US 20170147627A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0147627 A1l

ARONOVICH

43) Pub. Date: May 25, 2017

(54)

(71)

(72)

(73)

@
(22)

COMBINING DATA MATCHES FROM

MULTIPLE SOURCES IN A

DEDUPLICATION STORAGE SYSTEM

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventor: Lior ARONOVICH, Thornhill (CA)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 14/952,224

Filed: Nov. 25, 2015

102

Publication Classification

(51) Int. CL
GOGF 17/30 (2006.01)
(52) US.CL
CPC .. GOGF 17/30371 (2013.01); GOGF 17/30864
(2013.01)

(57) ABSTRACT

Embodiments for combining input data matches in data
deduplication of input data by a processor. Input data
matches are calculated using a plurality of deduplication
processes referencing a plurality of repository data segments
for the input data. A combined list of output data matches is
calculated.

AfIOO

ACTUAL MODIFIED SECTIONS

L

)

re 112

NO DEDUPLICATION | i \11¢

) 108> 1 14)

WITH DEDUPLICATION

106

118

STORED DATA SIZE:

US 2017/0147627 Al

May 25, 2017 Sheet 1 of 18

Patent Application Publication

T 5l

rA» 0zl
71T 80T 90T 0T
YT M 0TI (((
: :371S V1vd A3401S
8TT 91T T
NOLLYDIdN@IaHUM | L~ ~_} | NOILYOINdNaid oN
yTT 80T e OTT

¢

SNOI123S d3141d0N TVNLOV A314IAON SY dIIFVIN SHD01d

0]0)

[40)”

US 2017/0147627 Al

May 25, 2017 Sheet 2 of 18

Patent Application Publication

Sum/ Nﬂm/
I3LSAS W3LSAS
43LNdINOD 431NdINOD
Y Y
y y
AHOMLIN

NOILYOINNWINOD

oHN\

140d
NOILYOINNWINOD

AdOWNIN

30I1A3d
IOVHOLS
SSVIA

TVH1IN3D

1INN SNISSIO0Hd

Patent Application Publication = May 25, 2017 Sheet 3 of 18 US 2017/0147627 A1

300

/ 310 / 320 / 325

HOST HOST HOST

360
NETWORK

| conTROL sWITCH ',<\-
341 445/ MICRO MEMORY
L PROCESSOR
BUFFERS |<\7 343
NVS
344 DATA i1
345 | DEDUPLICATION
CACHE >
MODULE
355 SIMILARITY
350 | SIMILARITY |55 MODULE
OPERATION |7~ SEARCH
SOFTWARE 359 MODULE
STORAGE CONTROLLER 340

@yy

VOLUME 332a
VOLUME 334
VOLUME 336

N~

| voLumE 332b |

| vOLUME 340 |

N~

FIG. 3

| voLumE 338 |

N~

Patent Application Publication = May 25, 2017 Sheet 4 of 18 US 2017/0147627 A1

400

[

404 402
SIMILARITY UNIT e CHANGED TRACKED BLOCKS e

408
L L] L1 I S

T

406
DEDUPLICATION BLOCKS -/
e.g. 2KB

FIG. 4

US 2017/0147627 Al

May 25, 2017 Sheet 5 of 18

Patent Application Publication

S 'Ol

oom\ﬂ

9 NOILISOd ¥ NOILISOd
H % vom/
LOHSdYNS
ONIANOJdSIHHOD
SNOIATYd
SLINN ALIMVYTIWIS
«—)
ONIANOdSIHHOD
20S
, SLINN ALIYVYTIWIS _
1NdNI
_ | LOHSJdYNS
[| 1NdNI
g NOILISOd ¥ NOILISOd

US 2017/0147627 Al

May 25, 2017 Sheet 6 of 18

Patent Application Publication

9 'Ol

019 AP0Vl

woon/ SAD
SNIANOdSIHHOD AIDNVHINN 40 S13S

v

)

N,

09

‘

\ \M\
LINN ALIMVTIAIS

ONIANOdSIHH0OD

J

ANTVA JAILVLINISTHdIY

| sanva 209

40 NOILYTNITVD

A

—

1$35I1d R

LINN ALIIVTIAIS
1NdNI

009 \

—J
AN

SO
909—"

§

el

019 AP0Vl
A3IONVYHD

Patent Application Publication = May 25, 2017 Sheet 7 of 18 US 2017/0147627 A1

700
\4 INPUT SNAPSHOTS DATA, CONSITING 702
OF CHANGED TRACKED BLOCKS

PARTITION THE DATA INTO SIMILARITY UNITS OF SUFFICIENTLY LARGE SIZE 704
(e.g. 8 MB). EACH SIMILARITY UNIT MAY ENCLOSE ZERO OR MORE INPUT CHANGED L~
TRACKED BLOCKS

706

INPUT SIMILARITY UNIT THAT
ENCLOSES ONE OR MORE INPUT CHANGED
TRACKED BLOCKS?

NO

A

END 728

CALCULATE DEDUPLICATION BLOCKS, e.g. OF SIZE 2 KB, FOR THE INPUT CHANGED 208
TRACKED BLOCKS WITHIN THE INPUT SIMILARITY UNIT, AND CALCULATE A DIGEST -
VALUE, e.g. SHAL VALUE, FOR EACH DEDUPLICATION BLOCK

I

IDENTIFY A CORRESPONDING SIMILARITY UNIT WITHIN THE PREVIOUS
CORRESPONDING SNAPSHOT. THE CORRESPONDING SIMIILARITY UNIT HAS A
NOMINAL START POSITION IN THE PREVIOUS CORRESPONDING SNAPSHOT THAT IS | ~710
THE SAME AS THE NOMINAL START POSITION OF THE INPUT SIMILARITY UNIT IN
THE INPUT SNAPSHOT. LOAD THE DIGEST VALUES OF THE DUPLICATION BLOCKS OF
THE IDENTIFIED CORRESPONDING SIMILARITY UNIT INTO MEMORY

!

MATCH THE DIGEST VALUES OF THE INPUT SIMILARITY UNIT AND THE DIGEST VALUES | ~712
OF THE CORRESPONDING SIMILARITY UNIT TO FIND IDENTICAL DATA SECTIONS

IS THE
DEDUPLICATION
COVERAGE OF THE INPUT SIMILARITY
UNIT LESS THAN A
THRESHOLD?

NO

CALCULATE A REPRESENTATIVE VALUE FOR THE INPUT SIMILARITY UNIT BASED ON THE

DIGESTS OF THE CHANGED TRACKED BLOCKS OF THE INPUT SIMILARITY UNIT AND THE| ~716

DIGESTS OF THE UNCHANGED TRACKED BLOCKS SOURCED FROM THE
CORRESPONDING SIMILARITY UNIT OF THE PREVIOUS SNAPSHOT

!

SEARCH THE CALCULATED REPRESENTATIVE VALUE IN A SIMILARITY INDEX | ~718
OF REPRESENTATIVE VALUES

5 ®

FIG. 7A

Patent Application Publication = May 25, 2017 Sheet 8 of 18 US 2017/0147627 A1

WAS
A MATCHING
REPRESENTATIVE VALUE FOUND
IN THE SIMILARITY
INDEX?

NO

LOAD THE DIGESTS OF THE FOUND SIMILARITY UNIT REFERENCED BY THE FOUND |~ 722
REPRESENTATIVE VALUE INTO MEMORY

y
MATCH THE DIGEST VALUES OF THE INPUT SIMILARITY UNIT AND THE DIGEST VALUES |.~/24
OF THE FOUND SIMILARITY UNIT TO FIND INDENTICAL DATA SECTIONS

THE INDENTICAL SECTIONS CALCULATED BASED ON THE CORRESPONDING SIMILARITY 726
UNIT AND THE FOUND SIMILARITY UNIT ARE COMBINED TO PRODUCE A FINAL L~
LIST OF IDENTICAL SECTIONS

|
FIG. 7B

Patent Application Publication = May 25, 2017 Sheet 9 of 18 US 2017/0147627 A1

J 800

SIMILARITY STORAGE SEGMENTS
INDEX 802 \-g04
OF DIGESTS
O 4
SRR >
T
SIMILARITY INDEX REPRESENTATIVE | STORAGE REFERENCE TO
ENTRY VALUE SEGMENT OF DIGESTS

FIG. 8

Patent Application Publication = May 25, 2017 Sheet 10 of 18 US 2017/0147627 Al

900
\ INPUT CHANGED TRACKED BLOCKS 902
OF AN INPUT SIMILARITY UNIT

y
| CALCULATE THE MAXIMAL DIGEST VALUE FOR THE INPUT CHANGED TRACKED BLOCKS |/

904

CALCULATE THE MAXIMAL DIGEST VALUE FOR THE UNCHANGED TRACKED BLOCKS.
THE DIGEST VALUES OF THE UNCHANGED TRACKED BLOCKS ARE SOURCED FROM THE
CORRESPONDING SIMILARITY UNIT IN THE PREVIOUS SNAPSHOT OF THE DATA SET

| _-906

y
CALCULATE THE MAXIMAL OF THESE TWO DIGEST VALUES, AND IDENTIFY THE |_~908
DEDUPLICATION BLOCK ASSOCIATED WITH THE MAXIMAL DIGEST VALUE

y
APPLY A REPEATABLE POSITION SHIFT, e.g. ONE POSITION NEXT, FOR THAT |_~910
DEDUPLICATION BLOCK TO IDENTIFY A REPRESENTATIVE DEDUPLICATION BLOCK

SELECT THE DIGEST VALUE OF THE REPRESENTATIVE DEDUPLICATION BLOCKTOBE | ~912
THE REPRESENTATIVE VALUE OF THE INPUT SIMILARITY UNIT

y
END 914

FIG. 9

Patent Application Publication = May 25, 2017 Sheet 11 of 18 US 2017/0147627 Al

LIST OF DATA MATCHES CALCULATED BY

MULTIPLE DEDUPLICATION PROCESSES

1000 FOR AN INPUT SIMILARITY UNIT, WHERE
THE DATA MATCHES MAY BE

OVERLAPPING AND UNORDERED

I

| SORT THE DATA MATCHES BY THEIR START POSITIONS IN ASCENDING ORDER |—/ 1004

I

REMOVE DATA MATCHES THAT ARE COMPLETELY ENCLOSED WITHIN OTHER |_~1006
MATCHES, OR ARE TOO SMALL FOR CITING

!

