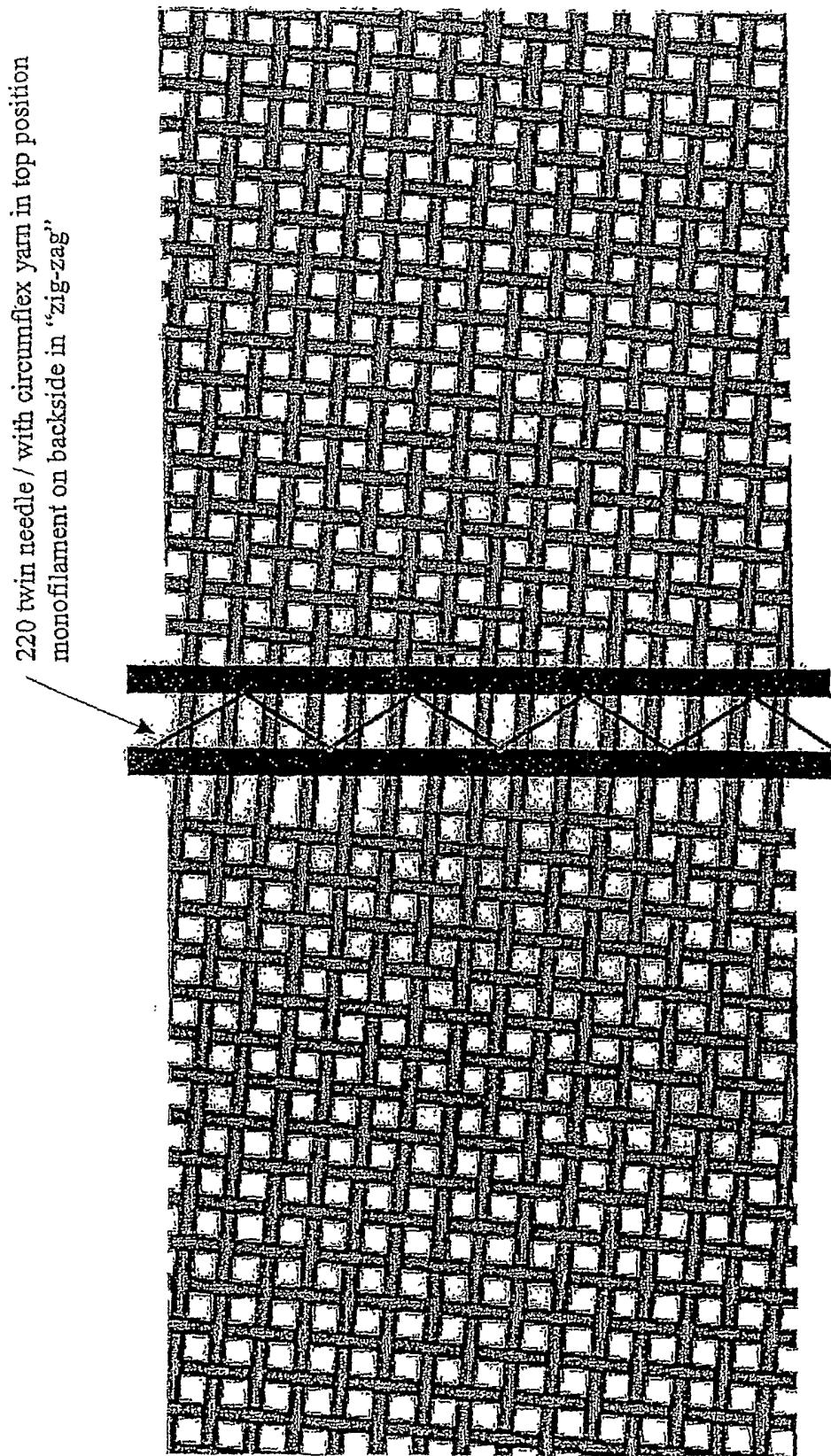


Figure 22

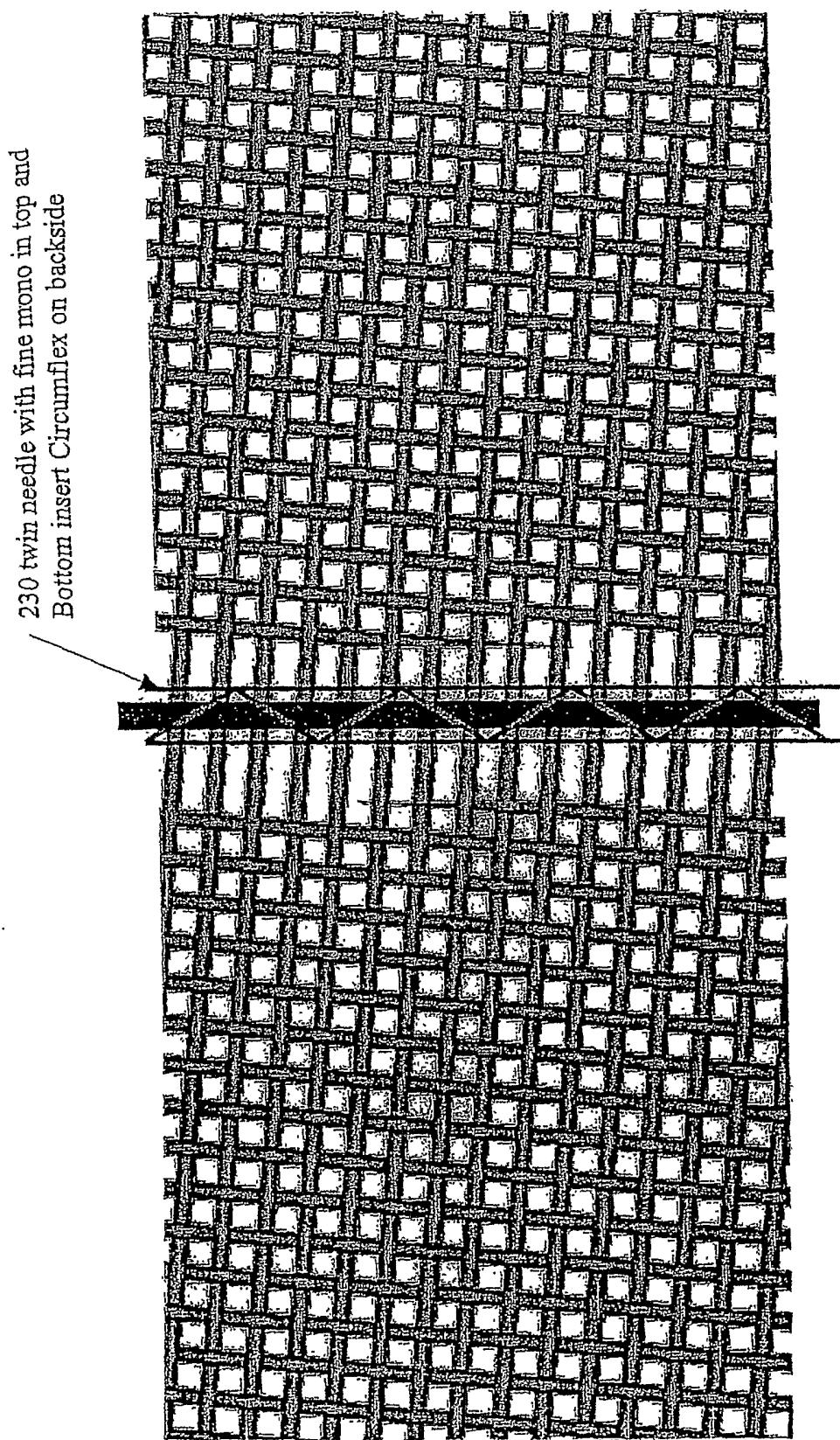


Figure 23

INTERNATIONAL SEARCH REPORT

Intern al Application No

PCT/US2005/015562

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 D21F1/00 D21F7/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 D21F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 939 176 A (YOOK ET AL) 17 August 1999 (1999-08-17) cited in the application column 8, lines 15-34 figures 10-12	1, 15, 34, 38
A	US 5 476 123 A (RYDIN ET AL) 19 December 1995 (1995-12-19) cited in the application abstract figures	1, 15, 34, 38
A	EP 1 233 103 A (ALBANY INTERNATIONAL CORP) 21 August 2002 (2002-08-21) paragraph '0027! figures	1, 15, 34, 38

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 August 2005

23/08/2005

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Pregetter, M

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat'l Application No

