(10) 国際公開番号
WO 2017/047289 A 1

(43) 国際公開日
2017年3月23日(23.03.2017)

(21) 国際出願番号：
PCT/JP2016/007346

(22) 国際出願日:
2016年8月9日(09.08.2016)

(25) 国際出願の言語：
日本語

(26) 国際公開の言語：
日本語

(30) 優先権データ：
特願2016/007022 2016年1月18日 (18.01.2016) JP

(71) 出願人：富士電機株式会社(FUJI ELECTRIC CO., LTD.) (JP): T 2109530 神奈川県川崎市川崎区田辺新田1番1号 Kanagawa(JP).

(72) 発明者：渡邊 裕彦(WATANABE, Hirohiko); T 2109530 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Kanagawa (JP). 富藤 俊介(SAITO, Shunsuke); T 2109530 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Kanagawa (JP).

(31) 国際公報表
WO 2017/047289 A 1

(54) Title: SOLDERING MATERIAL FOR SEMICONDUCTOR DEVICE

(54) 発明の名称: 半導体装置用はんだ材

(57) Abstract: Provided is a lead-free solder that has high heat-resistance temperature and a heat conduction property which remains unaffected in a high-temperature range. The present invention pertains to: a soldering material comprising more than 5.0 mass% but not more than 10.0 mass% of Sb, and 2.0-4.0 mass% of Ag, the remaining portion being Sn and unavoidable impurities; and a semiconductor device provided with a bonding layer containing the soldering material between a semiconductor element and a substrate electrode or a lead frame.

(57) 要約: 耐熱温度が高く、熟伝導特性が高温領域で変化しない鉛フリーはんだを提供する。Sbを、Sb
0%を超えて10.0%以下と、Agを2.0〜4.0%含有し、残部は、Sn及び不可避不純物からなるはんだ材、並びに半導体素子と、基板電極もしくはリードフレームとの間に、かかるはんだ材を含んでなる接合層を備える半導体装置。
発明の名称：半導体装置用はんだ材

技術分野

【0001】本発明は、はんだ材に関する。本発明は、特に、半導体装置における接合に用いられる、高信頼性のはんだ材に関する。

背景技術

【0002】近年、環境問題からSn-Pb系はんだの代替として鈑成分を含まないPbフリーはんだが採用されるようになっている。IGBTモジュール（パワーモジュール）などの半導体装置に適用するはんだ材としては、現在知られている各種組成の鉛フリーはんだの中でも、取りわけ接合性（はんだ濡れ性）、機械的特性、伝熱抵抗などの面で比較的バランスがよく、かつ製品への実績のあるSn-Ag系のPbフリーはんだが多く使われている。

【0003】ヒートシンクの上に絶縁基板、さらにその上に半導体素子をはんだ接合した階層接続構造を備える半導体装置において、下位の接合部には高温系の鉛フリーはんだとしてSn-Sb系はんだを使用し、中位接合部にはSn-Sb系はんだよりも融点が低いSn-Ag系はんだにCuなどの元素を添加した組成の鉛フリーはんだを使用するはんだ接合構造が知られている。例えば特許文献1参照。

【0004】また、絶縁基板にはんだマウントした半導体素子（IGBT）の上面電極に配線部材としてヒートスプレッダを兼ねたリードフレームをはんだ接合し、半導体素子の発生熱をリードフレームに逃がして発熱密度の集中を防くようにした構造も知られている。例えば、特許文献2参照。

【0005】半導体素子の発熱に伴う高温でのクラックの防止に対して有効なはんだ材料として、温度170℃において優れた延性を有すると共に冷間加工性に優れた、Sn-Sb-Ag組成を備えるテープ又はワイヤー状半田材料も知られている。例えば、特許文献3参照。

先行技術文献
特許文献

特許文献1 :特開2 0 0 1 3 5 9 7 8号公報
特許文献2 :特開2 0 0 5 1 1 6 7 0 2号公報
特許文献3 :特開平7 2 8 4 9 8 3号公報

発明の概要

発明が解決しようとする課題

パワー半導体といわれているM O S型やI G B T型の素子は、動作時に自己発熱し、高い温度になる。発熱と冷却を繰り返す素子は、はんだにより接合されているが、素子の繰り返し発熱によってはんだ部に繰り返し歪みが负荷され、劣化する。高温で動作する半導体素子の接合には、放熱性の高いはんだ合金を用いることが多い。代表的なP bフリーはんだであるS n A g系はんだ材では、温度とともに熱抵抗が増加し、放熱特性が低下する。また、長期間の熱サイクルが加わるパワー半導体の接合部に、高温になると熱伝導率が低下するS n A g系はんだ材を用いた場合、より高い大電力を印加すると、発熱が高くなってしまう場合がある。

近年、大電流仕様のパワー半導体の需要が高まっており、素子の自己発熱量もより大きくなる傾向にある。また、車載用のパワー半導体など、1 7 5℃を超える使用環境温度での作動が求められるものも増加している。このような状況において、素子の印加できる出力に対して、はんだの熱伝導率の低さ、電力印加量の律速になってしまう場合がでてくる。自己発熱や環境温度により、室温から高温に温度変化するとはんだの熱伝導率が低下するような場合は、チップから熱が逃げづらくなってしまう。その結果、チップの温度がさらに上昇してしまう。現在、はんだの融点のより近傍まで素子が発熱しても使用できるように、素子の印加電力の最大を使用する要求が高くなっている。これらの要求を満たすために、高温での熱伝導率の低下が少ないはんだ材が求められる。

課題を解決するための手段
本発明者らは、鋭意検討の結果、SnAg系はんだにSbをさらに添加し、かつ特定の組成％範囲とすることで、温度上昇とともに熱伝導率が低下せず、かつ濡れ性等のはんだ材の接合特性にも優れたはんだ材とすることが可能であることを見出し、本発明を完成するに至った。

すなわち、本発明は、一実施形態によれば、はんだ材であって、Sbを、5.0質量％を超えて10.0質量％以下と、Agを2.0〜4.0質量％含有し、残部は、Sn及び不可避不純物からなる。

