[19]

INTELLECTUAL PROPERTY PHILIPPINES

[12]

INVENTION PUBLICATION

[11]] Publication Number: 12014502640 Document Code: B1

[22] | Publication Date: 26/1/2015

[21]] Application Number: 12014502640 Document Code: A

[22] | Date Filed: 25/11/2014

[54] | Title: METHODS, CONTROLLERS AND DEVICES FOR ASSEMBLING A WORD

[71] | Applicant(s): CHOMLEY CONSULTING PTY LTD

[72] | Inventor(s): CHOMLEY TIMOTHY MICHAEL

[30] | Priority Data: 30/5/2012 AU20120902255

[51] , GO6F 17/00 20060101AFI20180820BHPH; GO6F 3/00

International Class 8:

20060101ALI20180820BHPH; GO6F 3/023 20060101ALI20180820BHPH;
A method of assembling a word comprising a sequence of word components
according to one or more word assembly conventions, the method comprising:
a memory storing a sequence of one or more word components of the word;
a word locator of a processor locating a set of one or more valid words from a
plurality of possible words stored in a words database, each valid word comprising
a sequence of one or more word components corresponding to the sequence of
word components stored in the memory; the processor receiving a user input from a
keyboard device having a plurality of keys respectively associated with a plurality of

[57] | Abstract: possible word components, the received user input corresponding to one of the keys

of the keyboard device; a word component determiner of the processor determining
that a user input word component is a valid subsequent word component that
validly continues from the sequence of word components stored in the memory
based on the set of valid words located by the word locator, the user input word
component being the possible word component associated with the key of the
keyboard device corresponding to the user input received by the processor; and a
word component adder of the processor adding the user input word component to
the stored sequence of word components of the word.

10

15

20

25

30

35

the processor receiving a user input from a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard device;
a word component determiner of the processor determining that a user input word
component is a valid subsequent word component that validly continues from the
sequence of word components stored in the memory based on the set of
additional valid words located by the word locator, the user input word
component being the possible word component associated with the key of the
keyboard device corresponding to the user input received by the processor; and
a word component adder of the processor adding the user input word component to
the sequence of word components stored in the memory.
In an embodiment, the method further comprises:
a display controller of the processor controlling a display to display the keys of the
keyboard device; and
in response to the word locator locating the set of additional valid words:
the word component determiner determining a set of one or more valid
subsequent word components based on the set of additional valid words
located by the word locator; and

the display controller controlling the display to modify the display of the key
associated with each valid subsequent word component.

In an embodiment, the method further comprises the display controller controlling a
display to display one or more, or all, of the additional valid words located by the word
locator. 5

In an embodiment, each word component is a Latin alphabetic letter.

In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.
In an embodiment, the keyboard device is a software-implemented keyboard
displayed on a display.
In an embodiment, the method further comprises:
in response to the word locator locating the set of additional valid words:
a valid word set size determiner of the processor determining that the set of
additional valid words consists of only one additional valid word; and
the display controller controlling the display to modify the display of the additional

valid word.
In an embodiment, the method further comprises:

10

15

20

25

30

35

in response to the word component adder adding a word component to the sequence

of word components stored in the memory:

a letter number comparator of the processor determining that the stored
Lsequence of word components of the word has the same number of word
components as one of the set of additional valid words; and

the display controller controlling the display to modify the display of the additional
valid word that has the same number of word components as the stored
sequence of word components of the word.

In an embodiment, the method further comprises:

in response to the word component adder adding a word component to the sequence

of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word does not have the same number
of word components as one of the set of additional valid words; and

the display controller controlling the display to modify the display of the additional
valid word that does not have the same number of word components as the
stored sequence of word components of the word.

In an embodiment, the method further comprises:

in response to the word locator locating a set of more than one additional valid word:

a common word component determiner of the processor determining that each of
the additional valid words comprises a sequence of one or more common
subsequent valid word components that (i) are common to all additional valid
words, and that (ii) validly continue from the sequence of word components
stored in the memory; and ‘

the character adder adding the sequence of common subsequent valid word
components to the sequence of word components stored in the memory.

In an embodiment, each of the possible words stored in the words database is
categorized into one of a plurality of word categories, and the set of additional valid words
located by the word locator is based on the word category of a previous assembled word.

In a fifth aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating one valid word from a plurality of possible

words stored in a words database, the valid word comprising a sequence of one

or more word components corresponding to the sequence of word components

stored in the memory;
a display controller of the processor controlling a display to display the valid word;

10

15

20

25

30

35

- 10 -

a valid word set size determiner of the processor determining that only one valid
word is located by the word locator; and

the display controller controlling the display to modify the display of the valid word.

In a sixth aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating one valid word from a plurality of possible
words stored in a words database, the valid word comprising a sequence of one
or more word components corresponding to the sequence of word components
stored in the memory;

a display controller of the processor controlling a display to display the valid word.

a valid word set size determiner of the processor determining that the set of
additional valid words consists of only one additional valid word, the display
controller controlling the display to modify the display of the additional valid word.

In a seventh aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating a set of one or more valid words from a

plurality of possible words stored in a words database, each valid word
comprising a sequence of one or more valid word components including a
sequence of one or more word components corresponding to the sequence of
word components stored in the memory;

a display controller of the processor controlling a display to display one or more, or
all, of the valid words located by the word locator;

a letter number comparator determining that the stored sequence of word
components of the word has the same number of word components as one of
the set of valid words; and

the display controller controlling the display to modify the display of the valid word
that has the same number of word components as the stored sequence of word
components of the word.

In an eighth aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating a set of one or more valid words from a

plurality of possible words stored in a words database, each valid word

- 11 -

comprising a sequence of one or more valid word components including a
sequence of one or more word components corresponding to the sequence of
word components stored in the memory;

a display controller of the processor controlling a display to display one or more, or
all, of the valid words located by the word locator;

a letter number comparator determining that the stored sequence of word
components of the word does not have the same number of word components
as one of the set of valid words; and

the display controller controlling the display to modify the display of the valid word
that does not have the same number of word components as the stored
sequence of word components of the word.

In a ninth aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating a set of one or more valid words from a
plurality of possible words stored in a words database, each valid word
comprising a sequence of one or more word components corresponding to the
sequence of word components stored in the memory;

a common word component determiner of the processor determining that each of the
located valid words comprises absequence of one or more common subsequent
valid word components that (i) are common to all valid words, and that (i) validly
continue from the sequence of word components stored in the memory; and

a character adder of the processor adding the sequence of common subsequent
valid word components to the sequence of word components stored in the
memory.

In a tenth aspect, the present invention provides a method of assembling a sequence

of words comprising a first word and a second word, the method comprisimg:

a memory storing the first word;
a word locator of a processor locating a valid word corresponding to the first word

from a plurality of possible words stored in a words database, each of the
possible words categorized into one of a plurality of word categories;

the memory storing a sequence of one or more word components of the second
word;

the word locator locating a set of one or more valid words from a plurality of possible
words stored in a words database based on the word category of the first word,
each valid word comprising a sequence of one or more word components
corresponding to the sequence of word components stored in the memory; and

10

15

20

25

30

35

- 12 -

a word component adder of the processor adding a word component that validly
continues from the sequence of word components stored in the memory based
on the set of valid words located by the word locator.

In an embodiment, the word categories include verbs and nouns.

In an embodiment, the method further comprises a display controller controlling a
display to display one or more, or all, of the valid words located by the word locator, in
response to the word locator locating the set of valid words.

In an embodiment, each word component is a Latin alphabetic letter.

In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.
In an embodiment, the method further comprises:
in response to the word locator locating the set of valid words:
a valid word set size determiner of the processor determining that the set of valid

words consists of only one valid word; and
the display controlier controlling the display to modify the display of the valid

word.
In an embodiment, the method further comprises:
in response to the word component adder adding a word component to the sequence
of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word has the same number of word
components as one of the set of valid words; and

the display controller controlling the display to modify the display of the valid
word that has the same number of word components as the stored sequence

of word components of the word.
In an embodiment, the method further comprises:
in response to the word component adder adding a word component to the sequence
of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word does not have the same number
of word components as one of the set of valid words; and

the display controller controlling the display to modify the display of the valid
word that does not have the same number of word components as the stored

sequence of word components of the word.

In an embodiment, the method further comprises:
in response to the word locator locating the set of more than one valid words:

10

15

20

25

30

35

- 13 -

a common word component determiner of the processor determining that each
of the valid words comprises a sequence of one or more common subsequent
valid word components that (i) are common to all valid words, and that (ii)
validly continue from the sequence of word components stored in the
memory; and

the character adder adding the sequence of common subsequent valid word
components to the sequence of word components stored in the memory.

In an eleventh aspect, the present invention provides a method of assembling text
comprising a sequence of characters, the method comprising:

a processor receiving a user input from a keyboard device having one or more
punctuation keys respectively associated with one or more punctuation
characters, the received user input corresponding to one of the punctuation keys
of the keyboard device;

the processor determining that the punctuation character associated with the
punctuation key corresponding to the user input corresponds to one of a set of
terminating punctuation characters; and

the processor adding to the text (i) the punctuation character associated with the
punctuation key corresponding to the user input and (ii) a space character.

In a twelfth aspect, the present invention provides a controller for assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the controller comprising:

a memory for storing a sequence of one or more word components of the word; and

a processor arranged to:
locate a set of one or more valid words from a plurality of possible words stored

in a words database, each valid word comprising a sequence of one or more
word components corresponding to the sequence of word components stored
in the memory;

receive a user input from a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard device;

determine that a user input word component is a valid subsequent word
component that validly continues from the sequence of word components
stored in the memory based on the located set of valid words, the user input
word component being the possible word component associated with the key
of the keyboard device corresponding to the user input received by the

processor; and
add the user input word component to the stored sequence of word components

of the word.

- 14 -

In an embodiment, the processor is further arranged to:
control a display to display the keys of the keyboard device: and

in response to a location of the set of valid words:
determine a set of one or more valid subsequent word components based on the

5 set of valid words located by the word locator, wherein each valid subsequent
word component validly continues from the sequence of word components

stored in the memory; and
control the display to modify the display of the key associated with each valid

subsequent word component.

10 In an embodiment, the processor is further arranged to control the display to display
one or more, or all, of the located valid words, in response to a location of the set of valid
words.

In an embodiment, each word component is a Latin alphabetic letter.
In an embodiment, the possible word components comprise the 26 Latin alphabetic

15 letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.
In an embodiment, the keyboard device is a software-implemented keyboard
displayed on a display.
20 In an embodiment, the processor is further arranged to:
in response to a receipt of the user input, locate a set of one or more additional valid

words from the plurality of possible words stored in the words database, each
additional valid word comprises a sequence of one or more word components
corresponding to a subset of the sequence of word components stored in the
25 memory.
In an embodiment, the processor is further arranged to control the display to display
one or more, or all, of the located additional valid words.
In an embodiment, the processor is further arranged to:
in response to a location of the set of valid words:
30 determine that the set of valid words consists of only one valid word; and
control the display to modify the display of the valid word.
In an embodiment, the processor is further arranged to:
in response to a location of the set of additional valid words:
determine that the set of additional valid words consists of only one additional
35 valid word; and
control the display to modify the display of the additional valid word.
In an embodiment, the processor is further arranged to:

10

15

20

25

30

35

15.

in response an adding of a word component to the sequence of word components
stored in the memory:
determine that the stored sequence of word components of the word has the
same number of word components as one of the set of valid words; and
control the display to modify the display of the valid word that has the same
number of word components as the stored sequence of word components of

the word.
In an embodiment, the processor is further arranged to:
in response an adding of a word component to the sequence of word components
stored in the memory:
determine that the stored sequence of word components of the word does not
have the same number of word components as one of the set of valid words;
and
control the display to modify the display of the valid word that does not have the
same number of word components as the stored sequence of word

components of the word.
In an embodiment, the processor is further arranged to:

in response a location of more than one valid words:
determine that each of the valid words comprises a sequence of one or more

common subsequent valid word components that (i) are common to all valid
words, and that (i) validly continue from the sequence of word components
stored in the memory; and

add the sequence of common subsequent valid word components to the
sequence of word components stored in the memory.

In an embodiment, each of the possible words stored in the words database is
categorized into one of a plurality of word categories, and the location of the set of valid
words is based on the word category of a previous assembled word.

In a fourteenth aspect, the present invention provides a controller for assembling a
word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

a processor arranged to:
locate a set of one or more valid words from a plurality of possible words stored
in a words database, each valid word comprising a sequence of one or more
word components corresponding to the sequence of word components stored
in the memory;
determine a set of one or more valid subsequent word components based on the
located set of valid words, wherein each valid subsequent word component

10

15

20

25

30

35

- 16 -~

validly continues from the sequence of word components stored in the
memory;

control a display to display a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components; and
receive a user input from the keyboard device, the received user input
corresponding to one of the keys of the keyboard device;

determine a display position of the key associated with the possible word
component corresponding to each valid subsequent word component;

determine which one of the keys associated with the possible word components
corresponding to the valid subsequent word components is displayed closest
to the key corresponding to the user input; and

add to the sequence of word components stored in the memory the possible
word component corresponding to the valid subsequent word component
associated with the key determined by the closest key determiner to be
displayed closest to the key corresponding to the user input.

In an embodiment, the processor is further arranged to control the display to modify
the display of the key associated with the possible word component corresponding to each
valid subsequent word component.

In an embodiment, the processor is further arranged to control the display to display
the possible word component corresponding to the valid subsequent word component
associated with the key determined by the closest key determiner to be displayed closest to
the key corresponding to the user input.

In an embodiment, the processor is further arranged to control the display to display
one or more, or all, of the located valid words, in response to a location of the set of valid
words.

In an embodiment, each word component is a Latin alphabetic letter.

In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.

In an embodiment, the keyboard device is a software-implemented keyboard
displayed on a display.

In an embodiment, the processor is further arranged to:

in response to a receipt of the user input, locate a set of one or more additional valid

words from the plurality of possible words stored in the words database, each
additional valid word comprises a sequence of one or more word components

corresponding to a subset of the sequence of word components stored in the

memory.

10

15

20

25

30

35

- 17 -

In an embodiment, the processor is further arranged to control the display to display
one or more, or all, of the located additional valid words.
In an embodiment, the processor is further arranged to:
in response to a location of the set of valid words:
determine that the set of valid words consists of only one valid word; and
control the display to modify the display of the valid word.
In an embodiment, the processor is further arranged to:
in response to a location of the set of additional valid words:
determine that the set of additional valid words consists of only one additional
valid word; and
control the display to modify the display of the additional valid word.
In an embodiment, the processor is further arranged to:
in response an adding of a word component to the sequence of word components
stored in the memory:
determine that the stored sequence of word components of the word has the
same number of word components as one of the set of valid words; and
control the display to modify the display of the valid word that has the same
number of word components as the stored sequence of word components of
the word.
In an embodiment, the processor is further arranged to:
in response an adding of a word component to the sequence of word components
stored in the memory:
determine that the stored sequence of word components of the word does not
have the same number of word components as one of the set of valid words;
and
control the display to modify the display of the valid word that does not have the
same number of word components as the stored sequence of word
components of the word.
In an embodiment, the processor is further arranged to:

in response a location of more than one valid words:
determine that each of the valid words comprises a sequence of one or more

common subsequent valid word components that (i) are common to all valid
words, and that (ii) validly continue from the sequence of word components
stored in the memory; and
add the sequence of common subsequent valid word components to the
sequence of word components stored in the memory.
In an embodiment, each of the possible words stored in the words database is

categorized into one of a plurality of word classes; and

10

15

20

25

30

35

- 18 -

the location of the set of valid words is based on the word class of a previous
assembled word.
In a fifteenth aspect, the present invention provides a controller for assembling a
word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

a processor arranged to:
locate a set of one or more valid words from a plurality of possible words stored
in a words database, each valid word comprising a sequence of one or more
word components corresponding to the sequence of word components stored
in the memory;
receive a user input from a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard device;
determine that the user input word component is a valid further subsequent word
component based on the located set of valid words, the valid further
subsequent word component being a word component that validly continues
from one or more intermediate word components that in turn continue from
the sequence of word components stored in the memory; and
add the user input word component and the intermediate word components to
the sequence of word components stored in the memory. ‘
In an embodiment, the processor determined that the user input word component is

not a valid subsequent word component.
In an embodiment, the one or more intermediate word components consist of a

punctuation mark.
In an embodiment, the processor is further arranged to:

in response to a receipt of the user input;
locate an alternative word component from an alternative word component

database comprising one or more sets of alternative word components
associated with respective word components, based on the user input word
component;

determine that the alternative word component is a valid subsequent word
component continuing from the sequence of word components stored in the
memory based on the located set of valid words; and

add the alternative input word component to the sequence of word components

stored in the memory.

10

15

20

25

30

35

- 19 -

In an embodiment, the processor locates the alternative word component based on
the user input word component in response to a determination that the user input word
component is not a valid subsequent word component.

In a sixteenth aspect, the present invention provides a controller for assembling a
word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

a processor arranged to:
locate a set of one or more additional valid words from a plurality of possible
words stored in a words database, each additional valid word comprising a
sequence of one or more word components corresponding to a subset of
the sequence of word components stored in the memory;
receive a user input from a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard
device;
determine that a user input word component is a valid subsequent word
component that validly continues from the sequence of word components
stored in the memory based on the located set of additional valid words,
the user input word component being the possible word component
associated with the key of the keyboard device corresponding to the user
input received by the processor; and
add the user input word component to the sequence of word components stored
in the memory.
In an embodiment, the processor is further arranged to:
control a display to display the keys of the keyboard device; and
in response to a location of the set of additional valid words:
determine a set of one or more valid subsequent word components based on the set
of additional valid words located by the word locator; and
control the display to modify the display of the key associated with each valid
subsequent word component.
In an embodiment, the processor is further arranged to control the display to display
one or more, or all, of the located additional valid words.
In an embodiment, each word component is a Latin alphabetic letter.
In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.

- 20 -

In an embodiment, the keyboard device is a software-implemented keyboard
displayed on a display.
In an embodiment, the processor is further arranged to:
in response to a location of the set of additional valid words:
5 determine that the set of additional valid words consists of only one additional
valid word; and
control the display to modify the display of the additional valid word.
In an embodiment, the processor is further arranged to:
in response to an adding of a word component to the sequence of word components
10 stored in the memory:
determine that the stored sequence of word components of the word has the
same number of word components as one of the set of additional valid words;
and
control the display to modify the display of the additional valid word that has the
15 same number of word components as the stored sequence of word
components of the word.
In an embodiment, the processor is further arranged to:
in response to an adding of a word component to the sequence of word components
stored in the memory:

20 determine that the stored sequence of word components of the word does not
have the same number of word components as one of the set of additional
valid words; and

control the display to modify the display of the additional valid word that does not
have the same number of word components as the stored sequence of word

25 components of the word.

In an embodiment, the processor is further arranged to:
in response to a location of more than one additional valid word:
determine that each of the additional valid words comprises a sequence of one
or more common subsequent valid word components that (i) are common to
30 all additional valid words, and that (ii) validly continue from the sequence of
word components stored in the memory; and
add the sequence of common subsequent valid word components to the
sequence of word components stored in the memory.
In an embodiment, each of the possible words stored in the words database is
35 categorized into one of a plurality of word categories, and the location of the set of additional
valid words is based on lhe word category of a previous assembled word.

