DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawings in detail, wherein like reference characters indicate like parts throughout the several figures, the reference numeral 10 indicates generally a dispensing container constructed in accordance with the invention.

The dispensing container 10 includes a general cylindrical hollow body 11 having a top wall 12 extending therefrom. A cylindrical guide sleeve 13 is integrally formed with the top wall 12 and depends therefrom in coaxial relation to the body 11. A generally circular cap 14 is pressed onto the lower end of the body 11 as can be clearly seen in FIGURES 2 and 3.

An outwardly extending annular shoulder 15 is formed on the outer face of the body 11 adjacent to but spaced from the bottom edge thereof.

A cylinder 16 is mounted on the cylindrical body 11 and is arranged for axial sliding thereon as well as a slight rotational movement with respect thereto. The cylinder 16 has an integral circular top wall 17 with an upstanding ring 18 integrally formed thereon and axially arranged with respect to the cylinder 16. A cap 19 is pressed onto the ring 18 as can be best seen in FIGURES 2 and 3.

A combination pointer and cam tooth 20 is integrally formed on the lower edge of the cylinder 16 in depending relation thereto and is provided with an indicator point 21 at the lower end thereof.

A dispensing aperture 22 is formed in the sidewall of the cylinder 16 adjacent the top wall 12 and has an arcuate pouring spout 23 arranged in underlying relation thereto and integrally connected to the cylinder 16. The top wall 12 of the cylindrical body 11 has a dispensing aperture 24 formed therein for reasons to be assigned.

A cam ring 25 is positioned about the cylindrical body 11 in engagement with the shoulder 15 and is arranged for rotation on the cylindrical body 11. The cam ring 25 has a diameter equal to the diameter of the cylinder 16 and is arranged to engage the point 21 of the tooth 20. A plurality of cam surfaces 26 are formed on the upper edge of the cam ring 25 terminating at their upper edges in notches 27 as can be clearly seen in FIGURE 1.

A retainer shaft 28 extends through the guide sleeve 13 for vertical reciprocating motion therein and has its upper end provided with flat sides at 28' extending through an opening of the same shape in the center of the top wall 17 terminating within the ring 18 under the cap 19. The flat sides 28' and the same shaped opening in the top wall 17 prevent relative rotation of the top wall 17 and the shaft 28. The upper end of the retainer shaft 28 has an annular groove 29 formed therein to receive a bifurcated retainer washer 30 preventing the cylinder 16 from being detached from the retainer shaft 28. A relatively thick disc 31 is integrally formed on the lower end of the retainer shaft 28 and has a diameter slightly smaller than the inner diameter of the cylindrical body 11. A guide bar 32 is integrally formed on the inner surface of the cylindrical body 11 and extends upwardly from the bottom thereof at a slight angle to the vertical. A notch 33, formed in the peripheral edge of the disc 31, engages over the guide bar 32 so that the disc 31 is prevented from free rotation by the guide bar 32. A stop S is integrally formed on the upper end of the guide bar 32 in a position to engage and limit upward movement of the disc 31. A double bevel B is formed on one edge of the disc 31 for reasons to be assigned.

A T-shaped cut 34 in the side wall of the cylindrical body 11 adjacent to but spaced from the bottom thereof delineates a latch-tongue 35 which is integral with the cylindrical body 11 but is resiliently disposed with res-
pect thereto. The latch tongue 35 has an inwardly projecting flange 36 with a triangular keeper member 37 formed thereon. An arm 38 depends from the disc 31 and has a triangular keeper member 39 integrally formed thereon for cooperative engagement with the keeper member 37 as can be seen in FIGURE 2.

A handle H is formed on the arm 38 to grip when removing the disc 31 from the cylindrical body 11. Inward pressure on the latch tongue 35 moves the keeper member 37 inwardly out of alignment with the keeper member 39 so that the disc 31, as well as the cylinder 16, may move upwardly with respect to the cylindrical body 11. In assembling and disassembling the pill dispenser the cap 19 retainer washer 38 and cap 14 are removed and the disc 31 is pulled downwardly in the body 11. The double bevel B cams the keeper 38 out of the path of the disc 31 when moving in either direction.