上記Sbと、Agと、Snとを含むはんだ材において、さらに、Niを、0を超えて1.0質量％以下含有することが好ましい。

上記Sbと、Agと、Snとを含むはんだ材において、さらに、Siを、0を超えて1.0質量％以下含有することが好ましい。

上記Sbと、Agと、Snとを含むはんだ材において、さらに、Vを、0を超えて0.1質量％以下含有することが好ましい。

上記Sbと、Agと、Snとを含むはんだ材において、さらに、Cuを、0を超えて1.2質量％以下含有することが好ましい。

上記のいずれかのはんだ材において、さらに、Pを、0.001〜0.1質量％含有することが好ましい。

上記のいずれかのはんだ材において、さらに、Geを、0.001〜0.1質量％含有することが好ましい。

上記のいずれかのはんだ材において、100℃〜200℃における熱伝導率が、25℃における熱伝導率よりも低下しないことが好ましい。

本発明は、別の実施形態によれば、半導体装置であって、半導体素子と、基板電極もしくはリードフレームとの間に、上記のいずれかのはんだ材が溶融された接合層を備える。

前記半導体装置において、半導体素子が、SiC半導体素子であることが好ましい。
発明の効果

本発明に係るはんだ材によれば、熱伝導率が温度上昇とともに低下することなく、好ましくは、熱伝導率が温度上昇とともに向上する。そのため、放熱特性に優れ、熱疲労寿命向上の効果が得られる。また、本発明に係るはんだ材は濡れ性が高く、はんだ接合層におけるポイドの発生を低く抑えることができる。本発明に係るはんだ材は、特には、材料の融点の \(T_0 = 0.6 \) 以上の温度以上で使用されるダイポーダはんだ接合部において、好ましく用いられる。なお、\(T_r \) は、融点に対する使用温度の比であり、\(T_r = T_m / T_j \) で表される。\(T_m \) は融点、\(T_j \) は使用温度（いずれも単位は \(K \)）を示す。

なお、ポイドとは、はんだ接合層内部および接合界面に生じる空間のことである。接合温度において、はんだと接合部材との濡れ性が悪いと、空気等のガスや水分が巻き込み、またよりしたまま凝固するために、ポイドが発生しやすいという問題があるが、本発明においては、ポイドの発生を低く抑えることができる点で有利である。さらに、本発明に係るはんだ材においては、所定量の \(Ge \) をさらに含むことで、\(Sn \) の酸化を防止し、濡れ性を向上させることができる。

また、本発明に係るはんだ材を接合層として形成された半導体装置は、放熱特性に優れており、自己発熱の高い素子を搭載した場合や、環境温度が高い場合の使用にも適しており、かつ、装置の小型化、低コスト化が可能になる。また、接合層におけるポイドが少ないため、製品寿命が向上する。それゆえ、ますます需要の高まる大電流仕様の電子機器に好適に用いることが可能となる。特に、半導体装置におけるダイポーダ接合、端子間の接合やその他の接合など、広く半導体装置用途に好適に用いることができる。

図面の簡単な説明

[図1] 図1は、本発明に係るはんだ材が接合層として適用された半導体装置の一例を示す概念図である。

[図2] 図2は、本発明に係るはんだ材、並びに比較例のはんだ材について、温度と熱伝導率との関係を示すグラフである。各温度における熱伝導率は、2
5 °Cにおける熱伝導率を基準とした規格値を示している。
[図3] 図3は、本発明に係るはんだ材、並びに比較例のはんだ材を用いた半導体モジュールについて、破壊寿命の規格値と故障確率との関係を示すグラフである。
[図4] 図4は、本発明に係るはんだ材の濡れ性試験の結果を示す写真である。
[図5] 図5は、本発明に係るはんだ材の熱衝撃試験の結果を示す写真である。

発明を実施するための形態

以下に、図面を参照して、本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。

[第1実施形態：Sn_Sb_Ag三元系]
本発明は、第1実施形態によれば、はんだ材であって、Sbを、5.0質量％を超えて10.0質量％以下と、Agを2.0〜4.0質量％含有し、残部は、Sn及び不可避不純物からなる合金である。不可避不純物とは、主として、Cu、Ni、Zn、Fe、Al、As、Cd、Au、In、P、Pbなどをいう。本発明によるはんだ材は、Pbを含まない鉛フリーはんだ合金である。Snを主成分とするはんだ材に、上記の組成範囲で、Sn、Ag及びSbを含むことにより、はんだ材の濡れ性を確保し、これらの元並びはんだ材を構成する合金の熱拡散経路に影響を与え、合金の熱拡散率を低く抑え、温度が上昇しても、合金の熱伝導率の低下を抑えることができる。

[第2実施形態：Sn_Sb_Ag_Ni四元系]
さらに好ましくは、Sbを、6.0質量％〜8.0質量％含有し、Agを3.0〜4.0質量％含有し、残部は、Sn及び不可避不純物からなる。このような組成範囲とすることで、上記に加え、さらに、温度の上昇とともに、合金の熱伝導率をも上昇させることができる。
合金の熱拡散経路に影響を与え、合金の熱伝導率を上昇させるとともに、濡れ性を向上させ、接合層としたときに低いボイド率が実現できるためである。また、Niは高融点材料であり、高温での強度を増すことができる。特に、上記添加量範囲とは、上記添加範囲よりも多く添加するとはんだ材の融点が300℃を超えるため、固溶可能範囲で、はんだ材の融点を抑制するためである。

[0026] さらに好ましくは、Sbを、6.0質量%〜8.0質量%含有し、Agを3.0〜4.0質量%含有し、Siを0.01〜0.5質量%含有し、残部は、Sn及び不可避不純物からなる。このような組成範囲することで、上記に加え、さらに、はんだ材の融点を260℃以下に低減できるといった利点が得られる。

