wo 2015/047487 A1 |10 N OO0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/047487 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

2 April 2015 (02.04.2015) WIPO I PCT
International Patent Classification: (81)
HO04L 9/06 (2006.01)

International Application Number:
PCT/US2014/043169

International Filing Date:

19 June 2014 (19.06.2014)
Filing Language: English
Publication Language: English
Priority Data:
13/929,589 27 June 2013 (27.06.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
International IP Administration, 5775 Morehouse Drive,
San Diego, California 92121-1714 (US).

Inventor: AVANZI, Roberto; 5775 Morehouse Drive,
San Diego, California 92121 (US).

Agents: KING, Eric T. et al.; Blakely Sokoloff Taylor &
Zatman LLP, 1279 Oakmead Parkway, Sunnyvale, Califor-
nia 94085 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS TO ENCRYPT PLAINTEXT DATA

N
-t
ﬂ
Na
-
-
=

(57) Abstract: Disclosed is an apparatus and
method for encrypting plaintext data. The meth-
od includes: receiving at least one plaintext data
input; applying a Nonce through a function to
the at least one plaintext data input to create
Nonced plaintext data outputs and/or to interme-
diate values of a portion of an encryption func-
tion applied to the at least one plaintext data in-
put to create intermediate Nonced data outputs;
and applying the encryption function to at least
one of the Nonced plaintext data outputs and/or
the intermediate Nonced data outputs to create
encrypted output data. The encrypted output data
is then transmitted to memory.

130
y 130 y 130 vy, 130 v/
ENCRYPTION ENCRYPTION . [ENCRYPTION | ! ENCRYPTON |
FUNCTION FUNCTION FUNCTION | 1{__FUNCTION !
: l
| I
) |
4 y y ! y i
| |

|
N A R N '
— s

140

FIG. 1A

WO 2015/047487 A1 WK 00N VAT 00 A O

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))

a patent (Rule 4.17(ii)) — before the expiration of the time limit for amending the

— as to the applicant's entitlement to claim the priority of claims and to be republished in the event of receipt of
the earlier application (Rule 4.17(iii)) amendments (Rule 48.2(h))

WO 2015/047487 PCT/US2014/043169

METHOD AND APPARATUS TO ENCRYPT PLAINTEXT DATA

BACKGROUND
Field
[0001] The present invention relates to a method and apparatus to encrypt plaintext data and

decrypt the corresponding ciphertext data.

Relevant Background

[0002] The use of memory analyzers represents a large threat to the integrity and confidentiality
of distributing content. Even if great care is devoted to protect data contained in code, the
contents of memory may be captured by bus sniffing. For example, this can be used to leak raw
content, even if it is distributed in an encrypted form, after it has been decrypted in a secure
environment for rendering. This may be accomplished by “reading” the electric signals
corresponding to the writes to the memory. Other more sophisticated attacks may even replay
these signals to trick the processor into reading and processing data chosen by an attacker.

[0003] Content providers often have particular requirements for the handling of raw content. At
a bare minimum, the content can never be stored in memory in the clear. In most cases, there is
at least a requirement that some form of memory scrambling or encryption be applied to all
memory recording to prevent physical attacks. As an example, the data written to a specific
address is usually a function of the clear data, the address, and a master key. This guarantees
that the same data, when written to different addresses, has a different encoding. The use of
nonces to randomize the encryption of the plaintext data, when these nonces are stored and
retrieved in a secure way, can be used to prevent replay attacks.

[0004] Moreover, throughput requirements for secure communication are putting current stream
and block ciphers to test, and novel constructions to increase throughput while at the same time
controlling power and area requirements are desirable.

[0005] Unfortunately, the current techniques are often inefficient, and a stronger level of
protection, a higher throughput at the same security level and without significant increases in

power and, in the case of hardware implementations, area requirements, may be desired.

WO 2015/047487 PCT/US2014/043169

SUMMARY
[0006] Aspects of the invention may relate to an apparatus and method for encrypting plaintext
data. The method includes: receiving at least one plaintext data input; applying a Nonce through
a function to the at least one plaintext data input to create plaintext data outputs and/or to
intermediate values of a portion of an encryption function applied to the at least one plaintext
data input to create intermediate Nonced data outputs; and applying the encryption function to at
least one of the Nonced plaintext data outputs and/or the intermediate Nonced data outputs to

create encrypted output data. The encrypted output data is then transmitted to memory.

WO 2015/047487 PCT/US2014/043169

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1A is a flow diagram illustrating a process in which a series of blocks of plaintext
data inputs are encrypted using an encryption function and a Nonce.
[0008] FIG. 1B is a flow diagram illustrating the reverse decryption process of FIG. 1A.
[0009] FIG. 2 is a flow diagram illustrating a common structure of a block cipher based on the
iterations of similar computational blocks referred to as rounds.
[0010] FIG. 3 is a flow diagram illustrating a process to encrypt a data input in expanded form
using a first and second set of round functions and augmenting an intermediate step of the
encryption process with a Nonce.
[0011] FIG. 4A is a flow diagram illustrating a process to encrypt a series of blocks of plaintext
data inputs using the same key and a Nonce or values derived from a Nonce to modify in
different ways the encryption processes of the individual blocks.
[0012] FIG. 4B is a flow diagram illustrating the reverse decryption process of FIG. 4A.
[0013] FIG. 5 is a flow diagram illustrating a process to encrypt a data input obtaining several
different outputs by applying different values derived from a common Nonce to an intermediate
step of the encryption process.
[0014] FIG. 6 is a diagram of an example computer hardware system to implement the data
encryption techniques for the purpose of enabling the saving and restoring of encrypted memory

to mass storage without having to decrypt and re-encrypt it.