PCT/US2005/015562

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5939176	A 17-08-1999	AT 243277 T	AU 712007 B1	BR 9900548 A	15-07-2003
		CA 2253048 C	CN 1246550 A ,C	DE 69815680 D1	28-10-1999
		DE 69815680 T2	EP 0984098 A2	ES 2198640 T3	11-01-2000
		ID 23702 A	ID 23702 A	ID 23702 A	02-01-2001
		JP 2000080586 A	KR 2000022004 A	JP 2000080586 A	08-03-2000
		NO 985117 A	NZ 332949 A	KR 2000022004 A	24-07-2003
		NZ 332949 A	TW 438672 B	NO 985117 A	11-12-2003
		TW 438672 B	ZA 9810582 A	NZ 332949 A	01-02-2004
		ZA 9810582 A		TW 438672 B	25-02-1999
				ZA 9810582 A	07-06-2001
					25-05-1999
US 5476123	A 19-12-1995	SE 467696 B	AT 134401 T	AU 653569 B2	31-08-1992
		AU 9108591 A	BR 9107187 A	CA 2097925 A1	15-03-1996
		CA 2097925 A1	DE 69117305 D1	DE 69117305 T2	06-10-1994
		DE 69117305 T2	EP 0563206 A1	EP 0563206 A1	22-07-1992
		EP 0563206 A1	ES 2083730 T3	ES 2083730 T3	22-03-1996
		ES 2083730 T3	FI 932708 A ,B,	FI 932708 A ,B,	06-10-1996