SCAN EACH PAIR OF DATA MATCHES WITH AN OVERLAP SECTION, IN ASCENDING | ~1008
ORDER OF POSITION

1010

ADDITIONAL
PAIR OF DATA MATCHES
WITH AN OVERLAP

1020

A 4

SELECT FROM THE PAIR, A DATA MATCH TO RETAIN IN ITS FULL SIZE. | _~1012
DENOTE THIS DATA MATCH AS 'DATA MATCH A'

|

TRUNCATE THE OTHER DATA MATCH, DENOTED AS 'DATA MATCH B', | _~1014
BY REMOVING THE OVERLAP SECTION FROM DATA MATCH B

I

IF THE TRUNCATED DATA MATCH B IS FULLY ENCLOSED WITHIN THE NEXT DATA
MATCH IN THE SORTED LIST OF DATA MATCHES, OR IF THE TRUNCATED DATA
MATCH B IS TOO SMALL FOR CITING, THEN THE TRUNCATED DATA MATCH B IS
REMOVED. OTHERWISE, IT IS RETAINED

1016

FIG. 10

Patent Application Publication = May 25, 2017 Sheet 12 of 18 US 2017/0147627 Al

1100

“~

Case A

Match 3
Match 2

Match 1

Case B

Match 3
Match 2

Match 1

Case C
Match 3

Match 2

Match 1

FIG. 11

Second
pair
First
pair

Second
pair
First
pair

Second
pair
First
pair

Patent Application Publication = May 25, 2017 Sheet 13 of 18 US 2017/0147627 Al

1200

INITIAL SNAPSHOT IN A 1202
CHAIN OF SNAPSHOTS

I

PARTITION THE DATA OF THE INPUT INITIAL SNAPSHOT INTO SIMILARITY UNITS, |~ 1204
e.g. OF SIZE 8 MB
1206
ADDITIONAL NO
> INPUT SIMILARITY
UNIT?
YES
CALCULATE DEDUPLICATION BLOCKS, e.g. OF SIZE 2 KB, FOR THE TRACKED BLOCKS OF | 1208

THE INPUT SIMILARITY UNIT, AND CALCULATE A DIGEST VALUE, e.g. SHA-1 VALUE,
FOR EACH DEDUPLICATION BLOCK

I

CALCULATE HIGH RESOLUTION REPRESENTATIVE VALUES FOR THE SIMILARITY UNIT. | ~1210
E.g. EACH REPRESENTATIVE VALUE CORRESPONDS TO A 2MB SUB-UNIT

SEARCH EACH ONE OF THE HIGH RESOLUTION REPRESENTATIVE VALUES IN AN | ~1212
INTRA-SNAPSHOT SIMILARITY INDEX, AND INDENTIFY SIMILAR SUB-UNITS

I

IF SIMILAR SUB-UNITS WERE FOUND, MATCH THE DIGESTS OF THE INPUT SIMILARITY | ~1214
UNIT AND THE DIGESTS OF THE FOUND SUB-UNITS TO FIND IDENTICAL DATA SECTIONS

IS THE
DEDUPLICATION
COVERAGE OF THE INPUT SIMILARITY
UNIT LESS THAN A
THRESHOLD?

NO

YES

CALCULATE A REPRESENTATIVE VALUE FOR THE INPUT SIMILARITY UNIT BASED | _—1218
ON THE HIGH RESOLUTION REPRESENTATIVE VALUES OF THE SUB-UNITS

y
| SEARCH THE CALCULATED REPRESENTATIVE VALUE IN A GLOBAL SIMILARITY INDEX I/

FIG. 12A

1220

Patent Application Publication = May 25, 2017 Sheet 14 of 18 US 2017/0147627 Al

© ®

IF A SIMILAR UNIT WAS FOUND, MATCH THE DIGESTS OF THE INPUT SIMILARITY UNIT | ~1222
AND THE DIGESTS OF THE FOUND SIMILARITY UNIT TO FIND IDENTICAL DATA SECTIONS

y
THE IDENTICAL SECTIONS CALCULATED BASED ON THE SUB-UNITS FOUND IN THE
INTRA-SNAPSHOT SIMILARITY INDEX AND THE SIMILARITY UNIT FOUND IN THE GLOBAL
SIMILARITY INDEX ARE COMBINED TO PRODUCE A FINAL LIST OF IDENTICAL SECTIONS

|- 1224

y
THE INTRA-SNAPSHOT SIMILARITY INDEX IS INTEGRATED INTO THE GLOBAL SIMILARITY
INDEX, e.g. BY TREE MERGE OR BULK INSERTION OF THE INTRA-SNAPSHOT INDEX
ENTRIES INTO THE GLOBAL SIMILARITY INDEX

|- 1226

y
END 1228

FIG. 12B

Patent Application Publication = May 25, 2017 Sheet 15 of 18 US 2017/0147627 Al

[1300

1302
REPRESENTATIVE VALUE - 20 BYTES e
-~ N
8 BYTES: PORTION USED AS THE 12 BYTES: REMAINING BYTES ARE STORED WITH
REPRESENTATIVE VALUE IN THE THE DIGESTS OF THE SIMILARITY UNIT
SIMILARITY INDEX
1304 1306
1308
SIMILARITY INDEX ENTRY - 16 BYTES -
~ N
REPRESENTATIVE VALUE - 8 BYTES STORAGE ADDRESS OF DIGESTS - 8 BYTES

13(0 13{2
FIG. 13

Patent Application Publication = May 25, 2017 Sheet 16 of 18 US 2017/0147627 Al

1400

1402
\z‘ BEGIN

1404
[PARTITION INPUT SNAPSHOT DATA INTO CHANGED TRACKED BLOCKS |~

¢ 1406
| GROUP THE CHANGED TRACKED BLOCKS INTO ENCLOSING SIMILARITY UNITS I/-

v

PARTITION THE CHANGED TRACKED BLOCKS INTO VARIABLE-SIZED |~ 1408
DEDUPLICATION BLOCKS

v

PROCESS FOR DEDUPLICATION SIMILARITY UNITS THAT CONTAIN AT LEAST | 1410
ONE INPUT CHANGED TRACK BLOCK

1412
END

FIG. 14

1500

1502
\1‘ BEGIN

1504
| PARTITION AN INPUT SNAPSHQT INTO SIMILARITY UNITS |-/

v

DEDUPLICATE AN INPUT SIMILARITY UNIT WITH A CORRESPONDING |~ 1506
SIMILARITY UNIT OF A PREVIOUS SNAPSHOT

¢ 1508
EXAMINE DEDUPLICATION COVERAGE I—/

v

IF DEDUPLICATION COVERAGE THRESHOLD IS NOT MET, CONDUCT SIMILARITY
SEARCH AND DEDUPLICATE INPUT SIMILARITY UNIT WITH A
FOUND SIMILARITY UNIT

1512
FIG. 15

| _-1510

Patent Application Publication = May 25, 2017 Sheet 17 of 18 US 2017/0147627 Al

1600

1602
\1‘ BEGIN
1604

| IDENTIFY A CORRESPONDING SIMILARITY UNIT OF A PREVIOUS SNAPSHOT I/-

v

PERFORM CALCULATION BASED ON DIGESTS OF THE INPUT SIMILARITY |~ 1606
UNIT AND DIGESTS OF THE CORRESPONDING SIMILARITY UNIT

¢ 1608
PRODUCE A REPRESENTATIVE VALUE FOR THE INPUT SIMILARITY UNIT I/

1610
FIG. 16

1700

1702
\l‘ BEGIN
1704

| CALCULATE DATA MATCHES FROM MULTIPLE SOURCES FOR INPUT DATA I-/

v

CALCULATE A COMBINED LIST OF DATA MATCHES BASED ON THE DATA | 1706
MATCHES FROM THE MULTIPLE SOURCES

1708
END

FIG. 17

Patent Application Publication = May 25, 2017 Sheet 18 of 18 US 2017/0147627 Al

1800

1802
1 BEGIN

BUILD AN INTRA-SNAPSHOT SIMILARITY INDEX, INCLUSIVE OF | _~1804
REPRESENTATIONS OF THE DATA INSIDE THE INITIAL SNAPSHOT

v

USE THE INTRA-SNAPSHOT SIMILARITY INDEX FOR DEDUPLICATION |- 1806
OF THE INITIAL SNAPSHOT

v

MERGE THE INTRA-SNAPSHOT SIMILARITY INDEX WITH A GLOBAL SIMILARITY | 1808
INDEX WHEN PROCESSING OF THE INITIAL SNAPSHOT IS COMPLETE

g

1810
N

m
o

FIG. 18

1900

1902
1 BEGIN

REPRESENT IN THE SIMILARITY INDEX ONLY A LATEST GENERATION |_~1904
OF REPOSITORY DATA

v

APPLY IMPLICIT DELETION IN THE SIMILARITY INDEX I/- 1906

v

MAINTAIN A SUBSET OF BYTES OF A FULL REPRESENTATIVE VALUE IN |~ 1908
A SIMILARITY INDEX ENTRY

g

1910
END

FIG. 19

US 2017/0147627 Al

COMBINING DATA MATCHES FROM
MULTIPLE SOURCES IN A
DEDUPLICATION STORAGE SYSTEM

BACKGROUND OF THE INVENTION

[0001] Field of the Invention

[0002] The present invention relates in general to com-
puters, and more particularly for combining input data
matches in data deduplication of input data in a computing
environment.

[0003] Description of the Related Art

[0004] Intoday’s society, computer systems are common-
place. Computer systems may be found in the workplace, at
home, or at school. Computer systems may include data
storage systems, or disk storage systems, to process and
store data. Large amounts of data have to be processed daily
and the current trend suggests that these amounts will
continue being ever-increasing in the foreseeable future. An
efficient way to alleviate the problem is by using dedupli-
cation. The idea underlying a deduplication system is to
exploit the fact that large parts of the available data are
copied again and again, by locating repeated data and storing
only its first occurrence. Subsequent copies are replaced
with pointers to the stored occurrence, which significantly
reduces the storage requirements if the data is indeed
repetitive.