WO 2015/047487 PCT/US2014/043169

DETAILED DESCRIPTION
[0015] The word “exemplary” or “example” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect or embodiment described herein as “exemplary” or as an
“example” in not necessarily to be construed as preferred or advantageous over other aspects or
embodiments.
[0016] Embodiments of the invention relate to techniques to provide an enhanced mechanism for
the protection of data stored in memory. In particular, methods and processes are described that
extend the functionality of block ciphers in order to enhance memory encryption. Additionally,
these techniques may also improve performance, throughput, and power consumption, as will be
hereinafter described. These techniques may also be used to improve performance, throughput,
and power consumption for the purpose of secure data storage of transmission over (wired or
wireless) networks.
[0017] In one embodiment, an encryption scheme is utilized in which a series of L. blocks of
plaintext data inputs are encrypted using an encryption function (e.g., a block cipher). Prior to
encryption with the block cipher, a Nonce is applied through a function to the plaintext data
inputs. In particular, a method or process to encrypt plaintext data is disclosed that includes:
receiving a plurality of plaintext data inputs; applying a Nonce through a function to the plurality
of plaintext data inputs to create Nonced plaintext data outputs; applying an encryption function
such as a block cipher to the Nonced plaintext data outputs to create encrypted output data; and
transmitting the encrypted output data to memory.
[0018] In one embodiment, as will be more particularly described hereinafter, the method may
include: receiving a plurality of plaintext data inputs; applying a Nonce through a function to the
plurality of plaintext data inputs to create plaintext data outputs and/or to intermediate values of
a portion of an encryption function applied to the plurality of plaintext data inputs to create
intermediate Nonced data outputs; and applying the encryption function to at least one of the
Nonced plaintext data outputs and/or the intermediate Nonced data outputs to create encrypted
output data. The encrypted output data is then transmitted to memory.
Randomizing the Encryption of L blocks of Plaintext Data Inputs
[0019] As can be seen in FIG. 1A, in one embodiment, a method or process 100 is performed in
which a plurality of plaintext data inputs (Inputl-Inputl)) 110 are received. A Nonce 120 is
applied through a function 122 to the plaintext data inputs (Inputl-Inputl)) 110. The Nonce 120
may be used to randomize the encryption of the L. blocks of plaintext data (Inputl-Inputl.) 110.
As can be seen in FIG. 1A, L blocks of plaintext data (Inputl-Inputl)) 110 are received and a

4

WO 2015/047487 PCT/US2014/043169

Nonce 120 may be applied by functions (f1, £2,. . . , fl.) 122 to create Nonced plaintext data
outputs. In one embodiment, as will be described in more detail hereinafter, the function to
apply the Nonce 120 may include an XOR function. In another embodiment, instead of an XOR
function, a modular addition function may be used. An encryption function 130 (e.g., a block
cipher) may then be applied to the Nonced plaintext data outputs such that encrypted output data
(Outputl-Outputl) 140 is outputted to memory.

[0020] It should be appreciated that the Nonce 120 may be subject to some transformations in
order to avoid that equal blocks of plaintext (among the L blocks 110 processed at the same
time) have the same encryption. Also, because the cryptographic key used in the encryption
function 130 used in the L parallel encryptions may be the same, the key schedule does not need
to be redone L times

[0021] Further, Nonce 120 may either be stored in a smaller, internal, protected area of memory,
or stored in the main memory, either in a clear or encrypted manner, depending on use cases, as
will be described in more detail hereinafter.

[0022] Also, for simplicity, particular encryption keys used in the encryption functions 130 are
not represented. However, it should be appreciated that the encryption functions take an
additional input, which is the key used by the encryption function in the encryption process.
Moreover, it should also be appreciated that, in the case the encryption functions are iterated
block ciphers using the same encryption key, the various vertical pipelines may share the same
key schedule, where some fixed bit permutations (such as rotations) may be applied to the
rounds before being used in the encryption functions 130. In a hardware implementation, these
permutations should have no performance impact, because they amount to just a different wiring
in the silicon.

[0023] The functions (f1, {2,. . ., fL) 122 may be mathematical functions that derive values from
the Nonce 120 in order to perturbate the computation of the Nonced plaintext data outputs in a
manner unpredictable for an attacker. These can be maskings with constants, different circular
rotations, or other functions that may be related to the chosen encryption function 130. If the
Nonce 120 has larger size than the cipher block length, then the functions may just be extractions
of segments of the Nonce.

[0024] Further, methodology 100 may be parallelizable, utilizing L. or L+1 implementations of
the same encryption function 130 (or a different encryption function may be utilized). As can be
seen in FIG. 1A, in dashed lines 150, an expansion of the ciphertext is shown as an L+1-th

implementation, which outputs one additional block. Also, because the same encryption key for

5

WO 2015/047487 PCT/US2014/043169

the encryption function 130 may be used for each block, sub-key derivation needs to be
performed only once, thus saving hardware resources.

[0025] In some embodiments, sufficient security may be provided by storing the Nonce 120 in
the clear in an accessible memory area, as it plays a role similar to that of an initialization vector.
A benefit of this approach is that the Nonce 120 can be shorter than the block size, and therefore
it may be applied in the function operations 122 only to selected bit fields of the input blocks
110. This scheme may be useful for memory encryption. As an example, if the block cipher has
a block size of 128 bits and cache lines are 128 bytes long, by setting L= 8, whole cache lines
can be encrypted at once when they are spilled from the last level of the cache.

[0026] 'Thus, as previously described, process 100 extends the functionality of block ciphers in
order to enhance memory encryption. In particular, encryption scheme 100 utilizes a series of L
blocks of plaintext data inputs (Inputl-Inputl)) 110 that are each encrypted using encryption
function 130, in which prior to encryption with encryption function 130, a Nonce 120 is applied
through a function 122 to the plaintext data inputs 100. The encryption function 130 may be
applied to the Nonced plaintext data outputs such that encrypted output data (Outputl-Outputl.)
140 is outputted to memory.

Decryption works backwards. For example, with reference to FIG. 1B, the inverse function of
encryption function 130 can be applied to the encrypted output data from memory (shown as
Input 140), that is the corresponding decryption primitive, may be used to compute the
composition of Input; and Nonce, for instance Input; @ Nonce, fori=1, 2, ..., L. and Nonce,
from which the original Inputs are recoverable (shown as Qutputs 110).

