

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2018/034952 A1

(43) International Publication Date
22 February 2018 (22.02.2018)

(51) International Patent Classification:
H01T 13/36 (2006.01) *H01T 13/50* (2006.01)
H01T 13/44 (2006.01) *H01T 21/02* (2006.01)

(21) International Application Number:
PCT/US2017/046420

(22) International Filing Date:
11 August 2017 (11.08.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
15/240,652 18 August 2016 (18.08.2016) US

(71) Applicant: FEDERAL-MOGUL LLC [US/US]; 27300
West Eleven Mile Road, Southfield, MI 48034 (US).

(72) Inventors: BURROWS, John, Antony; 2 Ashlands
Road, Timperley, Altrincham, Cheshire WA15 6AL (GB).
MILLER, John, E.; 3960 West Samaria Road, Temper-
ance, MI 48182 (US). MIXELL, Kristopher, I.; 48089 Ed-
inburgh Drive, Plymouth, MI 48170 (US). LYKOWSKI,
James, D.; 1609 West Dean Road, Temperance, MI 48182
(US).

(74) Agent: STEARNS, Robert, L. et al.; Dickinson Wright
PLLC, 2600 W. Big Beaver Road, Suite 300, Troy, MI
48084-3312 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,

(54) Title: CORONA IGNITION DEVICE WITH IMPROVED ELECTRICAL PERFORMANCE

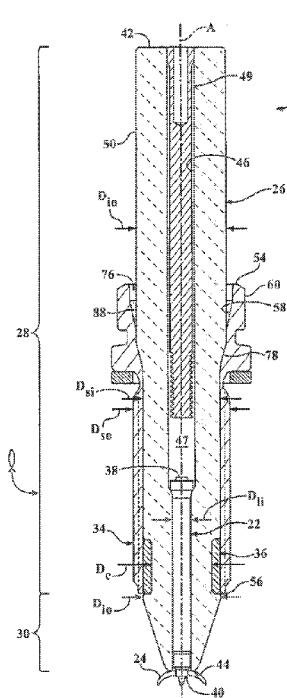


FIG. 1

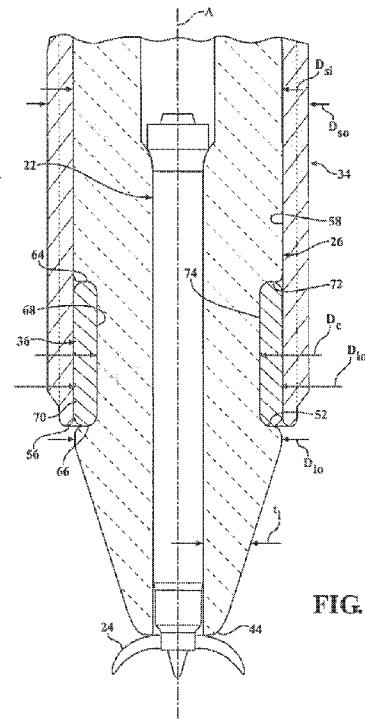


FIG. 1A

(57) Abstract: A corona igniter (20) comprises a central electrode (22) surrounded by an insulator (26), which is surrounded by a conductive component. The conductive component includes a shell (34) and an intermediate part (36) both formed of an electrically conductive material. The intermediate part is a layer of metal which brazes the insulator to the shell. An outer surface (50) of the insulator presents a lower ledge (52), and the layer of metal can be applied to the insulator above the lower ledge prior to or after inserting the insulator into the shell. The conductive inner diameter Dc is less than an insulator outer diameter Dio directly below the lower ledge such that the insulator thickness ti increases toward the electrode firing end (40). The insulator outer diameter is also typically less than the shell inner diameter Dis also that the corona igniter can be reverse-assembled.

WO 2018/034952 A1

[Continued on next page]

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— *with international search report (Art. 21(3))*

CORONA IGNITION DEVICE WITH IMPROVED ELECTRICAL PERFORMANCE

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. continuation-in-part application serial no. 15/240,652, filed August 18, 2016, the entire contents of which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] This invention relates generally to a corona igniter for emitting a radio frequency electric field to ionize a fuel-air mixture and provide a corona discharge, and a method of forming the igniter.

2. Related Art

[0003] Corona discharge ignition systems include an igniter with a central electrode charged to a high radio frequency voltage potential, creating a strong radio frequency electric field in a combustion chamber. The electric field causes a portion of a mixture of fuel and air in the combustion chamber to ionize and begin dielectric breakdown, facilitating combustion of the fuel-air mixture. The electric field is preferably controlled so that the fuel-air mixture maintains dielectric properties and corona discharge occurs, also referred to as a non-thermal plasma. The ionized portion of the fuel-air mixture forms a flame front which then becomes self-sustaining and combusts the remaining portion of the fuel-air mixture. Preferably, the electric field is controlled so that the fuel-air mixture does not lose all dielectric properties, which would create a thermal plasma and an electric arc between the electrode and grounded cylinder walls, piston, or other portion of the igniter. An example of a corona discharge ignition system is disclosed in U.S. Patent No. 6,883,507 to Freen.

[0004] The corona igniter typically includes the central electrode formed of an electrically conductive material for receiving the high radio frequency voltage and emitting the radio frequency electric field to ionize the fuel-air mixture and provide the corona discharge. The electrode typically includes a high voltage corona-enhancing electrode tip emitting the electrical field. The igniter also includes a shell formed of a metal material receiving the central electrode and an insulator formed of an electrically insulating material is disposed between the shell and the central electrode. The igniter of the corona discharge ignition system does not include any grounded electrode element intentionally placed in close proximity to a firing end of the central electrode. Rather, the ground is preferably provided by cylinder walls or a piston of the ignition system. An example of a corona igniter is disclosed in U.S. Patent Application Publication No. 2010/0083942 to Lykowski and Hampton.

[0005] During operation of high frequency corona igniters, there is an electrical advantage if the insulator outer diameter increases in a direction moving away from the grounded metal shell and towards the high voltage electrode tip. An example of this design is disclosed in U.S. Patent Application Publication No. 2012/0181916. For maximum benefit it is often desirable to make the outer diameter larger than the inner diameter of the grounded metal shell. This design has resulted in the need to assemble the igniter by inserting the insulator into the shell from the direction of the combustion chamber, referenced to as "reverse-assembly".

SUMMARY OF THE INVENTION

[0006] One aspect of the invention provides a corona igniter comprising a central electrode, an insulator surrounding the central electrode, and a conductive component surrounding the insulator. The central electrode is formed of an electrically conductive material for receiving a high radio frequency voltage and emitting a radio frequency electric

field. The insulator is formed of an electrically insulating material and extends longitudinally along a center axis from an insulator upper end to an insulator nose end. The insulator includes an insulator outer surface extending from the insulator upper end to the insulator nose end, and the insulator outer surface presents an insulator outer diameter extending across and perpendicular to the center axis. The insulator also includes an insulator body region and an insulator nose region. The insulator outer surface includes a lower ledge extending outwardly away from the center axis between the insulator body region and the insulator nose region. The lower ledge presents an increase in the insulator outer diameter.

[0007] The conductive component is formed of electrically conductive material and surrounds at least a portion of the insulator body region such that the insulator nose region extends outwardly of the conductive component. The conductive component includes a shell surrounding at least a portion of the insulator body region and extending from a shell upper end to a shell firing end. The shell presents a shell inner surface facing the center axis and extending along the insulator outer surface from the shell upper end to the shell firing end. The shell inner surface also presents a shell inner diameter extending across and perpendicular to the center axis.

[0008] The conductive component also includes an intermediate part surrounding a portion of the insulator body region and extending longitudinally from an intermediate upper end to an intermediate firing end. For example, the intermediate part can be layer of metal which brazes the insulator to the shell. The intermediate part includes an intermediate inner surface facing the center axis and extending longitudinally along the insulator outer surface from the intermediate upper end to the intermediate firing end. The intermediate inner surface presents a conductive inner diameter extending across and perpendicular to the center axis, and the conductive inner diameter is less than the insulator outer diameter along a portion of the insulator located between the lower ledge and the

insulator nose end. The intermediate part is disposed between the insulator upper end and the lower ledge.