[0027] [第3実施形態：Sn_Sb_Ag_Si四元系]
本発明は、第3実施形態によれば、はんだ材であって、Sbを、5.0質量%を超えて10.0質量%以下と、Agを2.0〜4.0質量%と、Siを、0を超えて1.0質量%以下含有し、残部は、Sn及び不可避不純物からなる。第1実施形態の組成に、さらにSiを添加する利点としては、合金の熱拡散経路に影響を与える、合金の熱伝導率を上昇させるとともに、濡れ性を向上させ、接合層としたときに低いボイド率が実現できるためである。また、Siは高融点材料であり、高温での強度を増すことができる。特に、上記添加量範囲とは、Siは固溶しづらいためこの範囲なら固溶させることができるためである。また、高融点材料であるSiを上記範囲より多く入れると、はんだ材の融点が高くなりすぎ、300℃を超える場合がある。

[0028] さらに好ましくは、Sbを、6.0質量%〜8.0質量%含有し、Agを3.0〜4.0質量%含有し、Siを0.1〜0.4質量%含有し、残部は、Sn及び不可避不純物からなる。このような組成範囲することで、上記に加え、さらに、はんだ材の融点を260℃以下にすることができるといった利点が得られる。

[0029] [第4実施形態：Sn_Sb_Ag_Ni_Si五元系]
本発明は、第４実施形態によれば、はんだ材であって、Sbを、5.0質量%を超えて10.0質量%以下と、Agを2.0〜4.0質量%と、Niを、0を超えて1.0質量%以下共有し、Siを、0を超えて1.0質量%以下共有し、残部は、Sn及び不可避不純物からなる。添加元素として、Ni及びSiを共存させた五元系とすることにより、界面強度とパルクの高温強度が増す、すなわちNiとSiの相乗効果で高温強度が上がるといった利点が得られる。

さらに好ましくは、Sbを、6.0質量%〜8.0質量%共有し、Agを3.0〜4.0質量%共有し、Vを、0を超えて0.1質量%以下共有し、残部は、Sn及び不可避不純物からなる。

[第5実施形態：Sn_Sb_Ag_V四元系]

本発明は、第5実施形態によれば、はんだ材であって、Sbを、5.0質量%を超えて10.0質量%以下と、Agを2.0〜4.0質量%と、Vを、0を超えて0.1質量%以下共有し、残部は、Sn及び不可避不純物からなる。第1実施形態の組成に、さらにVを添加する利点としては、合金の熱拡散経路に影響を与え、合金の熱伝導率を上昇させるとともに、濡れ性を向上させ、接合層としたときに低いポイド率が実現できるためである。特に、上記添加範囲とするのは、Vは高融点材料であり、高温での強度を増すことができるためである。高融点材料であるVを上記範囲より多く入れると、はんだ材の融点が高くなりすぎ、例えば、融点が300℃を超える場合がある。また固溶させることが難しくなるおそれがある。

さらに好ましくは、Sbを、6.0質量%〜8.0質量%共有し、Agを3.0〜4.0質量%共有し、Vを、0.1〜0.8質量%共有し、残部は、Sn及び不可避不純物からなる。このような組成範囲とすることで、上記に加え、さらに、高融点材料であるVを上記範囲よりも多く入れると、はんだ材の融点が高くなりすぎる場合があるが、上記範囲内であれば融点を250℃以下に抑えることができる。また、過剰な量のVをいれると酸化物になり、金属となじまないため、ポイドが生じやすくなる場合がある。
第6実施形態：SnSnSbAgCu四元系

本発明は、第6実施形態によれば、はんだ材であって、Sbを5.0質量%を超えて10.0質量%以下と、Agを2.0〜4.0質量%と、Cuを、0を超えて1.2質量%以下含有し、残部は、Sn及び不可避不純物からなる。第1実施形態の組成に、さらにCuを添加する利点としては、合金の熱拡散経路に影響を与え、合金の熱伝導率を上昇させるとともに、濡れ性を向上させ、接合層としたときに低いボイド率が実現できるためである。上記添加範囲とするのは、特にCu材の接合に用いる場合に、Cu材に対しては融点が上がらず、組成に対して融点が鈍感であり、組成マージンが広く成分変動が小さいため、有利になるためである。また、Cu板からはんだ材へのCuの溶け込みを防止できる点で有利になるためである。

さらに好ましくは、Sbを、6.0質量%〜8.0質量%含有し、Agを3.0〜4.0質量%含有し、さらに0.1〜0.9質量%含有し、残部は、Sn及び不可避不純物からなる。このような組成範囲とすることで、上記に加え、さらに特に濡れ性が良いといった利点が得られる。

第7実施形態：SnSnSbAgGe四元系

本発明は、第7実施形態によれば、はんだ材であって、Sbを、5.0質量%を超えて10.0質量%以下と、Agを2.0〜4.0質量%と、Geを0.0〜1.0質量%含有し、残部は、Sn及び不可避不純物からなる合金である。第1実施形態の組成に、さらにGeを添加する利点としては、Snの酸化を抑え、はんだの濡れ性の向上に大きく寄与するため、及び合金の熱拡散経路に影響を与えることができるためである。Geの添加量は、より好ましくは、0.0〜0.5質量%である。この範囲で添加することにより、過剰なGeOの生成を抑制し、適切な量のGeOを生成させることがにより、還元、除去しにくいSnの酸化物を抑制することができる。また、これによりボイド抑制の効果が得られる。さらに好ましくは、0.0〜0.3質量%以上0.0〜0.5質量%を超えない量である。

さらに好ましくは、Sbを、6.0質量%〜8.0質量%含有し、Agを
3. 0〜4.0 質量％含有し, Ge を上記いずれかの範囲で含有し, 残部は, S n 及び不可避不純物からなる。このような組成範囲とすることで, S n の酸化を抑えながら, 温度の上昇とともに, 合金の熱伝導率も上昇させることができる。

[0037] [第 8 実施形態: S n S b A g G e Ni 五元系]

