

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 December 2010 (16.12.2010)

(10) International Publication Number
WO 2010/144248 A1

(51) International Patent Classification:

B64D 45/00 (2006.01)

(21) International Application Number:

PCT/US2010/036082

(22) International Filing Date:

25 May 2010 (25.05.2010)

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12/484,151 12 June 2009 (12.06.2009) US

(71) Applicant (for all designated States except US): **THE BOEING COMPANY** [US/US]; 100 North Riverside Plaza, Chicago, Illinois 60606-2016 (US).

(72) Inventors; and

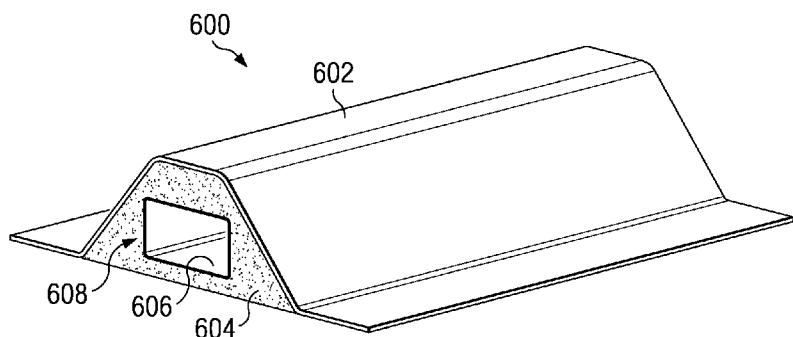
(75) Inventors/Applicants (for US only): **LEWIS, Dennis M.** [US/US]; 14407 4TH Ave W, Lynwood, Washington 98087 (US). **GREEN, William P.** [US/US]; 410 NE 190th Pl, Shoreline, Washington 98155 (US). **BOMMER, Jason P.** [US/US]; 1723 N. Fife St, Tacoma, Washington 98406 (US).

(74) Agents: **RAD, Fariba K** et al.; The Boeing Company, P.O. Box 2515, MC 110-SD54, Seal Beach, California 90740-1515 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:


- as to the identity of the inventor (Rule 4.17(i))
- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: METHOD AND APPARATUS FOR WIRELESS AIRCRAFT COMMUNICATIONS USING FUSELAGE STRINGERS

FIG. 6

(57) Abstract: A method and apparatus for transmitting wireless signals. An apparatus comprises a stringer (600) having a channel and a waveguide (608) located within the channel. The waveguide is capable of carrying a number of wireless signals.

**METHOD AND APPARATUS FOR WIRELESS AIRCRAFT COMMUNICATIONS
USING FUSELAGE STRINGERS**

BACKGROUND INFORMATION

5

1. Field:

[0001] The present disclosure relates generally to aircraft and, in particular, to network data processing systems in aircraft. Still more particularly, the present disclosure 10 relates to a method and apparatus for a wireless communications and power system using stringers in a network data processing system in an aircraft.

2. Background:

[0002] Aircraft contain many devices that use power and exchange information. These devices include, for example, without limitation, flight control computers, in-flight entertainment systems, line replaceable units, environmental control systems, sensors, and other suitable devices. Many of 20 these devices may be non-critical and may require low amounts of power. Examples of these devices include a proximity sensor, a temperature sensor, an accelerometer, and/or some other suitable type of sensor. These sensors and other types of sensors may be used in a health monitoring system on an aircraft to perform 25 health monitoring of the aircraft.

[0003] The sensors in a healthmonitoring system may monitor various conditions during the operation of an aircraft. For example, sensors monitor temperatures of various devices, vibrations, force, and/or other relevant conditions. This 30 information is sent to a line replaceable unit or other type of data processing system in the health monitoring system. The information is analyzed to identify maintenance needs for the aircraft. As a result, these types of sensors add benefits including condition-based maintenance and increased safety.

[0004] Implementing a health monitoring system in an aircraft involves additional wiring used to provide the exchange of information and power between different devices in the health monitoring system. The wiring for a health monitoring system 5 adds weight, cost, and/or maintenance burdens to an aircraft. These factors may reduce performance and/or increase operating costs.

[0005] Therefore, it would be advantageous to have a method and apparatus that takes into account one or more of the issues 10 discussed above, as well as possibly other issues.

SUMMARY

[0006] In one advantageous embodiment, an apparatus comprises a stringer having a channel and a waveguide located within the channel. The waveguide is capable of carrying a number of wireless signals.

5 **[0007]** In another advantageous embodiment, an aircraft network data processing system comprises a plurality of composite stringers and a plurality of devices. The plurality of composite stringers is attached to a skin of an aircraft and is capable of carrying a number of wireless signals. The number of wireless signals is selected from at least one of an information signal and a power signal. Each stringer in the plurality of 10 composite stringers comprises a composite material having a first channel, foam located in the first channel and having a second channel, and a waveguide located in the second channel. The plurality of devices is associated with the plurality of composite stringers and is capable of exchanging the number of 15 wireless signals carried in the plurality of composite stringers.

20 **[0008]** In yet another advantageous embodiment, a method is present for transmitting wireless signals in a vehicle. A number of wireless signals are transmitted from a first device 25 into a number of waveguides located in a number of stringers in the vehicle. The number of wireless signals is carried in the number of waveguides in the number of stringers. The number of wireless signals is received from the number of waveguides at a second device.

30 **[0009]** The features, functions, and advantages can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments in which further details can be seen with reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The novel features believed characteristic of the advantageous embodiments are set forth in the appended claims. The advantageous embodiments, however, as well as a preferred mode of use, further objectives, and advantages thereof, will best be understood by reference to the following detailed description of an advantageous embodiment of the present disclosure when read in conjunction with the accompanying drawings, wherein:

[0011] **Figure 1** is a diagram illustrating an aircraft manufacturing and service method in accordance with an advantageous embodiment;

[0012] **Figure 2** is a diagram of an aircraft in which an advantageous embodiment may be implemented;

[0013] **Figure 3** is a diagram of a network environment in accordance with an advantageous embodiment;

[0014] **Figure 4** is a diagram illustrating a portion of a fuselage of an aircraft in accordance with an advantageous embodiment;

[0015] **Figure 5** is a diagram illustrating composite stringers connected to each other in a network in accordance with an advantageous embodiment;

[0016] **Figure 6** is a diagram illustrating a cross-sectional perspective view of a hat-shaped stringer with a waveguide in accordance with an advantageous embodiment;

[0017] **Figure 7** is a diagram of a cross-sectional perspective view of a portion of a composite stringer in accordance with an advantageous embodiment;

[0018] **Figure 8** is a diagram illustrating a cross-sectional view of a waveguide with an access point in accordance with an advantageous embodiment;

[0019] **Figure 9** is a diagram of a composite stringer with a location for an access point in accordance with an advantageous embodiment;

5 [0020] **Figure 10** is a diagram of a data processing system in accordance with an advantageous embodiment; and

[0021] **Figure 11** is a flowchart of a process for transmitting wireless signals in a vehicle in accordance with an advantageous embodiment.