[0009] Another aspect of the invention provides a method of forming the corona igniter. The method comprises disposing the intermediate part between the insulator upper end and the lower ledge; and disposing a shell formed of an electrically conductive material around the intermediate part and the insulator.

[0010] The corona igniter of the present invention provides exceptional electrical performance because the conductive inner diameter is less than the insulator outer diameter adjacent the insulator nose region. The corona igniter can also be reverse-assembled.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

[0012] Figure 1 is a cross-sectional view of a corona igniter manufactured using a forward-assembly method according to one exemplary embodiment of the invention;

[0013] Figure 1A is an enlarged view of a portion of the corona igniter of Figure 1 showing an intermediate part, an insulator nose region, and a portion of an insulator body region; and

[0014] Figures 2-9 are cross-sectional views of corona igniters according to other exemplary embodiment of the invention.

DETAILED DESCRIPTION OF THE EXAMPLE EMBODIMENTS

[0015] Exemplary embodiments of a corona igniter **20** are shown in Figures 1-8. The corona igniter **20** includes a central electrode **22** for receiving a high radio frequency voltage. The central electrode **22** includes a corona-enhancing tip **24** for emitting a radio

frequency electric field to ionize a fuel-air mixture and provide a corona discharge. An insulator **26** surrounds the central electrode **22**. The insulator **26** includes an insulator body region **28** and an insulator nose region **30** presenting an insulator outer diameter D_{io} . The corona igniter **20** also comprises a conductive component including a metal shell **34** and an intermediate part **36** presenting a conductive inner diameter D_c . The insulator outer diameter D_{io} along a portion of the insulator nose region **30** is greater than the conductive inner diameter D_c . The insulator outer diameter D_{io} increases in a direction moving away from the metal shell **34** and towards the high voltage corona enhancing tip **24**, which provides the corona igniter **20** with an electrical benefit during operation.

[0016] The central electrode **22** of the corona igniter **22** is formed of an electrically conductive material for receiving the high radio frequency voltage, typically in the range of 20 to 75 KV peak/peak. The central electrode **22** also emits a high radio frequency electric field, typically in the range of 0.9 to 1.1 MHz. The central electrode **22** extends longitudinally along a center axis **A** from a terminal end **38** to an electrode firing end **40**. The central electrode **22** typically includes a corona enhancing tip **24** at the electrode firing end **40**, for example a tip including a plurality of prongs, as shown in Figures 1-8.

[0017] The insulator **26** of the corona igniter **20** is formed of an electrically insulating material. The insulator **26** surrounds the central electrode **22** and extends longitudinally along the center axis **A** from an insulator upper end **42** to an insulator nose end **44**. The electrode firing end **40** is typically disposed outwardly of the insulator nose end **44**, as shown in Figures 1-8. An insulator inner surface **46** surrounds an insulator bore receiving the central electrode **22**. A conductive seal **47** is typically used to secure the central electrode **22** and an electrical contact **49** in the insulator bore.

[0018] The insulator inner surface **46** also presents an insulator inner diameter D_{ii} extending across and perpendicular to the center axis **A**. The insulator **26** includes an

insulator outer surface **50** extending from the insulator upper end **42** to the insulator nose end **44**. The insulator outer surface **50** also presents the insulator outer diameter D_{io} extending across and perpendicular to the center axis **A**. The insulator inner diameter D_{ii} is preferably 15 to 25% of the insulator outer diameter D_{io} .

[0019] As shown in Figure 1, the insulator **26** includes the insulator body region **28** and the insulator nose region **30**. The insulator outer surface **50** includes a lower ledge **52** extending outwardly away from and transverse to the center axis **A** between the insulator body region **28** and the insulator nose region **30**. The lower ledge **52** presents an increase in the insulator outer diameter D_{io} . The insulator body region **28** and insulator nose region **30** can have various different designs and dimensions with the lower ledge **52** disposed therebetween, other than the designs and dimensions shown in the Figures.

[0020] The conductive component of the corona igniter **20** surrounds at least a portion of the insulator body region **28** such that the insulator nose region **30** extends outwardly of the conductive component, as shown in the Figures. The conductive component includes the shell **34** and the intermediate part **36**, both formed of electrically conductive metal. The shell **34** and the intermediate part **36** can be formed of the same or different electrically conductive materials.

[0021] The shell **34** is typically formed of a metal material, such as steel, and surrounds at least a portion of the insulator body region **28**. The shell **34** extends along the center axis **A** from a shell upper end **54** to a shell firing end **56**. The shell **34** presents a shell inner surface **58** facing the center axis **A** and extending along the insulator outer surface **50** from the shell upper end **54** to the shell firing end **56**. The shell **34** also includes a shell outer surface **60** facing opposite the shell inner surface **58** and presenting a shell outer diameter D_{so} . The shell inner surface **58** presents a shell bore surrounding the center axis **A** and a shell inner diameter D_{si} extending across and perpendicular to the center axis **A**. The shell

inner diameter D_{si} is typically greater than or equal to the insulator outer diameter D_{io} along the entire length l of the insulator **26** from the insulator upper end **42** to the insulator nose end **44**, so that the corona igniter **20** can be forward-assembled. The length of the insulator **26** includes both the body region **28** and the nose region **30**. The term “forward-assembled” means that the insulator nose end **44** can be inserted into the shell bore through the shell upper end **54**, rather than through the shell firing end **56**. However, in an alternate embodiment, the shell inner diameter D_{si} is less than or equal to the insulator outer diameter D_{io} along a portion of the length l of the insulator **26** from the insulator upper end **42** to the insulator nose end **44**, and that the corona igniter **20** is reversed assembled. The term “reverse-assembled” means that the insulator upper end **42** is inserted into the shell bore through the shell firing end **56**.

[0001] The intermediate part **36** of the corona igniter **20** is disposed inwardly of the shell **34** and surrounds a portion of the insulator body region **28**. The intermediate part **36** is disposed along the insulator body region **28** directly above the insulator nose region **30**. It extends longitudinally from an intermediate upper end **64** to an intermediate firing end **66**. The intermediate part **36** is rigidly attached to the insulator outer surface **50**. Preferably, the intermediate inner surface **68** is hermetically sealed to the insulator outer surface **50**, to close the axial joint and avoid gas leakage during use of the corona igniter **20** in a combustion engine.

[0022] The intermediate part **36** is typically formed of a metal or metal alloy containing one or more of nickel, cobalt, iron, copper, tin, zinc, silver, and gold. The metal or metal alloy can be cast into place on the insulator outer surface **50**. Alternatively, the intermediate part **36** can be glass or ceramic based and made conductive by the addition of one or more of the above metals or metal alloys. The glass or ceramic based intermediate part **36** can be formed and sintered directly into place on the insulator outer surface **50**. The

intermediate part **36** can also be provided as a metal ring attached in place to the insulator outer surface **50** by soldering, brazing, diffusion bonding, high temperature adhesive, or another method. The intermediate part **36** is also attached to the shell inner surface **58**, preferably by any suitable method, including soldering, brazing, welding, interference fit, and thermal shrink fit. The material used to form the intermediate part **36** is preferably conformable and is able to absorb stresses occurring during operation, without passing them to the insulator **26**.

[0023] In another embodiment, the intermediate part **36** brazes the insulator **26** to the shell **34**. In this embodiment, the intermediate part **36** is a thin layer of metal containing one or more of nickel, cobalt, iron, copper, tin, zinc, silver, and gold. The metal is provided in liquid form and flows between the insulator **26** and the shell **34**, and then allowed to solidify to braze the insulator **26** to the shell **34**. The layer of metal can be applied before or after disposing the insulator **26** in the shell **34**. In addition, the intermediate part **28** can be used to braze the insulator **26** to the shell **34** in either the forward or reverse assembly igniters **22**.