本発明は, 第 8 実施形態によれば, はんだ材であって, S b を, 5.0 質量％を超えて 10.0 質量％以下と, A g を 2.0〜4.0 質量％と, Ge を, 0.001〜0.1 質量％と, N i を, 0 を超えて, 1.0 質量％以下含有し, 残部は, S n 及び不可避不純物からなる。N i の添加量は, 0.1〜0.4 質量％とすることがさらに好ましい。第 7 実施形態の組成に, さらに N i を上記添加範囲で添加する利点としては, Ge の濡れ性向上効果を保持したまま, 界面のはんだ強度を向上させることができるためである。また, N i は融点材質であり, 高温での強度を増すことができるという利点もある。

[0038] さらに好ましくは, S b を, 6.0 質量％〜8.0 質量％含有し, A g を 3.0〜4.0 質量％含有し, N i を 0.01〜0.5 質量％含有し, 残部は, S n 及び不可避不純物からなる。このような組成範囲とすることで, 上記に加え, さらに, はんだ材の融点を 260℃以下に低減できるといった利点が得られる。

[0039] さらなる形態として, 第 1〜第 8 実施形態によるはんだ材に P を添加することができ, 例えば, 0.001質量％〜0.1質量％の口を含有することができ, P は, はんだ材の酸化抑制の効果があり, 濃縮性向上に寄与するためである。第 1〜第 6 実施形態によるはんだ材には, また, P に代えて, あるいは P に加えて, Ge を添加することもできる。Ge ははんだ材の酸化抑制の効果があり, 合金の熱拡散定数に影響を与えることができるためである。この場合の Ge の添加量は, 0.001〜0.1 質量％とすることができ, 0.003〜0.02 質量％とすることが好ましく, 0.003以上 0.005 質量％を超えない量とすることがさらに好ましい。Ge, P
の両者を添加する場合も、上記範囲から添加量を適宜選択することができる。Ge と P は、両者ともに Sn よりも酸化しやすく、この添加範囲で Sn の酸化を防止し、はんだ材の濡れ性を確保することができる。

上記第1〜第8実施形態及びそれらの変形形態のいずれにおいても、100℃〜200℃における熱伝導率が、25℃における熱伝導率よりも低下しないという熱伝導特性を備えるはんだ材が得ることができる。ここで、「100℃〜200℃における熱伝導率が、25℃における熱伝導率よりも低下しない」とは、100℃〜200℃の任意の温度における、はんだ材の熱伝導率が、25℃における熱伝導率と同一であるか、これよりも高いことを意味する。100℃〜200℃の任意の温度においてこの条件を満たせば、例えば、100℃〜200℃の間に、熱伝導率が増加してもよく、いったん上昇して、下降してもよく、変化がなくてもよい。このような特性を備えることで、高温領域での使用に適したはんだ材とすることができる。本発明におけるはんだ材は、好ましくは、100℃〜200℃までは伝導率がほぼ単調に増加する。さらに、25℃を超えて100℃までの間の任意の温度におけるはんだ材の熱伝導率は、25℃におけるはんだ材の熱伝導率と同一であるか、これよりも高いことが好ましいが、25℃を超えて100℃までの間では、いったん熱伝導率がわずかに減少することも許容される。たとえば、温度と熱伝導率の関係が、25℃を超えて100℃の間に変曲点を好ましくは1つ有する下に凸の曲線で表され、25℃における熱伝導率を \(s_{2.5} \), 变曲点における熱伝導率を \(s_p \) としたときに、\(s_p / s_{2.5} \)が0.9以上なる熱伝導特性を備えるはんだ材も、本発明の好ましい範囲に入る。いずれの場合であっても、熱伝導率の測定値は、10%程度の誤差を有するものとする。なお、熱伝導率 \(s \) は、温度勾配法などの定常法や、レーザーフラッシュ法や熱線法などにより熱拡散率等を求める非定常法により求めることができる。具体的には、熱伝導率 \(s \) は \(p \) 密度と \(C_p \) 比熱と \(\alpha \) 熱拡散率から、次式より求められる。

\[
s = \alpha \cdot \rho \cdot C_p \quad \text{(式1)}
\]
密度はアルキメデス法により、比熱はDSC法（示差走査熱量法）により、熱拡散率はレーザーフラッシュ法により求めることができる。なお、熱伝導率は、JIS R1611、R1667、H7801、H8453などに準拠し測定することができる。

[0041] 本発明によるはんだ材は、上記第1～第8実施形態及びそれらの変形形態のいずれも、通常の方法に従って、Sn、Sb、Ag、及び添加元素から選択される各原料、あるいは各原料を含む母合金を電気炉中で溶解することにより調製することができる。各原料は純度が99.99質量％以上のものを使用することが好ましい。

[0042] また、第1～第8実施形態及びそれらの変形形態によるはんだ材は、板状のブリキフォーム材として、あるいは粉末状にしてフラックスと合わせてクリームはんだとして、加工することができる。粉末状に加工してフラックスと合わせてクリームはんだとする場合に、はんだ粉末の粒径としては、粒径分布が、10～100μmの範囲にあるものが好ましく、20～50μmの範囲にあるものがさらに好ましい。平均粒径では、例えば、一般的なレーザ回折/散乱式粒度分布測定装置を用いて測定した場合に、25～50μmのものとすることができる。フラックスとしては、任意のフラックスを用いることができるが、特には、ロジン系フラックスを好ましく用いることができる。

[0043] 本発明の第1～第8実施形態及びそれらの変形形態によるはんだ材による被接合体は、少なくとも接合面に金属部材を備える一般的な電子機器部材であってよく、典型的には電極として機能する金属部材であり、例えば、Cu、Ag、Au、Ni、Fe、あるいはこれらの合金から構成される電極部材であってもよい。