10

20

25

30

35

- 21 -

In a seventeenth aspect, the present invention provides a controller for assembling a
word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

a processor arranged to:
locate one valid word from a plurality of possible words stored in a words
database, the valid word comprising a sequence of one or more word
components corresponding to the sequence of word components stored in the
memory;
control a display to display the valid word.
determine that only one valid word is located; and
control the display to modify the display of the valid word.
In an eighteenth aspect, the present invention provides a controller for assembling a
word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

a processor is arranged to:
locate one valid word from a plurality of possible words stored in a words
database, the valid word comprising a sequence of one or more word
components corresponding to the sequence of word components stored in the
memory;
control a display to display the valid word;
determine that the set of additional valid words consists of only one additional
valid word; and
control the display to modify the display of the additional valid word.
In a nineteenth aspect, the present invention provides a controller for assembling a
word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

a processor arranged to:

locate a set of one or more valid words from a plurality of possible words stored
in a words database, each valid word comprising a sequence of one or more
valid word components including a sequence of one or more word
components corresponding to the sequence of word components stored in the
memory;

control a display to display one or more, or all, of the located valid words;

determine that the stored sequence of word components of the word has the
same number of word components as one of the set of valid words; and

.22.

control the display to modify the display of the valid word that has the same
number of word components as the stored sequence of word components of
the word.
In a twentieth aspect, the present invention provides a controller for assembling a
5 word comprising a sequence of word components according to one or more word assembly
conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word;
a processor arranged to:
_ locate a set of one or more valid words from a plurality of possible words stored
10 in a words database, each valid word comprising a sequence of one or more
valid word components including a sequence of one or more word
components corresponding to the sequence of word components stored in the

memory;
control a display to display one or more, or all, of the located valid words;
15 determine that the stored sequence of word components of the word does not

have the same number of word components as one of the set of valid words;
and

control the display to modify the display of the valid word that does not have the
same number of word components as the stored sequence of word

20 components of the word.
In a twenty-first aspect, the present invention provides a controller for assembling a

word comprising a sequence of word components according to one or more word assembly

conventions, the controller comprising:
a memory for storing a sequence of one or more word components of the word; and

25 a processor arranged to:
locate a set of one or more valid words from a plurality of possible words stored
in a words database, each valid word comprising a sequence of one or more
word components corresponding to the sequence of word components stored
in the memory;

30 determine that each of the located valid words comprises a sequence of one or
more common subsequent valid word components that (i) are common to all
valid words, and that (ii) validly continue from the sequence of word
components stored in the memory; and

add the sequence of common subsequent valid word components to the

35 sequence of word components stored in the memory.

In a twenty-second aspect, the present invention provides a controller for assembling
a sequence of words comprising a first word and a second word, the controller comprising:

a memory for storing the first word; and

10

15

20

25

30

35

- 23 -

a processor arranged to:
locate a valid word corresponding to the first word from a plurality of possible

words stored in a words database, each of the possible words categorized
into one of a plurality of word categories;

store a sequence of one or more word components of the second word;

locate a set of one or more valid words from a plurality of possible words stored
in a words database based on the word category of the first word, each valid
word comprising a sequence of one or more word components corresponding
to the sequence of word components stored in the memory; and

add a word component that validly continues from the sequence of word
components stored in the memory based on the located set of valid words.

In an embodiment, the word categories include verbs and nouns.

In an embodiment, the processor is further arranged to control a display to display
one or more, or all, of the located valid words, in response to a location of the set of valid
words.

In an embodiment, each word component is a Latin alphabetic letter.

In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.
In an embodiment, the processor is further arranged to:
in response to a location of the set of valid words:
determine that the set of valid words consists of only one valid word; and
control the display to modify the display of the valid word.
In an embodiment, the processor is further arranged to:
in response an adding of a word component to the sequence of word components
stored in the memory:
determine that the stored sequence of word components of the word has the
same number of word components as one of the set of valid words; and
control the display to modify the display of the valid word that has the same
number of word components as the stored sequence of word components of
the word.
In an embodiment, the processor is further arranged to:
in response an adding of a word component to the sequence of word components
stored in the memory:
determine that the stored sequence of word components of the word does not
have the same number of word components as one of the set of valid words;

and

10

15

20

25

30

35

- 24 -

control the display to modify the display of the valid word that does not have the
same number of word components as the stored sequence of word
components of the word.
In an embodiment, the processor is further arranged to:
in response a location of more than one valid words:
determine that each of the valid words comprises a sequence of one or more
common subsequent valid word components that (i) are common to all valid
words, and that (i) validly continue from the sequence of word components
stored in the memory; and
add the sequence of common subsequent valid word components to the
sequence of word components stored in the memory.
In a twenty-third aspect, the present invention provides a controller for assembling
text comprising a sequence of characters, the controller comprising:
a processor arranged to:
receive a user input from a keyboard device having one or more punctuation
keys respectively associated with one or more punctuation characters, the
received user input corresponding to one of the punctuation keys of the
keyboard device;
determine that the punctuation character associated with the punctuation key
corresponding to the user input corresponds to one of a set of terminating
punctuation characters; and
add to the text (i) the punctuation character associated with the punctuation key
correspénding to the user input and (ii) a space character.
In a twenty-fourth aspect, the present invention provides computer program code
which when executed implements the above method.
In a twenty-fifth aspect, the present invention provides a computer readable medium

comprising the above computer program code.
In a twenty-sixth aspect, the present invention provides a device comprising the

above controller.
In a twenty-seventh aspect, the present invention provides the above device in the

form of a smartphone.

Brief Description of Drawings
In order that the invention may be more clearly ascertained, embodiments will now

be described, by way of example, with reference to the accompanying drawings, in which:
Figure 1A is a schematic diagram of a smartphone according to an embodiment of

the invention;
Figure 1B is a screenshot of a portion of a touchscreen display of the smartphone;

10

15

20

25

30

35

- 25 -

Figure 2 is a block diagram of the functional components of the smartphone;
Figure 3 is a functional block diagram of the controller of the smartphone;
Figure 4 is a functional block diagram of the modules of the controller implementing

the KeyShading functionality;
Figure 5 is a functional block diagram of the modules of the controller implementing

the PreKeyCorrection functionality;
Figure 6 is a functional block diagram of the modules of the controller implementing

the ComposingMode functionality;
Figure 7 is a functional block diagram of the modules of the controller implementing

the LetterSubstitution functionality;

Figure 8 is a functional block diagram of the modules of the controller implementing
the PointofDeviation functionality;

Figure 9 is a flowchart illustrating the KeyShading functionality;

Figure 10 is an extension of the flowchart of figure 9, which additionally illustrates the

PostKeyCorrection functionality;
Figure 11 is an extension of the flowchart of figure 9, which additionally illustrates the

ComposingMode functionality;
Figure 12 is an extension of the flowchart of figure 9, which additionally illustrates the

PointofDeviation functionality;
Figure 13 is an extension of the flowchart of figure 9, which additionally illustrates the

ComputationLinguistics functionality;
Figure 14 is an extension of the flowchart of figure 9, which additionally illustrates the

PreKeyCorrection functionality and the PopUpPreview functionality;
Figure 15 is an extension of the flowchart of figure 9, which additionally illustrates

one of the AutomaticSystems functionalities;
Figure 16 is an extension of the flowchart of figure 9, which additionally illustrates

another one of the AutomaticSystems functionalities;
Figure 17 is an extension of the flowchart of figure 9, which additionally illustrates yet

another one of the AutomaticSystems functionalities;’
Figure 18A comprises a series of screenshots illustrating the KeyShading

functionality and the KeyPreviewPopup functionality;
Figure 18B comprises a further series of screenshots illustrating the KeyShading

functionality and the KeyPreviewPopup functionality;
Figure 18C comprises yet another series of screenshots illustrating the KeyShading

functionality and the KeyPreviewPopup functionality;
Figure 19A comprises a series of screenshots illustrating the KeyShading

functionality without the KeyPreviewPopup functionality;

10

15

20

25

30

35

- 26 -

Figure 19B comprises a series of screenshots illustrating the KeyShading

functionality with the PostKeyCorrection functionality;
Figure 19C comprises another series of screenshots illustrating the KeyShading

functionality with the PostKeyCorrection functionality;
Figure 19D comprises another series of screenshots illustrating the KeyShading

functionality with the PostKeyCorrection functionality;

Figure 19E comprises a further series of screenshots illustrating the KeyShading
functionality, the PostKeyCorrection functionality and the ComposingMode functionality;

Figure 19F comprises yet another series of screenshots illustrating the KeyShading
functionality and the PostKeyCorrection functionality;

Figure 20A comprises a series of screenshots illustrating the KeyShading
functionality, the PreKeyCorrection functionality, and the KeyPreviewPopup functionality;
Figure 20B comprises a series of screenshots illustrating the KeyShading
functionality, the PreKeyCorrection functionality, and the PostKeyCorrection functionality;
Figures 21A to 21C each comprises a series of screenshots illustrating the
KeyShading functionality, the PreKeyCorrection functionality, and the PostKeyCorrection

functionality;

Figures 22A to 221 each comprises a series of screenshots illustrating the
ContextualKey functionality, the ComposingMode functionality, the PreKeyCorrection
functionality, and the KeyShading functionality;

Figures 23A to 23C each comprises a series of screenshots illustrating the
ComposingMode functionality, the PreKeyCorrection functionality, and the KeyShading
functionality;

Figures 24A and 24B each comprises a series of screenshots illustrating the
KeyShading functionality and ComposingMode functionality;

Figure 25 illustrates an alternative full-screen mode of the ValidWordsPanel;

Figures 26A to 26G each comprises a series of screenshots illustrating the

AutomaticSystems functionality;
Figure 27 comprises a series of screenshots illustrating the EditingWords

functionality; _
Figures 28A and 28B each comprises a series of screenshots illustrating the

KeyPreviewPopup functionality;
Figure 29 comprises a series of screenshots illustrating the AutomaticSystems

functionality;
Figures 30A to 30G each comprises a series of screenshots illustrating the

AutomaticSystems functionality;
Figure 31A to 31B each comprises a series of screenshots illustrating the

KeyPreviewPopup functionality;

10

15

20

25

30

35

- 27 -

Figure 32 comprises a table illustrating the different formats used by the smartphone

when implementing the various functionalities;
Figures 33A to 33J each comprises screenshots illustrating an alternative ChordKeys

keyboard layout; »
Figures 34A to 34F each comprises screenshots illustrating an alternative

RadialKeys keyboard layout; and
Figures 35A to 35E each comprises a series of screenshots illustrating overriding key
presses when using a combination of PreKeyCorrection and PostKeyCorrection.

Detailed Description
Referring to the figures, there is illustrated an embodiment of the invention in the

form of a smartphone 10. It is envisaged that the invention need not be in the form of a
smartphone. For example, the invention may alternatively be in the form of a notebook
computer. The smartphone 10 is configured to implement a number of functionalities to
assist or enable a user to assemble or type a word. [t will be appreciated that each of these

funclionalities may be temporarily disabled by the user.

Figure 1A is a schematic diagram of the smartphone 10. The smartphone 10
comprises a display in the form of a touchscreen 20. The touchscreen 20 is adapted to
display a number of elements. One of the elements is a keyboard 280 comprising a plurality
of keys. Another one of the elements is a ComposingWordArea 210 for displaying a letter or
letters input by the user to assemble the word. Another one of the elements is a
ValidWordsPanel 230 for displaying one or more words located by the smartphone 10.

The touchscreen 20 serves as a user input device that is operable by the user to
assemble the word. In particular, the user can select one or more of the keys of the
keyboard 280 by touching or contacting the touchscreen 20 at a position or positions of the
touchscreen 20 corresponding to the key or keys of the keyboard 280. The smartphone 10
is configured to detect the following types of user inputs from the touchscreen 20:

o A “press” action analogous to the action of the user pressing and releasing a

key on a conventional computer keyboard
J A “double press” action where the user performs the “press” action twice in

quick succession
) A “hold” action where the user performs the “press” action but does not

release the key as quickly
. A “long hold" action where the user maintains the “hold” action for a longer

period of time
Figure 1B is a screenshot illustrating of the elements displayed by the touchscreen

20. The ValidWordsPanel 230 displays the words “Ten”, “Tea” “Text”, “Test” and “Tell", and
part of the word “Term”. These are some of the words located by the smartphone 10. The

10

15

20

25

30

35

-1 -

METHODS, CONTROLLERS AND DEVICES FOR ASSEMBLING AWORD ~~ ~ * ~

Field

The present invention relates to methods, controllers and devio€s for assembling a

word, and is of particular but by no means exclusive application in assembling a word using

a keyboard device displayed on a touchscreen.

Background

In smartphones, the user input device is typically a software-implemented virtual
keyboard displayed by.a touchscreen of the smartphone. To assemble or type a word, a
user touches the touchscreen at positions corresponding to the keys of the keyboard
associated with the letters of the word. The keys displayed by the touchscreen are normally
smaller than the keys of a typical computer keyboard. Thus, it is more common for a user to
type a wrong letter on a touchscreen of a smartphone than on a conventional keyboard.

Thers is a need for an improved or alternative technique for assembling a word using

a keyboard displayed on a touchscreen.

Summary of the Invention
In a first aspect, the present invention provides a method of assembling a word

comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating a set of one or more valid words from a
plurality of possible words stored in a words database, each valid word
comprising a sequence of one or more word components corresponding to the
sequence of word components stored in the memory;

the processor receiving a user input from a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard device;

a word component determiner of the processor determining that a user input word
component is a valid subsequent word component that validly continues from the
sequence of word components stored in the memory based on the set of valid

10

15

20

25

30

35

28

ComposingWordArea 210 displays the letters “Te" added by the user to assemble a word
the user intends to assemble. After all the letters of the word the user intends to assemble
are added, the added letters (which are displayed in the ComposingWordArea 210) can be
combined with other text (such as other word or words, punctuation etc) to form phrases and
sentences.

Herein, the term ComposingWord refers to the letter or letters added by the user and
displayed in the ComposingWordArea 210; the term ValidWords refers to the words located
by the smartphone 10 and displayed in the ValidWordsPanel 230; and the term
PrimaryValidWord refers to the first word of the ValidWords (which in figure 1B is “Ten").

The ValidWordsPanel 230 includes a contextual button 240. In figure 1B, the
contextual button 240 is displayed with a picture of a “Up Arrow” (that is, an upward pointing
arrow). Upon the user pressing the “Up Arrow” button 240, the touchscreen 20 displays
more or all of the ValidWords. The ValidWordsPanel 230 may include alternative or
additional buttons. For example, as described in further detail below in the section entitled
PointofDeviation, the ValidWordsPanel 230 may include an additional “Auto-Fill” button 242.

The display of the ValidWordsPanel 230 may be modified to display the ValidWords
located by the smartphone 10 but not displayed in the ValidWordsPanel 230. Specifically,
the user can scroll the display of the ValidWordsPanel 230 by touching a finger on the
ValidWordsPanel 230 and sliding the finger across the ValidWordsPanel 260 horizontally
along the length of the ValidWordsPanel 260 (that is, by a horizontal scrolling action) to
control the touchscreen 20 to display the other ValidWords located by the smartphone 10.

In figure 1B, the ValidWordsPanel 260 is displayed in a compact mode. The
ValidWordsPanel 260 can be modified to display in a full-screen mode instead of the
compact mode. In the full-screen mode, the user can scroll the display of the
ValidWordsPanel 230 by touching a finger on the ValidWordsPanel 260 and sliding a finger
across the ValidWordsPanel 260 vertically (that is, by a vertical scrolling action). The
ValidWordsPanel 260 may also be separated into different sections or windows that a user

can alternate between using Tabs.
The keyboard 280 is arranged in a QWERTY layout. The keyboard 280 includes 26

letter keys respectively associated with the 26 Latin alphabetic letters. The keyboard 280
also includes a number of punctuation and system keys.

In figure 1B, the letter keys “e”, “r", ‘", “a”, “s”, “I", “x”, “¢”, “n” and “m” appear to be
shaded 290. The shaded keys 290 are keys that are associated with letters determined by
the smartphone 10 to validly continue from the letters of the ComposingWord. The shading
of letter keys is one of the functionalities implemented by the smartphone 10, and is
described in gkeater detail below in the section entitled KeyShading.

Herein, the term ValidLetterKey refers to a letter key associated with a letter that
validly continues from the letters of the ComposingWord, and the term InvalidLetterKey

10

15

20

25

30

35

- 29 -

refers to a letter key associated with a letter that does not validly continue from the
ComposingWord. However, persons skilled in the art will appreciate that in an alternative
embodiment, ValidLetterKeys may include other types of keys such as number keys or

punctuation keys.
ln ﬁgure 1B, the letter keys uen, uyn' uun, “i", uon’ nan' usn, uC" and unn are dISp|ayed Wlth

an indicator tab 250. When a user holds a letter key having an indicator tab 250, a pop-up-
mini-keyboard is displayed on the touchscreen 20. This is another one of the functionalities
implemented by the smartphone 10. Further description of this functionality is provided
below in the section entitled KeyPreviewPopup.

Figure 2 is a block diagram showing the functional components of the smartphone
10. As indicated above, the smartphone 10 comprises a touchscreen 20. The touchscreen
20 is connected to a controller 30. The controller 30 comprises a processor 80 and a
memory 90. The processor 80 is arranged to execute program code stored in the memory
90 to implement a plurality of modules to control the smartphone 10. For example, the
processor 80 is arranged to execute a display controller to control the touchscreen 20 to
display the keyboard 280. Persons skilled in the art will appreciate that one or more of the
modules may be implemented in an alternative way. For example, one of the modules may
be implemented by a dedicated circuit.

The controller 30 also has an input and output interface 60 to enable the processor
80 to receive user inputs from the touchscreen 20, and to send commands to the

touchscreen 20 to control the touchscreen 20.
Figure 3 is a block diagram showing the modules implemented by the processor 80.

The modules include the display controller 890, a key determiner 820, a word locator 830, a
letter determiner 860, a word analyzer 850 and a letter adder 880. The letter determiner 860
includes a plurality of sub-modules including a key position determiner 863, a closest key
determiner 866 and an alternative letter locator 869. The word analyzer 850 includes a
plurality of sub-modules including a valid words set size determiner 853, a letter number
comparator 856, a valid subsequent letters determiner 858, and a common letter determiner
859.

As indicated above, the memory 90 stores program code that can be implemented by
the processor 80 to implement the modules. The memory 90 also includes a word database
920 comprising a plurality of preloaded words. It is envisaged that the words database 920
may additionally or alternatively comprise a set of user defined words that are input by the
user (for example, when a word is not present in the word database), a set of words derived
from a contacts database (that is, a database comprising a plurality of contacts) etc.
Persons skilled in the art will appreciate that the smartphone 10 may include more than one

word database 920.

10

15

20

25

30

35

- 30 -

The memory 90 also includes an alternative letter database 930 storing one or more
sets of alternative letters. When carrying out the word assembly operation, the memory S0
may also store an added letters set 960 comprising the letter or letters of the
ComposingWord, and a valid words set 890 comprising the ValidWords including the
PrimaryValidWord. Persons skilled in the art will appreciate that the added letters set 960

may consist only of one letter or comprise more than one letter.

KeyShading
As indicatad above, a number of functionalities are implemented by the smartphone

10 to assist a user to assemble a word. One of the functionalities is KeyShading.