SUMMARY OF THE DESCRIBED
EMBODIMENTS

[0005] Embodiments for combining input data matches in
data deduplication of input data by a processor are provided.
In one embodiment, by way of example only, input data
matches are calculated using a plurality of deduplication
processes referencing a plurality of repository data segments
for the input data. A combined list of output data matches is
calculated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Inorder that the advantages of the invention will be
readily understood, a more particular description of the
invention briefly described above will be rendered by ref-
erence to specific embodiments that are illustrated in the
appended drawings. Understanding that these drawings
depict embodiments of the invention and are not therefore to
be considered to be limiting of its scope, the invention will
be described and explained with additional specificity and
detail through the use of the accompanying drawings, in
which:

[0007] FIG. 1 is a block diagram of an illustration of
storage of snapshots without data deduplication functional-
ity versus storage of snapshots with data deduplication
functionality;

[0008] FIG. 2 is a block diagram illustrating a computing
system environment having an example storage device in
which aspects of the present invention may be realized;
[0009] FIG. 3 is a block diagram illustrating a hardware
structure of data storage system in which aspects of the
present invention may be realized;

[0010] FIG. 4 is an illustration of exemplary tracked
blocks enclosed by similarity units, in which aspects of the
present invention may be realized;

[0011] FIG. 5 is an illustration of exemplary pairs of
corresponding similarity units in an input snapshot and a

May 25, 2017

previous snapshot of a data set, here again in which aspects
of the present invention may be realized;

[0012] FIG. 6 is a block diagram of illustrative exemplary
functionality for calculating a representative value based on
the digests of the changed tracked blocks of the input
similarity unit and the digests of the unchanged tracked
blocks of the corresponding similarity unit, again in which
aspects of the present invention may be implemented;
[0013] FIG. 7A is a first portion of a flow chart diagram
illustrating exemplary functionality for deduplicating input
snapshot data, again in which aspects of the present inven-
tion may be realized;

[0014] FIG. 7B is a second portion of the flow chart
diagram first illustrated in FIG. 7A, previously;

[0015] FIG. 8 is a block diagram of an exemplary dedu-
plication similarity index and digest storage segments, again
in which aspects of the present invention may be imple-
mented;

[0016] FIG. 9 is a flow chart diagram illustrating exem-
plary functionality for calculating a representative value for
a similarity unit in a snapshot data set, again in which
aspects of the present invention may be implemented;
[0017] FIG. 10 is a flow chart diagram illustrating exem-
plary functionality for combining matches calculated in
multiple deduplication processes to produce a unified and
efficient list of matches, again in which aspects of the present
invention may be implemented;

[0018] FIG. 11 is an illustration of exemplary cases in
processing of pairs of data matches, including truncating,
retention and removal of data matches according to various
aspects of the present invention;

[0019] FIG. 12A is a first portion of a flow chart diagram
illustrating exemplary functionality for deduplicating an
initial snapshot in a chain of snapshots, again in which
aspects of the present invention may be implemented;
[0020] FIG. 12B is a second portion of the flow chart
diagram first illustrated in FIG. 11A previously;

[0021] FIG. 13 is a block diagram of an exemplary par-
tition of a representative value and the structure of an entry
in the similarity index, again in which aspects of the present
invention may be implemented;

[0022] FIG. 14 is a flow chart diagram of an exemplary
method for processing of tracked blocks in similarity based
deduplication of snapshots data, in accordance with one
embodiment of the present invention;

[0023] FIG. 15 is a flow chart diagram of an exemplary
method for similarity based deduplication of snapshots data,
in accordance with one embodiment of the present inven-
tion;

[0024] FIG. 16 is a flow chart diagram of an exemplary
method for calculating representative values for similarity
units in deduplication of snapshots data, in accordance with
one embodiment of the present invention;

[0025] FIG. 17 is a flow chart diagram of an exemplary
method for combining data matches from multiple sources
in a deduplication storage system, in accordance with one
embodiment of the present invention;

[0026] FIG. 18 is a flow chart diagram of an exemplary
method for similarity based data deduplication of initial
snapshots of data sets, in accordance with one embodiment
of the present invention; and

[0027] FIG. 19 is a flow chart diagram of an exemplary
method for reducing resource consumption of a similarity

US 2017/0147627 Al

index in data deduplication, again in accordance with one
embodiment of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

[0028] Data deduplication is a highly important and
vibrant field in computing storage systems. Data deduplica-
tion refers to the reduction and/or elimination of redundant
data. In data deduplication, a data object, which may be a
file, a data stream, or some other form of data, is partitioned
into one or more parts called chunks or blocks. In a data
deduplication process, duplicate copies of data are reduced
or eliminated, leaving a minimal amount of redundant
copies, or a single copy of the data, respectively. The goal of
a data deduplication system is to store a single copy of
duplicated data, and the challenges in achieving this goal are
efficiently finding the duplicate data patterns in a typically
large repository, and storing the data patterns in a storage
efficient deduplicated form.

[0029] A snapshot of data in a data storage system is a
copy of the data frozen at a specific point in time. Snapshots
are used to obtain consistent copies of data sets for various
use cases, such as backup, archiving, data analysis, devel-
opment and testing, while allowing applications to continue
writing and moditying data. Snapshot implementations typi-
cally create snapshots in a time that is not dependent on the
size of the data set, and allow applications to write data
concurrently with the creation of a snapshot. Typically, after
creation of an initial snapshot, the storage system tracks
storage blocks that are changed between creation of con-
secutive snapshots. For a new further snapshot, the storage
system will store the storage blocks that have changed since
the last snapshot, along with references to unchanged data.

[0030] The size of the blocks tracked for changes is
usually relatively large, because tracking small blocks in
large data repositories requires much resources and is often
prohibitive. Typical sizes of tracked storage blocks can
range between 64 KB and 256 KB. However, the changes
actually applied to the data can be in a granularity that is
smaller than the size of the tracked storage blocks, especially
if the snapshots are created frequently. The result is that the
size of the data being stored for a snapshot can be consid-
erably larger than the size of the data that was actually
changed since the last snapshot.

[0031] Adding data deduplication to the creation and
storage processes of snapshots enables to store only the data
that was actually changed, rather than the full sized blocks
tracked for changes, thus considerably reducing storage
consumption of the snapshots. FIG. 1 illustrates this storage
efficiency benefit by showing the marked difference in
stored data sizes, in which the entire contents of the blocks
marked as modified are stored when not using data dedu-
plication, and in which only the actual modified sections
inside the blocks marked as modified are stored when using
data deduplication, as shown in illustration 100.

[0032] A series of blocks 102 are shown in sequence.
Several blocks 104, 106, and 108 are marked as modified,
while the actual modified sections 110, 112, and 114 are
physically markedly smaller than the physical size of the
entire blocks marked as modified 104, 106, and 108 and
shown. The blocks 104, 106, and 108 are stored as-is as
shown in 120 when no deduplication (arrow 116) is per-
formed, and their stored data size equals to their full size
120. Conversely, the stored data size 122 is markedly

May 25, 2017

reduced by use of deduplication (arrow 118), as only the
actual modified sections 110, 112, and 114 are stored as
shown.

[0033] Since data deduplication can reduce the storage
consumption and costs for storing snapshots, a storage
system with data deduplication may be able to store a large
number of snapshots, compared to a smaller capacity with-
out data deduplication. There are many applications that
require copies of data sets, for example: backup, disaster
recovery, instant restore, archive, development, testing, and
data analysis. Deduplicated snapshots can enable to provide
many of these functionalities directly from a deep store of
deduplicated snapshots, rather than having different tech-
nologies store their own data copies separately. This enables
to reduce costs, consolidate resources, simplify manage-
ment, and increase infrastructure utilization.

[0034] To be effective, data deduplication of snapshots
should work with a small granularity. Namely, the size of the
deduplication blocks should be typically a few kilobytes.
However, in large data repositories the number of dedupli-
cation blocks of such size can be very large, and storing
deduplication representations for a large number of blocks is
often prohibitive. For example, in a data repository of 1
Petabytes, the number of deduplication blocks of 2 Kilobyes
is 512 Giga blocks, and multiplying this by a hash size of 20
bytes (the size of SHA-1), this totals to 10 Terabytes—
required only for the deduplication meta-data.

[0035] A new approach is therefore required for data
deduplication of snapshots, to enable small granularity
deduplication while keeping the meta-data size for dedupli-
cation low and supporting high efficiency of the deduplica-
tion process.

[0036] The mechanisms of the illustrated embodiments,
following, introduce various aspects of functionality for
performing similarity based data deduplication for snapshots
of data, among other aspects, that address the need for small
granularity deduplication and other needs discussed previ-
ously.

[0037] Similarity based data deduplication, among other
benefits, enables the achievement of efficient data dedupli-
cation using small data blocks, by partitioning the search for
data matches to two steps. In a first step, similar data is
searched in a repository. The granularity for this step is large
data blocks, e.g. 8 MB. In a second step, matches of identical
data are determined in the similar input and repository data.
The granularity for this step is smaller data blocks, e.g. 2
KB. Depending on the matching algorithm that is used, a
single byte granularity is also supported.

[0038] The similarity based data deduplication approach is
scalable and efficient because the search index used in the
similarity step is compact and simple to maintain and search
within. The search index is compact because, among other
benefits, the representation elements used for the similarity
search are very compact relative to the data they represent,
e.g. 16 bytes representing 4 megabytes. Typically, in one
embodiment, the similarity index can fit in memory. Once
similar data is found, digests of the similar data or the similar
data itself are loaded into memory, to perform an efficient
data matching process that uses hash lookup. This second
step process is also efficient in both memory and processing
time. Overall, the similarity based data deduplication
approach provides scalability to very large data repositories,
as well as high efficiency and performance.