DETAILED DESCRIPTION

[0022] Referring more particularly to the drawings, 5 embodiments of the disclosure may be described in the context of aircraft manufacturing and service method 100 as shown in **Figure 1** and aircraft 200 as shown in **Figure 2**. Turning first to **Figure 1**, a diagram illustrating an aircraft manufacturing and service method is depicted in accordance with an advantageous 10 embodiment. During pre-production, exemplary aircraft manufacturing and service method 100 may include specification and design 102 of aircraft 200 in **Figure 2** and material procurement 104.

[0023] During production, component and subassembly 15 manufacturing 106 and system integration 108 of aircraft 200 in **Figure 2** takes place. Thereafter, aircraft 200 in **Figure 2** may go through certification and delivery 110 in order to be placed in service 112. While in service by a customer, aircraft 200 in **Figure 2** is scheduled for routine maintenance and service 114, 20 which may include modification, reconfiguration, refurbishment, and other maintenance or service.

[0024] Each of the processes of aircraft manufacturing and service method 100 may be performed or carried out by a system integrator, a third party, and/or an operator. In these 25 examples, the operator may be a customer. For the purposes of this description, a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors; a third party may include, without limitation, any number of vendors, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.

[0025] With reference now to **Figure 2**, a diagram of an aircraft is depicted in which an advantageous embodiment may be implemented. In this example, aircraft 200 is produced by

aircraft manufacturing and service method 100 in **Figure 1** and may include airframe 202 with a plurality of systems 204 and interior 206. Examples of systems 204 include one or more of propulsion system 208, electrical system 210, hydraulic system 212, environmental system 214, and aircraft network data processing system 216. Any number of other systems may be included. Although an aerospace example is shown, different advantageous embodiments may be applied to other industries, such as the automotive industry.

[0026] Apparatus and methods embodied herein may be employed during any one or more of the stages of aircraft manufacturing and service method 100 in **Figure 1**. For example, components or subassemblies produced in component and subassembly manufacturing 106 in **Figure 1** may be fabricated or manufactured in a manner similar to components or subassemblies produced while aircraft 200 is in service 112 in **Figure 1**.

[0027] Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during production stages, such as component and subassembly manufacturing 106 and system integration 108 in **Figure 1**, for example, without limitation, by substantially expediting the assembly of or reducing the cost of aircraft 200. Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof may be utilized while aircraft 200 is in service 112 or during maintenance and service 114 in **Figure 1**.

[0028] As an illustrative example, in one or more advantageous embodiments, an aircraft network data processing system, such as aircraft network data processing system 216, may be implemented during system integration 108 in **Figure 1**. Aircraft network data processing system 216 may be used to distribute information and power.

[0029] This type of network may include, for example, without limitation, a health monitoring system, a flight control system, an in-flight entertainment system, an environmental control

system, and/or any other type of system which exchanges information and/or power in aircraft 200. In yet other advantageous embodiments, aircraft network data processing system 216 may be implemented during maintenance and service 114 5 in **Figure 1**. During maintenance and service 114, upgrades to aircraft 200 may be performed to include aircraft network data processing system 216.

[0030] The different advantageous embodiments recognize and take into account a number of different considerations. For 10 example, the different advantageous embodiments recognize and take into account that wireless networks may be used to distribute information and power within an aircraft. The different advantageous embodiments, however, recognize that this type of system may have a number of different problems. For 15 example, with a wireless network using transmitters and repeaters within a cabin or fuselage, interference may occur. For example, without limitation, people, galley carts, and/or other items may interfere with the propagation of wireless signals within the aircraft.

[0031] The different advantageous embodiments recognize and take into account that increased power may be needed to transmit the signals for information and power when these signals are transmitted within the cabin or other open areas of the fuselage. These types of signals may cause interference with 25 other devices and/or signals.

[0032] Thus, the different advantageous embodiments provide a method and apparatus for distributing signals within an aircraft. In one advantageous embodiment, a stringer in the aircraft has a channel. A waveguide is located within the 30 channel. The waveguide is capable of carrying a number of signals. In other words, the waveguide is configured to carry the number of signals. The number of signals is selected from at least one of an information signal and a power signal in the illustrative examples.

[0033] As used herein, the phrase "at least one of", when used with a list of items, means that different combinations of one or more of the listed items may be used and only one of each item in the list may be needed. For example, "at least one of item A, item B, and item C" may include, for example, without limitation, item A or item A and item B. This example also may include item A, item B, and item C or item B and item C.

[0034] With reference now to **Figure 3**, a diagram of a network environment is depicted in accordance with an advantageous embodiment. In this illustrative example, network environment **300** may include network data processing system **302**. Network data processing system **302** may take the form of aircraft network data processing system **304** located within aircraft **306** in network environment **300**.

[0035] Network data processing system **302** has network **308** to which number of devices **310** is associated. Number of devices **310** may be any device capable of transmitting and/or receiving at least one of information **312** and power **314** using network **308**. A device in number of devices **310** may be associated with network **308** if the device is capable of transmitting and/or receiving at least one of information **312** and power **314** using network **308**.

[0036] Information **312** may contain information such as, for example, data, commands, programs, and/or other suitable information. Power **314** may be used to power number of devices **310**. A number, as used herein, with reference to items, refers to one or more items. For example, number of devices **310** is one or more devices. In these illustrative examples, number of devices **310** may be, for example, without limitation, number of line replaceable units **316**, number of computers **318**, number of sensor units **320**, number of actuators **322**, and/or any other suitable type of device.

[0037] Network **308** is a medium that provides links **324** between number of devices **310**. Links **324** may carry information **312** and/or power **314**. Links **324** may be facilitated by wires,

wireless communication links, fiber optic cables, transmission lines, air interfaces, and/or other suitable types of components. Information **312** and power **314** may be transmitted or carried within links **324** as signals **326**.

5 [0038] In the different illustrative examples, at least a portion of links **324** may be provided using number of stringers **328**. Number of stringers **328** may be located in interior **330** of aircraft **306**. Number of stringers **328** may have number of waveguides **332**.

10 [0039] In these illustrative examples, number of stringers **328** may take the form of number of composite stringers **333**. In these illustrative examples, number of waveguides **332** and number of stringers **328** may carry signals **326** in the form of number of wireless signals **334**. Number of wireless signals **334** may 15 include at least one of information signal **336** and power signal **338**.

20 [0040] In these illustrative examples, number of stringers **328** may be connected to structures within aircraft **306** such as, for example, without limitation, fuselage **340**, skin **342**, ribs **344**, frame **346**, and/or other suitable structures within aircraft **306**. Number of stringers **328** may be noncontiguous. In other words, number of stringers **328**, when more than one stringer is present, may not be connected to each other within network **308**.

25 [0041] As a result, number of stringers **328** may be connected to each other to form network **308**. Further, within network **308**, if more than one stringer is present within number of stringers **328**, these stringers may be connected to each other. For example, without limitation, stringer **348** and stringer **350** in 30 number of stringers **328** may be connected to each other using transmission line **352**. Transmission line **352** may be, for example, without limitation, any structure capable of conducting information signal **336** and/or power signal **338**. For example, without limitation, transmission line **352** may be a coaxial

cable, an optical cable, and/or some other suitable type of cable.