Figure 4 is a block diagram of the modules implementing the KeyShading
functionality. The controller 30 is adapted to receive a user input from the touchscreen 20
via the input and output interface 60. The key determiner 820 of the processor 80 is
arranged to determine whether or not the user input received by the controller 30
corresponds to one of the key of the keyboard 280. The user input corresponds to the
position of the contact or touch detected by the touchscreen 20. The key determiner 820 is
also arranged to determine whether or not the input letter is the first letter of a word to be
assembled. If the input letter is the first letter of a word to be assembled, the key determiner
820 outputs the input letter to the letter adder 880. Upon receiving the input letter, the letter

adder 880 adds the input letter to the added letters set 960 stored in the memory 90.

After the input letter is added to the added letters set 960, the display controller 890
controls the touchscreen 20 to display the letter or letters of the added letters set 960 (which
in this case consist of just the added letter recently added to the added letters set 960) as
the ComposingWord in the ComposingWordArea 210. In addition, the word locator 830
locates a set of one or more ValidWords based on the added letters set 960. The word
locator 830 does this by locating a word or words comprising a first letter corresponding to
the added letter. The set of ValidWords are located from the possible words stored in the
word database 920 of the memory 90. The set of ValidWords are then output by the word
locator 830 to the memory 90 for storage in the valid words set 990.

After the set of ValidWords is located by the word locator 830, the valid subsequent
letter determiner 858 determines a valid subsequent letter for each one of the set of
ValidWords stored in the valid words set 990, each valid subsequent letter being the
subsequent letter of a ValidWord that validly continues from the first letter of the ValidWord.
Upon determining a valid subsequent letter for each one of the set of ValidWords, the valid
subsequent letter determiner 858 outputs each of the valid subsequent letter or letters to the
memory 90 for storage in a valid subsequent letters set 980.

In this case, the first ValidWord located by the word locator 830 is displayed in the
ValidWordsPanel 230 as the PrimaryValidWord. However, it is envisaged that the

10

15

20

25

30

35

- 31 -

PrimaryValidWord may not be the first ValidWord located by the word locator 830 but is
selected from the set of ValidWords based on the popularity of each of the ValidWords in an
alternative embodiment.

After the set of ValidWords is located by the word locator 830, the display controller
890 controls the touchscreen 20 to display in the ValidWordsPane!l 230 of the touchscreen
20 one or more of the words of the set of ValidWords stored in the valid words set 990. After
the valid subsequent letter or letters are determined by the valid subsequent letter
determiner 858, the display controller 890 controls the touchscreen 20 to modify the display
of the key or keys that are associated with the valid subsequent letter or letters as one or
more ValidLetterKeys. The display controller 890 controls the touchscreen 20 to modify the
display of each ValidLetterKey by controlling the touchscreen 20 to display a modified
“shaded” version of the key.

If the input letter is not the first letter of a word the user intends to assemble, upon
receiving the input letter from the key determiner 820, the letter determiner 860 determines
whether the input letter is a valid subsequent letter that validly continues from a letter or
letters stored in the added letters set 960 based on the set of ValidWords stored in the valid
words set 990 of the memory 990.

The set of ValidWords stored in the valid words set 990 is located by the word locator
830 based on all of the letter or letters stored in the added letters set 960. The word locator
830 locates the set of ValidWords by locating a word or words comprising an initial
sequence of letter or letters corresponding to all of the added letter or letters stored in the
added letters set 960. The ValidWords are located by the word locator 830 from the
possible words stored in the word database 920.

The letter determiner 860 determines whether the input letter is a valid subsequent
letter based on the set of ValidWords stored in the valid words set 990 of the memory 990,
by using letter or letters stored in the valid subsequent letters set 980.

The letter or letters stored in the valid subsequent letters set 980 are determined by
the valid subsequent letters determiner 858 based on the set of ValidWords stored in the
valid words sets 990 and the added letters stored in the added letters set 960. If the input
letter is the first letter of the word the user intends to assemble, each valid subsequent letter
determined by the valid subsequent letter determiner 858 is the second letter of a ValidWord
that validly continues from the first letter of the ValidWord. If the input letter is not the first
letter of the word the user intends to assemble, each valid subsequent letter determined by
the valid subsequent letter determiner 858 is the subsequent letter of a ValidWord that
validly continues from the letter of the ValidWord corresponding to the letter of the word to
be assembled. For example, if the input letter is the second letter of the word the user
intends to assemble, each valid subsequent letter determined by the valid subsequent letter
determiner 858 is the third letter of a ValidWord that validly continues from the second letter

10

15

20

25

30

35

- 32 -

of the ValidWord. Alternatively, if the input letter is the third letter of the word to be
assembled, each valid subsequent letter determined by the valid subsequent letter
determiner 858 is the fourth letter of a ValidWord that validly continues fram the third letter of
the ValidWord. Persons skilled in the art will appreciate that the position of the valid
subsequent letter within a ValidWord may not correspond to the position of the letter to be
added to the ComposingWord, for example, where the ValidWord includes a non-terminating
punctuation mark (such as a hyphen).

Upon a determination by letter determiner 860 that the input letter is a valid
subsequent letter, the letter adder 880 adds the input letter to the added letters set 960 of
the memory 90. The display controller 890 then controls the touchscreen 20 to display the
letters of the added letters set 960 (which include the added letter recently added to the
added letters set 960) as the ComposingWord in the ComposingWordArea 210.

The KeyShading functionality may be described with respect to the following example
where the user the user intends to assemble the word “cat”. Initially, before any letters are
input by the user, all of the keys of the keyboard 280 are ValidLetterKeys. After inputting the
letter “c”, words that start with the letter “c” are located. Then, the next letter of each located
word is used to define a set of valid subsequent letters. Based on the set of valid
subsequent letters, the display and/or the functionality of the keys of the keyboard 280 that
are ValidLetterKeys are modified: The display of ValidLetterKeys are shaded. Additionally,
InvalidLetterKey presses are ignored. It will be appreciated that in an alternative
embodiment, the modification may only involve modifying the display of valid keys without
ignoring InvalidLetterKey presses, or involve ignoring InvalidLetterKey presses without

modification to the display of the ValidLetterKeys.

PreKeyCorrection
Another one of the functionalities implemented by the smartphone 10 is

PreKeyCorrection. Figure 5 is a functional block diagram illustrating the PreKeyCorrection
functionality in greater detail.

Upon a determination by the letter determiner 860 that the input letter is not a valid
subsequent letter (that is, upon a determination that the user input does not correspond to
one of the ValidLetterKeys determined by the valid subsequent letter determiner 858), the
letter determiner 860 determines a ValidLetterKey in place of the key associated with the
input letter. More specifically, upon a determination by the letter determiner 860 that the
input letter is not a valid subsequent letter, a key position determiner 863 of the letter
determiner 860 determines the display position of each ValidLetterKey (that is, the display
position of each ValidLetterKey). Then, a closest key determiner 866 of the letter determiner
860 determines which one of the ValidLetterKeys is displayed closest to the key
corresponding to the input letter, and determines that the ValidLetterKey determined to be

10

15

20

25

30

35

- 33 -

displayed closest to the key corresponding to the user input is the key . Herein, the term
ClosestValidLetterKey refers to the key determined to be displayed closest to the key

corresponding to the user input.

PostKeyCorrection
Another one of the functionalities implemented by the smartphone 10 is

PostKeyCorrection where the word locator 830 additionally locates one or more ValidWords
in addition to the set of ValidWords.

The word locator 830 locates the one or more additional ValidWords based on a sub-
sequence of the added letters in the added letters set 960, by locating a word or words
comprising a sequence of letter or letters corresponding to a sub-sequence of added letters
stored in the added letters set 960 of the memory 90. For example, the word locator 830
may locate the additional ValidWords based on the subsequence “es” when the added
letters set 960 consists of the letters “Tes”. By locating words based on a subsequence of
the added letters stored in the added letters set 960 rather than on all the letters of the
added letters set 960, the smartphone 10 allows for the case where one or more of the
letters previously added by the user were incorrectly added (for example, in a scenario
where the user mistypes a key and adds the letter associated with the mistyped key). The
additional ValidWords are located by the word locator 830 from the words stored in the word
database 920. Any additional ValidWords located by the word locator 830 are stored in the

valid words set 990 of the memory 90.
The display controller 890 is arranged to control the touchscreen 20 to display the

additional ValidWords in the ComposingWordArea 210 together with the ValidWords located
via the KeyShading functionality. In addition, the display controller 890 is arranged to modify
the keys associated with subsequent valid letters that validly continues from the additional
ValidWords located by the word locator 830. Herein, the term AdditionalValidLetterKey
refers to a key associated with a subsequent valid letter that validly continues from one of
the additional ValidWords located by the word locator 830.

To enable the user to differentiate between ValidLetterKeys (that are located via the
KeyShading functionality) and AdditionalValidLetterKeys (that are additionally located via the
PostKeyCorrection functionality), the display of the AdditionalValidLetterKeys are modified
differently to the display of the ValidLetterKeys. Specifically, the display of
AdditionalValidLetterKeys are shaded in a darker colour to the shading colour of the display

of ValidLetterKeys located via the KeyShading functionality.

ComposingMode
Another one of the functionalities implemented by the smartphone 10 is

ComposingMode where the ComposingWord is compared to the PrimaryValidWord. In

10

15

20

25

30

35

34

operation, the colour of the PrimaryValidWord is modified to indicate that (i) the
PrimaryValidWord is the only word in the valid words set 990 (that is, based on the letters
added so far, there is only one ValidWord and no AdditionalValidWords, or there is only one
AdditionalValidWord and no ValidWords), (i) the ComposingWord has the same number of
letters as the PrimaryValidWord, or (iii) the ComposingWord does not have the same
number of letters as the PrimaryValidWord. The smartphone 10 is configured to exclude
non-letters in its calculation of the number of letters of a word. However, it is envisaged that
an alternative embodiment of the smartphone 10 may include non-letters in its calculation of
the number of letters of a word.

Figure 6 is a functional block diagram illustrating the ComposingMode functionality in
greater detail. The comparisons between the ComposingWord and the PrimaryValidWord
are performed by the word analyzer 850.

The letter number comparator 853 of the word analyzer 850 is arranged to determine
whether or not the ComposingWord has the same number of letters as the
PrimaryValidWord. The letter number comparator 853 does this by counting the letters of
the ComposingWord and the PrimaryValidWord and determining whether or not the two are
the same. If the letter number comparator 853 determines that the ComposingWord has the
same number of letters as the PrimaryValidWord, the display controller 890 modifies the
colour of the display of the PrimaryValidWord to blue. The colour modification is intended to
indicate to the user that the ComposingWord substantially corresponds to the
PrimaryValidWord, and that the ComposingWord can be automatically corrected (for

.example, to correct any inconsistencies due to capitalization or alternative letters) to

correspond to the PrimaryValidWord. Otherwise, if the letter number comparator 853
determines that the ComposingWord does not have the same number of letters as the
PrimaryValidWord, the display controller 890 modifies the colour of the display of the
ValidWord in the ValidWordsPanel 830 to green. This indicates the user that the
ComposingWord substantially corresponds to a partially assembled PrimaryValidWord.
Persons skilled in the art will appreciate that the colour modification may be expressed in a
different manner. For example, the smartphone 10 may be configured to aurally output a
particular sound or tone instead of visually modifying the colour of the display of the
PrimaryValidWord.

The valid words set size determiner 853 of the word analyzer 850 is arranged to
determine whether or not the set of ValidWords stored in the valid words set 990 consist of
only one ValidWord. If the word analyzer 850 determines that the set of ValidWords stored
in the valid words set 990 consist of only one ValidWord, the display controller 890 modifies
the colour of the display of the ValidWord in the ValidWordsPanel 830 to orange. The colour
modification indicates to the user that the PrimaryValidWord is the only ValidWord located
by the word locator 830, and that the ComposingWord can be automatically completed (and,

10

15

20

25

30

35

- 35 -

if there is any inconsistencies due to capitalization or alternative letters, corrected) to
correspond to the PrimaryValidWord. '

Herein, when the letter number comparator 853 determines that the ComposingWord
has the same number of letters as the PrimaryValidWord, the ComposingWord is referred to
as an AutoCorrectableWord (which is displayed in blue); when the letter number comparator
853 determines that the ComposingWord does not have the same number of letters as the
PrimaryValidWord, the ComposingWord is referred to as a PreValidWord (which is displayed
in green); and when valid words set size determiner 853 determines that the set of
ValidWords stored in the valid words set 990 consist of only one ValidWord, the
ComposingWord is referred to as an AutoCompletableWord (which is displayed in orange).

In this implementation of the ComposingMode functionality, the comparison to the
ComposingWord (and the colour modification resulting from the comparigon) is with respect
to the PrimaryValidWord. However, it is envisaged that the comparison (and the colour
modification resulting from the comparison) may apply to another one or more than one of
the words displayed in the ValidWordsPanel 230, or to more than one of the words displayed

in the ValidWordsPanel 230.

ContextualKey
Another one of the functionalitics is the ContextualKey functionality. In operation, the

smartphone 10 automatically corrects a ComposingWord to a AutoCorrectableWord, or
completes (and if there are correctable letters, corrects) a ComposingWord to a
AutoCompletableWord (that is, the smartphone 10 will automatically complete the word
assembly process) upon receiving a further user input corresponding to a key associated
with the space character or a punctuation character. For example, when the
ComposingWord is a AutoCorrectableWord, pressing the spacebar or a punctuation key
corrects the ComposingWord to the AutoCorrectableWord by correcting any inconsistencies
due to capitalization or alternative letters (for example, correcting the capitalization of a letter
or letter, and/or making any appropriate substitutions to replace certain letters with

uLon

alternative letters such as replacing “e” with “é”).
Also, the smartphone 10 is configured to automatically correct and/or complete the

ComposingWord to one of the ValidWords displayed in the ValidWordsPanel 230 upon the
user selecting the ValidWord from the ValidWordsPanel 230 (that is, by the user pressing

the ValidWord displayed in the ValidWordsPanel 230).

AutomaticSystems
Another set of functionalities implemented by the smartphone 10 is

AutomaticSystems.

10

15

20

25

30

35

- 36 -

One of the AutomaticSystems functionalities is
AutomaticNonTerminatingPunctuationinsertion. Upon a determination by the letter
determiner 860 that the input letter is not a valid subsequent word component, the letter
determiner 860 determines whether or not the input letter is a valid further subsequent letter
that validly continues from a punctuation mark that in turn continues from the
ComposingWord. This determination is based on the set of ValidWords stored in the valid
words set 920 and added letter or letters of the ComposingWord stored in the added letters
set 960. If the letter determiner 860 determines that the input letter is a valid further
subsequent letter that validly continues from a punctuation mark that in turn continues from
the ComposingWord, the letter adder 880 adds the punctuation mark before adding the valid

further subsequent letter.
In this implementation, the letter determiner 860 determines that the input letter is a

valid further subsequent letter based on comparisons involving all of the ValidWords stored
in the valid words set 920. In particular, the letter determiner 860 determines that the input
letter is a valid further subsequent letter only if the input letter validly continues from the
same punctuation mark when compared to all of the ValidWords stored in the valid words
set 920.

It is envisaged that in an alternative embodiment, a valid further subsequent letter
may be a letter that validly continues from a letter rather than a punctuation mark that in turn
continues from the added letter or letters stored in the added letters set 960. It is also
envisaged that the valid further subsequent letter may be a letter that validly continues from
more than one letter or punctuation mark in another alternative embodiment. .

Another one of the AutomaticSystems functionalities is AutomaticSpaceInsertioh.
Upon the processor 80 receiving a user input corresponding to one of the punctuation keys
of the keyboard 280, the processor 80 determines whether or not the punctuation mark
associated with the punctuation key corresponding to the user input corresponds to one of a
set of terminating punctuation mark such as a full stop, question mark, an exclamation mark
or a comma. Upon a determination by the processor 80 that the punctuation mark
associated with the punctuation key corresponding to the user input corresponds to one of a
set of terminating punctuation mark, the processor 80 adds a space character after adding
the punctuation mark associated with the punctuation key corresponding to the user input.

LetterSubstitution
Another one of the functionalities implemented by the smartphone 10 is

LetterSubstitution. Figure 7 is a functional block diagram illustrating the LetterSubstitution
functionality in greater detail. Upon a determination by the letter determiner 860 that the
input letter is not a valid subsequent letter, the alternative letter locator 869 of the letter

determiner 860 locates one or more alternative letters from the alternative letter database

10

15

20

25

30

35

- 37 -

930 of the memory 90 based on the input letter. Upon locating the alternative letters, the
letter determiner 860 determines whether or not each one of the alternative letters is a valid
subsequent letter continuing from the sequence of letters stored in the memory based on the
set of ValidWords of the valid words set 990 stored in the memory 90. Upon a determination
by the letter determiner 860 that one of the alternative letters is a valid subsequent letter, the
letter determiner 860 outputs the alternative letter to the letter adder 880.

KeyPreviewPopup
Another one of the functionalities implemented by the smartphone 10 is

KeyPreviewPopup. In operation, the display controller 890 controls the touchscreen 20 to
display a popup display of a character before adding the character is added to the added
letters sets 960. The popup display may be a letter corresponding ValidLetterKey, a letter
corresponding to an InvalidLetterKey, or a punctuation mark corresponding to a punctuation
key. Also, the display controller 890 is additionally configured to modify the popup
display—for example, by modifying the colour of the letter in the popup display—to indicate
that the letter is a valid subsequent letter, that there is only one ValidWord in the valid words
set 990, or that the ComposingWord is a AutoCorrectableWord or a AutoCompletableWord.

PopUpMiniKeyboard
If the key is a key displayed with an indicator tab 250, the display controller 890

displays a popup mini keyboard comprising one or more alternative letters associated with
the input letter upon the user holding the key. The alternative letters are located from the
alternative letter database 930 by the letter determiner 860 via the LetterSubstition

functionality.

PointofDeviation
Another one of the functionalities implemented by the smartphone 10 is

PointofDeviation. Figure 8 is a functional block diagram illustrating the PointofDeviation
functionality in greater detail.

The common letter determiner 859 of the word analyzer 850 is arranged to determine
whether or not each ValidWord of the valid words set 990 comprises a sequence of one or
more common subsequent valid letters that (i) are common to all the ValidWords, and (ii)
validly continues from the ComposingWord.

In this implementation, upon a determination by the common letter determiner 859
that each ValidWord of the valid words set 990 comprises a sequence of one or more
common subsequent valid letters that (i) are common to all the ValidWords, and (ii) validly
continues from the ComposingWord, the display controller 890 prompt the user about

whether or not to add the common letters. Specifically, the display controller 890 controls

10

15

20

25

30

35

words located by the word locator, the user input word component being the
possible word component associated with the key of the keyboard device
corresponding to the user input received by the processor; and

a word component adder of the processor adding the user input word component to

the stored sequence of word components of the word.

In an embodiment, the method further comprises:

a display controller of the processor controlling a display to display the keys of the
keyboard device; and

in response to the word locator locating the set of valid words:

the word component determiner determining a set of one or more valid subsequent

word components based on the set of valid words located by the word locator,
wherein each valid subsequent word component validly continues from the
sequence of word components stored in the memory; and

the display controller controlling the display to modify the display of the key

associated with each valid subsequent word component.

In an embodiment, the method further comprises the display controlicr controlling the
display to display one or more, or all, of the valid words located by the word locator, in
response to the word locator locating the set of valid words.

In an embodiment, each word component is a Latin alphabetic letter.

In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.

In an embodiment, the keyboard device is a software-implemented keyboard
displayed on a display.