US 2017/0147627 Al

[0039] While similarity based approaches provide abun-
dant benefits, the similarity based deduplication algorithms
provided thus far are designed for a data backup environ-
ment, where large streams of backup data are being pro-
cessed, and each such stream can be partitioned into large
chunks of data, e.g. 8 MB, for which similar data can be
searched. However, in a data snapshots environment, a data
deduplication mechanism is required to deduplicate the
tracked storage blocks. These blocks are typically smaller
than the similarity blocks used in the existing similarity
methods, e.g. 64 KB tracked storage block size versus 8 MB
similarity block size. In addition, the tracked storage blocks
to be deduplicated are typically independent of each other,
and can come from arbitrary locations in the data repository.
[0040] In order to deduplicate each of the tracked storage
blocks, the resolution of the similarity index should be
considerably increased relative to the resolution in the
backup environment. In the aforementioned example the
resolution increase is x128. In addition, the number of 10
operations per second for maintaining and searching in the
similarity index also increases accordingly, and this further
grows as the frequency of the snapshots increases. In typical
settings of snapshot environments, the required 10 opera-
tions per second can reach several thousands of operations.
These high requirements of size and 10 operations per
second entailed by the existing similarity based deduplica-
tion algorithms can result in storage operation inefficiencies
in snapshots environments.

[0041] Accordingly, new methodologies are beneficial for
providing an efficient, scalable, and effective data dedupli-
cation solution for snapshots data. In general, deduplication
of snapshots data is an emerging field with a wide applica-
bility scope.

[0042] The mechanisms of the illustrated embodiments, in
view of the foregoing, introduce various data deduplication
functionality that is specifically designed and optimized for
snapshots data. These mechanisms aim to provide an effi-
cient, scalable and effective solution for deduplicating snap-
shots data, with a wide applicability scope for a broad range
of storage systems that include snapshots capabilities.
[0043] Returning now to the Figures, and to FIG. 2,
specifically, exemplary architecture 200 of a computing
system environment is depicted. Architecture 200 may, in
one embodiment, be implemented at least as part of a system
for effecting mechanisms of the present invention. The
computer system embodied in architecture 200 includes at
least one central processing unit (CPU) 202, which is
connected to communication port 208 and memory device
206. The communication port 208 is in communication with
a communication network 210. The communication network
210 may be configured to be in communication with systems
212, 214 and architecture 200, which may include storage
devices 204. The storage systems may include hard disk
drive (HDD) devices, solid-state devices (SSD) etc., which
may be configured in a redundant array of independent disks
(RAID).

[0044] The operations as described below may be
executed on storage device(s) 204, located in system 200 or
elsewhere, and may have multiple memory devices 206
working independently and/or in conjunction with other
CPU devices 12. Memory device 206 may include such
memory as electrically erasable programmable read only
memory (EEPROM) or a host of related devices. Memory
device 206 and storage devices 204 are connected to CPU

May 25, 2017

202 via a signal-bearing medium. In addition, memory
device 206 and the CPU 202 may be embedded and included
in each component of the computing system 200. Each
storage system may also include separate and/or distinct
memory devices 206 and CPU 202 that work in conjunction
or as a separate memory device 206 and/or CPU 202. As one
of ordinary skill in the art will appreciate, a number of
systems 200 may be configured in a connected and/or
distributed way, physically located together or across a long
geographically connected network, for example.

[0045] Turning now to FIG. 3, following; FIG. 3 is an
exemplary block diagram showing a hardware structure of a
data storage system 300 that may be used in the overall
context of performing functionality according to various
aspects of the present invention. Data storage system 300
may for example, in one embodiment, implement a snap-
shot-based deduplication system as will be further
described.

[0046] Host computers 310, 320, and 325, are shown, each
acting as a central processing unit for performing data
processing as part of a data storage system 300. The cluster
hosts/nodes (physical or virtual devices), 310, 320, and 325
may be one or more new physical devices or logical devices
to accomplish the purposes of the present invention in the
data storage system 300. Data storage system 300 may
implement additional functionality; and one of ordinary skill
in the art will recognize that a variety of deduplication,
encryption, data processing, etc. hardware and software,
separately or in combination, may be utilized to implement
the functionality according to aspects of the illustrated
embodiments.

[0047] Network connection 360 may be a fibre channel
(FC) fabric, a fibre channel point-to-point link, a fibre
channel over Ethernet (FCoE) fabric or point to point link,
a FICON or ESCON I/O interface, any other I/O interface
type, a wireless network, a wired network, a LAN, a WAN,
heterogeneous, homogeneous, public (i.e. the Internet), pri-
vate, or any combination thereof. The hosts, 310, 320, and
325 may be local or distributed among one or more locations
and may be equipped with any type of fabric (or fabric
channel) (not shown in FIG. 3) or network adapter 360 to the
storage controller 240, such as Fibre channel, FICON,
ESCON, Ethernet, fiber optic, wireless, or coaxial adapters.
Data storage system 300 is accordingly equipped with a
suitable fabric (not shown in FIG. 3) or network adaptor 360
to communicate. Data storage system 300 is depicted in FIG.
3 comprising storage controllers 340 and cluster hosts 310,
320, and 325. The cluster hosts 310, 320, and 325 may
include cluster nodes found in a distributed computing
environment.

[0048] To facilitate a clearer understanding of the methods
described herein, storage controller 340 is shown in FIG. 3
as a single processing unit, including a microprocessor 342,
system memory 343 and nonvolatile storage (“NVS”) 316.
It is noted that in some embodiments, storage controller 340
is comprised of multiple processing units, each with their
own processor complex and system memory, and intercon-
nected by a dedicated network within data storage system
300. Storage 330 (labeled as 330a, 3305, and 330 herein)
may be comprised of one or more storage devices, such as
storage arrays, which are connected to storage controller 340
(by a storage network) with one or more cluster hosts 310,
320, and 325 connected to each storage controller 340
through network 360.

US 2017/0147627 Al

[0049] In some embodiments, the devices included in
storage 330 may be connected in a loop architecture. Storage
controller 340 manages storage 330 and facilitates the
processing of write and read requests intended for storage
330. The system memory 343 of storage controller 340
stores program instructions and data, which the processor
342 may access for executing functions and method steps of
the present invention for executing and managing storage
330 as described herein. In one embodiment, system
memory 343 includes, is in association with, or is in com-
munication with the operation software 350 for performing
methods and operations described herein. As shown in FIG.
3, system memory 343 may also include or be in commu-
nication with a cache 345 for storage 330, also referred to
herein as a “cache memory,” for buffering “write data” and
“read data,” which respectively refer to write/read requests
and their associated data. In one embodiment, cache 345 is
allocated in a device external to system memory 343, yet
remains accessible by microprocessor 342 and may serve to
provide additional security against data loss, in addition to
carrying out the operations as described herein.

[0050] In some embodiments, cache 345 is implemented
with a volatile memory and non-volatile memory and
coupled to microprocessor 342 via a local bus (not shown in
FIG. 3) for enhanced performance of data storage system
300. The NVS 316 included in data storage controller is
accessible by microprocessor 342 and serves to provide
additional support for operations and execution of the pres-
ent invention as described in other figures. The NVS 316,
may also be referred to as a “persistent” cache, or “cache
memory” and is implemented with nonvolatile memory that
may or may not utilize external power to retain data stored
therein. The NVS may be stored in and with the cache 345
for any purposes suited to accomplish the objectives of the
present invention. In some embodiments, a backup power
source (not shown in FIG. 3), such as a battery, supplies
NVS 316 with sufficient power to retain the data stored
therein in case of power loss to data storage system 300. In
certain embodiments, the capacity of NVS 216 is less than
or equal to the total capacity of cache 345.

[0051] Storage 330 may be physically comprised of one or
more storage devices, such as storage arrays. A storage array
is a logical grouping of individual storage devices, such as
a hard disk. In certain embodiments, storage 330 is com-
prised of a JBOD (Just a Bunch of Disks) array or a RAID
(Redundant Array of Independent Disks) array. A collection
of physical storage arrays may be further combined to form
a rank, which dissociates the physical storage from the
logical configuration. The storage space in a rank may be
allocated into logical volumes, which define the storage
location specified in a write/read request.

[0052] In one embodiment, by way of example only, the
storage system as shown in FIG. 3 may include a logical
volume, or simply “volume,” may have different kinds of
allocations. Storage 330a, 3305 and 3307 are shown as ranks
in data storage system 300, and are referred to herein as rank
330a, 3306 and 330%. Ranks may be local to data storage
system 300, or may be located at a physically remote
location. In other words, a local storage controller may
connect with a remote storage controller and manage storage
at the remote location. Rank 330q is shown configured with
two entire volumes, 334 and 336, as well as one partial
volume 332a. Rank 3306 is shown with another partial
volume 332b. Thus volume 332 is allocated across ranks

May 25, 2017

330q and 33056. Rank 3307 is shown as being fully allocated
to volume 338 —that is, rank 330n refers to the entire
physical storage for volume 338. From the above examples,
it will be appreciated that a rank may be configured to
include one or more partial and/or entire volumes. Volumes
and ranks may further be divided into so-called “tracks,”
which represent a fixed block of storage. A track is therefore
associated with a given volume and may be given a given
rank.

[0053] The storage controller 340 may include a data
deduplication module 355, a similarity module 357, and a
similarity search module 359, as well as a number of
repositories (not shown). The data deduplication module
355, similarity module 357, similarity search module 359,
and repositories may operate in conjunction with each and
every component of the storage controller 340, the hosts
310, 320, 325, and storage devices 330. The data dedupli-
cation module 355, similarity module 357, similarity search
module 359, and repositories may be structurally one com-
plete module or may be associated and/or included with
other individual modules or other structures. The data dedu-
plication module 355, similarity module 357, similarity
search module 359, and repositories may also be located in
the cache 345 or other components, as one of ordinary skill
in the art will appreciate.

[0054] The data deduplication module 355, similarity
module 357, similarity search module 359, and repositories
may individually and/or collectively perform various
aspects of the present invention as will be further described.
For example, the data deduplication module 355 may per-
form various data deduplication functionality in accordance
with aspects of the illustrated embodiments.

[0055] The similarity module 357 may perform a variety
of functionality as will be further described, such as parti-
tioning input snapshot data into changed tracked blocks,
grouping the changed tracked blocks into enclosing simi-
larity units, and partitioning the changed tracked blocks into
variable-sized deduplication blocks. The similarity search
module 359 may also perform a variety of functionality as
will be further described, such as examining deduplication
coverage and conducting similarity searches between input
similarity units and corresponding similarity units of a
previous snapshot. As one of ordinary skill in the art will
appreciate, the data deduplication module 355, similarity
module 357, similarity search module 359, and repositories
may make up only a subset of various functional and/or
functionally responsible entities in the data storage system
300.