Randomizing the Block Cipher

[0027] As will be described hereinafter, the plaintext data inputs 110 may first be encrypted by a
first sequence of round functions that constitute the block cipher (which is the chosen encryption
function), before the Nonce 120 is applied, and thereafter, the Nonce is applied, to create Nonced
data outputs. The Nonced data outputs may then be encrypted by a second sequence of round
functions modeling the block cipher (which is the chosen encryption function) to create the
encrypted output data that is outputted to memory.

[0028] In order to model the encryption function 130 (e.g., block cipher) various constructions
may be used. For example, constructions such as Luby-Rackoff constructions may be used, e.g.,
Feistel networks (such as Data Encryption Standard (DES)), and Substitution-Permutation (SP)
networks (such as Advanced Encryption Standard (AES)). In both cases, one parameterized

non-linear function is repeatedly applied to the input. Each application of this function may be

6

WO 2015/047487 PCT/US2014/043169

referred to as a “round” or “round function”. The output of a round is the input of the next
round. The plaintext is the input to the first round, and the ciphertext is the output of the last
round. The round function takes a further parameter called the round key and the round keys are
derived from the encryption/decryption key (e.g., the cipher key).

[0029] With reference to FIG. 2, an example of a process 200 to generate a block cipher based
upon round functions is illustrated. As shown in FIG. 2, a plaintext data input 202 is inputted to
a plurality of N rounds 204 of the round function, modeling the block cipher. Therefore, the
block cipher is modeled by the plurality of N rounds 204 of round functions, where k1, k2, . . .
kN are the round keys for Rounds 1, 2, . . . , N respectively. Output 206 is the encrypted
plaintext data input 202 encrypted by the round function (modeling the block cipher) applied to
the plaintext data input 202. It should be appreciated that decryption would be the exact same
process in reverse.

[0030] An example implementation will be hereinafter described. For example, a performance
efficient implementation of this scheme may require two parallel implementations of the same
block cipher, possibly sharing the round keys. In order to reduce hardware implementation
costs, the Nonce may be applied in the middle of the cipher. By means of this, the part of the
cipher before the application of the Nonce must be implemented only once, and the part of the
cipher following the application of the Nonce is implemented twice.

[0031] As an example, with reference to FIG. 3 which illustrates a process 300, the plaintext
data input 302 may be encrypted through M of the N rounds (1< M < N), e.g., M rounds 304
parametrised using M round keys (kl1, k2, ... kM). Next, the Nonce (v) 306 is applied — for
instance XORing it to the output X of the M-th round - and the XORed output and the Nonce are
encrypted further, independently (separate block 308) - and resuming the process with the (M +
1)-th round. As can be seen in FIG. 3, the next round of round keys k™ and k>’ for N-M rounds
310 may be the same set of round keys or may be slight variants of each other, such as different
rotations or masked with different secret constants. Additionally, the outputs may be
concatenated (block 314) resulting in Output 316.

[0032] Another example of a slightly different implementation may consist of a permutation of
the bits of X and of the Nonce. For example, if X were set to = Xhi”Xlo (decomposition as
concatenation of two bit strings of equal length) and v (Nonce) was set to v = Vhi” Vo then A
would be A = X}; || vlo and B would be B = X, || vhi. Therefore, if the last N - M rounds have
sufficient diffusion, then there is enough influence of both X and Nonce on both halves C and D

of the Qutput. It should be appreciated that this is just an example, other bit permutations are

7

WO 2015/047487 PCT/US2014/043169

possible. However, if the block size is large enough the scheme may not lead to frequent
(partial) repetitions of the same ciphertexts for the same plaintext. Therefore, it may be
advisable to have the Nonce influence the whole of the next input, such as an equation like, A =
(Xhi @ Vhi) ” vie and B = (X}, @ vio) || vhi- It should be appreciated that significance here is that
the process be easily reversible —such that the Nonce can be recovered once the decryption
process has performed N - M rounds. TDurther, the concatenate function 314 can be the
concatenation of the two outputs of the last parallel rounds - but any another bit permutation of
the two inputs can be used here. The process is beneficial in that hardware implementations of
the first M rounds do not have to be duplicated - but only for the last N-M rounds. Decryption
works also in this case backwards. The two “sides” C and D of Output are decrypted in parallel
for the last N - M rounds, until Nonce v is recovered, the separate operation is reversed, and then
the decryption of the Input is completed in M rounds.

[0033] With reference to FIG. 4A, an example of a process 400 is illustrated, generalizing the
previous techniques, to simultaneously encrypt L. blocks of plaintext data inputs (Inputl-Inputl.)
410, in which a Nonce 420 is added to each block, after being suitably transformed, along with
the use of various rounds. In particular, the process 400 of FIG. 4A, illustrates that the plaintext
data inputs 410 may be encrypted by a first sequence of round functions (M rounds 404) before
the Nonce 120 is applied, and thereafter, the Nonce 420 is applied, to create Nonced data
outputs. As can be seen in FIG. 4A, the L blocks of plaintext data (Inputl-Inputl)) 410 are
received and functions (f1, f2,. . ., fL) 422 are applied to a Nonce 420 to create differently
Nonced data outputs. In one embodiment, the function to apply the Nonce 420 may include a
XOR function. Alternatively, other easily invertible functions, such as modular additions or
subtractions may be used to apply the (values derived from the) Nonce. The Nonced data outputs
may then be encrypted by a second sequence (N-M rounds 406) of round functions to create the
encrypted output data 440 that is outputted to memory. It should be appreciated that by utilizing
the M and N-M rounds 404 and 406 that the full encryption function is thereby modeled and
applied. Further, methodology 400 may be parallelizable, utilizing L. (in the case the nonce is
not encrypted) or L+1 (in the case the nonce is encrypted) implementations of the round
functions 404 and 406 to create the encrypted output data that is outputted to memory.