In an embodiment, the method further comprises:

in response to the processor receiving the user input, the word locator locating a set

of one or more additional valid words from the plurality of possible words stored
in the words database, each additional valid word comprises a sequence of one
or more word components corresponding to a subset of the sequence of word
components stored in the memory.

In an embodiment, the method further comprises the display controller controlling the
display to display one or more, or all, of the additional valid words located by the word
locator.

In an embodiment, the method further comprises:

in response to the word locator locating the set of valid words:

a valid word set size determiner of the processor determining that the set of valid

words consists of only one valid word; and

10

15

20

25

30

35

- 38 -

the touchscreen 20 to display a contextual “auto-fill" button 242 in the ValidWordsPanel 230
of the touchscreen 20 (see for example, figures 20 and 29) to enable the user to add the

common letter or letters if the user wishes to do so.

ComputationLinguistics
Another one of the functionalities implemented by the smartphone 10 is

ComputationLinguistics where each of the possible words stored in the words database 920
is categorized into one a plurality of word categories such as (verbs, nouns or adjectives)
and the word locator 830 is configured to analyze the computational linguistics of the
sentence of which the ComposingWord is a part of. Specifically, in addition to the letter or
letters of the ComposingWord, the word locator 830 locates the set of ValidWords from the
possible words stored in the words database 920 based on the word category of a previous
word. For instance, when a user types “The cat is”, the next word that is going to be typed is
most likely going to be a noun and so the word locator 830 can be optimized to locate only
ValidWords that are nouns.

Advantageously, ComputationLinguistics optimizes the smartphone 10 to take in
account the part of speech of the next or current word being typed (for example, whether the
next or current word is a verb or noun), by reducing the number of words of the word

database 920 the word locator 830 have to consider.

EditingWords
Another one of the functionalities implemented by the smartphone 10 is EditingWords

where the processor 80 is configured to enable a user to modify a part of the
ComposingWord separated from the other parts of the ComposingWord by a cursor. Herein,
the term WordStem refers to the letter or letters of the ComposingWord before the Cursor;
and the term WordTail refers to the letter or letters of the ComposingWord after the cursor.
(That is, the WordStem and the WordTail combine to form the ComposingWord).

In operation, the word locator 830 locates the set of ValidWords using only the
WordStem instead of the entire ComposingWord. (That is, the letters in the WordTail are
not used to locate ValidWords). Thus, the other functionalities (such as the KeyShading
functionality) operates at the point of the cursor, and represent the next possible letter for the

WordStem (that is, in relation to the cursor position within the ComposingWord).

Additional functionalities
Functionalities in addition to those described above may be implemented by the

smartphone 10. For example, with respect to the KeyPreviewPopup functionality, the
display controller 890 may additionally be configured to display to the user a pop-up preview

10

15

20

25

30

35

—~ 39 -

of a ClosestValidLetterKey instead of the letter associated with the key corresponding to the
user input.

It is envisaged that in an alternative embodiment, one or more of the above
mentioned functionalities may not be implemented. For example, in an alternative
embodiment, the smartphone 10 may not be configured to implement the KeyPreviewPopup
functionality. Also, it is envisaged that in an alternative embodiment, one or more of the
modules of the processor 80 or the components of the memory 90 may not be implemented.
For example, in an alternative embodiment, the memory 90 may not include an alternative
letter database 930. Also, the modules of the processor 80 may be implemented in a
manner that is described above. For example, rather than outputting the input letter to either
the letter determiner 860 or the letter adder 880, the key determiner 820 may output merely
a flag or a command to indicate to the letter determiner 860 or the letter adder 880 that the
user input received by the processor 80 corresponds to a key associated with a letter.

It is envisaged that the smartphone 10 may alternatively be configured to assemble
words than are not based on Latin alphabetic letters. For example, the device may be
configured to assemble Chinese characters instead of or in addition to English words. Also,
the smartphone 10 is configured to assemble words according to the Standard English word
entry convention where the letters forming a word are input sequentially from the first letter
of the word to the last letter of the word. However, persons skilled in the art will appreciate
that the smartphone 10 may alternatively or additionally be configured to assemble words
according to another word entry convention. For example, in an alternative embodiment
where the smartphone is configured to assemble Chinese characters, the smartphone may
be configured to assemble words according to different character stroke entry conventions
where the character stroke of characters are entered in different sequences.

It is envisaged that the keyboard 280 in an alternative embodiment may be a physical
keyboard instead of a virtual keyboard implemented by a touchscreen. For example, a
physical keyboard comprising LEDs arranged to highlight each key of the keyboard may be
used to implement the KeyShading functionality and/or a physical keyboard comprising a
mini-display arranged to display alternative letters for each key of the keyboard may be used
to implement the PopupPreview functionality. Also, persons skilled in the art will appreciate
that a user may input a user input via different ways other than directly pressing a key of the
keyboard. For example, the user input may be input alternatively via multi-touch gestures on
a touchscreen, physical gestures (such as tilting a smartphone etc), voice inputs. Also,
alternative or additional user input devices (such as a digitiser pen or stylus, a mouse,
and/or a game controller comprising one or more buttons, single or dual directional control
pads or thumbsticks) may be used in other embodiments. The above functionalities may be
implemented differently in embodiments where there is an additional or alternative user input

device. For example, in an embodiment where a mouse is used as a user input device, the

10

15

20

25

30

35

- 40 -

pop up previews may be displayed when the mouse cursor “hovers” above the display of a
key of keyboard device. In another example, in an embodiment where a touch sensitive
keyboard is used, a pop up preview may be displayed when a user touches a key of the
keyboard without pressing the key.

Also, it is envisaged that the keyboard in an alternative embodiment may be
displayed in a different layout to the QWERTY layout. For example, it is envisaged that the
keyboard may be displayed in a “Chord” layout or a “Radial” layout. Persons skilled in the
art will also appreciate that there are a plurality of QWERTY layout variants and that the
keyboard layout may be one of the plurality of QWERTY layout variants. Persons skilled in
the art will also appreciate that the keyboard may be in a layout that is designed for a non-
English language, and that the keys of the keyboard may not correspond to English
alphabet. For example, the keys of the keyboard may correspond to a character stroke.

Figure 9 is a flowchart illustrating the KeyShading functionality for assisting a user to
assemble a word. At step 110, the display controller 890 implemented by the processor 80
of the controller 30 of the smartphone 10 controls the touchscreen 20 of the smartphone 10
to display the keys of the keyboard 280 to the user of the smartphone 10. At step 120, the
processor 80 receives, from the user, a user input to assemble a word, the user input
corresponding to a key associated with a letter after the user types the letter using the
smartphone 10 by pressing the key. If the associated letter is the first letter after a
terminating character (for example, a space or a terminating punctuation mark such as a
em-dash) received by the processor 80, the letter adder 880 implemented by the processor
80 adds the associated letter to the added letters set 960 stored in the memory 90 of the
controller 30. That is, the associated letter is added to the added letters set 960 if the letter
is the first letter of the word to be assembled. Otherwise, if the associated letter is a
subsequent letter of the word to be assembled, at step 130, the letter determiner 860
implemented by the processor 80 determines whether the associated letter is a valid
subsequent letter that validly continues from the letter or letters stored in the added letters
set 960. If the letter determiner 860 determines that the associated letter is a valid
subsequent letter, the letter added 880 adds the associated letter to the added letters set
960. At step 160, the word locator 830 implemented by the processor 80 locates a set of
ValidWords—that is, words that comprises a sequence of letters corresponding to the
sequence of letters added to the added letters set 960—from the words of the word
database 920 stored in the memory 90, and stores the set of ValidWords in the valid words
set 990 of the memory 90. At step 190, the display controller 890 controls the touchscreen
20 to display one or more of the located ValidWords in the ValidWordsPanel 230, and
modifies the respective keys associated with valid subsequent letters determined by the
valid subsequent letters determiner 858 of the word analyzer 850 implemented by the
processor 80. The smartphone 10 then awaits the next user input by the user.

10

15

20

25

30

35

- 41 -

Figure 10 is an extension of the flowchart of figure 9, which additionally illustrates the
PostKeyCorrection functionality. After the associated letter is added to the added letters set
960 at step 150, at step 162, the word locator 830 additionally locates a set of ValidWords
that comprises a sequence of letters corresponding to a subset of the sequence of letters
added to the added letters set 960 from the words of the word database 920, and stores the
set of ValidWords in the valid words set 990 of the memory 80. That is, in addition to the
ValidWords comprising a sequence of letters corresponding to the sequence of added
letters, the word locator 830 locates ValidWords that comprise only sequence of letters
corresponding to a subset of the sequence of added letters. By locating such additional
ValidWords, the smartphone 10 assumes that one or more of the added letters are
incorrectly added. At step 192, the display controller 890 controls the touchscreen 20 to
display one or more of the located ValidWords in the ValidWordsPanel 230, and modifies the
respective keys associated with alternative valid subsequent letters determined by the valid
subsequent letters determiner 858 to be letters of the AdditionalValidWords that validly
continues from the added letters. The smartphone 10 then awaits the next user input by the
user.

Figure 11 is an extension of the flowchart of figure 9, which additionally illustrates the
ComposingMode functionality. After the set of ValidWords are located by the word locator
830 at step 160, at step 173, the valid word set size determiner 853 of the word analyzer
850 determines whether or not the set of ValidWords stored in the valid words set 990
consists of only one ValidWord. At step 194, if the valid word set size determiner 853
determines that the valid words set 990 consists of only one ValidWord, the display
controller 890 controls the touchscreen 20 to apply a first modification to the display of the
ValidWord. Specifically, the display controller 890 controls the touchscreen 20 to modify the
colour of the ValidWord to orange to indicate that the ComposingWord is a
AutoCompletableWord. At step 176, if the valid word set size determiner 853 determines
that the valid words set 990 consists of not only one ValidWord, the letter number
comparator 856 of the word analyzer 850 determines whether or not the ComposingWord
(that is, the letters stored in the added letters set 960) has the same number of letters as the

PrimaryValidWord. At step 196, if the letter number comparator 856 determines that the

ComposingWord has the same number of letters as the PrimaryValidWord, the display
controller 890 controls the touchscreen 20 to apply a second modification to the display of
the ValidWord. Specifically, the display controller 890 controls the touchscreen 20 to modify
the colour of the ValidWord to blue to indicate that the ComposingWord is a
AutoCorrectableWord. At step 198, if the letter number comparator 856 determines that the
ComposingWord does not have the same number of letters as the PrimaryValidWord, the
display controller 890 controls the touchscreen 20 to apply a third modification to the display

of the ValidWord. Specifically, the display controller 890 controls the touchscreen 20 to

10

15

20

25

30

35

- 42 -

modify the colour of the ValidWord to green to indicate that the ComposingWord is a
PreValidWord. The smartphone 10 then awaits the next user input by the user.

Figure 12 is an extension of the flowchart of figure 9, which additianally illustrates the
PointofDeviation functionality. After the set of ValidWords are located by the word locator
830 at step 160, at step 183, the common letter determiner 859 of the word analyzer 850
determines whether or not each one of the located ValidWords comprises that (i) are
common to all of the located ValidWords and (i) validly continues from the ComposingWord.
If the common letter determiner 859 determines that each one of the located ValidWords
comprises a sequence of letters that (i) are common to all of the located ValidWords and (ii)
validly continues from the ComposingWord, the letter adder 880 adds the sequence of
letters to the ComposingWord. The smartphone 10 then awaits the next user input by the

user.
Figure 13 is an extension of the flowchart of figure 9, which additionally illustrates the

ComputationLinguistics functionality. After the associated letter is added to the added letters
set 960 at step 150, at step 163, the word locator 830 determines whether or not the
previous word assembled by the user is a noun. The word locator 830 does this by locating
the previous assembled from the words stored in the word database 920, and determining
whether or not the located word is a noun. The word locator 830 makes the determination
by checking the word category or class of the located word. If the word locator 830
determines that the previous word assembled by the user is a noun, the word locator 830
locates only ValidWords that are non-nouns. Specifically, the word locator 830 locates a set
of ValidWords that consist of only ValidWords that are non-nouns and that validly continues
from the sequence of Iettérs added to the added letters set 960. [f the word locator 830
determines that the previous word assembled by the user is not a noun, at step 168, the
word locator 830 locates any ValidWords that validly continues from the sequence of letters
stored in the added letters set 960. At step 190, the display controller 890 controls the
touchscreen 20 to display one or more of the located ValidWords in the ValidWordsPanel
230, and modifies the respective keys associated with valid subsequent letters determined
by the valid subsequent letters determiner 858 of the word analyzer 850 implemented by the
processor 80. The smartphone 10 then awaits the next user input by the user. In this
embodiment, the word locator 830 determines only whether or not a previous word is a
noun. However, it is envisaged that the word locator 830 may determine whether or not a
word or words other the previous word are nouns in an alternative embodiment. Also, it is
envisaged that the word locator 830 may locate ValidWords based on a determination other
than whether or not a previous word or words is a noun. For example, the word locator 830
may locate only ValidWords that are nouns upon a determination that the previous word is

an adjective.

10

15

20

25

30

35

- 43 -

Figure 14 is an extension of the flowchart of figure 9, which additionally illustrates the
PreKeyCorrection functionality and the PopUpPreview functionality. After the letter
determiner 860 determines that the associated letter (that is, the letter associated with the
key corresponding to the user input) is not a valid subsequent letter, at step 131, the key
position determiner 863 of the letter determiner 860 determines the display position of the
key associated with each one of the valid subsequent letters determined by the letter
determiner 860, and the closest key determiner 866 of the letter determiner 860 determines
one of the keys associated with the valid subsequent letters as a valid subsequent letter key
that is displayed closest to the key corresponding to the user input. At step 133, the display
controller 890 controls the touchscreen 20 to display a pop up preview of the letter
associated with the valid subsequent letter key that is displayed closest to the key
corresponding to the user input. At step 151, the letter added 880 adds the previewed letter
to the added letters set 960. The word locator 160 then locates a new set of ValidWords
based on the sequence of letters of the added letters set 960 (which now includes the
previewed letter).

Figure 15 is an extension of the flowchart of figure 9, which additionally illustrates
one of the AutomaticSystems functionalities. After the letter determiner 860 determines that
the associated letter is not a valid subsequent letter, at step 135, the letter determiner 860
determines, based on the ValidWords located by the word locator 830, whether or not the
associated letter is a valid further subsequent letter that continues from one or more
intermediate characters (for example, a non-alphabetic character such as a non-terminating
punctuation mark) which in turn continues from the sequence of letters of the added letters
set 960. If the letter determiner 860 determines that the associated letter is a valid further
subsequent letter, at step 153, the letter determiner 860 adds the one or more intermediate
characters followed by the associated letter to the added letters set 960. The word locator
160 then locates a new set of ValidWords based on the sequence of letters of the added
letters set 960 (which now includes the one or more intermediate characters followed by the
associated letter).

Figure 16 is an extension of the flowchart of figure 9, which additionally illustrates
another one of the AutomaticSystems functionalities. After the letter determiner 860
determines that the associated letter is not a valid subsequent letter, at step 138, the
alternative letter locator 869 of the letter determiner 860 locates alternative letter or letters
that are associated with the associated letter from the plurality of alternative letters of the
alternative letter database 930 stored in the memory 90. If no alternative letter or letters are
located by the alternative letter locator 869, the smartphone 10 awaits the next user input by
the user. Otherwise, if an alternative letter or alternative letters are located by the alternative
letter locator 869, at step 139, the letter determiner 860 determines whether one of the
alternative letters correspond to a valid subsequent letter that validly continues from the

10

15

20

25

30

35

- 44 -

sequence of letters of the added letters set 960. If the letter determiner 860 determines that
one of the alternative letters correspond to a valid subsequent letter, the letter adder 880
adds the alternative letter to the added letters set 960 at step 158. The word locator 160
then locates a new set of ValidWords based on the sequence of letters of the added letters
set 960 (which now includes the alternative letter).

Figure 17 is an extension of the flowchart of figure 9, which additionally illustrates yet
another one of the AutomaticSystems functionalities. After the keys of the keyboard 280 are
displayed on the touchscreen 20 to the user, at step 123, the processor 80 receives, from
the user, a user input to assemble text, the user input corresponding to a key associated
with a punctuation mark. At step 173, the processor 80 adds the associated punctuation
mark to the text to be assembled by the user stored in the memory 90. At step 175, the
processor 80 determines whether or not the associated punctuation mark is a terminating
punctuating mark. If the processor 80 determines that the associated punctuation mark is a
terminating punctuating mark, the processor 178 adds a space character to the text to be

assembled by the user stored in the memory 90.

Examples
Figure 18A to 18C comprise a series of screenshots illustrating the KeyShading

functionality. The screenshots also illustrate some aspects of the KeyPreviewPopup
functionality. This series of screen shots illustrates the process of assembling a word using
the smartphone 10.

Referring to figure 18A, the shaded keys (that is, the keys that are lightly shaded with
a blue background via KeyShading) are valid subsequent letters (that is, keys corresponding
to letters which represent the next letter in one or more of the ValidWords). For example,
three of the ValidWords are “To", “T-Shirt”, “The” and “Too". After the letter “T" is input by
the user, the word “To” and “Too” both share “0” as the next valid letter, hence the letter “o”
is shaded. By the same process, the key/letter “h” is valid as it validly continues from “T" in
the word “The”. In the example, this process repeats itself for each letter entered, for each

distinct word.

The ValidWord, “T-shirt” represents a deviation of the process, where the hyphen
(non-alphabetic) character, is skipped, and the next alphabetic letter, in this example “s’, is
considered the next valid subsequent letter (for the given word). As indicated in the figure,
the letter “s” is displayed as a valid subsequent letter.

As indicated above, the screenshots of figure 18A also illustrates the
KeyPreviewPopup functionality. For example, in the figure, a pop up preview of a letter is
displayed on the touchscreen 20 when a user presses the touchscreen 20 at the position of
the touchscreen 20 corresponding to the key associated with the letter. The key is displayed

in white colour to indicate that the key corresponds to a valid subsequent letter.

10

15

20

25

30

35

- 45 -

Referring to figure 18B, the pop up previews of the letters “n” and “g” are in orange

colour to indicate that there is only one ValidWord in the valid words set 990 and that the
word to be assembled can be automatically completed. The figure also shows an “Add”
button 241. Pressing this “Add” button adds the ComposingWord “Testi" as a new word to
the memory.

Referring to figure 18C, the final three screenshots illustrate that no more valid
subsequent letters can be added to the currently composing word. The last screenshot
illustrates that pressing the “g” key does not result in a key press being registered, and the
pop up preview of the “g” key is in red to indicate that the key/letter is invalid. Also, in the
figure, “Testingg” is displayed in the ValidWordsPanel 230 to indicate the form of the
ComposingWord had the “g” key been registered.

In the implementation illustrated in figures 18A to 18C, pressing the spacebar
commits the letters assembled (that is, complete the assembly process for the current word),
or the user can hold an InvalidLetterKey to add the letter associated with the
InvalidLetterKey (which is a letter that is not a valid subsequent letter).

Figures 19A to 19E comprise series of screenshots illustrating the PostKeyCorrection
functionality. The screenshots also additionally illustrate aspects of the KeyShading
functionality and the ComposingMode functionality.

In figure 19A, the screenshots illustrate ValidWords that are located based on letters
corresponding to keys corresponding to user inputs (that is, based on the actual keys
pressed by the user), and valid subsequent letters that are determined only from such
ValidWords. This represents an optimised implementation of the KeyShading functionality
where only ValidWords can be typed and words are assembled using actual key strokes.