Upon pressing the tongue 35 inwardly with one hand and simultaneously rotating the cam ring 25 with the other hand the cylinder 16 is forced upwardly on the cylindrical body 11 moving the upper wall 17 out of the position shown in FIGURE 2, where it closes the aperture 24, into the position shown in FIGURE 3, while the aperture 24 is opened and generally aligned with the aperture 25. This operation permits it to drop to the position shown in FIGURE 3, thus closing the aperture 24 and the aperture 25 simultaneously engaging the keeper member 39 with the keeper member 37 latching the cylinder 16 to the cylindrical body 11 to prevent sliding motion therewith.

While not essential to the invention, it is preferable that the dispenser be constructed of a transparent plastic material such as the polycryllic resins, the polystyrene resins, or an equivalent resinous material.

The construction of the instant invention requiring both the rotation of the cam ring while simultaneously holding the latch tongue depressed requires a dexterity and an understanding of the mechanism generally beyond the capability of young children but which can be easily operated by older children and adults when needed.

Having thus described the preferred embodiment of the invention, it should be understood that numerous structural modifications and adaptations may be resorted to without departing from the scope of the invention.

I claim:

1. A recording pill dispenser comprising a cylindrical body, a top wall closing the upper end of said body and having a pill dispensing aperture formed therein, a cylinder encompassing said body and mounted for substantially vertical sliding action thereon, said cylinder having a pill dispensing aperture in the side wall thereof adjacent the upper end thereof, a top wall closing the upper end of said cylinder, said cylinder top wall closing the pill dispensing aperture in said body top wall in one position, means including a retainer shaft keyed to said cylinder to prevent relative rotation between said cylinder and said shaft securing said cylinder to said body, and rotatable means on said cylindrical body engaging said cylinder for moving said cylinder vertically to uncover the pill dispensing aperture in said body top wall upon rotation of said rotatable means.

2. The invention as set forth in claim 1 wherein a depending tooth is integrally formed on said cylinder and said rotatable means includes a plurality of cam surfaces adapted to engage said tooth to move said tooth and said cylinder vertically upon rotation of said rotatable means.

3. The invention as claimed in claim 1 wherein a resilient latch is integrally formed on said cylindrical body for latching engagement with the means securing said cylinder to said body to normally secure said cylinder in its lowestmost position with respect to said cylindrical body with the dispensing aperture in the top wall of said cylindrical body closed.

4. The invention as set forth in claim 1 wherein a pouring spout is integrally formed on said cylinder in underlying relation to the pill dispensing aperture in the side wall thereof.

5. The structure as set forth in claim 1 wherein said cylindrical body is provided with a removable bottom closure.

6. The invention as set forth in claim 6 wherein a means for securing said cylinder to said body includes a guide sleeve integrally formed on the top wall of said body and depending therefrom, said retainer shaft extending vertically through said guide sleeve for sliding movement therein, a disc integrally formed on the lower end of said retainer shaft, and means detachably securing the upper end of said retainer shaft to the top wall of said cylinder.

7. The invention as claimed in claim 6 wherein a resilient latch is integrally formed on said body and means are provided on said disc for latching engagement with said resilient latch to secure said cylinder in its lowestmost position with respect to said cylindrical body with the top wall of said cylinder closing the dispensing opening in the top wall of said cylindrical body.

8. The invention as set forth in claim 6 wherein a substantially vertically extending guide bar is integrally formed on said cylindrical body on the inner surface thereof and said disc is provided with a notch for engagement with said guide bar to restrict the rotational movement of said cylinder with respect to said cylindrical body.

9. The invention as set forth in claim 8 wherein a stop is formed on the upper end of said guide bar for engagement with said disc to limit the upward travel of said disc and said cylinder with respect to said cylindrical body.

10. The invention as set forth in claim 1 wherein a shoulder is integrally formed on said cylindrical body for engagement with the lower edge of said rotatable means for supporting said rotatable means on said cylindrical body.

References Cited

UNITED STATES PATENTS
3,064,624 11/1962 Hechtie 401—110
3,355,067 11/1967 Espinal 206—42

FOREIGN PATENTS
72,009 10/1959 France.

WILLIAM T. DIXSON, Jr., Primary Examiner
U.S. Cl. X.R.
221—288, 222—454, 401—111