[0034] It should be appreciated that function (f1, {2, . . ., fL) 422 perform substantially the same
roles as described with reference to FIG. 1A. However, the fact that the functions are not
implemented until the (M + 1)-th round 406 of the underlying block cipher allows a more

complex derivation from the Nonce. In the case of AES implementation, some alteration of the

8

WO 2015/047487 PCT/US2014/043169

AES key scheduling procedure could be adopted to generate the functions. In one embodiment,
the functions could be computed in parallel with the first M rounds 404 of the block cipher. It
may be beneficial to not feed all the same round keys to the various rounds, but to also apply
some fixed permutations and/or maskings to them, which are unique for each vertical pipeline.
Also, it may be beneficial, depending on use case requirements, to just store the Nonce 420 in
the clear in an accessible or in a protected memory area, as it may play a role similar to that of an
initialization vector, and may still be secure enough.

[0035] Decryption works backwards. For example, with reference to FIG. 4B, inputs 440 are the
outputs of the encryption of FIG. 4A and the outputs 410 should correspond to the original inputs
(i.e., the original plaintext inputs).

Resource Savings

[0036] It should be appreciated that all of the previous schemes have been based on the idea that
the plaintext is encrypted directly by the encryption function. However, several modes of
operations for block ciphers use the encryption primitive to generate a key stream that is XORed
to the plaintext to derive the ciphertext - for instance Counter (CTR) mode. Examples of this
type of encryption will be hereinafter described. When attempting to save resources for key
stream generation, it needs to be ensured that too much saving does not occur at the expense of
security — i.e., the various key stream blocks must appear uncorrelated to each other. For
instance, it may be tempting to reuse a block from the ‘“key stream™ to encrypt several input
blocks — in a memory encryption scenario this could easily solve the problem of the area of the
memory encryption circuits. However, if two blocks of plaintext P1 and P2, are both XORed,
with the same pad =, the ciphertext blocks would be C1 = P1 @ n© and C2 = P2 @ =&, which
satisfy P1 @ P2 = C1 @ C2. This can reveal significant information about the plaintext, and is
thus unsuitable to store critical information. However, it may be beneficial to use common
hardware to compute only the first rounds of two or more blocks of the key stream, and then
perform the last rounds separately. The security of such a method depends on the cryptanalysis
of reduced round versions of the used cipher and the predictability of intermediate values after
some rounds.

[0037] An example of this is displayed with reference to FIG. 5. In this example embodiment
process 500, the Input 502 and the Nonce (v) 520 are values used to generate L. key stream
blocks. The Input 502 is not the plaintext. Similarly, Outputl, Output2,...Outputl. 540 are not
the ciphertext, but L. blocks of the ciphertext are XORed to these values as in the CTR mode of

operation (or are used in a more complex way in some variants of other modes of encryption

9

WO 2015/047487 PCT/US2014/043169

which only use the encryption primitive of the block cipher). In other aspects, FIG. 5 is similar
to FIG. 4A, including a first round (M rounds 504) of round keys before the Nonce 520 is
applied, and thereafter, the Nonce 520 is applied, to create Nonced data outputs. Nonce 520 may
be applied by functions (f1, {2,. . ., f1.) 522 to create Nonced outputs. The function to apply the
Nonce 520 may include an XOR function. The Nonced outputs may then be encrypted by a
second round (N-M rounds 506) of round keys to create encrypted output 540.

If AES (e.g., AES-128) is chosen as the block cipher, then M = 3 or 4 in view of current
cryptanalytic results may be used. The rationale being that AES-128 reduced to 6 or 7 rounds is
still considerably difficult to attack and then only if the attacker can control the input — which is
not possible in this situation. For example, suppose the use case is memory encryption, where
whole cache lines are encrypted, these are 128 bytes, so we need 8 blocks (L.=8). This means
that, for M = 3, a total of 3 + 8 *7 = 59 rounds of AES need to be implemented in HW, in place
of 80, leading to an area and power saving of about 26%. For M = 4, the number of rounds of
AES that are implemented is 4 + 8% 6 = 52, for a saving of about 35%. The savings may be a bit
larger if the key schedule for the last N - M rounds is common to all the pipelines — perhaps with
just some fixed bit permutations of the round keys in the parallel pipelines, but probably not
more than that — as this should be more than offset by the logic for deriving from the nonce
different values to be XORed to the inputs to the (M + 1)-th round.

Computation of Nonces

[0038] In one embodiment, each time a new block (or set of L blocks) needs to be written to
memory, the Nonce may be refreshed. If the block cipher has sufficient diffusion (or it has
sufficient diffusion in the last N - M rounds), then it may be sufficient to just shift the Nonce by,
for example, s bits, and then append s new fresh random bits to the Nonce. For example, this
may be computed for Nonce (v) as v«—(v<<s) @ r, where r is a string of s bits. Further, the fresh
bits can be shifted in from the most significant position, or v can be partitioned in various sub-
registers that are independently shifted and refreshed. However, if this strategy is used, the
Nonces should not be stored in the clear, but encrypted, because storing them in the clear could
possibly make future Nonces partially predictable thereby possibly helping cryptanalysis. It
should further be noted that the Nonce can either: (a) be a value independent of the physical
memory address where the data will be stored; or (b) be dependent from that address. For the
latter case, it could be the concatenation of: (i) the physical memory address and (ii) of a random
value, a (encrypted) counter, or a value computed by the methods described above or a by a

different method.