[0044] 本発明の第1～第8実施形態及びそれらの変形形態によるはんだ材は、例えば、半導体装置用に用いることができる。特には、半導体装置における、ダイヤモンド接合用、端子と端子の接合用、端子と他の部材との接合用、あるいはそのほかの任意の接合用に用いることができるが、例示した接合用途
には限定されない。特に、高温環境、例えば175°C以上の環境で使用される機器におけるダイポンド接合に用いることが好ましい。175°C以上の高温環境で使用される機器としては、例えば、インバータ、メガソーラー、燃料電池、エレベータ、冷却装置、車載用半導体装置等が挙げられるが、これらには限定されない。特に、これらの機器において、例えば、SiやSiCなどの半導体素子や、ベルチエ素子の接合に好ましく用いられる。なお、本発明に係るはんだ材は、前述のような熱伝導特性を備えており、好ましくは、100°C以上では熱伝導率が概ね単調増加し、概ね240°C以上で溶解する。したがって、この範囲の温度条件で用いられる機器に、好ましくは適用することができる。

[0045] 本発明の第1〜第8実施形態及びそれらの変形形態によるはんだ材は、高温でも熱伝導率が低下することなく、熱放出特性に優れるため、自己発熱量の大きい素子を搭載した電子機器部材及び/または高温環境下で使用される電子機器部材のダイポンド接合においても、ひずみの発生などを低減し、長寿命かつ高信頼性の接合層の形成が可能となる。また、当該はんだ材は、高い濡れ性を持ち、接合層におけるポイド率を大きく低減することができる。ポイドの存在は、放熱特性の低下や局所的な発熱によるはんだの破壊、あるいは、被接合体がSi半導体素子の場合には、Siの溶解を引き起こすおそれがあるが、そのような危険性を大きく低減することができる。

[0046] [第9実施形態:半導体装置]
本発明は、第9実施形態によれば、半導体装置であって、半導体素子と、基板電極もしくはリードフレームとの間に、前述の第1〜第8実施形態による、あるいはそれらの変形形態によるはんだ材を溶融してなる接合層を備える。

[0047] 図1に、本実施形態に係る半導体装置の一例である。パワーモジュールの概念的な断面図を示す。パワーモジュール100は、主として、放熱板13上に半導体素子11及び積層基板12を、接合層10にて接合した積層構造となっている。接合層10は前述の第1〜8実施形態による、あるいはそれ
らの変形形態によるはんだ材を、所定の接合温度プロファイルで溶融し、冷
却することにより形成したものである。放熱板 13 には、外部端子 15 を内
蔵したケース 16 が接着され、半導体素子 11 および積層基板 12 の電極と
外部端子 15 はアルミワイヤ 14 にて接続されている。モジュール内部は、
樹脂封止材 17 が充填されている。

半導体素子 11 は、Si 半導体素子や、SiC 半導体素子であってよいが
、これらには限定されない。例えば IGBT モジュールに搭載されるこれら
の素子の場合、積層基板 12 の導電性金属板と接合される裏面電極は、通常
、Au から構成される。積層基板 12 は、例えば、アルミナや SiN などか
らなるセラミックス絶縁層の表裏に鋼やアルミニウムの導電性金属板が設け
られている。放熱板 13 としては、熱伝導性に優れた鋼やアルミニウムなど
の金属が用いられる。本発明に係るはんだ材は、このような半導体素子 11
の裏面電極と、積層基板 12 のおもて面の導電性金属板との間の接合層 10
の材料、及び積層基板 12 の裏面導電性金属板と、放熱板 13 との間の接合
層 10 の材料として好ましく用いられる。このような接合層 10 の形成に用
いるはんだ材の厚みや形状などは、目的及び用途にしたがって当業者が適宜
設定することができ、特に限定されない。しかし、本発明に係るはんだ材
は、従来技術と比較して濡れ性がよく、ボイドはできづらくなるので、薄く
することもできる。薄いと熱抵抗も下がるため、半導体装置において好まし
し。一方、半導体素子 11 のチップが反っていると反り分だけ厚くする必要
がある。その際、ボイドができやすいが、濡れ性がよいと空隙によるボイド
を防ぐことができする。また、厚いと応力緩和効果があるので、寿命もよい
。よって、薄くも厚くもでき、設計の自由度が上がる。

なお、本実施形態において図示する半導体装置は、一例であり、本発明に
係る半導体装置は、図示する装置構成を備えるものには限定されない。例え
ば、本出願人らによる特許文献 2 に開示されたリードフレームを備える半導
体装置構成において、リードフレームと半導体素子との接合に、本発明のは
んだ材を用いることもできる。あるいは、本出願人らによる特開 2012-191010
号公報に開示された構成を備える半導体装置において、銅ブロックと半導体素子との接合に、本発明のはんだ材を用いることもできる。また、このようなダイボンド接合用途に加えて、端子と端子との接合や、半導体素子と端子との接合など、半導体装置内のはんだ接合部に、本発明のはんだ材を用いることもできる。

実施例

（1）熱伝導率と濡れ性の測定

本発明のはんだ材及び比較例のはんだ材を調製し、熱伝導率と濡れ性を測定した。はんだ材の熱伝導率は、密度はアルキメデス法により、比熱はDSC法により、熱拡散率はレーザーフラッシュ法により求め、先述の式1により求めた。但し、測定値は10%程度の誤差を有する。各組成の試料につき、25℃、100℃、150℃、175℃、200℃にて熱伝導率を測定し、100℃、150℃、175℃、200℃の各温度におけるはんだ材の熱伝導率が、25℃におけるはんだ材の熱伝導率と同一であるか、これよりも高い条件をみたすものを「（yes）」、みたさないものを「（no）」とした。