[0042] In some illustrative examples, number of antennas 354 may be connected to number of stringers 328 to transmit number 5 of wireless signals 334 into local area 356 in which portion 358 of number of devices 310 may be located. Local area 356 may be any location within aircraft 306. For example, local area 356 may be in a crown of the cabin, between the skin panel in an interior wall of the cabin in aircraft 306, and/or some other 10 suitable location.

[0043] In the illustrative examples, composite stringer 360 is an example of a stringer within number of composite stringers 333. Composite stringer 360 may have channel 362. Foam 364 may be located within channel 362. Additionally, foam 364 also may 15 have channel 366.

[0044] Waveguide 368 is an example of a waveguide within number of waveguides 332 and is located within channel 366. Waveguide 368 may be comprised of conductive material 370 and/or dielectric material 372. Depending on the particular 20 implementation, waveguide 368 may be attached to wall 374 of channel 366. Of course, in other advantageous embodiments, waveguide 368 may take the form of structure 376 located within channel 366.

[0045] When waveguide 368 takes the form of conductive 25 material 370, conductive material 370 may be metal 378. As a specific example, metal 378 may be a coating applied to wall 374, a foil, a sheet, or some other suitable form of metal 378. In these illustrative examples, metal 378 may be, for example, without limitation, a copper foil. Metal 378 may be attached to 30 wall 374 through a number of different mechanisms. For example, without limitation, metal 378 may be applied using conductive paint, electrolysis metal vapor deposition, and/or other suitable mechanisms.

[0046] The illustration of network environment 300 in **Figure 3** is not meant to imply physical or architectural limitations to the manner in which different advantageous embodiments may be implemented. Other components in addition to and/or in place of 5 the ones illustrated may be used. Some components may be unnecessary in some advantageous embodiments. Also, the blocks are presented to illustrate some functional components. One or more of these blocks may be combined and/or divided into different blocks when implemented in different advantageous 10 embodiments.

[0047] For example, in some advantageous embodiments, network 308 may contain only number of stringers 328. Further, some stringers within number of stringers 328 may not include waveguides. As another example, in some advantageous 15 embodiments, only information 312 may be distributed through network 308. In other advantageous embodiments, a stringer within number of stringers 328 may contain multiple waveguides.

[0048] In the illustrative examples, waveguide 368 is located within channel 362 for composite stringer 360. In these 20 depicted examples, waveguide 368 is located within channel 366 within foam 364, which is located within channel 362. In other advantageous embodiments, waveguide 368 may be located within channel 362 in composite stringer 360 without foam 364. For example, waveguide 368 may be formed in channel 362 using 25 conductive material 370 and/or dielectric material 372.

[0049] Turning now to **Figure 4**, a diagram illustrating a portion of a fuselage of an aircraft is depicted in accordance with an advantageous embodiment. In this illustrative example, fuselage 400 is an example of a portion of a fuselage in 30 aircraft 200 in **Figure 2**.

[0050] Fuselage 400 has skin 402, which may be supported by structures, such as ribs 404. Stringers 406 may interconnect and/or run through ribs 404 in the direction of arrow 408. In

these illustrative examples, one or more of stringers **406** may have waveguides and carry wireless signals.

[0051] For example, stringers **410**, **412**, and **414** are attached to skin **402** and carry wireless signals **416**, **418**, and **420**.

5 Additionally, stringers **422** also may extend in the direction of arrow **424** within fuselage **400**. In this illustrative example, stringer **426** carries wireless signal **429**. These different wireless signals may be, for example, information signals and/or power signals.

10 [0052] Further, access points **428**, **430**, **432**, **434**, and **436** may provide access points to stringers **410**, **412**, **414**, and **426** to transmit wireless signals **416**, **418**, **420**, and **429** outside of the waveguides in these stringers. Access point **428** is integrated or located on stringer **410**. Access point **430** is located on stringer **412**, and access point **436** is located on stringer **414**. Access points **432** and **434** are located on stringer **426** in this illustrative example. These components form network **438** in fuselage **400**. Network **438** is an example of a network, such as network **308** in **Figure 3**.

20 [0053] With reference now to **Figure 5**, a diagram illustrating composite stringers connected to each other in a network is depicted in accordance with an advantageous embodiment. In this illustrative example, network **500** is an example of one implementation of network **308** in **Figure 3**. Network **500** may be comprised of composite stringer **502**, composite stringer **504**, and composite stringer **508**. Composite stringers **502**, **504**, and **508** are examples of composite stringers that may be connected to each other within number of stringers **328** in **Figure 3**.

[0054] These composite stringers are connected to each other using transmission lines **510** and **512**. The connection of these composite stringers in network **500** may form a bus. In this illustrative example, composite stringer **502** is connected to composite stringer **504** by transmission line **510**. Composite

stringer 504 is connected to composite stringer 508 by transmission line 512.

[0055] Input 514 provides an input for a signal from a radio frequency generator in these illustrative examples. Wireless signals may be transmitted through the waveguides in composite stringers 502, 504, and 508 to output 516, which may be connected to a sensor either by a transmission line or a wireless interface.

[0056] Turning now to **Figure 6**, a diagram illustrating a cross-sectional perspective view of a hat-shaped stringer with a waveguide is depicted in accordance with an advantageous embodiment. Composite stringer 600 is an example of an implementation of composite stringer 360 in **Figure 3**.

[0057] In this illustrative example, composite stringer 600 has a hat-shape. Composite stringer 600 is comprised of composite material 602, foam 604, and conductive material 606 for waveguide 608. In this illustrative example, waveguide 608 is a rectangular waveguide. Of course, other shapes for waveguide 608 may be selected. For example, waveguide 608 may be rectangular, oval, circular, or some other suitable shape.

[0058] With reference next to **Figure 7**, a diagram of a cross-sectional perspective view of a portion of a composite stringer is depicted in accordance with an advantageous embodiment. In this example, composite stringer 700 is an example of another implementation for composite stringer 360 in **Figure 3**.

[0059] In this illustrative example, composite stringer 700 comprises composite material 702, foam 704, and conductive material 706, which forms a structure for waveguide 708. In this example, conductive material 706 on side 710 of waveguide 708 may be formed against skin panel 712.

[0060] The examples of composite stringers illustrated in **Figures 6-7** may employ conductive materials in various forms as described above. For example, without limitation, if copper foil was used, an adhesive film or some other form of adhesive

may be applied to the copper foil. This adhesive film may be used to adhere the copper foil to the foam during the curing process.

[0061] Further, the illustrative examples show that the 5 waveguides do not need to be completely encompassed within the foam. For example, in **Figure 7**, portions of the waveguide may be located against a composite material for the stringer or against skin panel **712**. Also, although only a single waveguide is illustrated in these examples, other advantageous embodiments 10 may employ more than one waveguide that extends through the stringer.

[0062] Turning now to **Figure 8**, a diagram illustrating a cross-sectional view of a waveguide with an access point is depicted in accordance with an advantageous embodiment.

15 Composite stringer **800** may be used to implement composite stringers such as, for example, composite stringers **502**, **504**, and **508** in **Figure 5**. In this illustrative example, composite stringer **800** comprises composite material **802**, foam **804**, and conductive material **806** for waveguide **808**.