[0056] Other ancillary hardware may be associated with
the storage system 300. For example, as shown, the storage
controller 340 includes a control switch 341 for controlling
the fiber channel protocol to the host computers 310, 320,
325, a microprocessor 342 for controlling all the storage
controller 340, a nonvolatile control memory 343 for storing
a microprogram (operation software) 350 for controlling the
operation of storage controller 340, data for control, cache
345 for temporarily storing (buffering) data, and buffers 244
for assisting the cache 245 to read and write data, a control
switch 341 for controlling a protocol to control data transfer
to or from the storage devices 330, the data deduplication
module 355, similarity module 357, similarity search mod-
ule 359, and repositories, or other blocks of functionality, in
which information may be set. Multiple buffers 344 may be

US 2017/0147627 Al

implemented with the present invention to assist with the
operations as described herein.

[0057] In one embodiment of the present invention, the
input changed tracked blocks (i.e., tracked blocks that were
determined as changed by the snapshot mechanism) are
grouped by the mechanisms of the illustrated embodiments
by enclosing larger “similarity units,” and are then processed
for deduplication according to these similarity unit groups.

[0058] Turning to FIG. 4, following, an illustration 400 of
this functionality is shown, with a group of input changed
tracked blocks 402 that are shown as part of a larger
sequence of blocks 408. The changed tracked blocks 402 are
organized by an enclosing similarity unit 404 and processed
for deduplication as shown. The changed tracked blocks 402
have an exemplary size of 64 KB, and are enclosed by a
similarity unit 404 having an exemplary size of 8 MB. Each
one of the changed tracked blocks is processed into a
number of deduplication blocks 406 having an exemplary
size of 2 KB.

[0059] In one embodiment, the boundaries of the similar-
ity units 404 are aligned to the size of the tracked blocks 402,
namely a tracked block can not span over similarity units.
The start positions of the similarity units are aligned to their
size. For example: Assuming that the size of a similarity unit
is 8 MB and the size of a tracked block is 64 KB, then the
start positions of the similarity units are 0, 8 MB, 16 MB, 24
MB, etc. Consider for example 4 tracked blocks, starting at
positions 896 KB, 5120 KB, 21824 KB, and 27840 KB. The
first two tracked blocks will be grouped within the similarity
unit starting at position 0. The third tracked block will be
grouped within the similarity unit starting at position 16 MB.
The fourth tracked block will be grouped within the simi-
larity unit starting at position 24 MB.

[0060] Only similarity units that contain at least one input
changed tracked block are processed for deduplication. The
input tracked blocks in a group are processed together for
deduplication as shown. Further, and as shown, each input
changed tracked block 402 is further partitioned into vari-
able sized deduplication blocks, e.g. of mean size 2 KB. The
set of deduplication blocks starts at position 0 of each
changed tracked block, and deduplication blocks do not span
over tracked blocks.

[0061] The model depicted in FIG. 4 enables to achieve
high resolution deduplication for snapshots while keeping
the similarity index compact, and performing similarity
search with a lower resolution than that of the tracked
blocks, which considerably reduces the Input/Output (I0)
operations per second.

[0062] An observation underlying another aspect of the
illustrative embodiments is that using prior knowledge for
attempting to perform efficient deduplication of a group of
input changed tracked blocks is more efficient, and only if
this attempt does not produce sufficient deduplication a
global similarity search is performed for the input group of
blocks. The mechanisms of the illustrated embodiments first
identify a similarity unit in the previous snapshot (if exists)
that corresponds to the input similarity unit, and attempt
deduplication with this corresponding similarity unit.

[0063] A corresponding similarity unit in a previous snap-
shot is defined as having a beginning position in the previous
snapshot, which is identical to the beginning position of the
input similarity unit in the input snapshot. FIG. 5, following,
in illustration 500, shows pairs of corresponding similarity

May 25, 2017

units in an input snapshot (e.g., input snapshot 502) and a
previous snapshot (e.g., previous corresponding snapshot
504) of a data set.

[0064] Referring to illustration 500, in one embodiment,
the mechanisms of the present invention load the dedupli-
cation digests of the corresponding similarity unit of the
previous snapshot into memory, and apply a digests match-
ing process to the digests of the input and the corresponding
similarity units. The mechanisms then check the coverage of
deduplication. If coverage is sufficient, (e.g., above or equal
to a threshold), then the calculated matches are used and
processing proceeds to the next input similarity unit. If
coverage is insufficient, (e.g., below a threshold), then the
mechanisms apply a similarity search for the input similarity
unit, by searching for a similar data unit in a similarity index,
and if found the mechanisms load the deduplication digests
of the found similarity unit into memory, apply a digests
matching process to the digests of the input and the found
similarity units, and combine the matches found in the
current and the previous matching processes to a unified set
of matches.

[0065] With the above model, the following challenge
becomes apparent: For each input similarity unit a repre-
sentative value has to be calculated to enable searching for
similar data in a similarity index and to enable storing the
information of the input similarity unit in the similarity
index. To be effective, a representative value has to be
calculated based on the full data of a similarity unit. How-
ever, in the above model only the data of the changed
tracked blocks is provided in the input, and reading the
unchanged data is inefficient and adds considerable over-
head.

[0066] To address the challenge previously described, the
mechanisms of the illustrated embodiments introduce an
additional aspect, which is a novel methodology for calcu-
lating representative values for input similarity units in
snapshots data. In the mechanisms of the illustrated embodi-
ments, for an input similarity unit, the digests of a corre-
sponding similarity unit in a previous snapshot of the data
set (i.e. the corresponding similarity unit has a position in the
previous snapshot which is the same as the position of the
input similarity unit in the input snapshot), are loaded in
memory for applying deduplication with the input similarity
unit. Subsequently, the mechanisms combine the digests of
the unchanged tracked blocks sourced from the digests of
the corresponding similarity unit (which are loaded in
memory) with the input digests of the changed tracked
blocks of the input similarity unit, to produce a representa-
tive value for the input similarity unit.

[0067] The calculation of a representative value for an
input similarity unit based on the digests of the changed
tracked blocks of the input similarity unit and the digests of
the unchanged tracked blocks of the corresponding similar-
ity unit is depicted in an exemplary embodiment as illus-
tration 600 in FIG. 6, following. An input similarity unit 602
and a corresponding similarity unit 604 are shown. For the
input similarity unit 602, the digest values of the changed
tracked blocks 606 are included in the calculation of the
representative value 610 for the input similarity unit 602. In
addition, the digest values of the unchanged tracked blocks
608 sourced from the digest values of the corresponding
similarity unit 604 are also included in the calculation of the
representative value 610 for the input similarity unit 602.
The digest values of the input changed tracked blocks 606

US 2017/0147627 Al

and the digest values of the unchanged corresponding
tracked blocks 608 are combined in a calculation of the
representative value 610 for the input similarity unit 602 as
shown. This representative value is thus calculated based on
the entire data of the input similarity unit 602. Since the
digests required for this calculation are loaded into memory
for the deduplication process itself, there is no overhead for
this calculation.

[0068] An additional aspect of the illustrated embodi-
ments is a novel methodology for combining data matches
calculated in multiple deduplication processes for an input
similarity unit, to provide an efficient set of data matches
covering the input data. This methodology is required to
combine the data matches generated by deduplication with
a corresponding similarity unit, and the data matches gen-
erated by deduplication with a similarity unit found using
the similarity index. The methodology is generic for com-
bining data matches generated by various deduplication
processes performed on different repository data.

[0069] In view of the preceding, in one embodiment, the
data matches are sorted by their start positions, and subse-
quently, data matches that are fully enclosed within other
data matches or are too small for citing are eliminated. Next,
each pair of data matches with an overlap section is scanned
in ascending order, and from each pair a data match is
selected to be retained in its full size. One example of a
selection criterion is to select the data match whose size is
maximal. Next, the other data match in the pair is truncated,
by removing the overlap section from the other data match.
Then the truncated data match is retained if it is not fully
enclosed within the next data match in the sorted list of data
matches and if it is not too small for citing. Otherwise, the
truncated data match is removed. Then, the next pair of data
matches with an overlap section is process by the method-
ology.

[0070] An additional aspect of the mechanisms of the
illustrated embodiments concerns a methodology for effi-
cient deduplication of an initial snapshot in a chain of
snapshots, namely a snapshot that does not have a preceding
snapshot of the same data set. The problem addressed is that
for an initial snapshot there is no previous snapshot to
provide an efficient alternative for finding similar data.
Accessing the global similarity index for each of the simi-
larity units of the initial snapshot can consume much
resources. Moreover, initial snapshots contain the full data
of their data sets, and therefore can be large, i.e., consisting
of a large number of tracked blocks and similarity units. The
objective of the proposed methodology is to reduce accesses
to the global similarity index.

[0071] In the mechanisms of the illustrated embodiments,
a separate, in-memory similarity index may be built during
the deduplication process of the initial snapshot. This index
contains representations of only the data of the initial
snapshot, and is therefore small and enables efficient access.
The index may be denoted as “intra-snapshot similarity
index”. This model leverages the higher frequency of similar
data inside data sets. Also note that for an initial snapshot,
the full data of the snapshot is provided in the input, thus the
mechanisms of the illustrated embodiments are able to
calculate a representative value for each of the input simi-
larity units.

[0072] In one embodiment, for each similarity unit, first
the intra-snapshot similarity index is searched for similar
data, and only if no similar data is found or deduplication

May 25, 2017

with the found similar data is insufficient—the embodiment
proceeds to search in the global similarity index. When
processing of the entire initial snapshot is complete, the
intra-snapshot similarity index is integrated into the global
similarity index. This is done using an efficient method; for
example if the indexes are search trees, then the tree of the
intra-snapshot index can be merged structurally into the tree
of the global similarity index, or its entries can be bulk
inserted into the global similarity index, depending on the
type of the tree.