濡れ性測定の試料は、□9mmのSiチップと積層基板12の導電性金属板（銅）を、接合層厚さ110μmを狙い、本発明のはんだ材及び比較例のはんだ材を用いて接合して作製した。接合は、はんだ材の溶融温度である、液相線温度+30℃に2分間保持することにより実施した。このはんだ接合部を超音波探傷（SAT：Scanning Acoustic Tomography）にて観察し、SAT透過像から、チップの面積を100%として、ボイド率を算出した。チップ面積に対して、1.5%以下のボイド率であったものを、濡れ性あり「（yes）」、1.5%を超えるボイド率を示したものを濡れ性なし「（no）」として記した。結果を下記表1に示す。なお、詳細なデータは添付しないが、本発明者らは、SnAg系はんだにおけるAg量と表面張力の関係をウイルミヘルム法により測定した。ウィルミヘルム法による測定の結果、SnAg3.5質量％近傍、特に、SnA...
g 3.0 質量%〜Sn-Ag 4.0 質量%が最も表面張力が小さくなることが明らかとなった。この結果は、本実施例によるボイド率測定結果とも一致する。ゆえに、ボイド率の低下には、表面張力を小さくする手段が有効であることが示された。はんだの濡れ性では、表面張力は極力小さいことが接触角度を小さくすることができ、母材（被接合部材）との高い濡れ性を示すといえる。

[0052]
<table>
<thead>
<tr>
<th>成分 mass%</th>
<th>Sn</th>
<th>Sb</th>
<th>Cu</th>
<th>Ag</th>
<th>other(s)</th>
<th>液相</th>
<th>半径</th>
<th>平衡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sn-2Ag</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Sn-3Sb</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
はんだ材料としてSnAg系材料が一般的に用いられているが、SnAgの熱伝導率、またはSnAgCu系合金の熱伝導率は、温度上昇とともに低下した。なお、前記熱伝導率のデータは表には示していない。一方、SnSb系材料は、Sn－5Sbでは、Sbの固溶効果はでているが、βSnの影響が強く、初期の熱伝導率に対して、温度上昇とともに、熱伝導率が若干低下する傾向を示した。なお、詳細なデータは示していない。一方、Sn6Sb4Ag共晶では、温度上昇とともに熱伝導率は高くなる傾向を示した。Snに13質量％のミbを添加すると、濡れ性が低下した。これは、SbSnとSb2Snが析出したためではないかと考えられる。熱伝導率は初期に対し、温度上昇とともに、高くなる傾向にあるが、Snに8質量％以上のSbの添加では、Ag量などに関わらず、熱伝導率は変化しなかった。

図2に、本発明に係る代表的なはんだ材と、比較例に係るはんだ材の温度と熱伝導率との関係を示す。熱伝導率は、25℃における熱伝導率を基準とした規格値で表した。本発明に係るはんだ材である、試料番号8、9、13、20においては、25℃から200℃にかけて、熱伝導率が、25℃の時と比較して上昇していることが、グラフに示す規格値から理解される。一方、比較例に係るはんだ材では、いずれも温度上昇とともに、熱伝導率の明らかに低下がみられた。

熱伝導の機構においては、以下の2つの機関があるものと考えられる。

1. 結晶格子間を伝わる振動（フォノン、格子振動）としてのエネルギー伝達

2. 伝導電子に基づくエネルギー伝達

通常、金属および合金は伝導電子による寄与の方が大きい。したがって、温度が上昇すると、電子散乱が大きくなり、電子伝導性が低下し、熱伝導率も低下すると考えられる。一方、本発明に係るはんだ材を構成する合金は、所定の温度範囲において、格子振動の寄与が大きいのではないかと考えられる。つまり、温度が上昇すると、格子振動が大きくなり、電子散乱も大きくなる。しかし、熱伝導が格子振動に大きく依存するとすれば、伝導電子の
寄与が低下しても、格子振動によるエネルギー伝達により、熱伝導率は上昇すると推量される。なお、かかる説明は、本発明の理解のための考察に過ぎず、本発明は上記の特定の理論に限定されるものではない。

(2) パワーサイクル試験

本発明に係る三元系のはんだ材であるSnSbAg系材料、及び比較例に係るはんだ材であるSnAg系材料を用い、図1の構成を備えるパワーモジュールを製造した。これらのパワーモジュールを、同じ発熱温度になるようにして、ATj = 100℃、Tjmax=175℃で、運転2秒、休止9秒の条件を1サイクルとして、パワーサイクル試験を行った。結果を図3に示す。破壊寿命は、比較例を基準として規格化して表したサイクル数である。縦軸の故障確率は、20台のパワーモジュールにパワーサイクル試験をして、はんだの損傷により故障したパワーモジュールの割合である。図3は、所定の故障確率の時のサイクル数をプロットしたものである。はんだの損傷による故障の判断基準は、素子の熱抵抗値の変化からおこなった。素子の熱抵抗の変化率をモニタリングし、熱抵抗の変化率を常時確認し、徐々に熱抵抗上昇が起こるものをはんだの損傷とした。また素子通電のためのワイヤボンディング接続部の破壊や、素子劣化による破壊を除外するため、熱抵抗が上昇し、素子の定格電流が印加できないものに対して、断面観察によるはんだ組織の劣化状況を確認し、はんだ損傷の起こっているものに対して、故障としてカウントした。

パワーサイクル試験など、電流を印加して素子を発熱させ、発熱温度の上下限で電流オンオフを繰り返す試験方法では、発熱による接合層の歪みが発生し、数十万サイクル繰り返すことではなんだ材が劣化し、素子の破壊に至る。このパワーサイクル試験では、初期には、はんだ材は、金属の微細な組織形態を示すが、劣化することによって、化合物が析出し、凝集、粗大化する場合がある。粗大な化合物が存在することは、一方では、βSnの転位や化合物の少ない組織が増加することを指し、純金属に近い挙動を示し、熱伝導率の変化が起こりうる。本試験の結果、本発明に係るはんだ材は、従来技術に
係るはんだ材と比較して、製品寿命が向上することも明らかになった。本発明を特定の理説によって限定する意図はないが、本発明に係るSnSbAg系材料は、SnSbの固溶とSnAgの析出強化の両者を併せ持つためであると推定される。

(3) 潤れ性試験
DCB (Direct Copper Bonding)基板上に、厚みが0.25mmのはんだを冷結し、H2還元環境下で、300℃で3分間加熱することにより、Cu板上でのはんだの潤れ性を確認した。なお、DCB基板とは、アルミナ系セラミックスなどの絶縁層の両面に銅などの導電性金属板を、Direct Copper Bond法により直接接合してなる積層基板である。板はんだの組成は、表1の試料番号9、19、23のものを用いた。それぞれの板はんだは、各試料につき2枚をDCB基板上に載置して実験した。