Figure 19B comprises a series of screenshots illustrating the PostKeyCorrection
feature where additional ValidWords are located based on a subsequence of the added
letters (that is, assuming that the added letters contain mistyped letters) in addition to
ValidWords located based on the sequence of the added letters. In this implementation, the
first two letters of the word currently being composed are used to locate the additional
ValidWords based on the proximity of the actual key pressed. Herein, the term QuickFix
refers to the implementation of PostKeyCorrection where the first two letters of the word
currently being composed are used to locate the additional ValidWords based on the
proximity of the actual key pressed. Permutations of keys that are identified as invalid are
not used to locate ValidWords. These differences can be seen in the different ValidWord
expressed in the previous sequence. For example in the last image of the sequence, we
see the word “Resting” is displayed as a ValidWord.

In this implementation, there is an increased amount of valid subsequent letters at

each step due to the extra permutations and an increase in the number of ValidWords
located. In an alternative implementation, AdditionalValidLetterKeys may be shaded darker

10

15

20

25

30

35

- 46 -

(not illustrated), but retain the default functionality of a key corresponding to a valid

subsequent letter. Also, the priority of a key may be weighted lower.
In the example illustrated in figure 19B, in the event that there is only one ValidWord

arising from the letters added by the user but multiple AdditionalValidWords are located
because of the PostKeyCorrection functionality, only the ValidWords located based on the
letters added by the user are used in the ComposingMode functionality (as shown in Figure
19B). When no ValidWords arising from the letters added by the user are added, the
AdditionalValidWords are used.

Figure 19C illustrates an implementation of the PostKeyCorrection feature where
each letter of the ComposingWord is considered a potential mistyped key. Herein, the term
MashMode refers to this implementation. As with the previous implementation in figure 19B,
ValidWords are located based on the proximity of keys for each letter of the word to be
assembled. In this example the requirement for accurately typed keys/letters is minimised,
and the variation in ValidWords is maximised.

Figure 19D illustrates another example where the user has pressed the lower portion
of the key “t” key. Based on the location of the “t” key the user pressed and the proximity of
the “t" to the “F” and “G” keys, AdditionalValidWords—such as “Ft’ and “Go"—are located.

Referring to figure 19E, the input letters return only one ValidWord located via the
QuickFix functionality. In this example, the ComposingMode is triggered, and the colour of
the ValidWord indicates that the ValidWord may be automatically corrected to correspond to
the PrimaryValidWord (that is, an AutoCorrectableWord). Pressing the spacebar, as
indicated in the fourth image, automatically corrects the letters displayed in the
ComposingWordArea 210 to correspond to the AutoCorrectableWord. In this example, more
steps are required to have the desired word presented as the first ValidWord displayed in
the ValidWordsPanel 230 of the touchscreen (that is, the PrimaryValidWord). In turn, the
requirement for accurately typed keys/letters is minimised, and the variation in ValidWords is
maximised.

Referring to figure 19F, the desired word is “Testing”, but every letter of the word is
typed inaccurately. This example illustrates the process of locating ValidWords, based on
proximity of valid keys/letters. In this example, the letters associated with the keys
corresponding to the user inputs received by the smartphone 10 are “Rwarung”. However,
by considering the proximity of other keys, ValidWords including the desired ValidWord
“Testing” are located. In this example, the tolerance is set to approximately 1.8 key widths.
The tolerance is set based on the dimensions of the keys of the keyboard, the dimension of
a pressing finger, and the dimensions of areas separating the keys of the keyboard. Words
previously suggested (for a ComposingWord) may be re-evaluated with a further relaxed
tolerance. In turn, words with sufficient popularity have a higher tolerance for key press

deviation.

10

15

20

25

30

35

._47._

QuickFix and MashMode incur an additional computation cost on the smartphone.
Consequentially, it may be beyond the performance envelope of some devices to, in real-
time, to implement these functionalities. It is envisaged that these modes can be restricted
to the user, to ensure the device remains responsive. For instance, when the user types
quickly enough to overwhelm the device, the location of ValidWords and the determination of
valid subsequent letters, can be aborted or suspended until the user has paused or slowed
typing, allowing sufficient time to locate ValidWords. Where the mode is disabled by the
user, the action can still be initiated by user interaction via the “Up Arrow” button 240, as an
aspect of the full-screen ValidWordsPanel. The interface is updated as resuits are found.
The user can be notified by System Notifications, containing further details such as
percentage complete, and search parameters incorporating Spell Check algorithms. This
notification process may be triggered only for very time consuming tasks.

Figures 20A and 20B comprise a series of screenshots illustrating the
PreKeyCorrection functionality. Like the other figures, the screenshots also illustrate
aspects of some of the other functionalities. Referring to figure 20A, a valid subsequent
letter is displayed in a pop up preview when a user touches the touchscreen 20 at a position
corresponding to a key associated with a letter that is not a valid subsequent letter (that is,
an InvalidLetterKey) if the key associated with the valid subsequent letter is within a
specified proximity of the key corresponding to the position at which the user touches. This
provides the user an opportunity to substitute a mistyped key for the correct key. In this
example, the threshold for determining a substitute for a mistype key is derived based on the
dimensions of the keyboard, keys of the keyboard, the dimension of a pressing finger, the
dimensions of areas separating the keys of the keyboard and the expectation of single dual
thumb or all finger usage, accordingly. However, the following factors can additionally or
alternatively be taken in account:

. Whether the key is associated with a valid subsequent letter determined from

a ValidWord located based on all of the letters associated with the keys

corresponding to user inputs, or if the key is associated with a valid subsequent letter

determined from a ValidWord located based on only some of the letters associated

with the keys corresponding to user inputs.

. The general popularity of the ValidWord from which the key is determined
(that is, it can be dependent on how common the ValidWord is).
) A valid key can also be substituted for a letter determined from a ValidWord

with greater popularity, where the inaccuracy of the initial valid key is outweighed by
the popularity and proximity of the more popular valid word. For example, pressing
near the edge of a valid key, where an adjacent key has a sufficiently greater

popularity and weighting.

10

15

20

25

30

35

the display controller controlling the display 1o modify the display of the valid

word.
In an embodiment, the method further comprises:
in response to the word locator locating the set of additional valid words:

a valid word set size determiner determining that the set of additional valid words
consists of only one additional valid word, the display controller controlling the
display to modify the display of the additional valid word.

In an embodiment, the method further comprises:
in response to the word component adder adding a word component to the sequence
of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word has the same number of word
components as one of the set of valid words; and

the display controller controlling the display to modify the display of the valid
word that has the same number of word components as the stored sequence
of word components of the word.

In an embodiment, the method further comprises:
in response to the word component adder adding a word component to the sequence
of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word does not have the same number
of word components as one of the set of valid words; and

the display controlier controlling the display to modify the display of the valid
word that does not have the same number of word components as the stored
sequence of word components of the word.

In an embodiment, the method further comprises:
in response to the word locator locating the set of more than one valid words:

a common word component determiner of the processor determining that each
of the valid words comprises a sequence of one or more common subsequent
valid word components that (i) are common to all valid words, and that (ii)
validly continue from the sequence of word components stored in the
memory; and

the character adder adding the sequence of common subsequent valid word
components to the sequence of word components stored in the memory.

In an embodiment, each of the possible words stored in the words database is
categorized into one of a plurality of word categories, and the set of valid words located by
the word locator is based on the word category of a previous assembled word.

10

15

20

25

30

35

- 48 -

The process of previewing and selecting a valid subsequent letters that is display ed
closest to the key corresponding to the input letter (that is, the ClosestValidLetterKey) can
be overridden by holding an InvalidLetterKey. The pop up preview of the
ClosestValidletterKey is then replaced with the, now selectable, invalid letter. This allows

the user to type words that are not in the dictionary.
When the user releases the key, the previously un-selectable invalid letter is added

to the word currently being composed. In this example, the keyboard also subsequently
enters a mode where all keys are valid. Herein, the term FreeType refers to this mode. In
this example, FreeType mode is indicated by the darkest grey background and the green
letter of the keys. FreeType mode allows for any word to be entered (and disables the
KeyShading functionality).

Referring to figure 20A, the letters added or assembled so far are displayed in the
ValidWordsPanel 230 in black. The user may add the word to the word database by
pressing the contextual “Add” button (a dialog box will display to the user to select one of the
words in the ValidWordsPanel 230 if the user presses the “Add” button) or holding either
invalid words displayed on the ValidWordsPanel 230. If a word previously not found in the
word database is assembled more than a predefined amount, the word is automatically
added to the word database, with preference to an invalid word chosen from the

ValidWordsPanel 230.
The screenshots of figure 20A illustrate the process of overriding InvalidLetterKey

presses and substituting the ClosestValidletterKey. Specifically, upon the user pressing the
InvalidLetterKey “u”, and the key/letter “i” is determined as the ClosestValidLetterKey and is
displayed in the pop up preview instead of key/letter “u”. When the user release the

key/letter “u”, the “i” letter is committed.
Note that in the pop up preview, the red letter 300 indicates that the preview is.a

preview of a ClosestValidLetterKey rather than the key actually pressed by the user.
Figure 20B comprises a series of screenshots where the user holds the invalid “u”
key. As illustrated, the pop up preview changes from the ClosestValidLetterKey “i" to the
InvalidLetterKey “u” when the user holds the invalid “u” key. When the user releases the
key, the “u” letter is committed, and the FreeType mode is triggered. Also, the letter
displayed in the pop up preview is coloured green to indicate that FreeType mode may be

triggered upon the user committing the InvalidLetterKey.
In figure 20B, some of the keys are associated with letters that are accessible via an

indicator tab which indicates to the user that a popup-mini-keyboard may be accessed by
holding the key. Also, double-pressing some keys in quick succession (that is, a double
press action) may invoke the display of the letters that are accessible via the indicator tab.
For example, with respect to the punctuation key, a single press of the key results in a full-

stop, but a double press results in a comer.

10

15

20

25

30

35

- 49 -

Figures 21A to 21C comprises a further series of screenshots illustrating the
PreKeyCorrection functionality. Figure 21A illustrates the case when a user press and
release an InvalidLetterKey. Figure 21B illustrates the case when a user press and holds an
InvalidLetterKey. Figure 21C illustrates the case when a user press and holds the
InvalidLetterKey displaying the popupKeyboard indicator tab 250 for a longer period of time.

Figures 22A to 22l illustrate the ContextualKey functionality by having the user press,
hold, or long hold the spacebar. Note that the KeyPreviewPopup functionality is disabled in
some of the screen shots.

Figure 22A illustrates the case when the ComposingWord is a PreValidWord. As
illustrated, the PrimaryValidWord is coloured in green, and pressing the spacebar commits
the letters of the ComposingWord assembled by the user.

Figure 22B illustrates the case when the ComposingWord is a AutoCorrectableWord.
As illustrated, the PrimaryValidWord is coloured in blue, and pressing the spacebar commits
the letters of the ComposingWord assembled by the user.

Figure 22C also illustrates the case when the ComposingWord is a
AutoCorrectableWord. As illustrated, pressing the spacebar corrects the letters of the
ComposingWord assembled by the user if there are any capitalization inconsistencies.

Figure 22D illustrates the case when the ComposingWord is a
AutoCompletableWord. As illustrated, the PrimaryValidWord is coloured in orange, and
pressing the spacebar automatically completes the ComposingWord to the

PrimaryValidWord.
Figure 22E illustrates the case when the user holds the spacebar. In the first row of

screenshots, when the ComposingWord is a PreValidWord, holding the spacebar rapidly
inserts spaces (referred to as the RapidSpace action). In the second row of screenshots,
when the ComposingWord is a AutoCorrectableWord, holding the spacebar also triggers the
RapidSpace action. Note that the RapidSpace action is triggered after the ComposingWord
is committed. In another words, the RapidSpace action is expressed when the current
ComposingWord has zero letters, that is, after a word has been committed. In this example,
the ComposingWord is a AutoCorrectableWord but there are no letters to be corrected. The
third row of screenshots illustrates the case when the ComposingWord is a
AutoCorrectableWord (in this instance an automatic Capitalisation from “tim” to “Tim") and
there is a letter correction. In this example, holding the spacebar will trigger the
RetainUncorrection action, replacing the suggested words in the ValidWordsPanel 230 with
the ComposingWord (referred to as a UnCorrected-ComposingWord), rather than the
RapidSpace action. This alternate action is indicated to the user by displaying "tim” in black
in the second last screenshot, and the tab indicator above the PrimaryValidWord (“Tim") in

the ValidWordsPanel 230.

10

15

20

25

30

35

50

Figure 22F continues to illustrates the case when the user holds the spacebar. The
first row of screenshots illustrates the case when the ComposingWord is @
AutoCorrectableWord (which is derived from a QuickFix or MashMode permutation) and
there are a letter correction or corrections, holding the spacebar will trigger the alternative
RetainUncorrection action, replacing the PrimaryValidWord with the letters assembled. This
alternate action is indicated to the user by displaying “Yest” in black , and the tab indicator
above the PrimaryValidWord (“Yest") in the ValidWordsPanel 230.

The second and third rows of screenshots illustrate the case when the
ComposingWord is a AutoCompletableWord. The screenshots illustrate an alternative
action for the spacebar. When the ComposingWord is a AutoCompletableWord, holding the
spacebar triggers an action where the letters assembled are committed, overriding the
default key press-release action. This allows the user to insert new and unrecognised
words, and avoid the ContextualKey functionality to automatically complete the
ComposingWord. As illustrated in the second row of the figure, the unknown word of “testi”
is committed, where the usual press-release action of the spacebar would insert the whole
word “testing”.

The third row illustrates the same user action in the case when the ComposingWord
is both a AutoCompletableWord and a AutoCorrectable word. As illustrated in the figure, the
unknown word of “Yesti” is committed, where the usual press-release action of the spacebar
would insert and autocorrect the whole word “testing”. The word “Yesti” is displayed in black
in the ValidWordsPanel 230.

Figure 22G continues to illustrates the case when the user holds the spacebar. The
first row of screeshots illustrate the case when the ComposingWord is a
AutoCompletableWord and is comprised of letter or letters derived from PreKeyCorrections.
As illustrated the in the figure, the unknown word of “testu” is committed, where the letter “u”
is corrected to the letter “i", where the letters assembled are “testi”. As illustrated, "testi” is
displayed in black and a tab indicator is displayed above it in the ValidWordsPanel 230.
Holding the spacebar triggers an alternate action where the letters-assembled are
committed, overriding the default key press-release action. The second row illustrates the
same user action in the case when the ComposingWord is a AutoCorrectableWord
(comprising corrections derived from PreKeyCorrections), holding the spacebar will trigger
the alternative RetainUncorrection action, replacing the PrimaryValidWord with the
ComposingWord. The third row illustrates the same user action in the case when the
ComposingWord is a AutoCorrectableWord (comprising corrections derived both from
PreKeyCorrections and QuickFix or MashMode permutation). As illustrated, “yesting” is
committed (where the usual press-release action of the spacebar would insert the whole

word “testing”).

10

15

20

25

30

35

- 51 -

Figure 22H comprises further screenshots illustrating the case when the user
continues to hold the spacebar (the long hold action) and ComposingWord is a
AutoCorrectableWord comprising corrections derived from both PreKeyCorrections and
PostKeyCorrection. As displayed in the ValidWordsPanel! 230, “Yesting” and the first tab
indicator displayed above the PrimarySugestion 231 indicate to the user the availability of
the alternate hold spacebar action illustrated in the previous figures. Also note the display of
“Yestinf” and the second tab indicator above the PrimaryValidWord. Where both actions are
available to the user, the alternative action for the spacebar hold is extended to trigger an
additional long-hold action where the ComposingWord is committed, overriding the default
and hold-key action. This allows the user to insert new and unrecognised words, and avoid
the ContextualKey functionality to automatically complete the ComposingWord and the
PreKeyCorrection operating on the ComposingWord when adding unrecognised words. As
illustrated in the figure, the unknown word “yestinf" is committed by the long-hold action,
where the usual press-release action of the spacebar would insert the whole word “testing”,
and the and press-hold-release would insert the whole word “yesting”.

Figure 22l illustrates a special case of the hold spacebar functionality where the user
has typed a word that is valid, but another word with higher priority is displayed as the
PrimaryValidWord. As illustrated in the figure, the word “I'll" is the PrimaryValidWord.
Holding the spacebar will trigger the action where the assembled letters is the
PrimaryValidWord, but the word “ill” is committed when the spacebar is released, where the
usual press-release action of the spacebar would insert the whole word “Ilr.

Figures 23A to 23C illustrate the effect of pressing, holding, or douple pressing a
punctuation mark key. Note that in some of the screen shots, the KeyPre\ViewPopup
functionality is disabled to simplify the diagrams.

Figure 23A illustrates the case when the ComposingWord is a
AutoCompletableWord. As illustrated, the user has the option of pressing spacebar or the
punctuation key to automatically complete the ComposingWord to the PrimaryValidWord.
Although not illustrated, note that selecting a sentence terminating punctuation mark (such
as the full-stop) will indicate a space is required after the full-stop. This action will be
triggered when the next key is struck. Also, the figure illustrates that inputting the sentence
terminating punctuation mark will trigger the keyboard to display change the keys of the
keyboard from being lower-case letter keys to upper-case or capital letter keys. In this
respect, it is envisaged that the smartphone 10 can be configured not to change the keys
from lower-case to upper-case when the committed valid word contains the full-stop
character (for example, with respect to the word "Dr.”).

Figure 23B illustrates the case when the user holds the punctuation key. As
illustrated, this triggers the smartphone to display a popup-mini-keyboard.

10

15

20

25

30

35

- 52 -

Figure 23C illustrates the case when the user double-presses the punctuation key.
As illustrated, this triggers the smartphone to substitute the full-stop with a comer.

Figures 24A and 24B comprise screenshots illustrating that a user can, at any point,
select a ValidWord from the ValidWordsPanel 230 to automatically correct the
ComposingWord if the ComposingWord is a AutoCorrectableWord, or to complete, or
correct and complete the ComposingWord if the ComposingWord is a
AutoCompletableWord. The action of pressing the word results in the prqssed-word being
committed as the typed word. That is, the typed letter replaces the word selected, and
commits any alterations to the remaining letters. A space is inserted after the word. Also,
the smartphone 10 substitutes the space after “Testing” with a punctuation mark upon
receiving a user input corresponding to the punctuation mark.

Figure 24B illustrates the EditingWords functionality where the cursor has been
moved by the user to a position that is considered to be, within the boundaries of a whole
word. As illustrated, the letters “ng” in the ComposingWord after the cursor (that is, the
WordTail) are replaced with “ny” upon a user selecting a ValidWord from the
ValidWordsPanel 230. Pressing delete after this action will restore the original word, and
cursor position.