10

WO 2015/047487 PCT/US2014/043169

Example Hardware

[0039] Example computer hardware 600 that may implement the previously described methods
and processes is illustrated in FIG. 6. The computer system 600 is shown comprising hardware
elements that can be electrically coupled via busses (or may otherwise be in communication, as
appropriate). The hardware elements may include at least one main processor 602 (e.g., central
processing unit (CPU)) as well as other processors 604. It should be appreciated that these
processors may be general-purpose processors and/or one or more special-purpose processors
(such as digital signal processing chips, graphics acceleration processors, and/or the like). The
processors may be coupled to respective memory management units (MMUSs) 610, which may in
turn be coupled through caches 612 (e.g., caches may or may not be present and/or may be
separate or incorporated into other elements) (surrounded by dashed lines), to an encryptor
processing unit 620 and/or to memory 630 and/or storage devices 640. As will be described
hereinafter, encryptor 620 may utilize the previously described methods and processes to extend
the functionality of cipher blocks in order to enhance memory encryption for data to be stored in
memory.

[0040] It should be appreciated that computer 600 may include other devices (not shown), such
as: input devices (e.g., keyboard, mouse, keypad, microphone, camera, etc.); and output devices
(e.g., display device, monitor, speaker, printer, etc.). Computer 600 may further include (an/or
be in communication with) one or more memory elements, storage devices 630,640, which may
comprise local and/or network accessible storage, and/or can include, without limitation, a disk
drive, a drive array, an optical storage device, solid-state storage device such as a random access
memory (“RAM”) and/or a read-only memory (“ROM?”), which can be programmable, flash-
updateable, and/or the like. Computer 600 may also include a communication subsystem, which
may include a modem, a network card (wireless or wired), an infrared communication device, a
wireless communication device and/or chipset (such as a Bluetooth device, an 802.11 device, a
Wi-Fi device, a WiMax device, cellular communication device, etc.), and/or the like. The
communications subsystem may permit data to be exchanged with a network, other computer
systems, and/or any other devices described herein. It should be appreciated that computer 600
may be a mobile device, non-mobile device, wireless device, wired device, etc., and may have
wireless and/or wired connections, and may be any type of electronic or computing device.

[0041] In one embodiment, if data is to be stored at an encrypted location (decision block 650),
then encryptor 620 (e.g., a device to encrypt data) may implement the previously described

process (with additional reference to FIG. 1A) including: receiving a plurality of plaintext data

11

WO 2015/047487 PCT/US2014/043169

inputs (Inputl-Inputl)) 110; applying a Nonce 122 through functions (f1, {2,. . . , fI.) 122 to
create Nonced plaintext data outputs that are randomized; and applying an encryption function
130 to the Nonced plaintext data outputs such that encrypted output data (Outputl-Outputl.) 140
is outputted to memory 630. This data may further be stored in storage 640. In other
embodiments, as previously described, to apply an encryption function, encryptor 620 may
encrypt the plaintext data inputs utilizing a first sequence of round functions modeling the
encryption function before the Nonce is applied. After, this the Nonce is applied, to create the
Nonced data outputs. The Nonced data outputs may then be encrypted by a second sequence of
round functions modeling the encryption function to create the encrypted output data that is
outputted to memory 630. Examples of these implementations are illustrated in FIGs. 2-5, as
previously described in detail.

[0042] However, if at decision block 650, the data is determined not to be stored at an encrypted
location, then the data may be normally stored to memory 630 and/or normal memory mapping
input/outs and control 655 may utilized to implement direct memory access (DMA) control to
storage 640.

[0043] Generally, when memory encryption is available, its contents need be decrypted before
they are written to storage device in a virtual memory system. However, to accommodate this,
according to embodiments of the invention, a DMA data transfer channel may be used to read
the actual, encrypted contents of the memory 630 (e.g., RAM, DDR RAM, etc.) and can be used
to write them to a sector of the storage device 640 (e.g., a hard drive or a flash memory), as well
as, to read from a sector and place the contents directly into memory 630. Thus, these memory
encryption methods may be independent of the physical addresses and pages can be swapped out
and back in without additional encryption/decryption overhead.

[0044] A benefit of the previously described system is that memory contents do not need to be
decrypted and re-encrypted each time they are moved to the swap file and back to memory,
which results in significant power savings and in time savings. Further, the techniques described
herein, not only offer good direct protection against physical or electrical memory attacks — i.e.
against direct reading of the memory — but also offer resistance against attacks that use the bus
traffic as a side channel, as repeated writes of the same or correlated data to the same location are
effectively randomized. Furthermore, the techniques described herein require a relatively small
additional hardware implementation. Also, the techniques described herein are generic enough
such that they can be applied to essentially any commonly-used block cipher. Additionally, the

input and output sizes of each round do not all have to be equal and masking operations have to

12

WO 2015/047487 PCT/US2014/043169

be adapted only minimally in these cases. Moreover, the direct DMA channel for saving
encrypted memory can also bring significant savings in power consumption and time.

[0045] Further, as previously described, the Nonce may be stored in the main memory 630,
either in a clear unencrypted manner or in an encrypted manner, depending on the
implementation. Alternatively, as previously described, the Nonce may be stored in a small,
protected area of a specialized memory.

[0046] Also, it should be appreciated that, in one example, if a fixed key is chosen randomly at
device boot, the corresponding key schedule may be pre-computed at the time. As a particular
example, there could be a master key, or a dependency on memory address, if required, that
could be placed in the key. As a further example, the Nonce could be: a fixed value (in which
case all derived constants, such as: the outputs of functions (f1, £2,. . . ,fL.) can be pre-computed),
a per page value, or could be dependent on the physical memory address. 'These example
schemes may be used for simplification purposes.

[0047] It should be appreciated that techniques to provide an enhanced mechanism for the
protection of data stored in memory by extending the functionality of block ciphers, as
previously described, may be implemented as software, firmware, hardware, combinations,
thereof, etc. In one embodiment, the previous described functions may be implemented by one
or more processors (e.g., encryptor 620 or other processors) of a computer 600 to achieve the
previously desired functions (e.g., the method operations of Figures 1-5). Moreover, as
previously described with reference to Figures 1-5, decryption simply works backwards.