[0024] In one example embodiment, the intermediate part **28** is formed from a solid piece of metal, specifically a solid ring formed of a silver (Ag) and/or copper (Cu) alloy disposed around the insulator **26**. Next, the shell **34** is disposed around the insulator **26**, and the assembly is heated at which time the solid ring, referred to as a braze, becomes liquid and is wicked into an area, referred to as a “braze area,” through capillary action. As the parts cool, the liquid alloy solidifies to provide the intermediate part **36** brazed to the insulator **26** and to the shell **34**. This process puts the ceramic insulator **26** in compression because of the differences in shrinkage of the components after the alloy solidifies and as the parts cool. During operation, the engine temperature does not reach the melting point of the braze alloy used to form intermediate part **36**, so that it stays solid during engine operation. Alternatively,

the intermediate part **36** could be formed by brazing the solid ring to the insulator **26** and shell **34** by another metal material, such as another metal having a lower melting point than the solid ring, using the brazing process described above.

[0025] The intermediate inner surface **68** of the intermediate part **36** faces the center axis **A** and extends longitudinally along the insulator outer surface **50** from the intermediate upper end **64** to the intermediate firing end **66**. The intermediate part **36** also includes an intermediate outer surface **70** facing opposite the intermediate inner surface **68** and extending longitudinally from the intermediate upper end **64** to the intermediate firing end **66**. The intermediate outer diameter **D_{int}** is typically less than or equal to the shell outer diameter **D_{so}**, as shown in Figures 1-7, but may be greater than the shell inner diameter **D_{si}**, as shown in Figure 8. The intermediate inner surface **68** presents a conductive inner diameter **D_c** extending across and perpendicular to the center axis **A**. The conductive inner diameter **D_c** is less than the insulator outer diameter **D_{io}** at the lower ledge **52** of the insulator **26**, which is between the insulator nose region **30** and the insulator body region **28**. In addition, the insulator **26** also presents a thickness **t_i** that increases adjacent the shell firing end **56** and adjacent the intermediate firing end **66**. The insulator thickness **t_i** increases in the direction toward the electrode firing end **40**. This feature provides the electrical advantages achieved in the reverse-assembled igniters of the prior art, while still allowing use the forward-assembly method. The conductive inner diameter **D_c** is typically 80 to 90% of the insulator outer diameter **D_{io}** directly below the lower ledge **52**.

[0026] The conductive inner diameter **D_c** is typically equal to 75 to 90% of the shell inner diameter **D_{si}** along the intermediate part **36**. As shown in Figures 1-8, the intermediate firing end **66** preferably engages the lower ledge **52** of the insulator **26** and is longitudinally aligned with the shell firing end **56**. Also shown in Figures 1-8, the insulator

outer diameter **D₁₀** typically tapers from the lower ledge **52** along the insulator nose region **30** to the insulator nose end **44**.

[0027] The exemplary embodiments of the corona igniter **20** can include various different features. In the exemplary embodiments of Figures 1-3 and 5-8, the insulator outer surface **50** of the insulator body region **28** presents an upper ledge **72** extending inwardly toward the center axis **A** such that the upper ledge **72** and the lower ledge **52** present a recess **74** therebetween. The intermediate part **36** is disposed in the recess **74** and typically extends along the entire length of the recess **74**. Preferably the intermediate upper end **64** engages the upper ledge **72** and the intermediate firing end **66** engages the lower ledge **52** to restrict movement of the intermediate part **36** during assembly and in operation. The length of the recess **74** and intermediate part **36** can vary. For example, the length of the recess **74** and intermediate part **36** can extend along one quarter or less of the length **I** of the insulator **26**, as shown in Figures 1, 3, and 6-8. Alternatively, the length of the recess **74** and intermediate part **36** can extend along greater than one quarter of the length **I** of the insulator **26**, as shown in Figures 2 and 4. Extending the length intermediate part **36**, as shown in Figures 2 and 4, improves thermal performance and removes any small air gaps within the assembly, which improves electrical performance.

[0028] In the exemplary embodiments of Figures 1-5 and 8, the shell inner surface **58** of the corona igniter **20** extends away from the insulator outer surface **50** adjacent the shell upper end **54** to present a crevice **76** between the shell inner surface **58** and the insulator outer surface **50**. A filler material **88** at least partially fills the crevice **76** between the insulator outer surface **50** and the shell inner surface **58** adjacent the shell upper end **54**. The filler material **88** is typically an adhesive attaching the insulator **26** to the shell **34** and prevents the insulator **26** from entering the combustion chamber, in the case of failure of the joints at the intermediate part **36**. The filler material **88** can also provide improved electrical

and thermal performance, as well as increased stability. The filler material **88** may be electrically insulating, such as a ceramic-loaded adhesive, silicone, or epoxy-based filler, PTFE, a printable carrier, a paintable carrier, or tampered powder. The filler material **88** can alternatively be electrically conductive, such a metal-loaded epoxy, a printable carrier or paintable carrier including conductive materials, a solder, or a braze. If the filler material **88** provides adequate adhesion, mechanical strength, and thermal performance, it is possible to omit the step of rigidly attaching the intermediate part **36** to the insulator **26**. The intermediate part **36** is attached to the shell **34**, as before, and makes the insulator **26** captive. In this embodiment, the filler material **88** can provide the gas-tight seal, instead of the joints along the intermediate part **36**. However, the intermediate inner surface **68** should still fit closely against the insulator outer surface **50**, or against the ledges **52**, **72** and recess **74**, to restrict possible movement of the components during operation.

[0029] In the exemplary embodiments of Figures 1 and 8, the insulator outer diameter D_{io} is constant from the upper ledge **72** along a portion of the insulator body region **28** toward the insulator upper end **42** and then increases gradually along a portion of the insulator body region **28** toward the insulator upper end **42**. The insulator outer diameter D_{io} is constant from the gradual increase to the insulator upper end **42**. The gradual increase helps to achieve accurate assembly, supports the upper body region, improves thermal performance, and prevents the insulator **26** from entering into the combustion chamber in the case of failure of the joints along the intermediate part **36**. A conformal element **78** can be placed between the insulator **26** and the shell **34** along the gradual increase. The conformal element **78** is typically formed of a soft metal gasket formed of copper or annealed steel, or a plastic or rubber material. In the exemplary embodiments of Figures 1 and 8, the crevice **76** extends from the gradual transition toward the insulator upper end **42**.

[0030] In the exemplary embodiment of Figure 2, the insulator outer diameter D_{i0} increases gradually from the upper ledge 72 toward the insulator upper end 42 and is constant from the gradual increase to the insulator upper end 42. In this embodiment, the crevice 76 also extends from the gradual increase toward the insulator upper end 42.

[0031] In the exemplary embodiment of Figure 3, the insulator outer diameter D_{i0} is constant from the upper ledge 72 to the insulator upper end 42. This makes it easier to avoid putting the insulator 26 in tension during operation. In this embodiment, the corona igniter 20 could be forward-assembled or reverse-assembled. However, it may be desirable to increase the insulator outer diameter D_{i0} along or above the crevice 76 to interface properly with other system components (not shown). Alternatively, a separate component (not shown) could be added to increase the insulator outer diameter D_{i0} along or above the crevice 76.

[0032] Figure 4 illustrates yet another exemplary embodiment, wherein the crevice 76 extends from the intermediate upper end 64 to the shell upper end 54. In this embodiment, the insulator outer diameter D_{i0} is constant from the lower ledge 52 to the insulator upper end 42. In the exemplary embodiment of Figure 5, the insulator outer diameter D_{i0} decreases slightly above the intermediate upper end 64, along the insulator body region 28 between the lower ledge 52 and the insulator upper end 42.