Figure 25 illustrates an alternative full-screen mode of the ValidWordsPanel 230.
This full-screen mode is triggered by the “Up Arrow” button displayed on the right edge of
the compact ValidWordsPanel. This “Up Arrow” button is displayed when the width of the
words contained in the ValidWordsPanel is greater than the width available on screen.
Pressing the “Up Arrow” button results in the ValidWordsPanel toggling to full-screen mode,
where the ValidWordsPanel expands to the remaining screen area not taken up by the
keyboard. This enables the touchscreen 20 to increase the amount of ValidWords that can
be displayed. This also provides a greater variety of word with regards to correction
tolerance. Also, spelichecking can be triggered by pressing the “More Plus” button 243
when in full-screen mode. The “More Plus” button 243 is displayed whenthe users pauses
while composing a word. It is envisaged that when part of speech (POS) filtering (that is, the
ComputationLinguistics functionality) is in effect, suggested words may be grouped on tabs

for each POS (this may include an “all” tab).
Figures 26A to 26C comprises series of screenshots illustrating the EditingWords

functionality.
Figure 26A illustrates the case when the ComposingWord is a PreValidWord. As
illustrated, pressing the spacebar inserts a space between the WordStem and the WordTail.
Figure 26B illustrates the case when the ComposingWord is a AutoCorrectableWord.
As illustrated, pressing the spacebar removes the WordTail. Note that this action of
removing the WordTail is indicated to the user by underlining the words in the

10

15

20

25

30

35

53

ValidWordsPanel 230 and the grey shading of the WordStem in the ComposingWordArea
210.

Figure 26C illustrates the case when the ComposingWord is a
AutoCompletableWord. As illustrated, pressing the spacebar removes the WordTail and
inserts the PrimaryValidWord. In this case, the resulting word is the same.

Figure 26D illustrate the case when the ComposingWord is a PreValidWord. As
illustrated, holding the spacebar rapidly inserts spaces between the WordStem and the

WordTail until the user releases the key.
Figure 26E illustrates when the ComposingWord is a AutoCompletableWord. As

illustrated, holding the spacebar inserts a space but, in contrast to figure 26B, does not
remove the WordTail.

Figure 26F illustrates the case when the ComposingWord is a
AutoCompletableWord. As illustrated, holding the spacebar commits the letters assembled
so far by the user, overriding the ContextualKey functionality to automatically complete the
ComposingWord. In addition, it removes the WordTail. This is indicated to the user by
replacing the words in the ValidWordsPanel with an underlined black-coloured version of the
letters assembled so far, and continuing to shade (in grey) the WordStem portion of the

ComposingWord.
Figure 26G illustrate the case when the ComposingWord is a AutoCompletableWord.

As illustrated, long holding the spacebar removes the underline from the words in the
ValidWordsPanel 230 and the grey shading of the WordStem portion of the
ComposingWord. .This result in the same expected action of inserting the letters assembled
so far by the user while retaining the WordTail. Note that Figures 26E and 26G both
underline the words in the ValidWordsPanel 230 and the grey shading of the WordStem
portion of the ComposingWord to indicate the removal, or retention of WordTails.

Figure 27 comprises a further series of screenshots illustrating the EditingWords
functionality. As illustrated, when editing a word with a WordTail, selecting a letter key
removes the WordTail, at the point of the cursor, and insert the desired letter.

As illustrated in the first row of the screenshots, pressing the “y” key removes the
WordTail “g”; releasing inserts the letter “y”. As illustrated in the second row of the
screenshots, there is only one ValidWord—*“Texture"—pressing the spacebar corrects
“Testir” to “Texture”.

Figures 28A and 28B illustrate that holding a valid key with an indicator tab 250
displayed at the top-right edge of the key results in a popup-mini-keyboard being displayed,
and holding an InvalidLetterKey with an indicator tab results in overriding the
PostKeyCorrection functionality. As illustrated, holding the InvalidLetterKey triggers a

popup-mini-keyboard to be displayed.

10

15

20

25

30

35

- 54 -

Figure 29 comprises a series of screenshots illustrating the PointofDeviation
functionality. In the figure, the “Auto-Fill" Button 242 appears on the left edge of the
ValidWordsPanel 230. It is displayed contextually, to inform that user that all of the
ValidWords share more than one common letter beyond the point of the cursor, (that is, the
WordStem). In this example, both words, “Automatic” and “Automatically”, share the
common letters “atic’. When the user presses the “Auto-Fill” button, the common letters are
inserted. _

Figures 30A to 30G illustrate the AutomaticSystems functionality.

Figure 30A illustrates that after the user has entered a punctuation mark that requires
a space to precede it, a space is automatically inserted before the next letter.

Figure 30B illustrates that an automatically inserted space is removed after the user
selects a word from the ValidWordsPanel and commits a punctuation mark.

Figures 30C and 30D illustrate that when a non-letter character is the next character
to be typed in one of the ValidWords, the letter after the non-letter character is substituted
for its preceding (non-letter) character. This occurs where there are no other ValidWords
with the same letter as the substituted character.

In Figure 30C, the “r" key is displayed as valid. As illustrated, pressing the “r" key
results in the non-letter character being inserted before the letter “r’, resulting in a letter and
a non-letter character being inserted in one key press.

Figure 30D illustrates that a non-letter character can be substituted for the next letter.
As illustrated, pressing the “m” key results in the letters “m” being inserted. The examples
in Figures 30C and 30D differ in that the latter has a valid permutation of the word where
adding the punctuation immediately (to the assembled letters) would conflict with another
valid permutation of the word (that is, “im” could also be “image” in Figure 30D but the only
ValidWord for “xr” in Figure 30C is “x-ray”).

Figure 30E illustrates that when the user deletes the first letter of a word that is
capitalised, the keyboard displays the “capitalised” versions of the keys. This action will not
be triggered if the user immediately repeats the add-letter, delete sequence of action.

Figures 30F and 30G illustrate that when the user presses the delete key after
performing any automatic or word modifying action, any modification to the original word are
restored. This action will not be triggered if the user immediately repeats the sequence of
actions. For example, with respect to a word “testing” that is assembled after the letters
“‘ing” are automatically added, a first delete action will remove the letters “ing”. However,
selecting the word again and performing a second delete action will remove only the letter

"g”.
Figure 30F illustrates in the case where the committed ComposingWord was
originally an AutoCompletableWord. Figure 30G illustrates the case where the committed

ComposingWord was originally an AutoCompletableWord and AutoCorrectable, with a

10

15

20

25

30

35

- K5 -

WordTail; performing the delete action restores the original word, and cursor position. In this
case the committed word of “Hearing” is restored to "Testing”. The cursor is also returned to
a position after the fifth letter, restoring the WordTail state.

Figure 31A comprises a series of screenshots illustrating that a key of a popup-mini-
keyboard may be shaded via the KeyShading functionality when appropriate.

Figure 31B comprises a series of screenshots illustrating an AutoCorrection

operation where the letter “U” is substituted by the letter “U”.
Figure 32 comprises a table illustrating the different formats used by the smartphone

10 when implementing the various functionalities. For example, the table indicates that the
smartphone 10 modifies the display of one of the suggested words (for example, the
PrimaryValidWord) to change the colour of the word to blue when the ComposingWord is a
Auto-correct word (that is, a AutoCorrectableWord).

Figures 33A to 23| comprise screenshots illustrating an alternative ChordKeys
keyboard layout.

ChordKeys allows a user to enter text using one hand. When using ChordKeys, keys
are triggered via a sequence of actions. Keys are ordered into sets, with varying levels of
accessibility, where the most frequently used characters are at the top level of accessibility.

Figure 33A comprises a series of screenshots illustrating the selection of one of the
Top Level Keys E and T. Specifically, the figure illustrates the selection of the Top Level
Key E on the dominant side of the ChordKeys layout. As illustrated, pressing and releasing

the Top Level Key E results in the letter E being committed.
In Figures 33A to 33l, the order of the letters in this presentation is a predetermined

average, based on an analysis of letter frequency in the English language. The letters can
be alternatively arranged to be similar to a QWERTY layout where the Top Level Keys are F
and J with letter radiating from the Index Finger Keys, approximating a more familiar layout.
Key layout can also be defined by the user.

Figure 33B comprises a series of screenshots illustrating the selection of one of the
Second Level Keys A, |, O, N, S, D, H and R on the dominant side of the ChordKeys layout.
As illustrated, such keys are accessible with a single stroke gesture.

Figure 33C comprises a series of screenshots illustrating the selection of one of the
remaining Third Level Keys on the dominant side of the ChordKeys layout; As illustrated,
the keys are accessible via an addition secondary level of user action, or additional portion
of the tough-input. A two-part-stroke gesture or equivalent-user-action, in this case, up, and

right, results in the letter M key being triggered.
Figure 33D comprises a series of screenshots illustrating an alternative method of

selecting one of the Third Level Keys on the dominant side of the ChordKeys layout using

two fingers. In the process, the additional finger triggers the interface to replace the letters

10

15

20

25

30

35

- 56 -

in the smaller (non-dominant) panel, on the right, changing the keys to those that are
revealed, or uncovered, by the first fingers' gesture.

Figure 33E comprises a series of screenshots illustrating the selection the Top Level
Key T on the non dominant side of the ChordKeys layout. Figure 33F comprises a series of
screenshots illustrating that holding the Top Level Key T toggles the dominance of the
keyboard, making all second and third level keys accessible from the other side of the
keyboard. |

Figure 33G comprises a series of screenshots illustrating the selection a Second
Level Key on the non dominant side of the ChordKeys layout. As illustrated, holding the
non-dominant side of the keyboard toggles the dominant-side of the keyboard. Adding a
stroke/gesture leads to second level keys from the non-dominant side of the keyboard. In
this instance, the letter S is selected. As with the above example, the user can force the
change of dominance (changing between the dominant and non-dominant sides) without
waiting for the system to change from the hold action.

Figure 33H comprises a series of screenshots illustrating the selection'a Third Level
Key on the non dominant side of the ChordKeys layout. As illustrated, a third level letter is
accessed in the same way for each side-of-dominance, with the addition of the non-
dominant hold action if triggered, rather than forced.

Figure 331 comprises a series of screenshots illustrating an alternative method of
selecting a Third Level Key on the non dominant side of the ChordKeys layout. This two
fingered method of accessing a third-level- letter is similar to the non-dominant example,
with regards to the rules illustrated throughout these sequences. The second-touch-input is
use to perform the secondary portion of the two-part-stroke, triggering

| Figure 33J comprises a series of screenshots illustrating the KeyShading
functionality implemented on the ChordKeys layout where keys corresponding to valid
subsequent letters are coloured differently to keys that do not correspond to valid

subsequent letters.
Figures 34A to 34l comprises screenshots illustrating an alternative RadialKeys

keyboard layout.

The RadialKeys keyboard layout can be used with a device that is not being held in a
completely controllable manor, and provides an interface to complement, with regards to the
compromised accuracy of user input and complementing methods of user inputs available in
devices such as game controllers with directional inputs (such as thumbsticks and D-Pads),
gyroscopic sensor and/or force sensors. Thus, the RadialKeys layout can be arranged to
present the user with a variety of methods to select characters where a tradition ergonomic
body position for typing is not available, or desired (for example, when thejuser is sitting on a

couch using a small touchscreen device or using a game controller).

10

15

20

25

30

35

57.

Figure 34A comprises a series of screenshots illustrating the selection of one of the
keys of the RadialKeys layout by pointing. Specifically, to select a key, the user moves the
interactive-circle-selector to the desired key (a stroke action from the centre of the Radial
Keyboard to the desired key). The circle selector expands on touch, indicating the process
has been initiated.

Figure 34B comprises a series of screenshots illustrating an alternative method of
selecting one of the keys of the RadialKeys layout by rotation where the user can rotate the
Radial Keyboard to the desired key by holding the area indicated and rotate the interface as
illustrated. |

Figure 34C comprises a series of screenshots illustrating a variant of the RadialKeys
layout where there is a dominant radial selector and a non-dominant radial selector. If the
user presses the non-dominant selector, the second radial selector splits the keys into the
two radial selectors. The second band is used to continue a refined selection of the desired
character, as illustrated.

Figure 34D comprises a series of screenshots illustrating that the user can take
advantage of the reduced requirement for accuracy using the dual bands method of input,
and also select a letter on the “other side”, by using a second finger, as illustrated.

Figures 34E and 34F comprises two series of screenshots illustrating how the
KeyShading functionality may be implemented on the RadialKeys keyboard layout.

Figures 35A to 35E comprises series of screenshots illustrating overriding key
presses when using a combination of PreKeyCorrection and PostKeyCorrection, subject to
the override tolerances set out in Tables K1 and L1 below. Inthese ﬂgures,
lnvalidLetterKeys are shaded in a darker colour than ValidLétterKeys and
AdditionalValidLetterKeys. ValidLetterKeys are differentiated from AdditionalValidLetterKeys
in that ValidLetterKeys are displayed in bold. ValidLetterKeys are also shaded in a slightly
lighter colour than AdditionalValidLetterKeys. As mentioned above, ValidLetterKeys,
AdditionalValidLetterKeys and InvalidKeys may additionally or alternativerT be differentiated
by size (for example, the size of the key), colour (for example, the colour of the key), and/or
font attributes (for example, the size of the letter displayed on the key).

Figure 35A comprises a series of screenshots illustrating an example where a user

presses an AdditionalValidLetterKey ("y") close to a ValidLetterKey (“t"). Specifically, when

the user accurately presses the letter “y” key in the fourth screenshot (that iis, the first

screenshot on the bottom row of screenshots), a KeyPreviewPopup of the
AdditionalValidLetterKey ("y") is displayed, the PreKeyCorrection functionality dose not
overrides the key press (“y”), the default behaviour.

Figure 35B comprises a series of screenshots illustrating another example where a
user “inaccurately” presses an AdditionalValidLetterKey (“y") at a position of the key that is
close to a ValidLetterKey (“t"). As shown in the fourth and fifth screenshots, not only is the

10

15

20

25

30

35

In a second aspect, the present invention provides a method of assembling a word

comprising a sequence of word components according to one or more word assembly

conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating a set of one or more valid words from a
plurality of possible words stored in a words database, each valid word
comprising a sequence of one or more word components corresponding to the
sequence of word components stored in the memory;

a word component determiner of the processor determining a set of one or more
valid subsequent word components based on the set of valid words located by
the word locator, wherein each valid subsequent word component validly
continues from the sequence of word components stored in the memory;

a display controller controlling the display to display a keyboard device having a
plurality of keys respectively associated with a plurality of possible word
components; and

the processor receiving a user input from the keyboard device, the received user
input corresponding to one of the keys of the keyboard device;

a key position determiner of the processor determining a display position of the key
associated with the possible word component corresponding to each valid
subsequent word component;

a closest key determiner of the processor determining which one of the keys
associated with the possible word components corresponding to the valid
subsequent word components is displayed closest to the key corresponding to
the user input; and

a word component adder of the processor adding to the sequence of word
components stored in the memory the possible word component corresponding
to the valid subsequent word component associated with the key determined by
the closest key determiner to be displayed closest to the key corresponding to

the user input.
In an embodiment, the method further comprises the display controller controlling the

display to modify the display of the key associated with the possible word component
corresponding to each valid subsequent word component.

In an embodiment, the method further comprises the display controller controlling the

display to display the possible word component corresponding to the valid subsequent word

component associated with the key determined by the closest key determiner to be

displayed closest to the key corresponding to the user input.

10

15

20

25

30

- 58 -

key press ('y") replaced by the ValidLetterKey (“t"), a KeyPreviewPopup of the
ValidLetterKey (‘") is also displayed when the user presses the AdditionalValidLetterKey
(y"), as indicated by 300.

Figure 35C comprises a series of screenshots illustrating another example where a
user inaccurately presses an InvalidLetterKey ('j’) close to both a ValidLetterKey (*i") and an
AdditionalValidLetterKey (“n"). As shown in the fifth screenshot (that is, the middle
screenshot on the bottom row of screenshots), even though the key press (‘") (as indicated
by the pointer location) is closer to the AdditionalValidLetterKey (“n") than the ValidLetterKey
(“i"), the PreKeyCorrection functionality overrides the key press with the ValidLetterKey (“i").

Figure 35D comprises a series of screenshots illustrating another example where a

Weon

user presses an InvalidLetterKey (“k”) that is close to four AdditionalValidLetterKeys (", “J",
“m” and “n”). As shown in the fourth screenshot, the key press (*j") (as indicated by the
pointer location) is closer to the AdditionalValidLetterKey (") than the other
AdditionalValidLetterKeys (*j”, “m” and “n") and the key press is corrected with the
AdditionalValidLetterKey (“i"). In this instance, the ValidLetterKey (“t")—the only
ValidLetterKey in this instance—is the ValidLetterKey that is spatially closest to the key
press (“k”), and the word “test” is included as a ValidWord in the ValidWordsPanel 230 as
the PrimaryValidWord.

Figure 35E comprises a series of screenshots illustrating another example where a
user presses an AdditionalValidLetterKey ("a”) and there are no neighboring
ValidLetterKeys (the only ValidLetterKey in this instance is “t"). Again, the ValidWord “test”
corresponding to the ValidLetterKey that is spatially closest to the key press (°k") is
displayed in the ValidWordsPanel and in this instance also as the PrimaryValidWord.

Tables
As indicated above, the smartphone 10 of the above example is configured to modify

the display of the keys or words displayed on the touchscreen 20 during operation. The

tables below tabulate the various modifications applied to the various elements displayed by

the touchscreen 20.

Keyboard:
Condition Color of letter associated | Key background
with key color

ValidLetterKey Black(24%) Light Grey(85%)

AdditionalValidLetterKey Dark Grey(35%) Mid-Light
Grey(80%)

InvalidLetterKey Light Grey(87%) Letter Grey(70%)

FreeType (Mode) Key Green Dark Grey(61%)

59

Pop up previews:

Coilor of letter
associated with key

Condition

Color of ClosestValidLetterKey
when overriding InvalidLetterKey
press

Background/Border Alternativé

(Display as White in

PreValidWord White
Colour (lllustrated as a red letter:
top-left)

AutoCorrectableWord Blue Background/Border Alternative

Colour (lllustrated as a red letter:

diagrams) top-left)

AutoCompletableWord Orange Background/Border Alternative
Colour (lllustrated as a red letter:
top-left)

InvalidLetterKey Red None

Override InvalidLetterKey | Green/FreeType None

Preview

ValidWordsPanel:

Condition Color of the letters or words | WordTail Indicator
PreValidWord Green Text Underlined
AutoCorrectable Word Blue Text Underlined
AutoCompletable Word Orange Text Underlined
FreeType Mode Black Text Underlined
Other(Non Primary-Suggested) | Grey Text Underlined
Other modifications:
Condition Modification
WordTail When editing a word, remaining characters of

the original word are replaced with the new
words remaining characters (from the point of
the cursor)

WordTail Override

Retains the original WordStem, while retaining
the remaining letters of the word (from the
point of the cursor). A Space character is
inserted in-between (as the action has been
triggered by the spacebar.

New Sentence - Auto Capitalise

An empty TextField or a terminating
punctuation character will automatically trigger
the Shift state and display capitalised keys on
the keyboard.

New Sentence - Auto Space

Entering a terminating punctuation character
will automatically trigger the insertion of a
Space character is the user strikes a Letter
Key after the Punctuation Key, without entering
a space character.

Punctuation

When a word is selected from the
ValidWordsPanel, a space is automatically
added, this space will be remaved when a
punctuation character is typed.

._60._

Retain Caps When the first letter of a Capitalized word is ‘
deleted the keyboard is put into Capital Mode.
Auto Fill Inserts the common letters where all

suggested word share a common group of
Next-Letter-Characters.

The following table lists the action taken by the smartphone 10 in response to user

inputs corresponding to system and non-letter keys.

5 Key Types (System and non-character Keys): ‘
Key Type Key Name | Press Double Press Press & Hold
System Keyboard | Toggle No special Display
Mode Keyboard Functionality Alternative
Mode Keyboards(Num
eric Keypad)
System Hide Hide No special Open Setting
Keyboard | Keyboard Functionality Screen
Edit Shift Toggle Shift | Toggle Shift Toggle Shift
Lock Lock
Edit Delete Delete No special Try Rapid
Functionality Delete
Punctuation Smart Add Primary | Add Secondary | Display Popup
Punctuatio | Character(Fu | Character(Come | Punctuation
n Il Stop) r Mini-Keyboard

The following tables (including tables A1 to J2) list the action taken by the
smartphone 10 of the above examples in response to user inputs corresponding to letter and

punctuation keys.