結果を図4に示す。図4は、加熱後のDCB基板上のはんだの実体顕微鏡写真である。本発明に係るはんだ材はいずれも良好な潤れ性を備えるが、試料番号9のはんだと比較して、試料番号19、及び試料番号23のはんだでは、Geの添加によりはんだの酸化をさらに抑え、はんだの潤れ性を向上していることが視認できる。試料番号19は、はんだが、溶融前の形状とほぼ同じ潤れ拡がりを示し、はんだの色が白色に近く、Snが酸化されていないことがわかる。試料番号23においても、潤れ性は、同様かやや向上しており、少なくともNiの添加によって、潤れ性の悪化などはみられないことがわかる。なお、写真では見えにくいが、試料番号19、及び試料番号23の写真においては、四角形でアウトラインを示した領域のほぼ全体にはんだが拡がっている。

(4) 耐熱性試験
表1の試料番号5、9、13の組成を有する厚みが0.25mmの板はんだを用いて、上記(3)と同様の接合条件で、DCB基板と放熱板を接合した。はんだ耐熱性評価として熱衝撃試験を実施した。試験条件は、−45℃〜155℃を各10分保持し、−45℃保持と155℃10分保持を1サイ
クルとカウンして、300サイクル実施した。次いで、超音波探傷顯微鏡にてはんだ接合部の剥離またはクラックの発生を確認した。結果の顕微鏡写真を図5に示す。 (a) が試料番号5、 (b) が試料番号9、 (c) が試料番号13のはんだを用いた試料の写真である。図に示す黒いところがはんだ接合部で、白くなっているところがクラック、すなわちはんだ破壊の発生した部位である。クラック判定は、点線枠で示す初期のはんだ接合面積に対して、白い部位が多いものは、冷却性能が低下しはんだ接合強度が低下したこと示す。つまり、極力、白い部位が少ないものが、優れた特性を示すことになる。なお、各試料・BR-フ前記顕微鏡写真の中央部等に見られる白色斑点は、試験前に存在したポイドであり、前記熱衝撃試験によってはんだが破壊した個所ではない。前記熱衝撃試験の結果から、試料番号13、9、5の順に耐熱性に優れており、Ni添加により寿命が向上することが示された。

SNSbAsgにNiを添加すると、SNSbAgの組織の凝固の際の凝固核となることで、微細な多結晶体を作りだす。そのため、冷熱サイクルによる応力集中が、結晶方位の異なる高角結晶粒界に集中せず、多結晶体により、応力が分散する効果が働いたと考えられる。また、凝固時に晶出したSbSnNi相とCuNiSn相が、SbSn相への分散強化による劣化遅延と高温劣化による化合物および主相Sn相の粗大化を遅延させる効果が働いたと考えられる。なお、かかる説明は、本発明の理解のための考察に過ぎず、本発明は上記の特定の理論に限定されるものではない。

産業上の利用可能性

本発明によるはんだ材は、大電流仕様の電子機器全般において、半導体チップ等の接合部に用いられる。特には、ICなどパッケージ部品に好適に用いられる。また発熱の大きい部品、例えばLED素子や、パワーデバイスなどパワーハーフデバイスのダイポンド接合部、さらにはプリント配線板などの上に接触される電子部品全般におけるIC素子などの内部接続のダイポンド接合部に好適に用いられる。
<table>
<thead>
<tr>
<th>符号</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>接合層</td>
</tr>
<tr>
<td>11</td>
<td>半導体素子</td>
</tr>
<tr>
<td>12</td>
<td>積層基板</td>
</tr>
<tr>
<td>13</td>
<td>放熱板</td>
</tr>
<tr>
<td>14</td>
<td>アルミワイヤ</td>
</tr>
<tr>
<td>15</td>
<td>外部端子</td>
</tr>
<tr>
<td>16</td>
<td>ケース</td>
</tr>
<tr>
<td>17</td>
<td>樹脂封止材</td>
</tr>
<tr>
<td>100</td>
<td>パワーモジュール</td>
</tr>
</tbody>
</table>
請求の範囲

[請求項1] Sbを、5.0質量％を超えて10.0質量％以下と、Agを2.0〜4.0質量％含有し、残部は、Sn及び不可避不純物からなるはんだ材。

[請求項2] さらに、Niを、0を超えて1.0質量％以下含有する、請求項1に記載のはんだ材。

[請求項3] さらに、Niを、0.1〜0.4質量％含有する、請求項1に記載のはんだ材。

[請求項4] さらに、Siを、0を超えて1.0質量％以下含有する、請求項1または2に記載のはんだ材。

[請求項5] さらに、Vを、0を超えて0.1質量％以下含有する、請求項1に記載のはんだ材。

[請求項6] さらに、Cuを、0を超えて1.2質量％以下含有する、請求項1に記載のはんだ材。

[請求項7] さらに、Pを、0.001〜0.1質量％含有する、請求項1〜6のいずれか1項に記載のはんだ材。

[請求項8] さらに、Geを、0.001〜0.1質量％含有する、請求項1〜7のいずれか1項に記載のはんだ材。

[請求項9] 100℃〜200℃における熱伝導率が、25℃における熱伝導率よりも低下しない、請求項1〜8のいずれか1項に記載のはんだ材。

[請求項10] 半導体素子と、基板電極もしくはリードフレームとの間に、請求項1〜9のいずれか1項に記載のはんだ材が溶融された接合層を備える半導体装置。

[請求項11] 前記半導体素子が、SiC半導体素子である、請求項10に記載の半導体装置。
[図1]

[図2]

- Sn-6Sb-4Ag-0.03Ge
- Sn-6Sb-4Ag
- Sn-6Sb-4Ag-0.4Ni
- Sn-7Sb-2Ag
- Sn-3.5Ag
- Sn-2Ag
- Sn-7Ag