20 [0063] Conductive material **806** may be placed against wall **810** of foam **804** and skin panel **812**. Access point **814** may be created using coaxial cable **816**. Coaxial cable **816** may have center conductor **818** extend into cavity **820** of waveguide **808**. Center conductor **818** allows for a propagation of waves within cavity 25 **820** to travel through coaxial cable **816**. Coaxial cable **816** may terminate in component **821**. Coaxial cable **816**, with center conductor **818**, is an example a transmission line used as a probe in cavity **820**. Component **821** may be another device, antenna, stringer, or some other suitable component. In other 30 advantageous embodiments, an antenna may be integrated and/or placed into cavity **820** to form access point **814**.

[0064] Distance **822** may be a distance that center conductor **818** extends into cavity **820**. Distance **824** may be a distance from wall **826** to center conductor **818**. These distances may be

determined, in the illustrative examples, using a computer program to optimize the electrical performance of the coax-waveguide interface for the desired frequency range and selected waveguide size.

5 [0065] With reference now to **Figure 9**, a diagram of a composite stringer with a location for an access point is depicted in accordance with an advantageous embodiment. In this illustrative example, composite stringer **900** is an example of an implementation of composite stringer **360** in **Figure 3**.

10 [0066] Composite stringer **900** may be comprised of composite material **902**, foam **904**, and conductive material **906**. Conductive material **906** is located in channel **908** of foam **904** and forms waveguide **910** within composite stringer **900**. In this illustrative example, plated hole **912** may be located at distance **914** from end **916** of composite stringer **900**. Distance **914** may be determined by using a computer program to optimize the electrical performance of the coax-waveguide interface for the desired frequency range and selected waveguide size. The probe of **Figure 8** may be inserted in plated hole **912**.

20 [0067] Turning now to **Figure 10**, a diagram of a data processing system is depicted in accordance with an advantageous embodiment. Data processing system **1000** is an example of a device that may be present in number of devices **310** in **Figure 3**. In particular, data processing system **1000** may be used to 25 implement devices such as, for example, without limitation, number of line replaceable units **316** and number of computers **318** in **Figure 3**.

[0068] Data processing system **1000** may receive information from number of sensor units **320** and/or other devices within 30 number of devices **310** in **Figure 3**. In this illustrative example, data processing system **1000** includes communications fabric **1002**, which provides communications between processor unit **1004**, memory **1006**, persistent storage **1008**, communications unit **1010**, input/output (I/O) unit **1012**, and display **1014**.

[0069] Processor unit **1004** executes instructions for software that may be loaded into memory **1006**. Processor unit **1004** may be a set of one or more processors or may be a multi-processor core, depending on the particular implementation. Further, 5 processor unit **1004** may be implemented using one or more heterogeneous processor systems in which a main processor is present with secondary processors on a single chip. As another illustrative example, processor unit **1004** may be a symmetric multi-processor system containing multiple processors of the same 10 type.

[0070] Memory **1006** and persistent storage **1008** are examples of storage devices **1016**. A storage device is any piece of hardware that is capable of storing information, such as, for example without limitation, data, program code in functional 15 form, and/or other suitable information either on a temporary basis and/or a permanent basis.

[0071] Memory **1006**, in these examples, may be, for example, a random access memory or any other suitable volatile or non-volatile storage device. Persistent storage **1008** may take 20 various forms, depending on the particular implementation. For example, persistent storage **1008** may contain one or more components or devices. For example, persistent storage **1008** may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above.

[0072] Communications unit **1010**, in these examples, provides for communications with other data processing systems or devices. In these examples, communications unit **1010** is a 25 network interface card.

[0073] Input/output unit **1012** allows for input and output of 30 data with other devices that may be connected to data processing system **1000**. For example, input/output unit **1012** may provide a connection for user input through a keyboard, a mouse, and/or some other suitable input device. Further, input/output unit

1012 may send output to a printer. Display **1014** provides a mechanism to display information to a user.

[0074] Instructions for the operating system, applications, and/or programs may be located in storage devices **1016**, which 5 are in communication with processor unit **1004** through communications fabric **1002**. In these illustrative examples, the instructions are in a functional form on persistent storage **1008**. These instructions may be loaded into memory **1006** for execution by processor unit **1004**. The processes may be 10 performed by processor unit **1004** using computer-implemented instructions, which may be located in a memory, such as memory **1006**.

[0075] These instructions are referred to as program code, computer usable program code, or computer readable program code 15 that may be read and executed by a processor in processor unit **1004**. The program code in the different embodiments may be embodied on different physical or tangible computer readable media, such as memory **1006** or persistent storage **1008**.

[0076] The illustrations of data processing system **1000** in 20 **Figure 10** is not meant to imply physical or architectural limitations to the manner in which different devices may be implemented. Other sensor units and data processing systems may include other components in addition to or in place of the ones illustrated. Further, some advantageous embodiments may exclude 25 some of the components illustrated. For example, in some advantageous embodiments, display **1014** in data processing system **1000** may be unnecessary. .

[0077] With reference now to **Figure 11**, a flowchart of a process for transmitting wireless signals in a vehicle is 30 depicted in accordance with an advantageous embodiment. The process illustrated in **Figure 11** may be implemented in a network environment, such as network environment **300** in **Figure 3**. More specifically, the process illustrated in this figure may be implemented in network data processing system **302** in **Figure 3** in

a vehicle. This vehicle may take various forms, such as aircraft **306** in **Figure 3**.

[0078] The process begins by transmitting a number of wireless signals from a first device into a number of waveguides located in a number of stringers in a vehicle (operation **1100**). These wireless signals may be transmitted into a waveguide in the number of waveguides in operation **1100** by the first device. This transmission may be made through a cable or other connector connecting the first device to the waveguide.

[0079] Alternatively, the first device may transmit the number of wireless signals through an air interface, which is received at an antenna connected to the waveguide. In this manner, the first device is associated with this waveguide. The association, as illustrated in this example, may be a physical connection or a wireless connection that allows for transmission of the wireless signals from the first device into the waveguide in the number of waveguides. In this manner, these wireless signals may be transmitted into the waveguide.

[0080] The process then carries the number of wireless signals in the number of waveguides in the number of stringers (operation **1102**). The number of wireless signals is received from the number of waveguides at a second device (operation **1104**), with the process terminating thereafter. In this illustrative example, the number of wireless signals may be sent to the second device, which is associated with the number of waveguides.

[0081] The second device is associated with the number of waveguides by being able to receive the wireless signals from one or more of the number of waveguides. As with the first device, the second device may be connected to one or more of the waveguides at an access point. In other advantageous embodiments, the access point may have an antenna that radiates the wireless signals into an air interface that may be received by the second device.

[0082] The flowcharts and block diagrams in the different depicted embodiments illustrate the architecture, functionality, and operation of some possible implementations of apparatus and methods in different advantageous embodiments. In this regard, 5 each block in the flowchart or block diagrams may represent a module, segment, function, and/or a portion of an operation or step. In some alternative implementations, the function or functions noted in the block may occur out of the order noted in the figures. For example, in some cases, two blocks shown in 10 succession may be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

[0083] Thus, the different advantageous embodiments provide a method and apparatus for transmitting wireless signals. In one 15 advantageous embodiment, an apparatus comprises a stringer having a channel. A waveguide is located within the channel in which the waveguide is capable of carrying a number of wireless signals.