10

Key Types (Letters and Punctuation):

Description WordTail | Table(Press) | Table(Release)
SpaceBar No A1 A2
Single Key - Valid No B1 B2
Single Key - Invalid No C1 Cc2
Single Key & Alternatives - Valid No D1 D2
Single Key & Alternatives - Invalid No E1 E2
SpaceBar Yes F1 F2
Single Key - Valid Yes G1 G2
Single Key - Invalid Yes H1 H2
Single Key & Alternatives - Valid Yes 11 12
Single Key & Alternatives - Invalid Yes J1 J2
Table A1: SpaceBar Press, Without WordTall
Table A1 | PreValidWord | AutoCorrectableWord AutoCompletableWord
Press -Display -Display -Display Preview(Orange)
Preview(White | Preview(Orange)
) note: change to blue

.__61_

-Set Colour Coding to

Hold -Repeat Add -Trigger
Space Condition:onRelease ComposingWord
Add Space -Trigger
-Trigger Condition:onRelease Add
Condition:onRelease Space
Commit ComposingWord | -Trigger
or UnPreCorrected Condition:onRelease
ComposingWord(where | Commit ComposingWord or
exists and UnPreCorrected
ComposingWord does ComposingWord(Where
not exist) exists and ComposingWord
does not exist)

Long n/a -Trigger -Trigger

Hold Condition:onRelease Condition:onRelease
Commit UnPreCorrected | Commit UnPreCorrected
ComposingWord(where | ComposingWord(where
exists) exists)

Table A2: SpaceBar Release, Without WordT ail

T PreV AutoCorrectableWord AutoCompletableWo
able alidWord rd
A2
H - -Commit -Commit
ress Commit PrimaryValidWord PrimaryValidWord
Composing | -Add Space -Add Space
Word-Add -Dismiss Preview -Dismiss Preview
Space
Dismiss
Preview
H n/a -if onRelease -if onRelease
old Condition Trigged: Add Condition Trigged: Add
Space Space ‘
-if onRelease -if onRelease
Condition Trigged: Commit Condition Trigged: Commit
ComposingWord/UnPreCorre | ComposingWord/
cted-ComposingWord UnPreCorrected-
-Dismiss Preview ComposingWord
-Dismiss Preview
1 n/a -if onRelease -if onRelease
ong Condition Trigged: Add Condition Trigged: Add
Hold Space Space
-if onRelease -if onRelease
Condition Trigged: Commit Condition Trigged: Commit
UnPreCorrected UnPreCorrected
ComposingWord ComposingWord

- 62 -

Table B1: Single Key — Valid Press, Without WordTail

Table B1 | PreValidWord AutoCorrectableWord AutoCompletableVVord
Press -Display -Display -Display ‘
Preview(White) Preview(Orange) Preview(Orange)
note: change to blue
Hold n/a n/a n/a
Long Hold | n/a n/a n/a
Table B2: Single Key — Valid Release, Without WordTail
Table B2 PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Commit Key -Commit Key -Commit Key
-Dismiss -Dismiss Preview -Dismiss Preview
Preview
Hold | n/a n/a n/a
Long Hold | n/a n/a n/a
Table C1: Single Key - Invalid Press, Without WordTail
Table C1 PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Compute -Compute -Compute
ClosestValidLetterKey | ClosestValidLetterkey | ClosestValidLetterKey
-Display Preview- -Display Preview- -Display Preview-
ClosestValidLetterKey | ClosestValidLetterKey | ClosestValidLetterKey
(White) - (Orange) (Orange)
note: Change note: change to blue note: Change
background/border to note: Change background/border to
alt colour and display background/border to alt colour and display
invalid letter in corner to | alt colour and display invalid letter in corner to
indicate, closest valid invalid letter in corner indicate, closest valid
Displayed. to indicate, closest valid | Displayed.
Displayed.
Hold -Override -Override -Override
ClosestValidLetterKey | ClosestValidLetterkey | ClosestValidLetterKey
-Display -Display -Display
Preview(Green/FreeTy | Preview(Green/FreeTy Preview(Green/FreeTy
pe preview). pe preview). pe preview).
-Trigger -Trigger -Trigger
Condition:FreeType Condition:FreeType Condition:FreeType
onRelease onRelease onRelease
Long Hold | n/a n/a n/a

- 63 -

Table C2: Single Key - Invalid Release, Without WordTail

Table C2 PreValidWord AutoCorrectableWord | AutoCompletableWord

Press -Commit ~-Commit ~-Commit

Key(ClosestValidLetter | Key(ClosestValidLette | Key(ClosestValidLetterK
Key) rkey) ey)
-Dismiss Preview -Dismiss Preview -Dismiss Preview

Hold -Set FreeType -Set FreeType -Set FreeType
Mode(Override Key Mode(Override Key Mode(Override Key

Shading) Shading) Shading)
-Commit -Commit -Commit
Key(Raw/Invalid) Key(Raw/Invalid) Key(Raw/Invalid)
-Dismiss Preview -Dismiss Preview -Dismiss Preview
Long Hold | n/a ‘ n/a n/a
Table D1: Single Key & Alternatives - Valid Press, Without WordT alil

Table D1 | PreValidWord AutoCorrectableWord AutoCompletableWord

Press -Display -Display Preview(Orange) -Display
Preview(White) note: change to blue Preview(Orange)

Hold -Dismiss Preview | -Dismiss Preview -Dismiss Preview
-Display Popup -Display Popup Mini- -Display Popup Mini-
Mini-Keyboard Keyboard for Alternative Keyboard for
for Alternative Characters Alternative Characters
Characters

Long Hold | n/a n/a n/a

Table D2: Single Key & Alternatives - Valid Release, Without WordT ail
Table D2 PreValidWord | AutoCorrectableWord AutoCompletableWord
Press -Commit Key -Commit Key -Commit Key
-Dismiss -Dismiss Preview -Dismiss Preview
Preview
Hold n/a n/a n/a
Long Hold n/a n/a n/a

Table E1: Single Key & Alternatives - Invalid Press, Without WordTail

Table E1 | PreValidWord

AutoCorrectableWord

AutoCompletableWord

Press -Compute

-Display Preview-

(White)

note: Change
background/border to
alt colour to indicate,
closest valid
Displayed.

ClosestValidLetterKey

ClosestValidLetterKey

-Compute
ClosestValidLetterKey
-Display Preview-
ClosestValidLetterKey
(Orange)

note: change to blue
note: Change
background/border to
alt colour to indicate,
closest valid
Displayed.

~-Compute
ClosestValidLetterKey
-Display Preview-
ClosestValidLetterKey
(Orange)

note: Change
background/border to alt
colour to indicate, closest
valid Displayed.

- 64 -

Hold (-Override -Override -Override
ClosestValidLetterKey | ClosestValidLetterkey | ClosestValidLetterKey
-Display -Display -Display
Preview(Green/FreeT | Preview(Green/FreeT | Preview(Green/FreeType
ype preview). ype preview). preview).
-Trigger -Trigger -Trigger
Condition:FreeType Condition:FreeType Condition:FreeType
onRelease onRelease onRelease

Long -Display Popup Mini- | -Display Popup Mini- | -Display Popup Mini-

Hold Keyboard for Keyboard for Keyboard for Alternative
Alternative Characters | Alternative Characters | Characters

Table E2: Single Key & Alternatives - Invalid Release, Without WordTail
Table E2 | PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Commit -Commit -Commit
Key(ClosestValid | Key(ClosestValidLetterKey) | Key(ClosestValidLetterKey)
LetterKey) -Dismiss Preview -Dismiss Preview
-Dismiss Preview 1
Hold -if onRelease -if onRelease Condition:Set | -if onRelease Condition:Set
Condition:Set FreeType Mode Timeout FreeType Mode Timeout
FreeType Mode Valid(Override Key Valid(Override Key
Timeout Shading) Shading)
Valid(Override -Commit Key(Raw/Invalid) | -Commit Key(Raw/Invalid)
Key Shading) -Dismiss Preview -Dismiss Preview
-Commit
Key(Raw/Invalid)
-Dismiss Preview
Long n/a n/a n/a
Hold
Table F1: Spacebar Press, With WordTail
Table F1 PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Display -Display -Display Preview(Orange)
Preview(White) | Preview(Orange)
note: change to blue
Hold -Repeat Add -OverRide Default -Set Colour Coding to
Space Behaviour(Repeat Add | ComposingWord
-Retain Space) -Trigger Condition:onRelease
WordTail | -Clear WordTail Add Space
Indicator(ValidWords -Trigger Condition:onRelease
Underlined) Commit ComposingWord
-Trigger
Condition:OnRelease-
Retain wordTail
Long Hold | n/a n/a -Clear WordTail indicator
(Clear ValidWords Underlined)
-Trigger Condition:OnRelease-
Retain wordTail

- 65 -

Table F2: Spacebar Release, With WordTail

Table F2 | PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Commit -Commit -Commit PrimaryValidWord
ComposingWord- | PrimaryValidWord -Add Space
Add Space -Add Space -Clear WordTail
-Indirect Retain -Clear WordTalil -Dismiss Preview
WordTail -Dismiss Preview
-Dismiss Preview
Hold n/a -if onRelease Condition -if onRelease Condition
Trigged: Add Space Trigged: Add Space
-if onRelease Condition -if onRelease Condition
Trigged: Commit Trigged: Commit
ComposingWord ComposingWord
-Retain WordTail -Clear WordTail
-Dismiss Preview -Dismiss Preview
Long n/a n/a -if onRelease Condition
Hold Trigged:
Commit ComposingWord
-if onRelease Condition
Trigged:
Add Space
-if onRelease Condition
Trigged: Retain wordTail
-Dismiss Preview

Table G1: Single Key - Valid Press, With WordTail

Table G1 PreValidWord AutoCorrectableWord AutoCompletableWord

Press -Display -Display -Display
Preview(White) | Preview(Orange) Preview(Orange)

note: change to blue :
Hold n/a n/a n/a
Long Hold n/a n/a n/a
Table G2: Single Key - Valid Release, With WordTail

Table G2 PreValidWord AutoCorrectableWord AutoCompletableWord

Press -Remove -Remove WordTail -Remove WordTail
WordTail -Commit Key -Commit Key
-Commit Key -Dismiss Preview -Dismiss Preview
-Dismiss
Preview

Hold n/a n/a n/a

Long Hold | n/a n/a n/a -

- 66 -

Table H1: Sipgle Key - Invalid Press, With WordTail
Table H1 PreValidWord AutoCorrectableWord | AutoCompletableWord
Press -Compute -Compute -Compute
ClosestValidLetter | ClosestValidLetterKey | ClosestValidLetterKey
Key -Display Preview- -Display Preview-
-Display Preview- | ClosestValidLetterKey | ClosestValidLetterKey
ClosestValidLetter | (Orange) (Orange)
Key (White) note: change to blue note: Change
note: Change note: Change background/border to
background/border | background/border to | alt colour to indicate,
to alt ¢olour to alt colour to indicate, closest valid Displayed.
indicate, closest closest valid
valid Displayed. Displayed.
Hold -Override -Override -Override
ClosestValidLetter | ClosestValidLetterKey | ClosestValidLetterKey
Key -Display -Display
-Display Preview(Green/FreeT | Preview(Green/FreeTy
Preview(Green/Fre | ype preview). pe preview).
eType preview). -Trigger -Trigger
-Trigger Condition:FreeType Condition:FreeType
Condition:FreeTyp | onRelease onRelease
e onRelease
Long Hold [n/a n/a n/a
Table H2: Single Key - Invalid Release, With WordTail
Table H2 | PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Commit -Commit -Commit
Key(ClosestValid | Key(ClosestValidLetter | Key(ClosestValidLetterKey)
LetterKey) Key) -Dismiss Preview
-Dismiss Preview | -Dismiss Preview
Hold -Set FreeType -Set FreeType -Set FreeType
Mode(Override Mode(Override Key Mode(Override Key
Key Shading) Shading) Shading)
-Commit Key -Commit Key -Commit Key
-Dismiss Preview | -Dismiss Preview -Dismiss Preview
Long Hold | n/a n/a n/a
Table 11: Single Key & Alternatives - Valid Press, With WordTail
Table |1 | PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Display -Display -Display Preview(Orange)
Preview(White) | Preview(Orange)
note: change to blue
Hold -Dismiss -Dismiss Preview -Dismiss Preview
Preview -Display Popup-Mini- -Display Popup-Mini-
-Display Popup- | Keyboard for Alternative | Keyboard for Alternative
Mini-Keyboard | Characters Characters
for Alternative
Characters
Long n/a n/a n/a
Hold

- 67 -

Table I12: Single Key & Alternatives - Valid Release, With WordTail

Table 12 | PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Commit Key -Commit Key -Commit Key
-Dismiss Preview | -Dismiss Preview -Dismiss Preview
Hold n/a n/a n/a
Long n/a n/a n/a
Hold

Table J1: Single Key & Alternatives - Invalid Press, With WordTail

Table J1 | PreValidWord AutoCorrectableW | AutoCompletableWord
ord
Press -Compute -Compute -Compute
ClosestValidLetterKey | ClosestValidLetter | ClosestValidLetterKey
-Display Preview- Key -Display Preview-
ClosestValidLetterKey | -Display Preview- | ClosestValidLetterKey
(White) ClosestValidLetter | (Orange)
note: Change Key (Orange) note: Change
background/border to | note: change to background/border to alt
alt colour to indicate, blue colour to indicate, closest
closest valid note: Change valid Displayed.
Displayed. background/border
to alt colour to
indicate, closest
valid Displayed.
Hold -Override -Override -Override
ClosestValidLetterKey | ClosestValidLetter | ClosestValidLetterKey
-Display Key -Display Preview
Preview(Green/FreeT | -Display (Green/FreeType
ype preview). Preview(Green/Fre | preview).
-Trigger eType preview). -Trigger v
Condition:FreeType -Trigger Condition:FreeType
onRelease Condition:FreeTyp | onRelease
€ onRelease
Long -Display Popup-Mini- | -Display Popup- -Display Popup-Mini-
Hold Keyboard for Mini-Keyboard for | Keyboard for Alternative
Alternative Characters | Alternative Characters
Characters

Table J2: Single Key & Alternatives - Invalid Release, With WordTail
Table J2 | PreValidWord AutoCorrectableWord AutoCompletableWord
Press -Commit -Commit -Commit v
Key(ClosestValidLetter | Key(ClosestValidLetter | Key(ClosestValidLetter
Key) Key) Key)
-Dismiss Preview -Dismiss Preview -Dismiss Preview
Hold -if onRelease -if onRelease -if onRelease

Condition:Set FreeType
Mode Timeout
Valid(Override Key
Shading)

-Commit Key

-Dismiss Preview

Condition:Set FreeType

Mode Timeout

Valid(Override Key

Shading)
-Commit Key
-Dismiss Pre{view

Condition:Set
FreeType Mode

Key Shading)
-Commit Key
-Dismiss Preview

Timeout Valid(Override

10

15

20

25

30

35

- 5 -

In an embodiment, the method further comprises the display controller controliing the

display to display one or more, or all, of the valid words located by the word locator, in

. response to the word locator locating the set of valid words.

In an embodiment, each word component is a Latin alphabetic letter.
In an embodiment, the possible word components comprise the 26 Latin alphabetic

letters.
In an embodiment, the word is a logographic character, and each word component is

a character stroke.

In an embodiment, the keyboard device is a software-implemented keyboard
displayed on a display. '

In an embodiment, the method further comprises:

in response to the processor receiving the user input, the word locator locating a set

of one or more additional valid words from the plurality of possible words stored

in the words database, each additional valid word comprises a sequence of one
or more word components corresponding to a subset of the sequence of word
components stored in the memory.

In an embodiment, the method further comprises the display controller controlling the
display to display one or more, or all, of the additional valid words located by the word
locator.

In an embodiment, the method further comprises:

in response to the word locator locating the set of valid words:

a valid word set size determiner of the processor determining that the set of valid
words consists of only one valid word; and

the display controller controlling the display to modify the display of the valid
word.

In an embodiment, the method further comprises:

in response to the word locator locating the set of additional valid words:

a valid word set size determiner determining that the set of additional valid words
consists of only one additional valid word, the display controlier controlling the
display to modify the display of the additional valid word.

In an embodiment, the method further comprises:

in response to the word component adder adding a word component to the sequence

of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word has the same number of word

components as one of the set of valid words; and

- 68 -

Long n/a n/a n/a
Hold

With respect to the above table, where there is no valid keys available, invalid keys
may be added (for example, as UnPreCorrected-ComposingWords).

Also, with respect to the above tables, any trigger condition or conditions are cleared
after each user input. Also, with respect to the key presses, an extra long hold key press
overrides a long hold key press which in turn overrides a hold key press which in turn
overrides a normal key press (that is, non-hold key press).

Table K1: Override tolerances when using a combination of PreKeyCorrection and

PostKeyCorrection
Table K1 Override tolerance
When key press is a n/a
ValidLetterKey
When key press is an Override with a ValidLetterKey if the key press
AdditionalValidLetterKey (that is, the AdditionalValidLetterKey) is within

1/3 width (approximately) beyond key edges of
the ValidLetterKey

When key press is an InValidKey Override with the closest ValidLetterKey (that
is, the ValidLetterKey closest to the key press
(that is, the InValidKey)) if the key press is
within a separation distance from the closest
ValidLetterKey, the separation distance being
2/3 of the distance separating the closest

ValidLetterKey
and the closest AdditionalValidLetterKey

Table L1: Keys that will be considered when overriding a key press, when using a
combination of PreKeyCorrection and PostKeyCorrection

Table L1 Key count upper limit threshold

ValidLettersKeys 2 (or more as defined by a program variable)
closest ValidLetterKeys to the key press

AdditionalValidLettersKeys all AdditionalValidLetterKeys within a spatial
threshold (as defined by a program variable)

It will be understood to persons skilled in the art of the invention that many
modifications may be made without departing from the spirit and scope of the invention, in
particular it will be apparent that certain functionalities of embodiments of the invention can

be employed to form further embodiments.
It is to be understood that any reference to prior art made herein does not constitute

an admission that the prior art formed or forms a part of the common general knowledge in

the art in Australia or in any other country.

- 69 -

In the claims which follow and in the preceding description of the invention, except
where the context requires otherwise due to express language or necessary implication, the
word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive
sense, i.e. to specify the presence of the stated functionalities but not to preclude the
presence or addition of further functionalities in various embodiments of the invention.

10

15

20

25

30

35

the display controlier controlling the display to modify the display of the valid
word that has the same number of word components as the stored sequence
of word components of the word.

In an embodiment, the method further comprises:
in response to the word component adder adding a word component to the sequence
of word components stored in the memory:

a letter number comparator of the processor determining that the stored
sequence of word components of the word does not have the same number
of word components as one of the set of valid words; and

the display controller controlling the display to modify the display of the valid
word that does not have the same number of word components as the stored
sequence of word components of the word.