[0073] An additional optimization in this context is that
the intra-snapshot similarity index can be built using a
resolution that is higher than the resolution of the the global
similarity index. Namely, the similarity units used to build
and to search within the intra-snapshot similarity index can
be smaller than the similarity units used for the global index,
thus providing higher resolution similarity search within a
snapshot. This is enabled because the intra-snapshot simi-
larity index is smaller typically in orders of magnitude
relative to the global similarity index. This is further
enabled, as the mechanisms of the illustrated embodiments
allow for representative values of a lower resolution to be
efficiently calculated from representative values of a higher
resolution. Namely, the representative values of the intra-
snapshot similarity index are efficiently combined to pro-
duce representative values for searching in and later insert-
ing into the global similarity index.

[0074] An additional aspect of the mechanisms of the
illustrated embodiments concerns a set of techniques that
enable to further reduce the IO consumption and size of the
similarity index. The challenge being addressed is that for
large data repositories or repositories that accommodate
frequent snapshots, the 10 consumption required for the
search and update operations on the similarity index can be
high. The inventive techniques to address this challenge are
outlined, following.

[0075] A first technique provides that the similarity index
represents only a latest generation of the repository data.
Namely, for each representative value, a single latest entry
is maintained.

[0076] A second technique provides for implicit deletion
in the similarity index. The problem addressed is that
deletion is not limited and does not depend on the rate of
incoming data, and can therefore create a high load of 10
operations on the similarity index. Based on experience
from current deduplication mechanisms, explicit deletion is
typically a highly resource consuming operation. In the
mechanisms of the illustrated embodiments, entries in the
similarity index become designated to be removed when a
snapshot is deleted, and when a new snapshot is processed
and its new representative values replace existing represen-
tative values (which become designated to be removed).
These operations do not perform explicit deletion in the
present invention, and entries designated to be removed by
these operations are then either updated by new snapshots
(thus reducing 1O consumption) or identified and removed
within search operations. The details of these techniques are
provided further, following.

[0077] A third technique provides that while, for example,
the 20 bytes (or more) of the cryptographic hash value that
constitutes the digest value, only 8 bytes are stored in the
similarity index. In one embodiment, a similarity index entry
consists of 8 bytes that are a subset of the digest value of a
representative value, and 8 bytes that are a storage reference

US 2017/0147627 Al

to the digests of the similarity unit to which the current
representative value corresponds to. The 8 byte space pro-
vides a sufficient distribution and uniqueness for the repre-
sentative values, and the 12 remaining bytes are stored
within the digests of a similarity unit and are verified within
a search operation to validate that an input and a repository
representative values indeed match.

[0078] Now that some context for various aspects of the
illustrated embodiments have been introduced, as well as
challenges and inventive techniques and methodologies to
address them, the following describes the functionality
inherent in the mechanisms of the illustrated embodiments
for providing deduplication functionality for input snapshot
data. This functionality is also illustrated by the method 700
shown in FIGS. 7A and 7B, which depicts an exemplary
method 700 for providing deduplication functionality for
input snapshot data, in which aspects of the present inven-
tion may be implemented.

[0079] Method 700 in FIG. 7A begins with the input of a
set of changed tracked blocks, where the size of each of the
changed tracked blocks is, for example, 64 KB, and the
blocks’ positions in the storage are arbitrary and depend on
the modification of data in the storage between the time of
the previous snapshot and the time of the current snapshot.
This is described and depicted in step 702 as shown.
[0080] Inasubsequent step 704, the data is partitioned into
similarity units of a sufficiently large size, (e.g., 8 Mega-
bytes). A sufficiently large size is such that representing all
the similarity units in a repository requires a storage size that
is sufficiently small. Each similarity unit may enclose zero or
more input changed tracked blocks. In decision step 706,
method 700 queries whether there is an additional input
similarity unit that encloses one or more input changed
tracked blocks. If no, the method 700 then ends (step 728).
If so, for each input similarity unit that encloses one or more
input changed tracked blocks, deduplication blocks (e.g., of
size 2 KB), are calculated for the input changed tracked
blocks within the input similarity unit, and a digest value,
e.g. SHA-1 value, is calculated for each deduplication block
(step 708).

[0081] In a subsequent step, a corresponding similarity
unit within the previous corresponding snapshot is identi-
fied. The corresponding similarity unit has a nominal start
position in the previous corresponding snapshot that is the
same as the nominal start position of the input similarity unit
in the input snapshot. The digest values of the deduplication
blocks of the identified corresponding similarity unit are
loaded into memory (step 710).

[0082] The digest values of the input similarity unit and
the digest values of the corresponding similarity unit are
matched to find identical data sections (step 712).

[0083] Method 700 then moves to decision step 714,
which queries whether the deduplication coverage of the
input similarity unit is less than a threshold. If the coverage
is not less than a threshold, the method 700 returns to step
706 as shown. If the coverage is indeed less than a threshold,
then the method 700 continues to process the current input
similarity unit as follows.

[0084] A representative value is calculated for the input
similarity unit based on the digests of the input similarity
unit and the digests of the corresponding similarity unit of
the previous snapshot (step 716). Specifically, the digests of
the unchanged tracked blocks sourced from the correspond-
ing similarity unit are considered together with the digests of

May 25, 2017

the changed tracked blocks of the input similarity unit, to
calculate the representative value.

[0085] The calculated representative value is searched in a
similarity index of representative values. (step 718). Turning
now to FIG. 7B, which continues the exemplary method
previously began in FIG. 7A, previously, if a matching
representative value is not found in the similarity index
(decision step 720), then the method 700 proceeds to process
the next input similarity unit (returning to step 706 as
previously). If a matching representative value is found, then
the method 700 continues to process the current input
similarity unit as follows.

[0086] The digests of the found similarity unit referenced
by the found representative value are loaded into memory
(step 722). The digest values of the input similarity unit and
the digest values of the found similarity unit are matched to
find identical data sections (step 724). Finally, the identical
sections calculated based on the corresponding similarity
unit and the found similarity unit are combined to produce
a final list of identical sections (step 726). The method 700
then proceeds to process the next input similarity unit by
returning to step 706 as previously.

[0087] Exemplary methodologies for processing a single
input similarity unit are now described. In one embodiment,
deduplication blocks, (e.g., of size 2 KB), are calculated for
each one of the changed tracked blocks within the input
similarity unit. The boundaries of the deduplication blocks
can be calculated using a contents defined chunking method,
for example, that provides variable sized deduplication
blocks. For each deduplication block a cryptographic hash
value, e.g. a SHA-1 value, named a digest value, is calcu-
lated. The information of a digest includes the digest value
and the position and size of the corresponding deduplication
block.

[0088] The digests of a similarity unit are stored in a
continuous storage segment, where their order in the storage
segment corresponds to their order of appearance in the data.
Each storage segment corresponds to a specific similarity
unit. A representative value entry in the similarity index
contains a storage reference that enables to efficiency iden-
tify the location in the storage of the digest storage segment
corresponding to the similarity unit represented by the entry.
[0089] FIG. 8, following, in illustration 800, depicts the
metadata layout. An exemplary similarity index 802 refer-
encing representative storage segments of digests 804 that
are referenced by entries in the similarity index as shown.
Each similarity index entry 806 includes a corresponding
representative value as previously described that was cal-
culated, and a storage reference to a segment of digests that
enables to efficiency identify the location in the storage of
the digest storage segment corresponding to the similarity
unit represented by the entry.

[0090] Accordingly, in one embodiment, each storage
segment has a metadata section that includes the following
components: (1) CRC; (2) the position in the storage seg-
ment of the representative digest of the similarity unit
corresponding to the storage segment; (3) the identification
of the latest snapshot that updated the storage segment; and
(4) a map of nominal base positions for sub-sections of the
storage segment, which enables efficient position calculation
of a specific digest in a segment (as the digest blocks are of
variable size).

[0091] In the mechanisms of the illustrated embodiments,
a digests storage segment has a fixed physical size and a

US 2017/0147627 Al

fixed nominal size. Examples of these sizes may be a 48 KB
physical size and an 8 MB nominal size. The fixed physical
and nominal sizes enable O(1) addressing of digests storage
segments. Namely, given an input nominal position, the
physical position of the digests storage segment covering the
input nominal position is known in O(1). The physical and
nominal sizes of a digests storage segment are calculated to
provide a minimal probability of excess digests per storage
segment and be IO efficient. Representative digests for
similarity units are calculated based on the maximal number
of digests for a storage segment, thus avoiding excess
digests that are not stored. This is a repeatable calculation
method that is optimized for the above design of digests
storage segments.

[0092] Input and repository digests may be matched using
a digests matching algorithm. This algorithm, for example,
loads one set of digests into a hash table, and searches using
the hash table for each of the digests of the other set. For
each match found, the match is attempted to be extended
with consecutive matching digests. A pair of digests are
determined as matching when their cryptographic hash
values and their deduplication block sizes match.

[0093] Turning now to FIG. 9, following, an exemplary
method 900 for calculating a representative value for an
input similarity unit in an input snapshot is shown, in which
aspects of the present invention may be implemented. As an
introductory step, the input for the method 900 is a set of
changed tracked blocks of an input similarity unit (step 902).
Note that only the data of the input changed tracked blocks
is available in the input, and the data of the unchanged
tracked blocks is not available in the input.

[0094] In step 904, the maximal digest value is calculated
for the input changed tracked blocks. This is done during the
calculation of the digest values for the input changed tracked
blocks (these digest values are required for deduplication on
the input data). In a subsequent step 906, the maximal digest
value for the unchanged tracked blocks is calculated. This is
done based on the digest values of the unchanged tracked
blocks. These digest values are sourced from the corre-
sponding similarity unit in the previous snapshot of the data
set. In the exemplary method 900, these digest values are
already loaded into memory to facilitate deduplication with
the corresponding similarity unit.

[0095] Additional optimizations are provided to the
method 900, as follows, in one embodiment. If the maximal
digest value is stored for each tracked block, then rather than
using the digests these stored maximal digest values may be
used to calculate the maximal digest value for the unchanged
tracked blocks. Additionally, if the maximal digest value is
stored for each similarity unit (rather than for each tracked
block), then if the input changed tracked blocks do not
overwrite the position of the stored maximal digest value
then the stored maximal digest value is valid to be used in
the calculation as the current maximal digest value for the
unchanged tracked blocks. Only in the case where the input
changed tracked blocks overwrite the position of the stored
maximal digest value and the maximal digest value of the
input changed tracked blocks is smaller than the stored
maximal digest value, then a maximal digest value is cal-
culated for the unchanged tracked blocks.