[0084] In the different advantageous embodiments, the stringer 20 may take the form of a composite stringer having a foam core in which the waveguide is located within a channel in the foam core. These stringers may be located in the interior of an aircraft. The stringers may be located along the skin panels of the aircraft or extend across the fuselage of the aircraft.

[0085] By incorporating waveguides into these stringers, the 25 different advantageous embodiments provide a capability to transmit information and/or power through these waveguides to different devices. With the use of these stringers, additional weight, complexity, and/or expense may be decreased. These 30 waveguides may be built into the aircraft during the manufacturing of the aircraft. In some advantageous embodiments, these types of stringers may be added to the aircraft during maintenance as an upgrade or refurbishment of aircraft.

[0086] Further, the use of stringers containing waveguides also reduces the amount of power needed to transmit wireless signals. The design of the waveguides may be such to allow for low power usage as compared to currently available wireless

5 systems. Also, with one or more of the different advantageous embodiments, the interference and/or reduction of power signals may be avoided as compared to the transmission of wireless signals through the cabin of an aircraft in which obstructions, such as people or carts, may be present.

[0087] The description of the different advantageous embodiments has been presented for purposes of illustration and description, and it is not intended to be exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in

15 the art.

[0088] Although the different advantageous embodiments have been described with respect to aircraft, the different advantageous embodiments also may be applied to other types of structures. For example, without limitation, the different

20 advantageous embodiments may be applied to vehicles, such as a spacecraft, a submarine, a surface ship, and/or some other suitable type of vehicle. The different advantageous embodiments may even be applied to structures that are stationary or non-mobile in addition to vehicles.

[0089] Further, different advantageous embodiments may provide different advantages as compared to other advantageous embodiments. The embodiment or embodiments selected are chosen and described in order to best explain the principles of the embodiments, the practical application, and to enable others of

30 ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.

CLAIMS:

What is claimed is:

5

1. An apparatus comprising:
a stringer having a channel; and
a waveguide located within the channel, wherein the
waveguide is capable of carrying a number of wireless signals.

10

2. The apparatus of claim 1 further comprising:
a plurality of devices associated with the stringer,
wherein the plurality of devices is capable of exchanging the
number of wireless signals carried in the waveguide.

15

3. The apparatus of claim 1, wherein the stringer is capable
of being attached to one of a skin on a fuselage of an aircraft,
a skin on a wing of the aircraft, a frame of the aircraft, and a
rib of the aircraft.

20

4. The apparatus of claim 2, wherein the plurality of devices
and the stringer are part of a network data processing system.

25 5. The apparatus of claim 4, wherein the network data
processing system is located in a vehicle.

30 6. The apparatus of claim 4, wherein the network data
processing system is selected from at least one of a health

monitoring system, a flight control system, an in-flight
entertainment system, and an environmental control system.

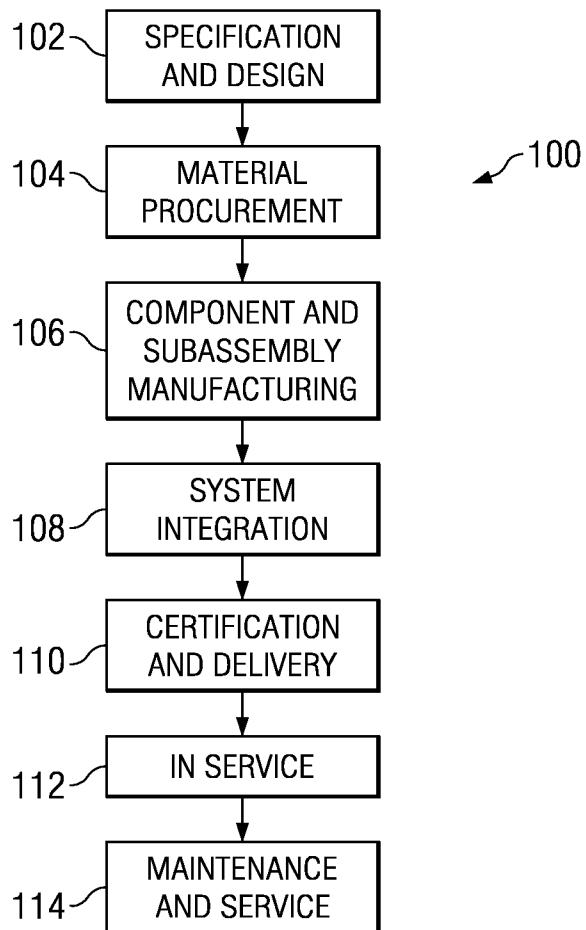
7. The apparatus of claim 1 further comprising:
a number of stringers, wherein each of the number of
stringers has an associated waveguide.

8. The apparatus of claim 1 further comprising:
an access point to the waveguide.

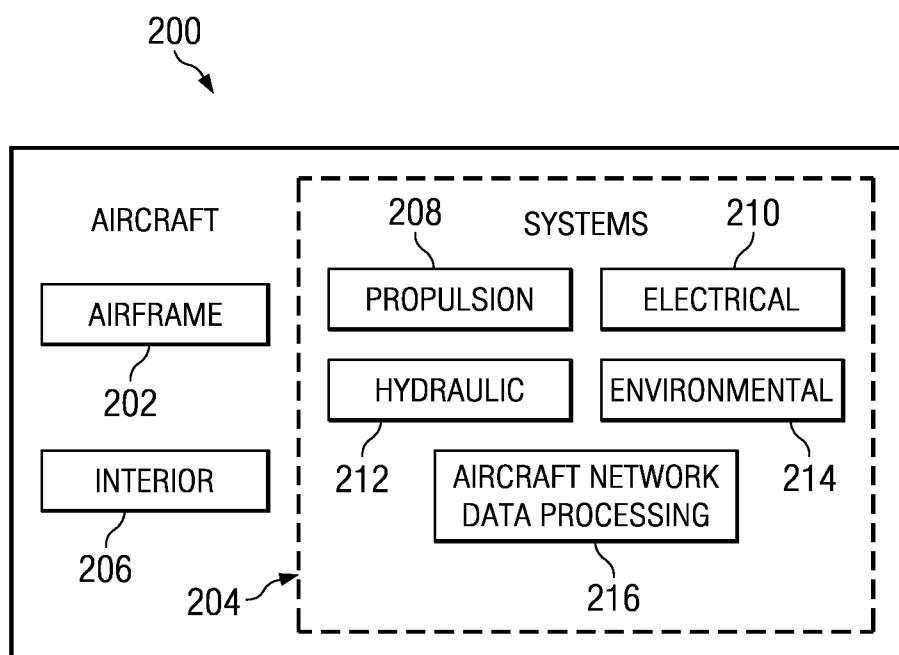
5 9. The apparatus of claim 8, wherein the access point
comprises one of a transmission line, a probe, and an antenna.

10. The apparatus of claim 1, wherein the stringer comprises:
a composite part having a first channel; and
10 foam located within the first channel, wherein the foam has
a second channel, wherein the waveguide is located within the
second channel.