In an embodiment, the method further comprises:
in response to the word locator locating the set of more than one valid words;

a common word component determiner of the processor determining that each
of the valid words comprises a sequence of one or more common subsequent
valid word components that (i) are common to all valid words, and that (ii)
validly continue from the sequence of word components stored in the
memory; and

the character adder adding the sequence of common subsequent valid word
components to the sequence of word components stored in the memory.

In an embodiment, each of the possible words stored in the words database is

categorized into one of a plurality of word categories; and
the set of valid words located by the word locator is based on the word category of a

previous assembled word.

In a third aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word;

a word locator of a processor locating a set of one or more valid words from a
plurality of possible words stored in a words database, each valid word
comprising a sequence of one or more word components corresponding to the
sequence of word components stored in the memory;

the processor receiving a user input from a keyboard device having a plurality of keys
respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard device;

a word component determiner of the processor determining that the user input word
component is a valid further subsequent word component based on the set of

10

15

20

25

30

35

valid words located by the word locator, the valid further subsequent word
component being a word component that validly continues from one or more
intermediate word components that in turn continue from the sequence of word
components stored in the memory; and B

a word component adder (;f the processor adding the user input word component and
the intermediate word components to the sequence of word components stored
in the memory.

In an embodiment, the word component determiner determined that the user input
word component is not a valid subsequent word component.

In an embodiment, the one or more intermediate word components consist of a
punctuation mark.

In an embodiment, the method further comprises:

in response to the processor receiving the user input:

an alternative word component locator of the processor locating an alternative
word component from an alternative word component database comprising
one or more sets of alternative word components associated with respective
word components, based on the user input word component;

the word component determiner determining that the alternative word component
is a valid subsequent word component continuing from the sequence of word
components stored in the memory based on the set of valid words located by
the word locator; and

the word component adder adding the alternative input word component to the
sequence of word components stored in the memory.

In an embodiment, the alternative word component locator locates the alternative
word component based on the user input word component in response to a determination by
the word component determiner that the user input word component is not a valid
subsequent word component.

In a fourth aspect, the present invention provides a method of assembling a word
comprising a sequence of word components according to one or more word assembly
conventions, the method comprising:

a memory storing a sequence of one or more word components of the word,;

a word locator of a processor locating a set of one or more additional valid words

from a plurality of possible words stored in a words database, each additional
valid word comprising a sequence of one or more word components

corresponding to a subset of the sequence of word components stored in the

memory;

10

15

20

25

30

35

CLAIMS:

1. A method of assembling a word comprisifig a sequence of word
components according to one or more word asgsembly conventions, the
method comprising:

a memory storing a sequence of one or more word components of the
word;

a word locator of a processor locating both a set of one or more valid
words and a set of one or more additional valid words from a plurality of
possible words stored in a words database, each valid word comprising a
sequence of one or more word components corresponding to the sequence of
word components stored in the memory, each additional valid word
comprising a sequence of one or more word components corresponding to a
subset of the sequence of word components stored in the memory;

the processor receiving a user input from a keyboard device having a
plurality of keys respectively associated with a plurality of possible word
components, the received user input corresponding to one of the keys of the
keyboard device; '

a word component determiner of the processor determining whether or
not a user input word component is a valid subsequent word component that
validly continues from the sequence of word components stored in the
memory based on both the set of valid words and the set of additional valid
words located by the word locator, the user input word component being the
possible word component associated with the key of the keyboard device
corresponding to the user input received by the processor; and

a word component adder of the processor adding the user input word
component to the stored sequence of word components of the word, when the
word component determiner determines that the user input word component is
a valid subsequent word component that validly continues from the sequence
of word components stored in the memory based on both the located set of
valid words and the located set of additional valid words,

wherein the processor ignores the user input, when the word
component determiner determines that the user input word component is not
a valid subsequent word component that validly continues from the sequence
of word components stored in the memory based on both the located set of
valid words and the located set of additional valid words.

2. A method as claimed in claim 1, further comprising:

10

15

20

25

30

35

- 71 -

a display controller of the processor controlling a display to display the
keys of the keyboard device; and
in response to the word locator locating the set of valid words:
the word component determiner determining a set of one or
more valid subsequent word components based on the set of valid words
located b&/ the word locator, wherein each valid subsequenf word component
validly continues from the sequence of word components stored in the
memory; and
the display controller controlling the display to modify the display
of the key associated with each valid subsequent word component.

3. A method as claimed in claim 2, further comprising the display
controller controlling the display to display one or more, or all, of the valid
words located by the word locator, in response to the word locator locating the
set of valid words.

4. A method as claimed in claim 1, wherein each word component is a
Latin alphabetic letter.

5. A method as claimed in claim 1, wherein the possible word
components comprise the 26 Latin alphabetic letters.

6. A method as claimed in claim 1, wherein the keyboard device is a
software-implemented keyboard displayed on a display.

7. A method as claimed in claim 1, further comprising the display
controller controlling the display to display one or more, or all, of the additional
valid words located by the word locator.

8. A method as claimed in claim 1, wherein:
each of the possible words stored in the words database is categorized

into one of a plurality of word categories; and
the set of valid words located by the word locator is based on the word

category of a previous assembled word.

9. A controller for assembling a word comprising a sequence of word
components according to one or more word assembly conventions, the
controller comprising:

10

15

N
[}

25

30

35

- 72 -

a memory for storing a sequence of one or more word components of
the word; and
a processor arranged to:

locate both a set of one or more valid words and a set of one or
more additional valid words from a plurality of possible words stored in a
words database, each valid word comprising a sequence of one or more word
components corresponding to the sequence of word components stored in the
memory, each additional valid word comprising a sequence of one or more
word components corresponding to a subset of the sequence of word
components stored in the memory;

receive a user input from a keyboard device having a plurality of
keys respectively associated with a plurality of possible word components, the
received user input corresponding to one of the keys of the keyboard device;

determine whether or not a user input word component is a valid
subsequent word component that validly continues from the sequence of word
components stored in the memory based on both the located set of valid
words and the located set of additional valid words, the user input word
component being the possible word component associated with the key of the
keyboard device corresponding to the user input received by the processor;
and

when the processor determines that the user input word
component is a valid subsequent word component that validly continues from
the sequence of word components stored in the memory based on both the
located set of valid words and the located set of additional valid words, add
the user input word component to the stored sequence of word components of
the word; or

when the processor determines that the user input word
component is not a valid subsequent word component that validly continues
from the sequence of word components stored in the memory based on both
the located set of valid words and the located set of additional valid words,
ignore the user input.

10. A controller as claimed in claim 9, wherein the processor is further
arranged to:

control a display to display the keys of the keyboard device; and

in response to a location of the set of valid words:

determine a set of one or more valid subsequent word
components based on the set of valid words located by the processor,

10

15

20

25

30

35

- 73 -

wherein each valid subsequent word component validly continues from the
sequence of word components stored in the memory; and

control the display to modify the display of the key associated
with each valid subsequent word component.

11ﬂ.} A controller as claimed in claim 10, wherein thé processor is further
arranged to control the display to display one or more, or all, of the located
valid words, in response to a location of the set of valid words.

12. A controller as claimed in claim 9, wherein each word component is a
Latin alphabetic letter.

13. A controller as claimed in claim 9, wherein the possible word
components comprise the 26 Latin alphabetic letters.

14. A controller as claimed in claim 9, wherein the keyboard device is a
software-implemented keyboard displayed on a display.

15. A controller as claimed in claim 9, wherein the processor is further
arranged to control the display to display one or more, or all, of the located
additional valid words.

16. A controller as claimed in claim 9, wherein:

each of the possible words stored in the words database is categorized
into one of a plurality of word categories; and

the location of the set of valid words is based on the word category of a
previous assembled word.

17. Computer program code which when executed implements a method
as claimed in claim 1.

18. A computer readable medium comprising computer program code as
claimed in claim 17.

19. A device comprising a controller as claimed in claim 9.

Tyest

Year Test:Tear: Years:?

{Testl
H
i
i

esting . Testi
e R Y E B

| Yesti
i

Testin.g Yesti

ZEUELUELER

By:

Yesti; e |

CHOMLEY CONSULTING PTY. LTD.
Applicant

LLO & ASSOCIATES

Vo

ASTERIA L. MERCADO

E.B.ASTU

Testit;

r

t

! o
| b
g -

Texture | Testi

o)

2

FIGURE 28A
el ——

[Im’

o R

FIGURE 28B

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATES

o V)

ASTERIAT. MERCADO

Tap to compose _:“ T - e - ’:}_eé -
2 ! Ten Tea Text Test ITell | Te €| |[Test Tests Tested: Testing: 4
T T | AR '

Tap to compose e I T Tes 4
N ; L) [
Test : Tests Tested Testing | €0

FIGURE 35A

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATE

By: me |
ASTERIA L. MERCADC

- 10
Z

Aar’cphone

..
..

FIGURE 1A

CHOMLEY CONSULTING PTY. LTD.

Applicant SR
E.B. ASTUDILLO & ASSOCIATES
B i/

ASTERIA . MERCADO

FIGURE 1B

CHOMLEY CONSULTING PTY. LTD. -
Applicant

E.B. ASTUDILLO & ASSOCIATES
By: 2oy
ASTERIAI. MERCADO

10

Smartphone

Touchscreen
20

Userinputs

30
Z

Controller

Input and output
interface
60

>

$
Memory

90
Processor

80

Commands

FIGURE 2

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTURILLO & ASSOCIATES
By: T/

ASTERIA . MERCADO

30

Controller 90
/

Memory
Words database Alternative letter Valid words set Added letters set Valid subsequent
920 database 990 960 letters set
20 930 = = 980
80 :___T
/
Processor 860 850
bl / Key determiner
Letter determiner Word analyzer 820
Key position Valid words set
determiner size determiner
863 853 Common Word locator ’
letter 830 Input and
determiner output
Closest key Letter number 859 1 interface
determiner comparator . 60
866 856 Display controller
—— — 890
Alternative letter Valid subsequent letters
locator determiner
869 858 Letter adder
880

FIGURE 3

CHOMLEY CONSULTING PTY. LTD. .

By:

Applicant
E.B. ASTURILLO & ASSQCIATES

ASTERIA L MERCADO

]

]

! . Input and output interface ['

> mmmm—-

: £0 | Valid subsequent |

' e L L L L EE DRt Eiy » lettersset

: ' : 980 !
Word e e e o=)

' ord analyzer 850 :

S O e

: Valid k’\:‘ii '

T o | subsequent | |, 3 P gmememmmmmmmmos .
. letters , L added et '
' determiner Set of Keydeterminer | | - de 9tgoers set ! _
1 858 valid words 820 Cr 960 ;
! LI P 1
i v T
! X [{

i | Valid subsequent | o+ __ o __ . !

' letters '

! y (o

! 1 | jmmmmm e m e 1

: . P -t -1]
I Display controller Word locator I D | i__4 Worddatabase !
; 890 ' Setof 830 r-y | 920 '
"""" hd iufuiudinds Sufniabeiabaiabel s Sl B }

valid words - e e 1
Added o
letter o
Added : t
letter v
Valid subsequent Input ' '

Letteradder |, letter Letter determiner || letter e -

880 860 PRI S 1,1 Valid words set !

T ! 9@ |

s e :

! Input letter 1

FIGURE 4

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATES

By: (s,

ASTERIAIL. MERCADO

860

AN s

Key determiner
820

Input
letter

980

Letter determiner

Key position
determiner
863

Closest key
determiner
866

Valid subsequent

letter

Letter adder
880

FIGURE 5

Word locator
830

Set of

850
4

valid words

Word analyzer

Valid words set
size determiner
853

Letter number
comparator
856

Display controller
890

960

Valid words set
990

FIGURE 6

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDH.LO & ASSOCIATES

i)

ASTERIA L MERCADO

860

Key determiner
820

Input
letter

A 4

Letter determiner

Alternative letter
locator
869

Valid subsequent
letter

A4

Letter adder
880

, Valid subsequent
! letters set
! 980

y Alternative letter
N database
t 230

FIGURE 7

Word locator
830

Z ,

Set of

850 valid words

Word analyzer

Common letter
determiner
859

Common letter or

letters

Letter adder
880

I

Display controller
890

990

: Added letters set
960

FIGURE 8

Applicant

CHOMLEY CONSULTING PTY. LTD

E.B. ASTUD!

LLO & ASSOCIATES
By: /mm/

ASTERIA . MERCADO

Display keys of a keyboard

by 110

Receive userinput
corresponding to key
associated with a letter
120

Does associated
letter corresponds to
avalid subsequent
letter, based on the
set of valid words?

Adding associated letter to
> memory
150

Locating a set of validwords
based onletters stored in | |
memory

160

v

Display set of valid words,
and modify the display of
keys associated with valid
subsequent letters
190

FIGURE 9

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSQCIATES
By: /

ASTIERIA . MERCADO

Receive user input
corresponding to key

associated with a lefter
120

e e s e

Adding associated letter to
memory
150

Locating a set of alternative

valid words based on subset of
letters stared in memory
162

F 3

v

Display set of alternative valid words, and
modify the display of keys associated with
alternative valid subsequent letters
192

FIGURE 10

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDJLLO & ASSOCIATES
By:

ASTERIA L. MERCADO

Receive user input
corresponding to key

A 4

associated with a letter
120

Locating a set of valid words
based on letters stored in

memary
160

Was only one
valid word
located?

173

176

Does
CompaosingWord
and
PrimaryValidWord
have same number
of letters

Apply a first modification to the

display of the valid word
194

Apply a second modification to

the display of the valid word
196

Apply a third modification to the

3

display of the valid word
198

FIGURE 11

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDMLLO & ASSOCIATES

By:
ASTERIA . MERCADO

Receive user input
corresponding to key
associated with a letter

120

A A

Locating a set of valid words
based on letters stored in
memory
160

Does each of the located valid
words comprises a sequence of
letters that (i) are common to all
valid words and (ii) validly
continues fromthe letters stored
in memory?
183

Add the sequence of letters
that (i) and (ii)
186

FIGURE 12

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. AS%ILLO & ASSOCIATES
By:

ASTERIA L. MERCADO

Receive user input
corresponding to key

associated with a letter
120

e = o o e

Adding associated letter to

memory
150
[P s e e o e e e e o o 0 0 40 4t 48 R A A S A G A S e - o o -i
]
i
]
i
Is the previous '
added word a No i
noun? !
163 i
i
1
1
]
i
1
]
¥ :
]
i
Locating a set of non-noun Locating a set of valid words !
valid words based on letters based on letters stored in :
stored in memory memory i
166 168 ;
i
]
J

Display set of valid words,
and modify the display of
keys associated with valid
subsequent letters
190

[y

FIGURE 13

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASﬁOCIATES

By: ”MWA/

ASTERIA L. MERCADO

valid words?

Does associated letter
corresponds to a valid
subsequent letter,
based on the set of

130

Adding associated letter. to

memory
150

A4

Determining a key from the
keys associated with valid
subsequent letters that is

displayed closest tothe key
corresponding to the user
input
131

Displaying a pop-up preview
of the letter associated with
the determined key
133

!

Locating a set of valid words
based on letters stored in
memory
160

Adding previewed letter to
memory
151

—————

r 3

FIGURE 14

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATES

By: m’z/l/ \/

ASTERIAL MERCADO

Receive user input
corresponding to key

associated with a letter
120

Does associated
letter corresponds to
a valid subsequent
letter, based on the
set of valid words?

Adding associated letter to
memory

135 ik

b 4

Does associated
letter corresponds to
a valid further
subsequent letter,
based on the set of
valid words?

v

Add one or more
intermediate characters, and
associated letter to memory

183

Locating a set of valid words
<---- Dased onletters stored in [,

memory
160

FIGURE 15

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATES
By: Wm.w
ASKERIA L. IMERCADO

1 .

Receive user input

. corresponding to key P
associated with a letter
120
Add associated letter to
memory
151

130

Does associated
letter corresponds to
a valid subsequent
letter, based on the
set of valid words?

Locate alternative letter
based on associated letter =
138

139

Does alternate letter
corresponds to a
valid subsequent

fetter, based on the

set of valid words?

Add alternative lefter to
memory
158

Locate a set of valid words
based on letters stored in
memory
160

P (ynpupn

F 3

FIGURE 16

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUPILLO & ASSOCIATES

By: ST/

ASTERIA L. MERCADO

1§

Receive user input

Display keys of a keyboard
110

corresponding to key

No

associated with a
punctuation mark
123

¥

Add associated punctuation
mark to memory
173

Is associated
punctuation mark a
terminating
punctuation mark?

Adding space character to
memory
178

FIGURE 17

By:

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B.ASTUDILLC & ASSOCIATES

ﬂ@?ﬂ%\/

ASTERIAI. MERCADO

FIGURE 18B

CHOMLEY CONSULTING PTY. LTD
Applicant

E.B. ASTUPILLO & ASSOCIATES

By: W’/T}%‘WD\/

ASTERIA T MERCADO

Testing

Testing ,

7160

B
el

&

Testing’ 17160 i Testingy 74160
=+ =3
()

Testing -

ap to compose

FIGURE 19A

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATES
. i
By: //"V

ASTERIA 1. MERCADO

ihap o compose

’Ie_sj' ”'”1! Test AL
{

,l .,

FIGURE 19B

g BN s B 67 = oy
{ -1
S S

, Pl
|
Ten Tea| Text Test Tell @Q Tea Yes Red | Test| Test: 49

FIGURE 190

CHOMLEY CONSULTING PTY. LTD..
Applicant

E.B. ASTUDILLO & ASSOCIATES ’
By: J
ASITERIA . MERCADO

Test

Testerd Cerm
o |

~82180

{akied ;

!
i

Test

ok
;i s o

. ;) e
Tested | Rested| Yesterda §p 4

FIGURE 19E

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B.ASTUDILLO & ASSOCIATES
By: '

ASTERIA L. MERCADO

FIGURE 20A

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUZ;LLO & ASSCCIATES
By:

VLl

ASTERIA L. MERCADO

[

Test; Tray | Tear.| Rest|
55] 3 iy o

310

_T_e_sﬂ arise TESd 3110 |

FIGURE 21B

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDI.LO & ASSOCIATES

By. Y,

ASTERIA 1. MERCADO

’T_E_-iﬁ 47180

E C
Test Tests | Tested | Testing - 4

FIGURE 22B

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B. ASTUDILLO & ASSOCIATES

By: W‘/M\/

ASTERIA . MERCADO

ird s | Tim| o |

f Bl B

FIGURE 22C
Test ,,.w} [Testing] o |
[i ;
ITes(in Testi: ‘ l

|47 23
ek o Yorci P
%I.ci i 1ed .._i st T [t i o -

CHOMLEY CONSULTING PTY. LTD.
Applicant

E.B.ASTUDILLO & AS§OCIATES
By: U
ASTERIA I MERCADO

	Page 1 - BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - CLAIMS
	Page 72 - CLAIMS
	Page 73 - CLAIMS
	Page 74 - CLAIMS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - DRAWINGS
	Page 84 - DRAWINGS
	Page 85 - DRAWINGS
	Page 86 - DRAWINGS
	Page 87 - DRAWINGS
	Page 88 - DRAWINGS
	Page 89 - DRAWINGS
	Page 90 - DRAWINGS
	Page 91 - DRAWINGS
	Page 92 - DRAWINGS
	Page 93 - DRAWINGS
	Page 94 - DRAWINGS
	Page 95 - DRAWINGS
	Page 96 - DRAWINGS
	Page 97 - DRAWINGS
	Page 98 - DRAWINGS
	Page 99 - DRAWINGS
	Page 100 - DRAWINGS
	Page 101 - DRAWINGS