[0096] In a subsequent step 908, the maximal of these two
digest values is calculated, and the deduplication block
associated with the maximal digest value is identified. This

May 25, 2017

deduplication block can be either in the changed tracked
blocks or in the unchanged tracked blocks.

[0097] A repeatable position shift, (e.g., one position
next), is applied for that deduplication block to identify a
representative deduplication block (step 910). Finally, the
digest value of the representative deduplication block is
selected to be the representative value of the input similarity
unit (step 912). The method 900 ends (step 914).

[0098] FIG. 10, following, illustrates an exemplary
method 1000 for combining data matches calculated in
multiple deduplication processes for an input similarity unit,
to produce a unified and efficient list of data matches, in
which aspects of the present invention may be implemented.
In the depicted embodiment, a ‘data match’ is defined as a
sequence of matching bytes in the input and reference data.
[0099] The input is a list of data matches calculated by
multiple deduplication processes for an input similarity unit,
where the data matches may be overlapping and unordered
(step 1002). The data matches are sorted by their start
positions in ascending order (step 1004). Data matches that
are completely enclosed within other matches, or are deter-
mined to be too small for citing, are removed (step 1006).
Each pair of the data matches having an overlap section is
then scanned in an ascending order of position (step 1008).
[0100] Continuing to decision step 1010, which queries
whether an additional pair of data matches having an overlap
section is available (if no, the method 1000 ends in step
1020), for each such pair: (1) a data match is selected from
the pair to retain in its full size; this data match is denoted
as ‘data match A’ (step 1012); (2) the other data match,
denoted as ‘data match B’, is truncated by removing the
overlap section from data match B so that it will not overlap
with data match A (step 1014); this truncation process may
cause the truncated data match B to become fully enclosed
within the next data match in the sorted list of data matches;
(3) if the truncated data match B is fully enclosed within the
next data match in the sorted list of data matches, or if the
truncated data match B is determined to be too small for
citing, then the truncated data match B is removed; other-
wise the truncated data match B is retained (step 1016). The
method 1000 then moves to process the next pair of data
matches having an overlap section (returning to decision
step 1010 as previously).

[0101] Selection of the data match to retain in its full size
from a pair of data matches may be based on a variety of
criteria. In one embodiment, the selection of the data match
may be determined by which of the pair has a maximal size.
In another embodiment, the selection may be determined by
the data match whose position in the reference data is closest
to the positions of any previous selected data matches. In
still another embodiment, the selection may be determined
by a combination of the previous criteria. Any other selec-
tion criteria may also be used in a data match determination.
[0102] FIG. 11, following, graphically illustrates the pro-
cessing performed for each pair of data matches, including
truncation, retention and removal operations described in
FIG. 10, previously, as shown in three example cases. In the
depicted ‘Case A,’ in the processing of data matches 1 and
2, data match 2 is larger and is retained in its full size, while
data match 1 is truncated with the overlap section, and its
truncated form is retained. The next pair to process is data
matches 2 and 3 as shown.

[0103] In the depicted ‘Case B,” in the processing of data
matches 1 and 2, data match 1 is determined to be larger and

US 2017/0147627 Al

is retained in its full size, while data match 2 is truncated
with the overlap section. The truncated form of data match
2 is fully enclosed within data match 3; therefore, data match
2 is removed, and the next pair to process is data matches 1
and 3 as shown.

[0104] Finally, in the depicted ‘Case C,” in the processing
of data matches 1 and 2, data match 1 is determined to be
larger and is retained in its full size, while data match 2 is
truncated with the overlap section. The truncated form of
data match 2 is not fully enclosed within data match 3;
therefore, the next pair to process is data matches 2 (trun-
cated) and 3 as shown.

[0105] FIGS. 12A and 12B, following, depict an exem-
plary method 1200 for deduplicating an initial snapshot in a
chain of snapshots according to one embodiment of the
present invention, namely a snapshot that does not have a
preceding snapshot of the same data set. Turning first to FIG.
12A, in step 1202, the input to the method 1200 is an initial
snapshot in a chain of snapshots. The data of the input initial
snapshot is then partitioned into similarity units (e.g., of size
8 MB) (step 1204).

[0106] Method 1200 then moves to decision step 1206,
which queries whether an additional input similarity unit is
available in the input initial snapshot. In other words, for
each input similarity unit, the method 1200 moves to step
1208 as shown, to calculate deduplication blocks (e.g., of
size 2 KB) for the tracked blocks of the input similarity unit.
In addition, a digest value, (e.g., SHA-1 value), is calculated
for each deduplication block. If an additional input similar-
ity unit is not found, the method 1200 moves to step 1226
in FIG. 12B, as will be further described.

[0107] Continuing to step 1210, high resolution represen-
tative values are calculated for the similarity unit (e.g., each
representative value corresponds to a 2 MB sub-unit). Each
one of the high resolution representative values is searched
in an intra-snapshot similarity index, and similar sub-units
are identified (step 1212). If similar sub-units were found,
then the digests of the input similarity unit and the digests of
the found sub-units are matched to find identical data
sections (step 1214).

[0108] The method 1200 then proceeds to decision step
1116, which queries whether the deduplication coverage of
the input similarity unit is lower than a threshold. If so, then
the method 1200 proceeds to steps 1218, 1220, 1222 and
1224 as follows. If not, the method 1200 returns to decision
step 1206 as shown.

[0109] Returning to decision step 1216, and following the
progression of method 1200 through the assumption that the
examined deduplication coverage of the input similarity unit
is lower than a threshold, a representative value is calculated
for the input similarity unit based on the high resolution
representative values of the sub-units in a subsequent step
1218. The calculated representative value is then searched in
a global similarity index (step 1220).

[0110] Turning now to FIG. 12B, and continuing with step
1222, if a similar unit was found, then the digests of the input
similarity unit and the digests of the found similarity unit are
matched to find identical data sections. The identical sec-
tions calculated based on the sub-units found in the intra-
snapshot similarity index and the similarity unit found in the
global similarity index are combined to produce a final list
of identical sections (step 1224).

[0111] Returning now to decision step 1206 in FIG. 12A,
and assuming that no additional input similarity unit is

May 25, 2017

available in the input initial snapshot (in other words, when
processing of all the input similarity units of the input initial
snapshot has been completed), the method 1200 moves to
step 1226 as follows. The intra-snapshot similarity index is
integrated into the global similarity index, e.g. by tree merge
or bulk insertion of the intra-snapshot index entries into the
global similarity index. The method 1200 then ends (step
1228).

[0112] Several inventive aspects may be applied as part of
the mechanisms of the illustrated embodiments to further
reduce the IO consumption and size of the similarity index.
In one embodiment, each entry in the similarity index may
be configured with e.g. 8 bytes that are a subset of the
representative digest value of the corresponding similarity
unit, and e.g. 8 bytes that are a storage reference to the
digests segment of the corresponding similarity unit. The
former 8 bytes are a subset of the e.g. 20 bytes (or more) of
the cryptographic hash value that constitutes the represen-
tative digest value.

[0113] The embodiment just described is depicted as illus-
tration 1300 in FIG. 13, following, to show an exemplary
partition of a representative value and the structure of an
entry in the similarity index. A representative value of, for
example 20 bytes, incorporates a portion used as the repre-
sentative value in the similarity index, of size for example 8
bytes (portion 1304), and a remaining portion that is stored
with the digests of the similarity unit, of size for example 12
bytes (portion 1306). The 8-byte space in portion 1304
provides a sufficient distribution and uniqueness for the
representative values, and the 12 remaining bytes in portion
1306 are stored in the representative digest record which is
stored in the digests segment of the corresponding (refer-
enced) similarity unit. These 12 bytes are verified within a
search operation to validate that an input and a repository
representative values indeed match. Namely, when a match
is found in the similarity index (based on the 8 bytes subset),
the remaining 12 bytes of the representative value are
obtained and verified to match the input representative
value. Similarity index entry 1308, e.g. of size 16 bytes, then
includes a portion 1310 storing a representative value, of
size for example 8 bytes, and a portion 1312 used to store a
storage address of the corresponding digests segment, of
size for example 8 bytes.

[0114] In another inventive aspect, in one embodiment, the
similarity index is configured to represent only a latest
generation of the repository data. Namely, for each repre-
sentative value, a single latest entry is maintained. Specifi-
cally, when a new representative value has a value which is
equal to that of an existing representative value, the new
value overwrites the existing value.

[0115] In an additional inventive aspect, in one embodi-
ment, implicit deletion is applied in the similarity index. In
the mechanisms of the illustrated embodiments, explicit
deletion operations are not performed, and entries desig-
nated to be removed are either updated by new snapshots
(thus reducing 1O consumption) or identified and removed
within search operations. There are two cases, specified next
as exemplary embodiments, where entries in the similarity
index are designated to be removed.

[0116] Inthe first case, a new snapshot is processed and its
new representative values replace existing representative
values. A new snapshot adds only the representative values
of the changed similarity units in the snapshot. The repre-
sentative values of the unchanged similarity units remain as

US 2017/0147627 Al

is. Consider a changed similarity unit that contributes a
representative value into the similarity index. If the new
representative value of the similarity unit is equal to its
previous representative value (i.e., the change in the data did
not cause change in the representative value), then the new
representative value will replace, and thus also implicitly
delete, the previous representative value. If the new repre-
sentative value of the similarity unit is different from its
previous representative value, then the previous representa-
tive value of that similarity unit remains in the index and is
designated to be removed. The methods for identifying and
processing such representative values are specified in the
following.

[0117] In the second case, an existing snapshot is deleted.
Explicit deletion of entries is not performed, and therefore
the representative values of a deleted snapshot remain in the
index as designated to be removed, and the methods for
identifying and processing such representative values are
specified in the following. Entries in the similarity index that
become designated to be removed by any of the above
processes (i.e., new snapshot processing, deletion of a
snapshot) are then processed by one of two exemplary
processes.

[0118] In a first exemplary process, an entry designated to
be removed may be updated directly by a new entry that has
the same representative value (but references different
digests). In this way the entry designated to be removed is
overwritten (and thus removed) by the new entry.