		FI 932708 A ,B,	JP 6504591 T	JP 6504591 T	16-04-1996
		JP 6504591 T	NO 932225 A	NO 932225 A	26-05-1993
		NO 932225 A	SE 9004162 A	SE 9004162 A	16-06-1993
		SE 9004162 A	WO 9211412 A1	WO 9211412 A1	22-06-1992
		WO 9211412 A1	US 5531251 A	US 5531251 A	09-07-1992
		US 5531251 A			02-07-1996
EP 1233103	A 21-08-2002	US 6378566 B1	AT 294276 T	AU 782274 B2	30-04-2002
		AU 1541802 A	BR 0200392 A	CA 2371449 A1	15-05-2005
		BR 0200392 A	CN 1373252 A ,C	CN 1373252 A ,C	14-07-2005
		CA 2371449 A1	DE 60203833 D1	DE 60203833 D1	22-08-2002
		CN 1373252 A ,C	EP 1233103 A1	EP 1233103 A1	08-10-2002
		DE 60203833 D1	JP 2002294579 A	JP 2002294579 A	16-08-2002
		EP 1233103 A1	NO 20020750 A	NO 20020750 A	09-10-2002
		JP 2002294579 A	NZ 517183 A	NZ 517183 A	19-08-2002
		NO 20020750 A	TW 593816 B	TW 593816 B	30-06-2003
		NZ 517183 A	US 2002112274 A1	US 2002112274 A1	21-06-2004
		TW 593816 B	ZA 200201246 A	ZA 200201246 A	22-08-2002
		US 2002112274 A1			24-04-2003