[0048] It should be appreciated that aspects of the invention previously described may be
implemented in conjunction with the execution of instructions by processors of the devices, as
previously described. Particularly, circuitry of the devices, including but not limited to
processors, may operate under the control of a program, routine, or the execution of instructions
to execute methods or processes in accordance with embodiments of the invention. For example,
such a program may be implemented in firmware or software (e.g. stored in memory and/or other
locations) and may be implemented by processors and/or other circuitry of the devices. Durther,
it should be appreciated that the terms processor, microprocessor, circuitry, controller, etc., refer
to any type of logic or circuitry capable of executing logic, commands, instructions, software,
firmware, functionality, etc

[0049] It should be appreciated that when the devices are mobile or wireless devices that they
may communicate via one or more wireless communication links through a wireless network that

are based on or otherwise support any suitable wireless communication technology. For

13

WO 2015/047487 PCT/US2014/043169

example, in some aspects the wireless device and other devices may associate with a network
including a wireless network. In some aspects the network may comprise a body area network or
a personal area network (e.g., an ultra-wideband network). In some aspects the network may
comprise a local area network or a wide area network. A wireless device may support or
otherwise use one or more of a variety of wireless communication technologies, protocols, or
standards such as, for example, 3G, LTE, Advanced LTE, 4G, CDMA, TDMA, OFDM,
OFDMA, WiMAX, and Wil'i. Similarly, a wireless device may support or otherwise use one or
more of a variety of corresponding modulation or multiplexing schemes. A wireless device may
thus include appropriate components (e.g., air interfaces) to establish and communicate via one
or more wireless communication links using the above or other wireless communication
technologies. For example, a device may comprise a wireless transceiver with associated
transmitter and receiver components (e.g., a transmitter and a receiver) that may include various
components (e.g., signal generators and signal processors) that facilitate communication over a
wireless medium. As is well known, a mobile wireless device may therefore wirelessly
communicate with other mobile devices, cell phones, other wired and wireless computers,
Internet web-sites, etc.

[0050] The teachings herein may be incorporated into (e.g., implemented within or performed
by) a variety of apparatuses (e.g., devices). For example, one or more aspects taught herein may
be incorporated into a computer, a wired computer, a wireless computer, a phone (e.g., a cellular
phone), a personal data assistant (“PDA”), a tablet, a mobile computer, a mobile device, a non-
mobile device, a wired device, a wireless device, a laptop computer, an entertainment device
(e.g., a music or video device), a headset (e.g., headphones, an earpiece, etc.), a medical device
(e.g., a biometric sensor, a heart rate monitor, a pedometer, an EKG device, etc.), a user 1/0O
device, a fixed computer, a desktop computer, a server, a point-of-sale (POS) device, an
entertainment device, a set-top box, an ATM, or any other suitable electronic/computing device.
These devices may have different power and data requirements

[0051] In some aspects a wireless device may comprise an access device (e.g., a Wi-Fi access
point) for a communication system. Such an access device may provide, for example,
connectivity to another network (e.g., a wide area network such as the Internet or a cellular
network) via a wired or wireless communication link. Accordingly, the access device may
enable another device (e.g., a WiFi station) to access the other network or some other

functionality.

14

WO 2015/047487 PCT/US2014/043169

[0052] Those of skill in the art would understand that information and signals may be
represented using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be referenced
throughout the above description may be represented by voltages, currents, electromagnetic
waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

[0053] Those of skill would further appreciate that the various illustrative logical blocks,
modules, circuits, and algorithm steps described in connection with the embodiments disclosed
herein may be implemented as electronic hardware, computer software, or combinations of both.
To clearly illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps have been described above generally in terms
of their functionality. Whether such functionality is implemented as hardware or software
depends upon the particular application and design constraints imposed on the overall system.
Skilled artisans may implement the described functionality in varying ways for each particular
application, but such implementation decisions should not be interpreted as causing a departure
from the scope of the present invention.

[0054] The various illustrative logical blocks, modules, and circuits described in connection with
the embodiments disclosed herein may be implemented or performed with a general purpose
processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a
field programmable gate array (FPGA) or other programmable logic device, discrete gate or
transistor logic, discrete hardware components, or any combination thereof designed to perform
the functions described herein. A general purpose processor may be a microprocessor, but in the
alternative, the processor may be any conventional processor, controller, microcontroller, or state
machine. A processor may also be implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any other such configuration.

[0055] The steps of a method or algorithm described in connection with the embodiments
disclosed herein may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage medium known in the art. An
exemplary storage medium is coupled to the processor such the processor can read information
from, and write information to, the storage medium. In the alternative, the storage medium may

be integral to the processor. The processor and the storage medium may reside in an ASIC. The

15

WO 2015/047487 PCT/US2014/043169

ASIC may reside in a user terminal. In the alternative, the processor and the storage medium
may reside as discrete components in a user terminal.

[0056] In one or more exemplary embodiments, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software as a
computer program product, the functions may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium. Computer-readable media includes both
computer storage media and communication media including any medium that facilitates transfer
of a computer program from one place to another. A storage media may be any available media
that can be accessed by a computer. By way of example, and not limitation, such computer-
readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and that can be
accessed by a computer. Also, any connection is properly termed a computer-readable medium.
For example, if the software is transmitted from a web site, server, or other remote source using
a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless
technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable,
twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included
in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser
disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of
the above should also be included within the scope of computer-readable media.

[0057] 'The previous description of the disclosed embodiments is provided to enable any person
skilled in the art to make or use the present invention. Various modifications to these
embodiments will be readily apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without departing from the spirit or scope
of the invention. Thus, the present invention is not intended to be limited to the embodiments
shown herein but is to be accorded the widest scope consistent with the principles and novel

features disclosed herein.

16

WO 2015/047487 PCT/US2014/043169

WHAT IS CLAIMED IS:

1. A method to encrypt plaintext data comprising:

receiving at least one plaintext data input;

applying a Nonce through a function to the at least one plaintext data input to create
Nonced plaintext data outputs and/or to intermediate values of a portion of an encryption
function applied to the at least one plaintext data input to create intermediate Nonced data
outputs;

applying the encryption function to at least one of the Nonced plaintext data outputs
and/or the intermediate Nonced data outputs to create encrypted output data; and

transmitting the encrypted output data to memory.