[0002] Figures 6 and 7 illustrate other exemplary embodiments wherein the insulator outer diameter D_{i0} is constant from the upper ledge 72 to a turnover region. The insulator 26 diameter increases at the turnover region and then decreases to present a turnover shoulder 82 for supporting and engaging the shell upper end 54. The insulator outer diameter D_{i0} is then constant from the turnover shoulder 82 to the insulator upper end 42. In these embodiments, the shell upper end 54 turns over and engages the insulator outer surface 50 at the turnover shoulder 82 and holds the insulator 26 captive in the shell 34. This puts the

insulator 26 in compression and can form a gas-tight seal between the intermediate part 36 and insulator 26 along the intermediate upper end 64 and intermediate firing end 66. If the gas-tight seal is achieved, the step of brazing or otherwise attaching the intermediate part 36 to the insulator 26 and shell 34 may be omitted.

[0033] In the exemplary embodiment of Figure 6, the intermediate inner surface 68 presents a conductive inner diameter D_c extending across and perpendicular to the center axis A, and the conductive inner diameter D_c is less than the insulator outer diameter D_{io} directly below the lower ledge 52 of the insulator 26. The intermediate firing end 66 engages the lower ledge 52 of the insulator 26, as in the other embodiments. However, in this embodiment, the intermediate outer surface 70 includes an intermediate seat 84 between the intermediate upper end 64 and the intermediate firing end 66, and the intermediate outer diameter D_{int} decreases along the intermediate seat 84 toward the intermediate firing end 66. In addition, the shell inner surface 58 presents a shell seat 86 extending toward the intermediate outer surface 70. The shell seat 86 is aligned, parallel to, and engages the intermediate seat 84. In addition, the shell 34 has a thickness t_s extending from the shell inner surface 58 to the shell outer surface 60 and the thickness t_s increases at the shell seat 86.

[0034] In the exemplary embodiment of Figure 7, the shell 34 again includes the shell seat 86 facing the insulator 26 upper ledge 72. The shell inner diameter D_{si} decreases along the shell seat 86 toward the shell firing end 56. A gasket 80 is disposed between and separates the shell seat 86 and the insulator 26 upper ledge 72. The gasket 80 is compressed between the insulator outer surface 50 and the shell seat 86 to provide a seal. In this embodiment, the intermediate part 36 does not need to seal against gas pressure or retain the insulator 26, and it may be press fit to the shell 34 during assembly. In this embodiment, the insulator outer diameter D_{io} at the upper ledge 72 is greater than the insulator outer

diameter D_{io} at the lower ledge 52. Like the embodiment of Figure 6, the shell 34 thickness t_s increases at the shell seat 86.

[0035] In the exemplary embodiment of Figure 8, the intermediate outer diameter D_{int} at the intermediate upper end 64 is greater than the insulator outer diameter D_{io} of the upper ledge 72 of the insulator 26. The intermediate upper end 64 extends radially outwardly relative to the insulator outer surface 50, and the shell firing end 56 is disposed on the intermediate upper end 64. In this embodiment, the conductive inner diameter D_c from the intermediate upper end 64 to the intermediate firing end 66 is constant and the intermediate outer diameter D_{int} tapers from the intermediate upper end 64 to the intermediate firing end 66.

[0036] Another aspect of the invention provides a method of forming the corona igniter 20. The method can be a forward-assembly method, which includes inserting the insulator nose end 44 into the shell bore through the shell upper end 54, rather than the shell firing end 56 as in the reverse-assembly method. However, the method could alternatively comprise a reverse assembly method, wherein the shell inner diameter D_{si} is less than or equal to the insulator outer diameter D_{io} along a portion of the insulator 26, and the method includes inserting the insulator nose end 44 into the shell bore through the shell firing end 56.

[0003] The method of forming the corona igniter 20 includes control of forces and material temperatures such that the insulator 26 is not placed in tension, either during assembly, or due to differential thermal expansion during operation.

[0037] The method includes providing the insulator 26 formed of the electrically insulating material extending along the center axis A from the insulator upper end 42 to the insulator nose end 44. The insulator 26 includes the insulator outer surface 50 extending from the insulator upper end 42 to the insulator nose end 44. The insulator outer

surface 50 presents the insulator outer diameter D_{i0} and includes the lower ledge 52 extending outwardly away from and transverse to the center axis A between the insulator body region 28 and the insulator nose region 30.

[0038] The method also includes disposing the intermediate part 36 formed of the electrically conductive material on the lower ledge 52 of the insulator 26. This step is typically conducted before the insulator 26 is inserted into the shell 34. However, if the intermediate outer diameter D_{int} is greater than the shell inner diameter D_{si} , as in the corona igniter 20 of Figure 8, then the intermediate part 36 is disposed on the lower ledge 52 after inserting the insulator 26 into the shell 34.

[0039] The method also includes rigidly attaching the intermediate part 36 to the insulator outer surface 50, typically before inserting the insulator 26 into the shell 34. The attaching step typically includes casting, sintering, brazing, soldering, diffusion bonding, or applying a high temperature adhesive between the intermediate part 36 and insulator outer surface 50. If the intermediate part 36 is a metal or metal alloy, the attaching step typically includes casting. If the intermediate part 36 is glass or ceramic based, the attaching step typically includes forming and sintering directly into place around the insulator outer surface 50. If the intermediate part 36 is a metal ring, then the attaching step typically includes soldering, diffusion bonding, or applying a high temperature adhesive between the intermediate part 36 and insulator outer surface 50. The method typically includes hermetically sealing the intermediate part 36 to the insulator 26 to close the axial joint and avoid gas leakage during use of the corona igniter 20.

[0040] The method also includes providing the shell 34 formed of the electrically conductive material extending along and around the center axis A from the shell upper end 54 to the shell firing end 56. The shell 34 includes the shell inner surface 58 extending from the shell upper end 54 to the shell firing end 56, and the shell inner surface 58

presents the shell bore extending along the center axis **A**. In each exemplary embodiment, the shell inner diameter **D_{si}** is greater than or equal to the insulator outer diameter **D_{io}**.

[0041] The method next includes inserting the insulator **26** into the shell **34** in the forward-assembly direction. This step is typically conducted after attaching the intermediate part **36** to the insulator **26**, but may be done before. This step includes inserting the insulator nose end **44** through the shell upper end **54** into the shell bore. The insulator **26** should be moved along the shell inner surface **58** until the insulator nose end **44** extends outwardly of the shell firing end **56**. To manufacture the exemplary embodiments of Figures 1-7, this step includes aligning the shell firing end **56** with the lower ledge **52** of the insulator **26** and the intermediate firing end **66**. To manufacture the exemplary embodiment of Figure 8, the method includes inserting the insulator **26** into the shell **34** followed by disposing the intermediate part **36** along the insulator outer surface **50** such that the intermediate upper end **64** engages the shell firing end **56**.

[0042] The method may also include disposing the filler material **88** in the crevices **76** between the insulator **26** and shell upper end **54**. This step may include filling at least a portion of the crevice **76** with the filler material **88**. Alternatively, the filler material **88** can be applied to both the insulator outer surface **50** and shell inner surface **58** before inserting the insulator **26** into the shell **34**, such that when the insulator **26** and shell **34** are connected, the filler material **88** at least partially fills the crevice **76**. If the filler material **88** provides a gas-tight seal, then it is possible to omit the step of rigidly attaching the intermediate part **36** to the insulator **26**.

[0043] Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. It is contemplated that

all features of all claims and of all embodiments can be combined with each other, so long as such combinations would not contradict one another.