温度（℃）
A. CLASSIFICATION OF SUBJECT MATTER

B23K35/2 6.(2006.01)i. C22C1 3/02 (2006.01)i. H01L21/52 (2006.01)i.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B23K35/00-35/40, C22C13/00-13/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 7-284983 A (Tana ka Denshi Kogyo Kabushiki Kai sha). 31 October 1995 (31.10.1995), table 1, example 8 (Family: none)</td>
<td>1~2, 4, 6, 9-10 2-8.11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 8-1372 A (Tana ka Denshi Kogyo Kabushiki Kai sha). 09 January 1996 (09.01.1996), table 1, example 8 (Family: none)</td>
<td>1~2, 4, 6, 9-10 2-8.11</td>
</tr>
<tr>
<td>X</td>
<td>JP 2001-252787 A (Showa Denko Kabushiki Kai sha). 18 September 2001 (18.09.2001), paragraph 0039 (Family: none)</td>
<td>1~2, 4, 6, 9-10 2-8.11</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. □ See patent family annex.

Date of the actual completion of the international search
23 September 2016 (23.09.16)

Date of mailing of the international search report
04 October 2016 (04.10.16)

Name and mailing address of the ISA/Officier
Japan Patent Office, 3-43, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 40-16897 BL (Hitachi , Ltd .), 02 August 1965 (02.08.1965) text (Familly :none)</td>
<td>1-2, 4-6, 9-10, 2-8, 11</td>
</tr>
<tr>
<td>X</td>
<td>US 4170472 A (MOTOROLA, INC .), 09 October 1979 (09.10.1979), column 2, table , AI lloy H (Familly :none)</td>
<td>1-2, 4-6, 9-10, 2-8, 11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2006-35310 A (Sumitomo Metal Mining Co., Ltd .), 09 February 2006 (09.02.2006), claims ; paragraphs [0028] to [0035] (Familly :none)</td>
<td>6-8</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No.
PCT / JP2 016/ 073406

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Form PCT/ISA/210 (continuation of second sheet) (January 2015)
A. 発明の属する分野の分類（国際特許分類（IPC））

| Int.Cl. | B23K35/26 (2006.01)i, C22C13/02 (2006.01)i, H01L21/52 (2006.01)i |

B. 調査を行った分野

| Int.Cl. | B23K35/00-35/40, C22C13/00-13/02 |

最小限資料以外の資料で調査を行った分野に含まれるもの

- 日本国実用新案公報 1922-19
- 日本国公関実用新案公報 1971-20
- 日本国実用新案登録公報 1996-20
- 日本国登録実用新案公報 1994-20

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X JP 7-284983 A (田中電子工業株式会社) 1995.10.31, 表1の実施例8 (ファミリーなし)</td>
<td></td>
<td>1-2, 4-6, 9-10</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-8, 11</td>
</tr>
<tr>
<td>X JP 8-1372 A (田中電子工業株式会社) 1996.01.09, 表1の実施例8 (ファミリーなし)</td>
<td></td>
<td>1-2, 4-6, 9-10</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-8, 11</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリー
 - "A" 特に関連のある文献ではなく、一般的な技術水準を示すもの
 - "B" 国際出願日の出願または特許であるが、国際出願日前後に公表されたもの
 - "C" 前の特許により補足を提供する文献又は他の文献の発行日若しくは他の特別な理由により引用する文献
 - "D" 口頭による関係、使用等に及ぼす文献
 - "E" 国際出願日前で、かつ優先権の主張の基礎となる出願
 - "F" 国際出願日又は優先日後公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 - "G" 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性が見極めえないものの
 - "H" 特に関連のある文献であって、当該文献と他の1以上の文献との、当該出願の公表出願の基礎となる出願

関連する請求項の番号

- 1-2, 4-6, 9-10
- 2-8, 11

シートの続きにも文献が挙げられている。

「：パターンファミリーに関する別紙を参照。

国際調査を完了した日

23.09.2016

国際調査報告の発送日

04.10.2016

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

静野 朋季
電話番号03-3581-1101 内線3435

様式PCT／ISA／210（第2ページ）（2015年1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するとき</th>
<th>関連する文献のカテゴリ</th>
<th>関連する文献の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2001-252787 A (昭和電工株式会社) 2001. 09. 18, 段落 0 0 3 9 (ファミリーなし)</td>
<td>Y</td>
<td>1-2, 4-6, 9-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-8, 11</td>
</tr>
<tr>
<td>X</td>
<td>JP 40-16897 B1 (株式会社日立製作所) 1965. 08. 02, 全文 (ファミリーなし)</td>
<td>Y</td>
<td>1-2, 4-6, 9-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-8, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-8, 11</td>
</tr>
<tr>
<td>X</td>
<td>US 4170472 A (MOTOROLA, INC.) 1979. 10. 09, 第2節の表のAlloy H (ファミリーなし)</td>
<td>Y</td>
<td>1-2, 4-6, 9-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-8, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7-8, 11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2008-31550 A (日立電線株式会社) 2008. 02. 14, 特許請求の範囲、段落 0 0 1 9 — 0 0 3 8 & US 2007/0295528 A1, paragraphs 0062-0080, Claims & CN 101096730 A</td>
<td>Y</td>
<td>2-8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2006-35310 A (住友金属鉱山株式会社) 2006. 02. 09, 特許請求の範囲、段落 0 0 2 8 — 0 0 3 5 (ファミリーなし)</td>
<td>Y</td>
<td>6-8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2012-119609 A (パナソニック株式会社) 2012. 06. 21, 段落 0 0 0 1 - 0 0 0 6 (ファミリーなし)</td>
<td>Y</td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2011-121062 A (三菱電機株式会社) 2011. 06. 23, 段落 0 0 0 2 - 0 0 0 5 (ファミリーなし)</td>
<td>Y</td>
<td>11</td>
</tr>
</tbody>
</table>

様式 PCT／ISA／210（第2ページの続き）（2015年1月）