2. The method of claim 1, wherein the Nonce is stored in an encrypted manner.
3. The method of claim 1, wherein the Nonce is stored in an unencrypted manner.
4. The method of claim 1, wherein the encryption function applied to the data outputs is the

same encryption function.

5. The method of claim 1, wherein the function includes an XOR function.

6. The method of claim 1, wherein the function is a mathematical function that derives
values from the Nonce to perturbate the Nonced plaintext data outputs in an unpredictable
manner.

7. The method of claim 6, wherein the function includes binary or arithmetic addition
constants, circular rotations or arbitrary permutations of the bits representing the input to said

function.

8. The method of claim 6, wherein the function is related to the encryption function.

17

WO 2015/047487 PCT/US2014/043169

0. The method of claim 1, wherein applying the encryption function includes encrypting the
plaintext data inputs by a first sequence of round functions modeling the encryption function

before the Nonce is applied, and thereafter, the Nonce is applied, to create Nonced data outputs.

10. The method of claim 9, wherein the Nonced data outputs are encrypted by a second
sequence of round functions modeling the encryption function to create the encrypted output

data.

11. The method of claim 1, further comprising decrypting the encrypted output data from

memory.

12. A non-transitory computer-readable medium including code that, when executed by a
processor, causes the processor to:

receive at least one plaintext data input;

apply a Nonce through a function to the at least one plaintext data input to create Nonced
plaintext data outputs and/or to intermediate values of a portion of an encryption function
applied to the at least one plaintext data input to create intermediate Nonced data outputs;

apply the encryption function to at least one of the Nonced plaintext data outputs and/or
the intermediate Nonced data outputs to create encrypted output data; and

transmit the encrypted output data to memory.

13. The computer-readable medium of claim 12, wherein the Nonce is stored in an encrypted
manner.
14. The computer-readable medium of claim 12, wherein the Nonce is stored in an

unencrypted manner.

15. The computer-readable medium of claim 12, wherein the encryption function applied to

the data outputs is the same encryption function.

16. The computer-readable medium of claim 12, wherein the function includes an XOR

function.

18

WO 2015/047487 PCT/US2014/043169

17. The computer-readable medium of claim 12, wherein the function is a mathematical
function that derives values from the Nonce to perturbate the Nonced plaintext data outputs in an

unpredictable manner.

18. The computer-readable medium of claim 17, wherein the function includes binary or
arithmetic addition constants, circular rotations or arbitrary permutations of the bits representing

the input to said function.

19. The computer-readable medium of claim 17, wherein the function is related to the

encryption function.

20. The computer-readable medium of claim 12, further comprising code to apply the
encryption function by encrypting the plaintext data inputs by a first sequence of round functions
modeling the encryption function before the Nonce is applied, and thereafter, the Nonce is

applied, to create Nonced data outputs.

21. The computer-readable medium of claim 20, further comprising code to encrypt the
Nonced data outputs by a second sequence of round functions modeling the encryption function

to create the encrypted output data.

22. The computer-readable medium of claim 12, further comprising code to decrypt the

encrypted output data from memory.

23. A device to encrypt plaintext data comprising:

a processor to:

receive at least one plaintext data input;

apply a Nonce through a function to the at least one plaintext data input to create
Nonced plaintext data outputs and/or to intermediate values of a portion of an encryption
function applied to the at least one plaintext data input to create intermediate Nonced data
outputs;

apply the encryption function to at least one of the Nonced plaintext data outputs
and/or the intermediate Nonced data outputs to create encrypted output data; and

transmit the encrypted output data to memory.

19

WO 2015/047487 PCT/US2014/043169

24. The device of claim 23, wherein the Nonce is stored in an encrypted manner.
25. The device of claim 23, wherein the Nonce is stored in an unencrypted manner.
26. The device of claim 23, wherein the encryption function applied to the data outputs is the

same encryption function.

27. The device of claim 23, wherein the function includes an XOR function.

28. The device of claim 23, wherein the function is mathematical function that derives values

from the Nonce to perturbate the Nonced plaintext data outputs in an unpredictable manner.

29. The device of claim 28, wherein the function includes binary or arithmetic addition

constants, circular rotations or arbitrary permutations of the bits representing the input to said

function.
30. The device of claim 28, wherein the function is related to the encryption function.
31. The device of claim 23, wherein applying the encryption function includes encrypting the

plaintext data inputs by a first sequence of round functions modeling the encryption function

before the Nonce is applied, and thereafter, the Nonce is applied, to create Nonced data outputs.
32. The device of claim 31, wherein the Nonced data outputs are encrypted by a second
sequence of round functions modeling the encryption function to create the encrypted output

data.

33. The device of claim 23, wherein the processor further decrypts the encrypted output data

from memory.

34. A device to encrypt plaintext data comprising:

means for receiving at least one plaintext data input;

20

WO 2015/047487 PCT/US2014/043169

means for applying a Nonce through a function to the at least one plaintext data input to
create Nonced plaintext data outputs and/or to intermediate values of a portion of an encryption
function applied to the at least one plaintext data input to create intermediate Nonced data
outputs;

means for applying the encryption function to at least one of the Nonced plaintext data
outputs and/or the intermediate Nonced data outputs to create encrypted output data; and

means for transmitting the encrypted output data to memory.

35. The device of claim 34, wherein the Nonce is stored in an encrypted manner.
36. The device of claim 34, wherein the Nonce is stored in an unencrypted manner.
37. The device of claim 34, wherein the encryption function applied to the data outputs is the

same encryption function.

38. The device of claim 34, wherein the function includes an XOR function.

39, The device of claim 34, wherein the function is a mathematical function that derives
values from the Nonce to perturbate the Nonced plaintext data outputs in an unpredictable

manner.