CLAIMS

What is claimed is:

1. A corona igniter for emitting a radio frequency electric field to ionize a fuel-air mixture and provide a corona discharge, comprising:
 - a central electrode formed of an electrically conductive material for receiving a high radio frequency voltage and emitting the radio frequency electric field;
 - an insulator formed of an electrically insulating material surrounding said central electrode and extending longitudinally along a center axis from an insulator upper end to an insulator nose end;
 - said insulator including an insulator outer surface extending from said insulator upper end to said insulator nose end;
 - said insulator outer surface presenting an insulator outer diameter extending across and perpendicular to said center axis;
 - said insulator including an insulator body region and an insulator nose region;
 - said insulator outer surface including a lower ledge extending outwardly away from said center axis between said insulator body region and said insulator nose region;
 - said lower ledge presenting an increase in said insulator outer diameter;
 - a conductive component surrounding at least a portion of said insulator body region such that said insulator nose region extends outwardly of said conductive component;
 - said conductive component including a shell surrounding at least a portion of said insulator body region and extending from a shell upper end to a shell firing end;
 - said shell presenting a shell inner surface facing said center axis and extending along said insulator outer surface from said shell upper end to said shell firing end;

said conductive component including an intermediate part formed of an electrically conductive material and surrounding a portion of said insulator body region and extending longitudinally from an intermediate upper end to an intermediate firing end;

 said intermediate part including an intermediate inner surface facing said center axis and extending longitudinally along said insulator outer surface said from said intermediate upper end to said intermediate firing end;

 said intermediate inner surface presenting a conductive inner diameter extending across and perpendicular to said center axis;

 said conductive inner diameter being less than said insulator outer diameter along a portion of said insulator located between said lower ledge and said insulator nose end;

 said intermediate part being disposed between said insulator upper end and said lower ledge; and

 said intermediate part being a layer of metal.

2. The corona igniter of claim 1, wherein said layer of metal brazes said insulator to said shell.

3. The corona igniter of claim 1, wherein said layer of metal contains at least one of nickel, cobalt, iron, copper, tin, zinc, silver, and gold.

4. The corona igniter of claim 1, wherein said insulator outer surface of said insulator body region presents an upper ledge extending inwardly toward said center axis, and said insulator outer surface presents a recess extending longitudinally from said upper ledge to said lower ledge, and said intermediate part is disposed in said recess.

5. The corona igniter of claim 1, wherein said intermediate part further includes a solid ring brazed to the insulator and the shell by the layer of metal.

6. The corona igniter of claim 1, wherein said shell inner surface presents a shell inner diameter extending across and perpendicular to said center axis; and said shell inner diameter is greater than or equal to said insulator outer diameter along a portion of said insulator body region.

7. The corona igniter of claim 1, wherein said insulator presents a thickness between said insulator inner surface and said insulator outer surface; and said thickness increases along a portion of said insulator between said intermediate firing end and said insulator nose end.

8. The corona igniter of claim 1, wherein said insulator has a length extending from said insulator upper end to said insulator nose end, and said intermediate part extends along not greater than one quarter of said length.

9. The corona igniter of claim 1, wherein said intermediate part is disposed adjacent said lower ledge.

10. The corona igniter of claim 1, wherein said insulator outer diameter tapers from said lower ledge along said insulator nose region to said insulator nose end.

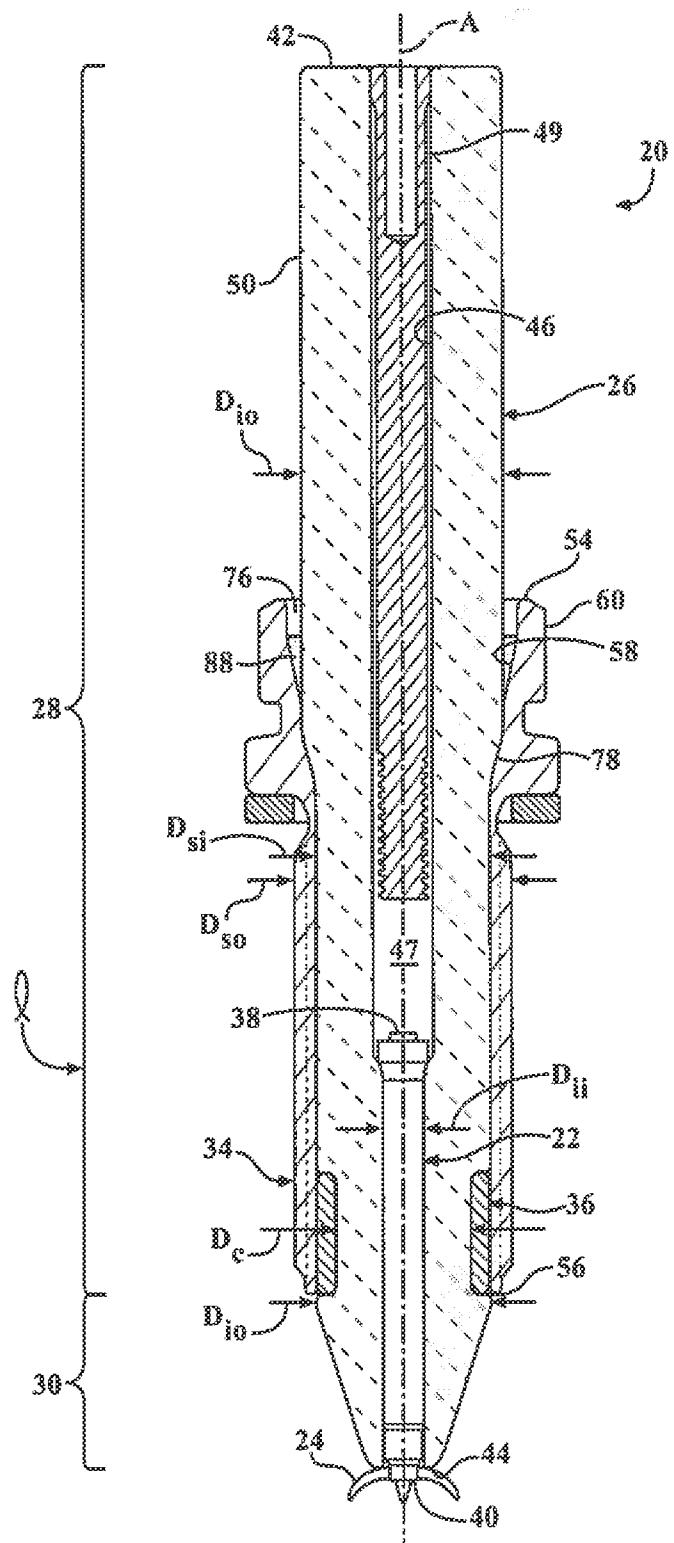
11. The corona igniter of claim 1, wherein said intermediate part is disposed adjacent the shell firing end.

12. The corona igniter of claim 1, wherein the insulator outer diameter is less than said conductive inner diameter continuously from said insulator upper end to said lower ledge.

13. A method of forming a corona igniter, comprising the steps of:
providing an insulator formed of an electrically insulating material extending along a center axis from an insulator upper end to an insulator nose end, the insulator including an insulator outer surface extending from the insulator upper end to the insulator nose end and presenting an insulator outer diameter, the insulator outer surface presenting a lower ledge extending outwardly away from the center axis between an insulator body region and an insulator nose region;
disposing an intermediate part formed of an electrically conductive material between the insulator upper end and the lower ledge;
the step of disposing the intermediate part including applying a layer of metal to the insulator; and
disposing a shell formed of an electrically conductive material around the insulator.

14. The method of claim 13, including brazing the insulator to the shell with the layer of metal.

15. The method of claim 13, wherein the layer of metal contains at least one of nickel, cobalt, iron, copper, tin, zinc, silver, and gold.


16. The method of claim 13, including the step of providing a melted metal material, and the step of applying the layer of metal to the insulator includes applying the melted metal material to the insulator and allowing the melted metal material to solidify.

17. The method of claim 13, wherein the layer of metal is applied before disposing the shell around the insulator, and including disposing the shell around the intermediate part.

18. The method of claim 13, wherein step of the step of disposing the intermediate part between the insulator and shell includes brazing a solid ring to the insulator and the shell using the layer of metal.

19. The method of claim 13, wherein the step of disposing the shell around the insulator includes inserting the insulator nose end through a shell upper end.

20. The method of claim 13, wherein the intermediate part presents a conductive inner diameter, the insulator presents an insulator outer diameter, and the conductive inner diameter is less than the insulator outer diameter along a portion of the insulator between the lower ledge and the insulator nose end.