[0119] In asecond exemplary process, an entry designated
to be removed may be processed by a search operation of a
given representative value. Processing of such entries is
classified into the following cases.

[0120] In the first case the storage reference to a digests
segment is no longer valid. In this case the invalid storage
reference will be identified as such by the search operation,
and the entry will be removed within the search operation.

[0121] In the second case the storage reference to a digests
segment is reused by another similarity unit and is therefore
valid, but the representative value of that similarity unit is
different from the representative value designated to be
removed. In this case, the search operation checks if the two
representative values match (checking their full size, e.g., 20
bytes), and because they are different, the search operation
will identify the entry designated to be removed, and will
remove that entry.

[0122] In the third case the storage reference to a digests
segment is reused by another similarity unit and is therefore
valid, and the representative value of that similarity unit is
equal to the representative value designated to be removed.
In this case the new representative value directly updates
(overwrites) the existing representative value, and therefore
this case is equivalent to the first case above.

[0123] The functionality imparted by implicit deletion in
the illustrated embodiments serves to reduce 1O operations
by embedding removal of entries designated for removal
within update operations and search operations. With
explicit deletion the cost for removing entries is paid
upfront, while with implicit deletion as suggested herein, the
cost is deferred and only a portion of that cost is eventually
applied (for removal of entries that were processed by a
search operation before being processed by an update opera-
tion). Furthermore, entries designated for removal that exist
in the index are safe in terms of deduplication.

May 25, 2017

[0124] Turning now to FIG. 14, method 1400 illustrates an
exemplary method for processing tracked blocks in a data
storage implemented with data deduplication by a processor,
in which various aspects of the present invention may be
implemented. Method 1400 begins (step 1402) with the
partitioning of input snapshot data into changed tracked
blocks (step 1404). The changed tracked blocks are then
grouped into enclosing similarity units (step 1406). The
changed tracked blocks are then partitioned into variable-
sized deduplication blocks (step 1408). Finally, those simi-
larity units that contain at least one input changed tracked
block are processed for deduplication (step 1410). The
method 1400 then ends (step 1412).

[0125] FIG. 15, following, illustrates an exemplary
method 1500 for deduplication of an input snapshot in a data
storage by a processor, in which aspects of the present
invention may be implemented. The method 1500 begins
(step 1502). An input snapshot data is partitioned into
similarity units 1504. The input similarity unit is dedupli-
cated with a corresponding similarity unit of a previous
snapshot (step 1506). Deduplication coverage is examined
(step 1508). If a deduplication coverage threshold is not met,
a similarity search is conducted and the input similarity unit
is deduplicated with a found similarity unit (step 1510). The
method 1500 then ends (step 1512).

[0126] FIG. 16, following, illustrates an exemplary
method 1600 for calculating a representative value for an
input similarity unit in data deduplication of snapshots data
by a processor, again in which various aspects of the present
invention may be implemented. Method 1600 begins (step
1602) with the identification of a corresponding similarity
unit of a previous snapshot that corresponds to an input
similarity unit (step 1604). A calculation is performed based
on digests of the input similarity unit and digests of the
corresponding similarity unit (step 1606). Based on the
calculation, a representative value is produced for the input
similarity unit (step 1608). The method 1600 then ends (step
1610).

[0127] FIG. 17, following, illustrates an exemplary
method 1700 for combining input data matches from mul-
tiple sources in deduplication of data in data storage by a
processor, according to one embodiment the present inven-
tion. Method 1700 begins (step 1702) with the calculation of
input data matches using a plurality of deduplication pro-
cesses referencing a plurality of repository data segments for
the input data (step 1704). A combined list of output data
matches, is then calculated (step 1706). The method 1700
then ends (step 1708).

[0128] Turning now to FIG. 18, an exemplary method
1800 for data deduplication of an initial snapshot of a data
set in a storage system by a processor, is depicted. Method
1800 begins (step 1802) with the building of an intra-
snapshot similarity index, inclusive of representations of the
data inside the initial snapshot (step 1804). The intra-
snapshot similarity index is then used for deduplication of
the initial snapshot (step 1806). The intra-snapshot similar-
ity index is then merged with a global similarity index when
processing of the initial snapshot is complete (step 1808).
The method 1800 then ends (step 1810).

[0129] FIG. 19, following, illustrates an exemplary
method 1900 for reducing resource consumption of a simi-
larity index in data deduplication by a processor according
to one embodiment of the present invention. Method 1900
begins (step 1902), by representing in the similarity index

US 2017/0147627 Al

only a latest generation of repository data (step 1904).
Implicit deletion is applied in the similarity index (step
1906). A subset of bytes of a full representative value is
maintained in a similarity index entry (step 1908). The
method 1900 then ends (step 1910).

[0130] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0131] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0132] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0133] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software

May 25, 2017

package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0134] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0135] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0136] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0137] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be

US 2017/0147627 Al

noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

1. A method for combining input data matches in data
deduplication of input data by a processor, comprising:

calculating input data matches using a plurality of inde-

pendent deduplication processes referencing a plurality

of repository data segments for the input data; and

calculating a combined list of output data matches, by:

sorting the input data matches in ascending order of
start positions of the input data matches;

removing those of the input data matches that are fully
enclosed within other input data matches; and

removing those of the input data matches determined to
be smaller than a predetermined threshold for citing;
and

performing a deduplication operation on the combined list

of output data matches.

2. (canceled)

3. (canceled)

4. The method of claim 1, further including processing,
for each pair of the input data matches having an overlap
section, in an ascending order of a position.

5. The method of claim 4, further including, for a pair of
processed data matches, selecting one of the data matches in
the pair to be retained in full size.

6. The method of claim 5, further including performing
the selecting the one of the data matches in the pair to be
retained in full size based on at least one of:

a maximally-sized one of the data matches, and

one of the data matches whose position in reference data

is closer to a position of any previously selected data
matches.

7. The method of claim 5, further including truncating, by
removal of the overlap section, which of the data matches
not selected to be retained in the full size.

8. The method of claim 7, further including removing the
which of the data matches not selected to be retained in the
full size if the which of the data matches is fully enclosed in
a subsequent data match, or if the which of the data matches
is determined to be smaller than the predetermined threshold
for citing.

9. The method of claim 1, further including defining the
plurality of independent deduplication processes for the
input similarity unit to include at least one of:

deduplication of the input similarity unit with a corre-

sponding similarity unit of a previous snapshot, and
deduplication of the input similarity unit with a similarity
unit found using a similarity search.

10. A system for combining input data matches in data
deduplication of input data, comprising:

a processor, operable on the input data, wherein the

processor:

calculates input data matches using a plurality of inde-
pendent deduplication processes referencing a plu-
rality of repository data segments for the input data,
and

calculates a combined list of output data matches by:
sorting the input data matches in ascending order of

start positions of the input data matches;

May 25, 2017

removing those of the input data matches that are
fully enclosed within other input data matches;
and

removing those of the input data matches determined
to be smaller than a predetermined threshold for
citing; and

performs a deduplication operation on the combined

list of output data matches.

11. (canceled)

12. (canceled)

13. The system of claim 10, wherein the processor pro-
cesses, for each pair of the input data matches having an
overlap section, in an ascending order of a position.

14. The system of claim 13, wherein the processor, for a
pair of processed data matches, selects one of the data
matches in the pair to be retained in full size.

15. The system of claim 14, wherein the processor per-
forms the selecting the one of the data matches in the pair to
be retained in full size based on at least one of:

a maximally-sized one of the data matches, and

one of the data matches whose position in reference data

is closer to a position of any previously selected data
matches.

16. The system of claim 14, wherein the processor trun-
cates, by removal of the overlap section, which of the data
matches not selected to be retained in the full size.

17. The system of claim 16, wherein the processor
removes the which of the data matches not selected to be
retained in the full size if the which of the data matches is
fully enclosed in a subsequent data match, or if the which of
the data matches is determined to be smaller than the
predetermined threshold for citing.

18. The system of claim 10, wherein the processor defines
the plurality of independent deduplication processes for the
input similarity unit to include at least one of:

deduplication of the input similarity unit with a corre-

sponding similarity unit of a previous snapshot, and
deduplication of the input similarity unit with a similarity
unit found using a similarity search.

19. The system of claim 10, wherein the input data
matches are one of overlapping and unordered.

20. A computer program product for combining input data
matches in data deduplication of input data by a processor,
the computer program product comprising a computer-
readable storage medium having computer-readable pro-
gram code portions stored therein, the computer-readable
program code portions comprising:

an executable portion that calculates input data matches

using a plurality of independent deduplication pro-
cesses referencing a plurality of repository data seg-
ments for the input data; and

an executable portion that calculates a combined list of

output data matches by:

sorting the input data matches in ascending order of
start positions of the input data matches;

removing those of the input data matches that are fully
enclosed within other input data matches; and

removing those of the input data matches determined to
be smaller than a predetermined threshold for citing;
and

an executable portion that performs a deduplication

operation on the combined list of output data matches.

21. (canceled)

22. (canceled)

US 2017/0147627 Al

23. The computer program product of claim 20, further
including an executable portion that processes, for each pair
of the input data matches having an overlap section, in an
ascending order of a position.

24. The computer program product of claim 23, further
including an executable portion that, for a pair of processed
data matches, selects one of the data matches in the pair to
be retained in full size.

25. The computer program product of claim 24, further
including an executable portion that performs the selecting
the one of the data matches in the pair to be retained in full
size based on at least one of:

a maximally-sized one of the data matches, and

one of the data matches whose position in reference data

is closer to a position of any previously selected data
matches.

26. The computer program product of claim 24, further
including an executable portion that truncates, by removal of

May 25, 2017

the overlap section, which of the data matches not selected
to be retained in the full size.

27. The computer program product of claim 26, further
including an executable portion that removes the which of
the data matches not selected to be retained in the full size
if the which of the data matches is fully enclosed in a
subsequent data match, or if the which of the data matches
is determined to be smaller than the predetermined threshold
for citing.

28. The computer program product of claim 20, further
including an executable portion that defines the plurality of
independent deduplication processes for the input similarity
unit to include at least one of:

deduplication of the input similarity unit with a corre-

sponding similarity unit of a previous snapshot, and
deduplication of the input similarity unit with a similarity
unit found using a similarity search.

#* #* #* #* #*