40. The device of claim 39, wherein the function includes binary or arithmetic addition

constants, circular rotations or arbitrary permutations of the bits representing the input to said

function.
41. The device of claim 39, wherein the function is related to the encryption function.
42. The device of claim 34, wherein applying the encryption function includes encrypting the

plaintext data inputs by a first sequence of round functions modeling the encryption function

before the Nonce is applied, and thereafter, the Nonce is applied, to create Nonced data outputs.

21

WO 2015/047487 PCT/US2014/043169

43. The device of claim 42, wherein the Nonced data outputs are encrypted by a second

sequence of round functions modeling the encryption function to create the encrypted output

data.

44. The device of claim 34, further comprising means for decrypting the encrypted output

data from memory.

22

WO 2015/047487 PCT/US2014/043169

1/8

100~ 122
Y
69‘ f1 < ™ ™\ ¢
/-122
D
f2 < T\
122 'If
Y
D 1
130
v /-130 Y 130 \ 130 e :
ENCRYPTION ENCRYPTION | .. [ENCRYPTION ENCRYPTION
[FUNCTION] [FUNCTION] [FUNCTION] [FUNCTION]

N~ T N

140

FIG. 1A

WO 2015/047487 PCT/US2014/043169

A
A
130 130 130
TNVERSE TNVERSE TNVERSE TNVERSE
ENCRYPTION ENCRYPTION oo ENCRYPTION ENCRYPTION
FUNCTION FUNCTION FUNCTION FUNCTION

WO 2015/047487 PCT/US2014/043169

3/8

202

o~ o D

/ [ROUND #1]<—k1

[ROUND #2]4— Ky

204

N ROUNDS
* ¢ o —

\ [ROUND #N]4— Ky

FIG. 2

WO 2015/047487

4/8

[ROUND #1

!

[ROUND #2

302

o
s

w
i
M ROUNDS

l——0 ¢ ouf—

[ROUND #M

X
v 30
SEPARATE

Yy

J—u

PCT/US2014/043169

—

ROUND #(M+1)

ROUND #(M+1)

]<_K"|v|+1

-
¢

—

ROUND #(M+2) K o [

ROUND #(M+2)

]<_ K'M+2

' }

!

w
=)
N-M ROUNDS

[rouomn Je—ky | ROUDEN ek
L] CONCATENATE |&———
314~
316

FIG. 3

WO 2015/047487

M ROUNDS

40

=

N-M ROUNDS

PCT/US2014/043169

ROUND #1] [

ROUND #1] ROUND #1]

!

[rouno#2 | (

‘v

ROUND #2 [ROUND #2]

e/
[]

%
l

% %
l l

[ROUND #M

] L ROUND #M] [ROUND #M

) S

Y

Y
@‘—3‘—/\ — |
422 Y

P— f, |j&—

Y

| RounD #(+1) | [ROUND #(M+1) | « « « | ROUND #+1) i ROUND #1]i

!

! !

[ROUND #{M+2)

S

S|

[RouND #1+2) | « « « { ROUND #(M#2) i

!

ROUND #2]

i %
l l

!

WO 2015/047487

40

40

M ROUNDS

4

N-M ROUNDS

(@]

[ROUND #1] ROUND

#1 [ROUND #1]

i t

—

ROUND #2][ROUND

i

][ROUND #2]

]
i i

i
i

PCT/US2014/043169

[ROUND #M] L ROUND #M] . [ROUND #M]
A
%'_}\ 422 T 1
12 EP‘— f [T a2
|
EA?‘_ L 4_1 450
r-—=——"""T" """ I
[ROUND #(M+1)] [ROUND #(M+1)] sos [ROUND #{M+1) ROUND #1
1 1 { 1
[ROUND #(M+2)] [ROUND #(M+2)] coo [ROUND #(M+2) ROUND #2

]
i i

[ROUND #N][ROUND

1
i

1
i

AN] [ROUND #N

WO 2015/047487

PCT/US2014/043169

[rounoan | [

ROUND #N][ROUND #N

ROUND #N

502 178 520
900~
[ROUND #1]
!
o [ROUND #2]
3y
Q !
= .
504 i
[ROUND #M]
i *
P f [T 522 ™ 1
= Y
522 694_ f2 < ™ /_5227
%k (| les
\ Y r_:___l _____ !
[ROUND#(M+1)] [ROUND#(M+1)]---[ROUND#(M+1)]: ROUND #(M+1) |!
| |
T S
% [ROUND #{M+2)] [ROUND #(M+2)] cee [ROUND #(M+2)]i[ROUND #(M+2)]i
2{ v Y I
= . . . : . !
= ° ° . | .]
6| . 'R
| |
Ji{ ;
| |
| |
| |
| |

WO 2015/047487

602

MAIN
PROCESSOR

OTHER
PROCESSOR

PCT/US2014/043169

650
ENCRYPTED LOCATION?
'y
620
NO VES
ENCRYPTOR
655~ v i 630
MEM MAPPED 10

/ AND CONTROLS / / MEMORY
T DMA DATA TRANSFER

DMA CONTROL STORAGE

- 640

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/043169

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L9/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0002] - [0009],
[0046]; figure 7

4 August 2011 (2011-08-04)

the whole document

[0037] -

column 1, Tine 1 - column 2, Tine 59

X US 2010/631057 Al (BEAVER DONALD ROZINAK 1-8,
[US] ET AL) 4 February 2010 (2010-02-04)

11-19,
22-41,44

X US 2011/191588 Al (ROGAWAY PHILLIP W [US]) 1-8,

11-19,
22-41,44

X US 7 797 751 B1 (HUGHES JAMES P [US] ET 1-8,
AL) 14 September 2010 (2010-09-14)

11-19,
22-41,44

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

11 March 2015

Date of mailing of the international search report

17/03/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Prins, Leendert

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/043169
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2010031057 Al 04-02-2010 NONE

2006285684 Al
2007189524 Al
2011191588 Al
2013077780 Al

21-12-2006
16-08-2007
04-08-2011
28-03-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