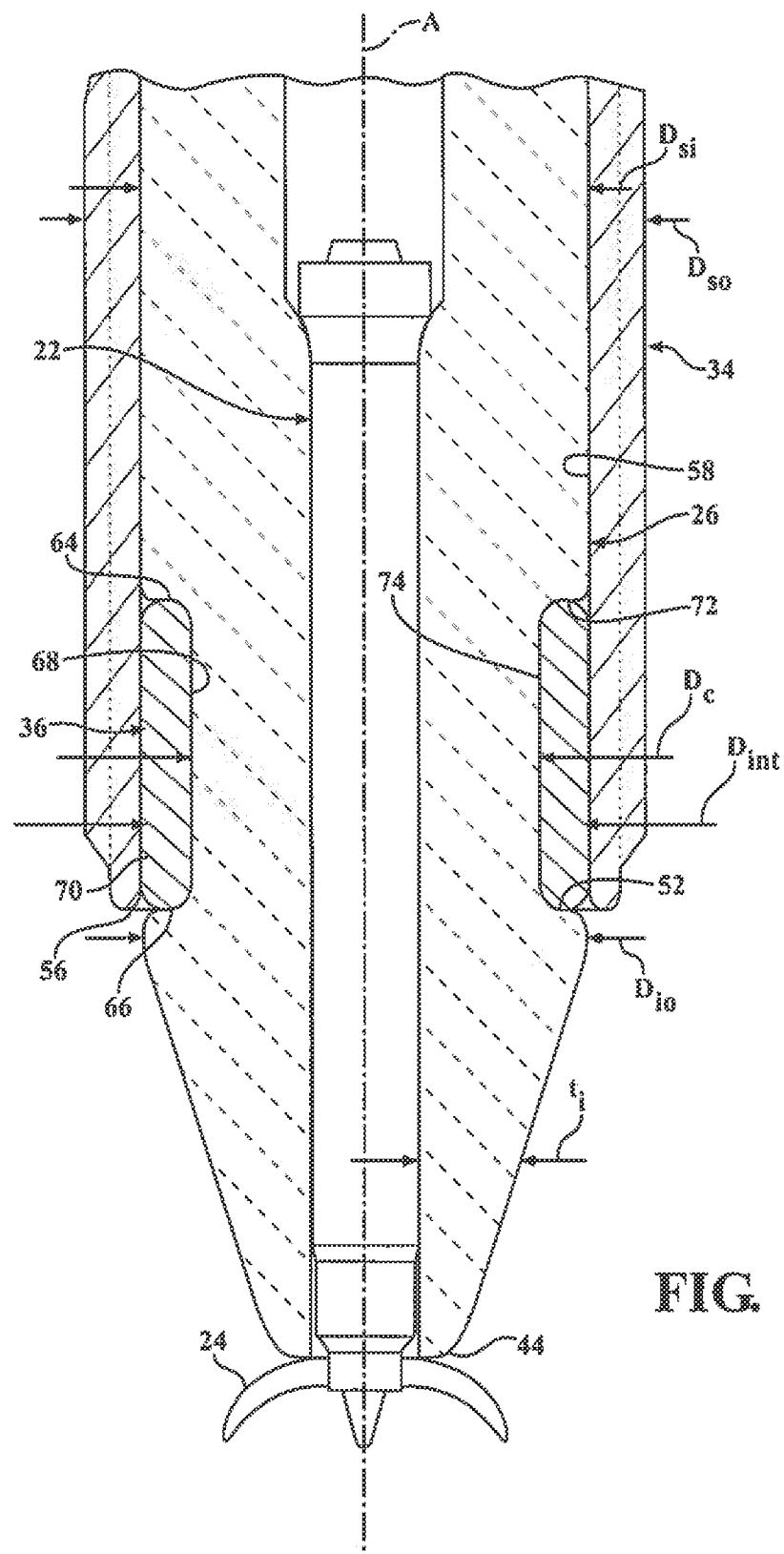


FIG. 1A

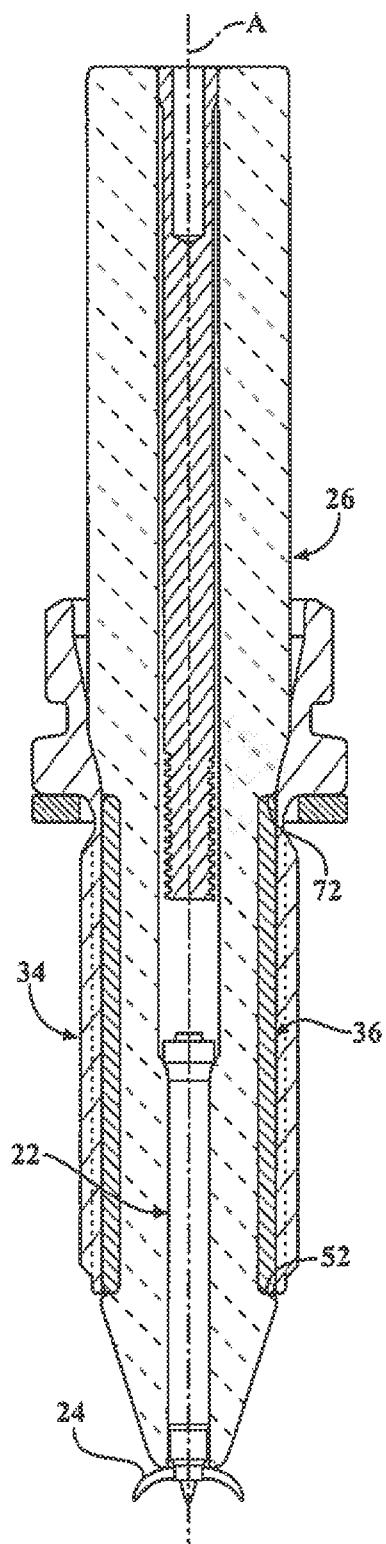


FIG. 2

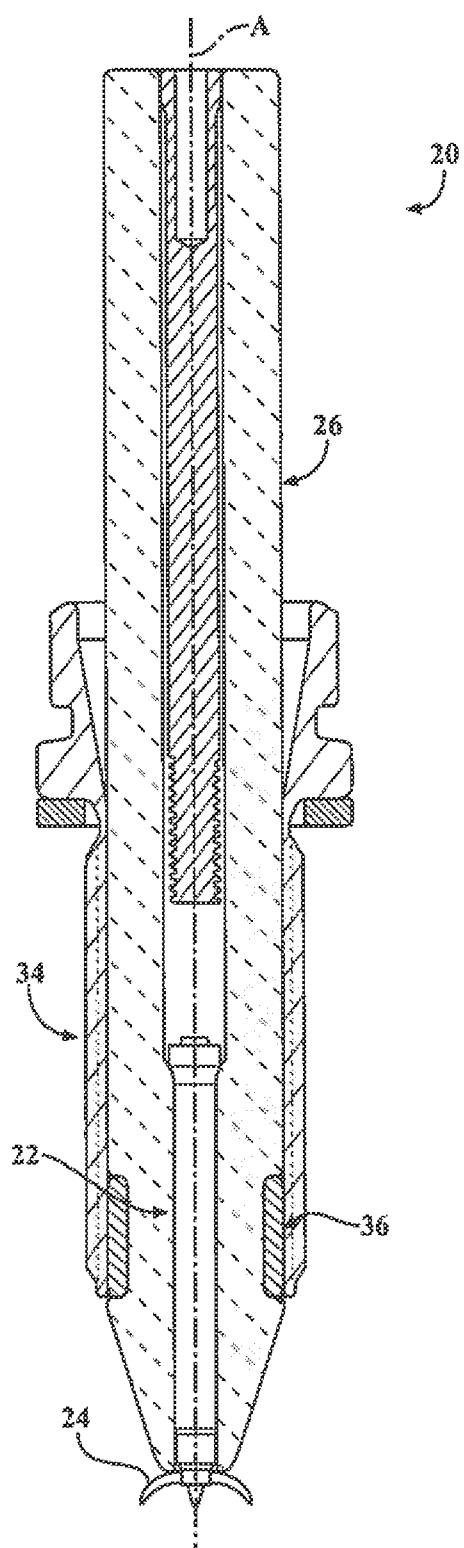


FIG. 3

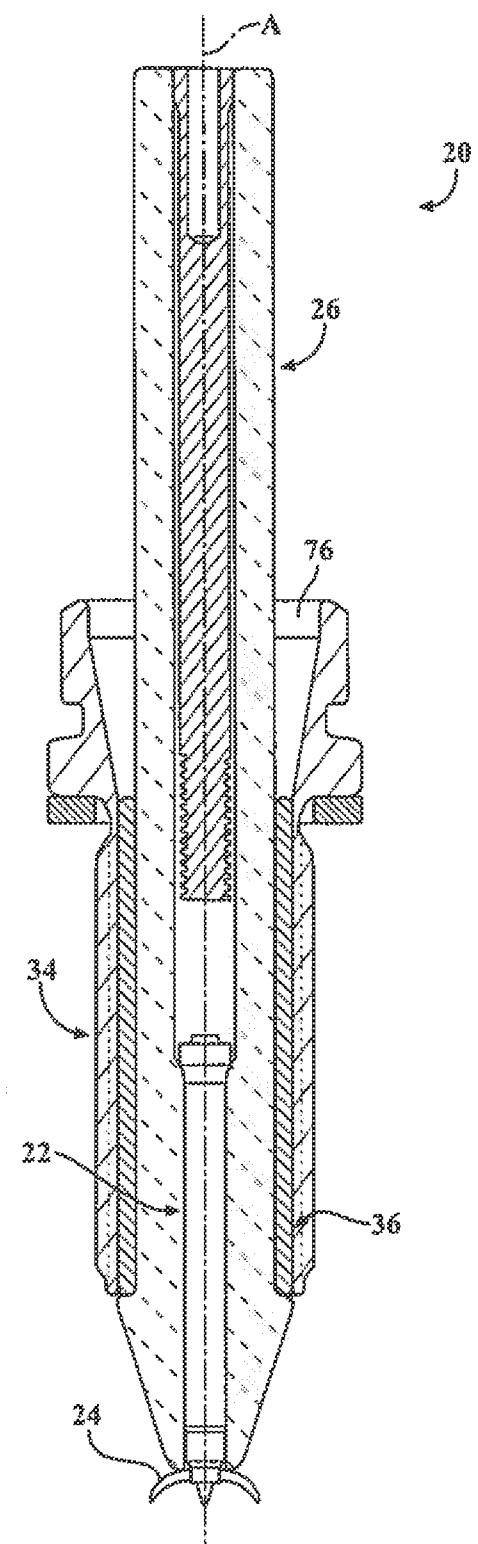


FIG. 4

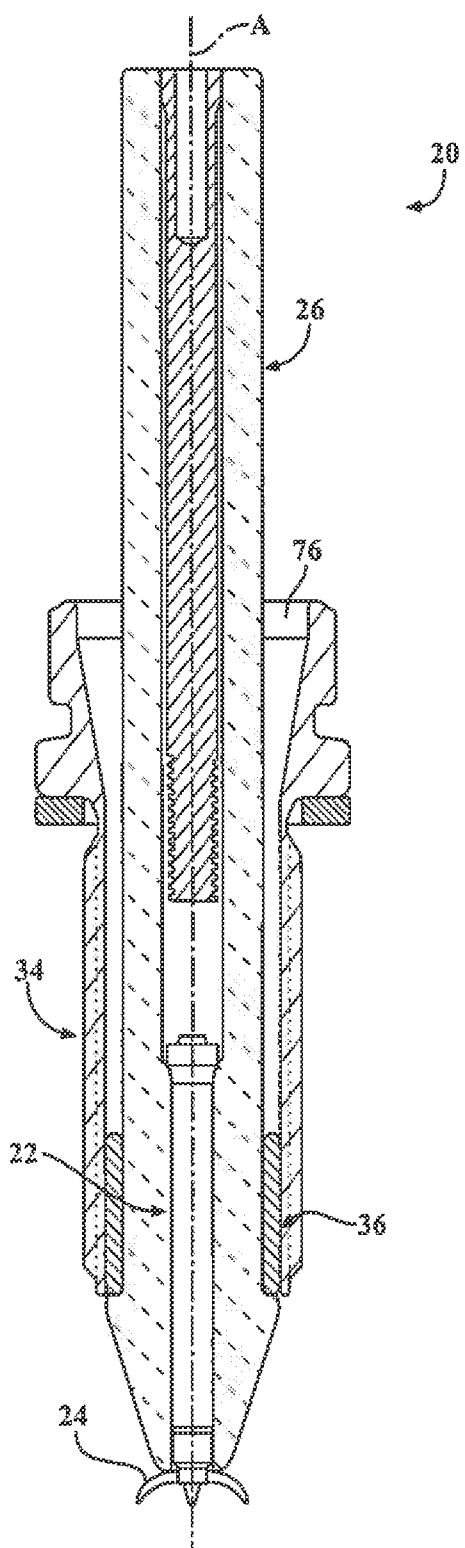


FIG. 5

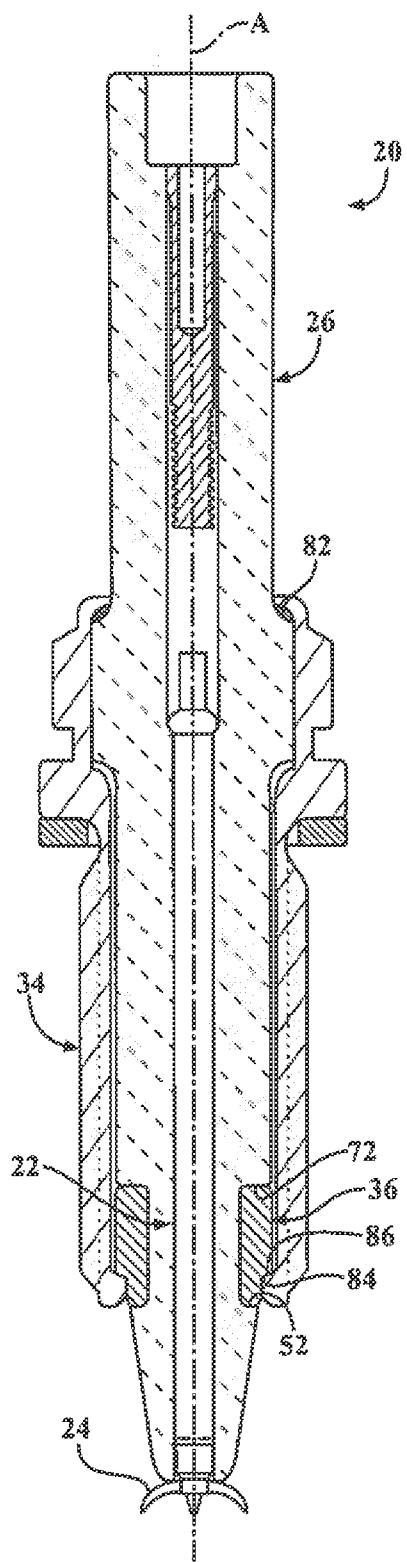


FIG. 6

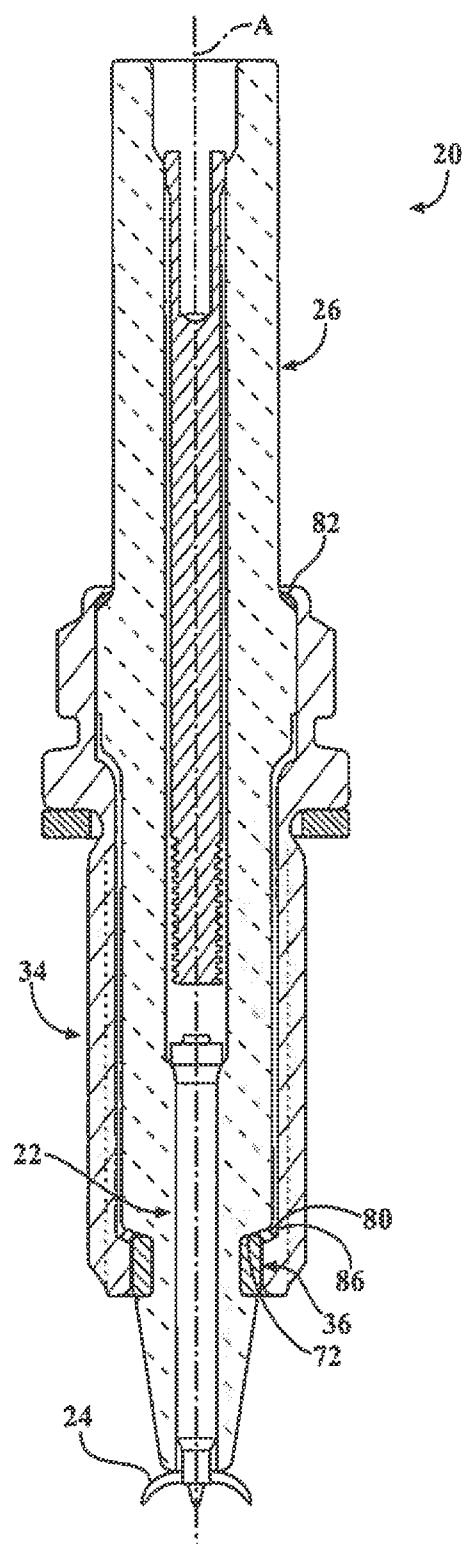


FIG. 7

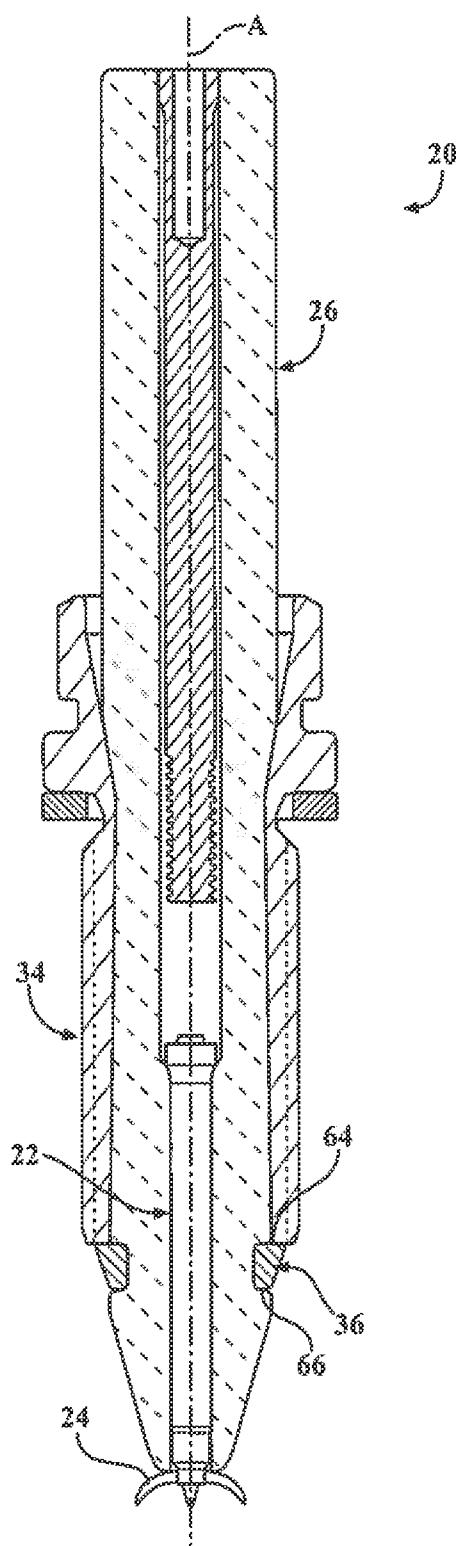


FIG. 8

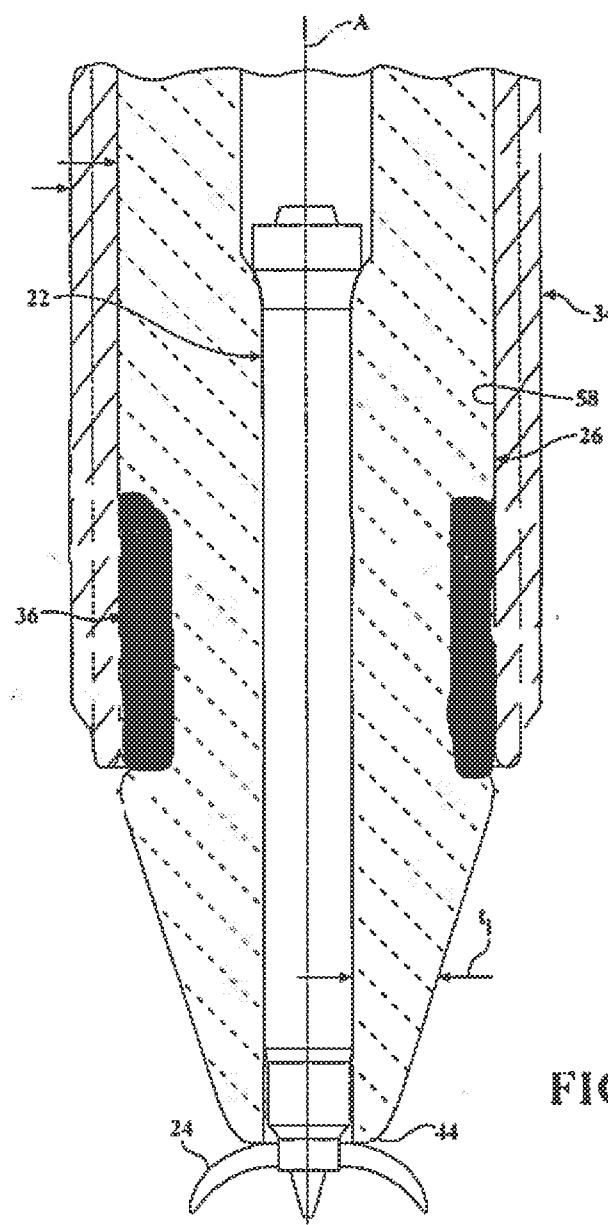


FIG. 9

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2017/046420

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01T13/36 H01T13/44 H01T13/50 H01T21/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2015/285206 A1 (BURROWS JOHN ANTONY [GB] ET AL) 8 October 2015 (2015-10-08) claims 1,2,4-9,12-16,18 paragraph [0012] paragraph [0025] paragraphs [0042], [0044] figures -----	1-20
X	US 2016/049773 A1 (STIFEL TIMO [DE] ET AL) 18 February 2016 (2016-02-18) claims 1,5 paragraph [0023] - paragraph [0024]; figure 2 -----	1-3,6,7, 9-15,17, 20

1

Further documents are listed in the continuation of Box C.

X

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
27 October 2017	08/11/2017
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Stichauer, Libor

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/046420

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2015285206	A1 08-10-2015	CN 104303382 A		21-01-2015
		EP 2828940 A1		28-01-2015
		JP 2015512556 A		27-04-2015
		KR 20140137007 A		01-12-2014
		US 2013340697 A1		26-12-2013
		US 2015285206 A1		08-10-2015
		WO 2013142398 A1		26-09-2013
<hr/>				
US 2016049773	A1 18-02-2016	BR 102015019573 A2		16-02-2016
		CN 106194548 A		07-12-2016
		DE 102014111684 B3		01-10-2015
		US 2016049773 A1		18-02-2016
<hr/>				