15 11. The apparatus of claim 10, wherein the waveguide comprises
a metal material attached to a wall of the second channel.


12. The apparatus of claim 1 further comprising:
an aircraft, wherein the stringer is attached to an
interior of the aircraft.

20 13. The apparatus of claim 1, wherein the stringer comprises:
a composite stringer having the channel; and
a conductive material in the channel, wherein the
conductive material forms the waveguide.


25 14. A method for transmitting wireless signals in a vehicle,
the method comprising:
transmitting a number of wireless signals from a first
30 device into a number of waveguides located in a number of
stringers in the vehicle;
carrying the number of wireless signals in the number of
waveguides in the number of stringers; and

receiving the number of wireless signals from the number of waveguides at a second device.

15. The method of claim 14, wherein the number of waveguides in
5 the number of stringers are part of a network in the vehicle,
and wherein the network further comprises at least one of a
number of transmission lines, a number of optical cables, and a
number of air interfaces.

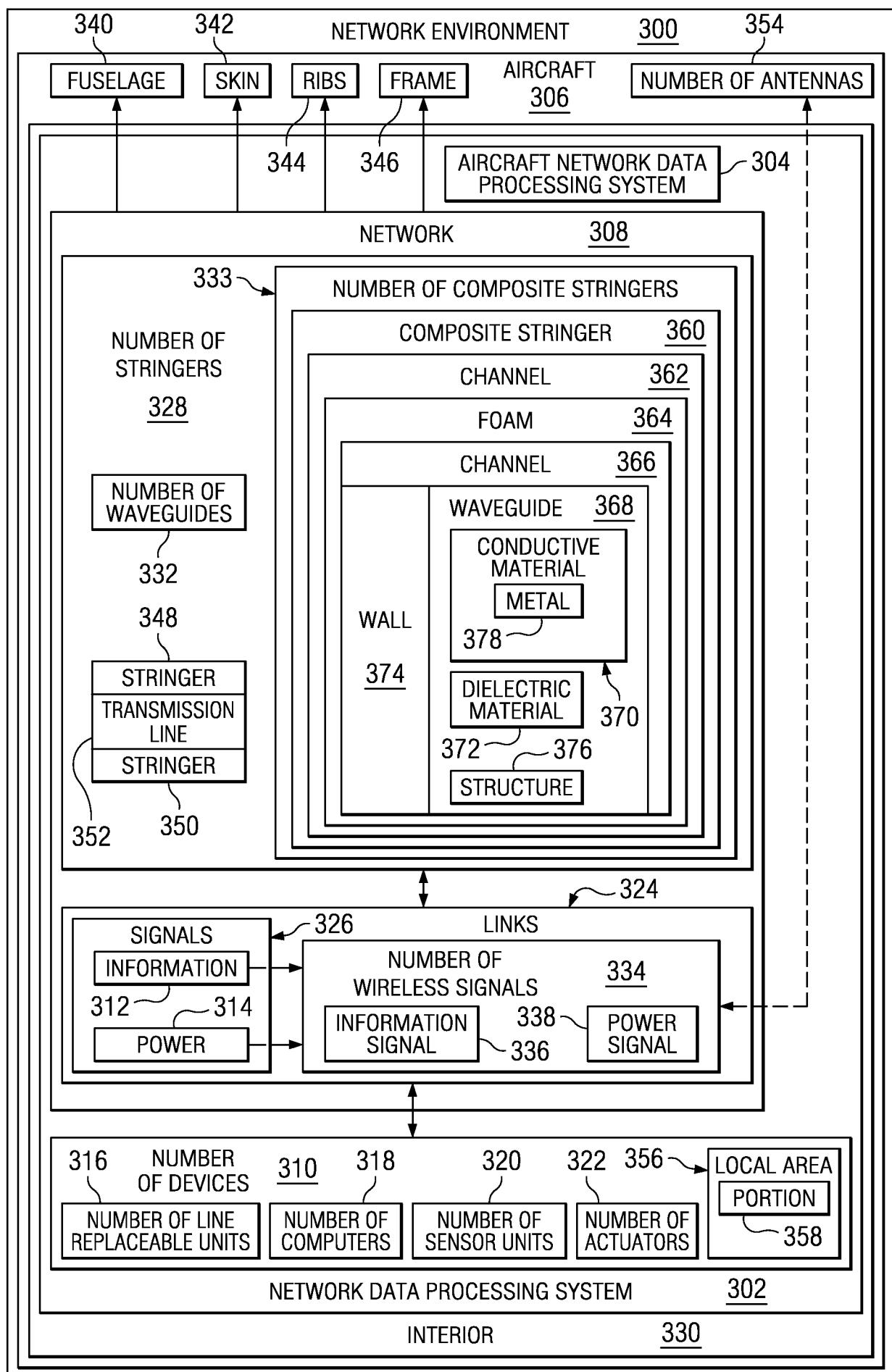
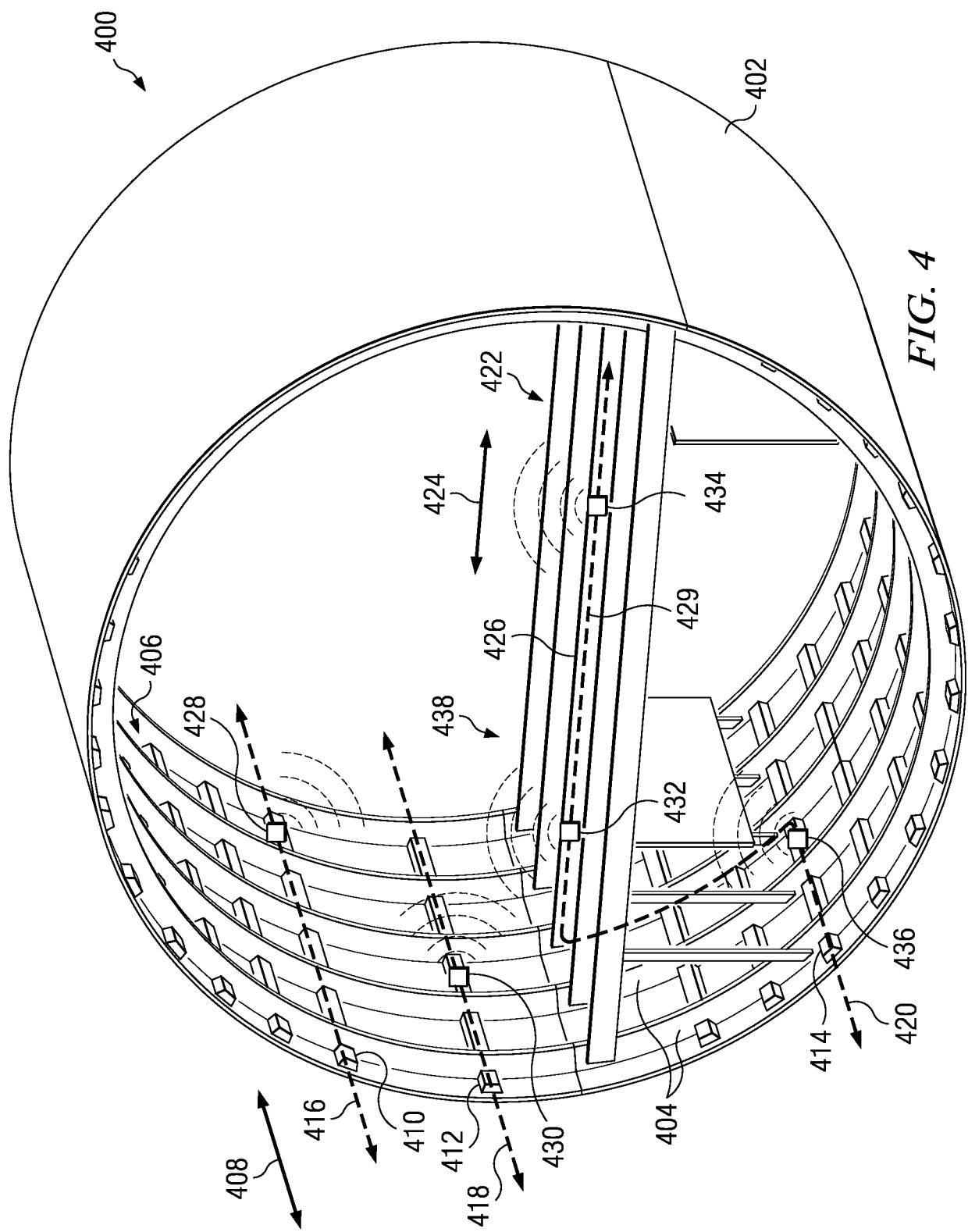
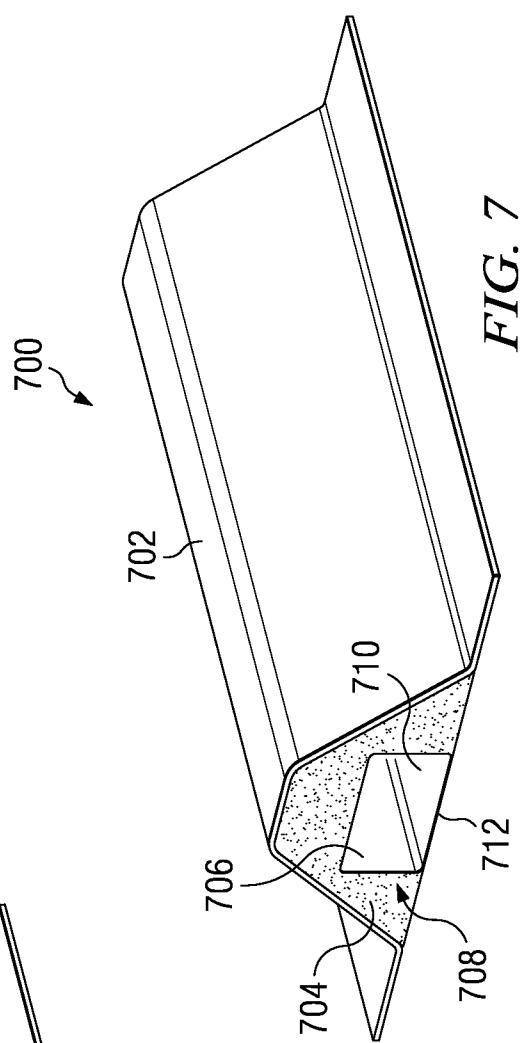
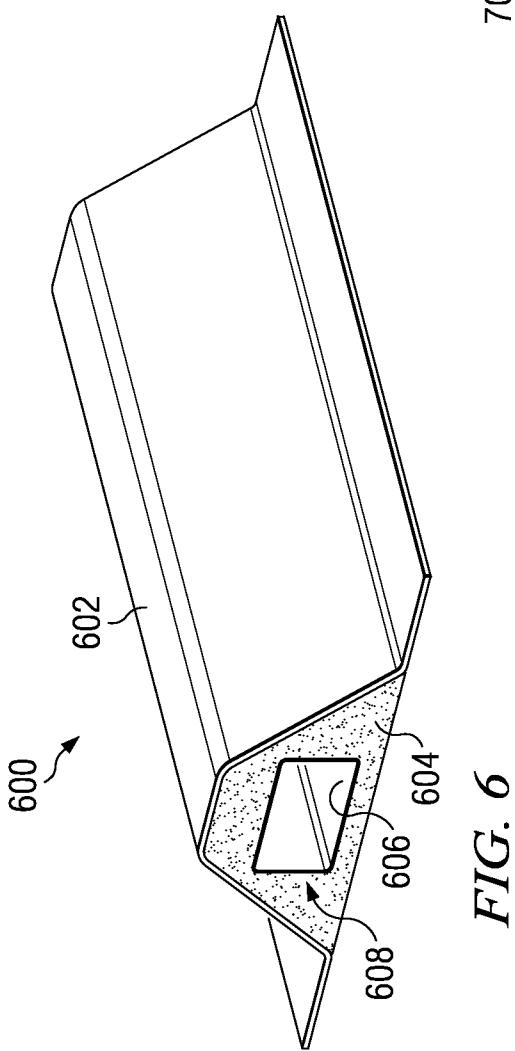
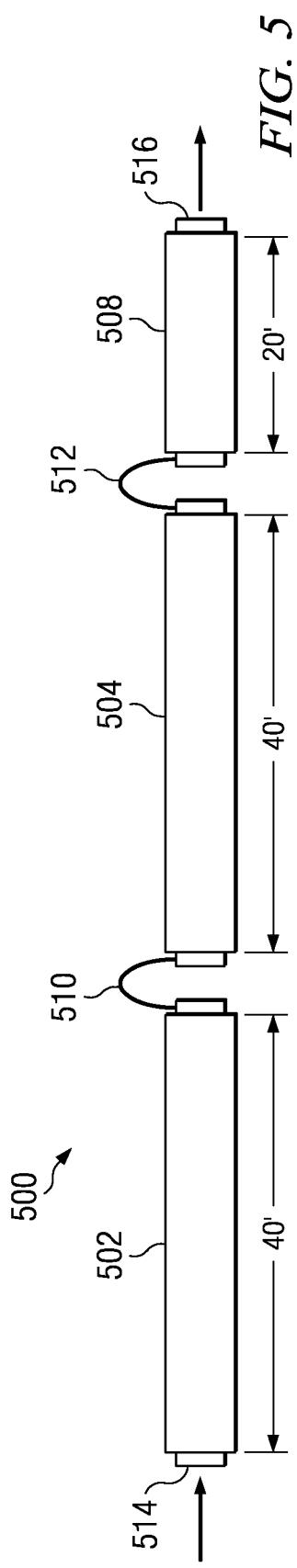
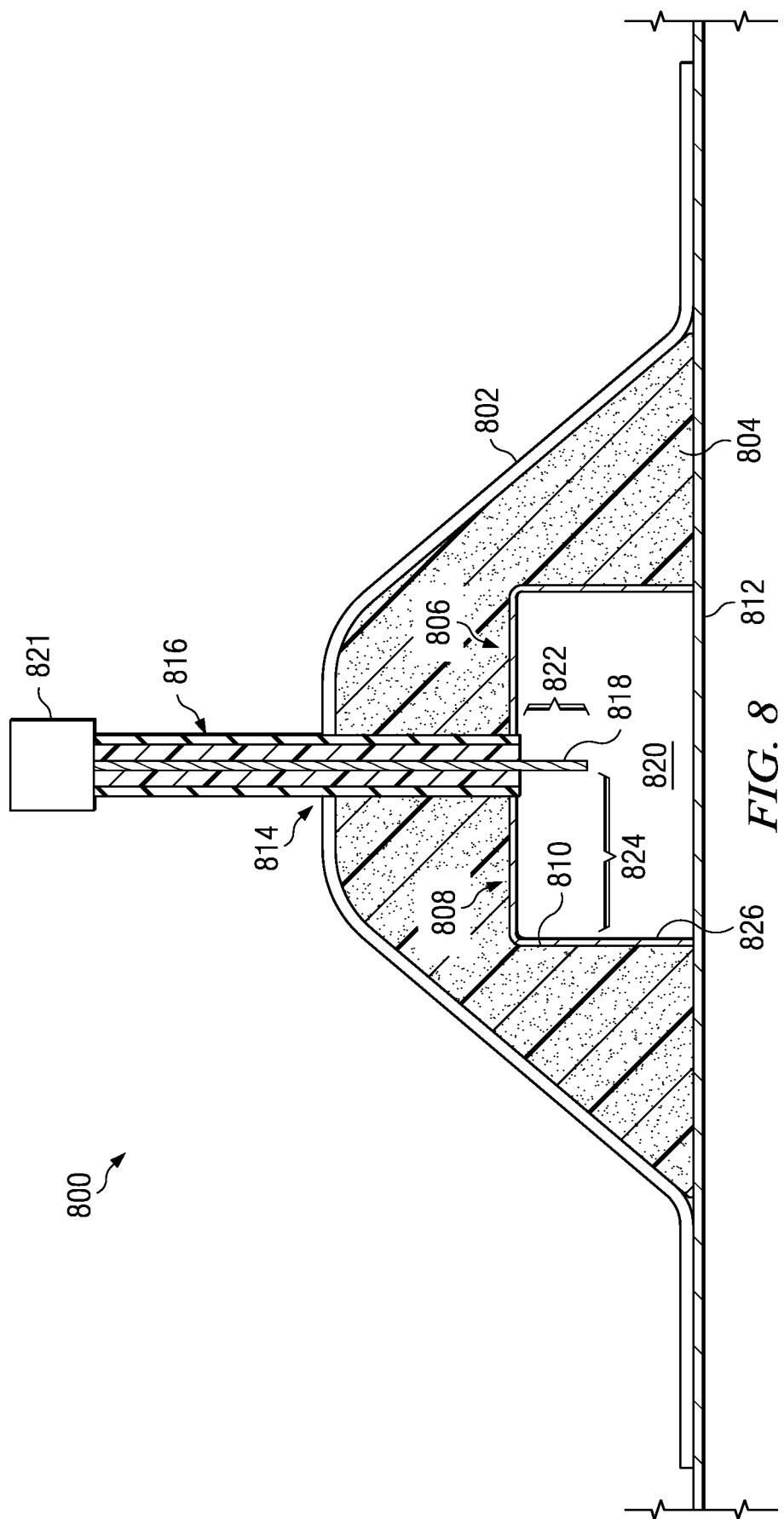
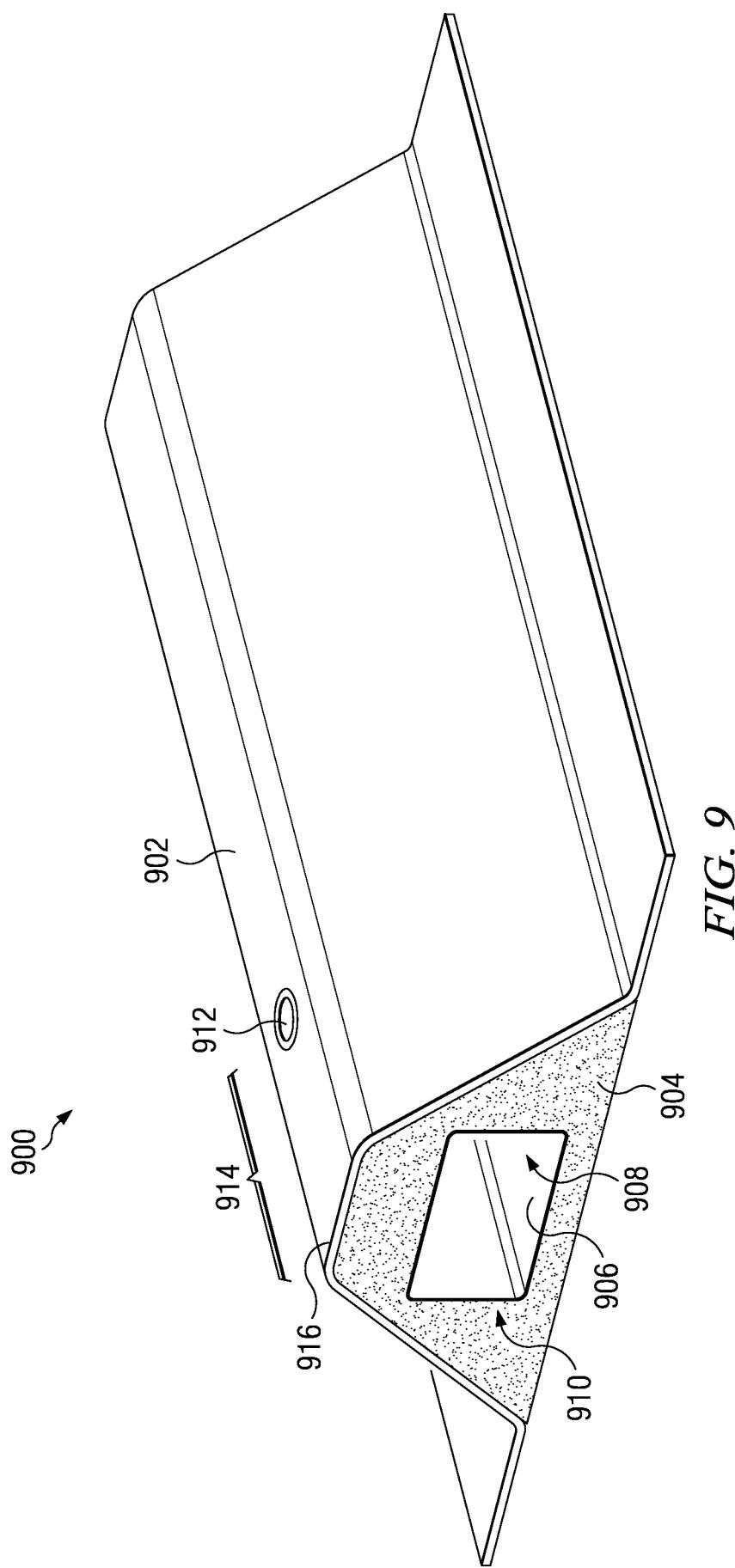
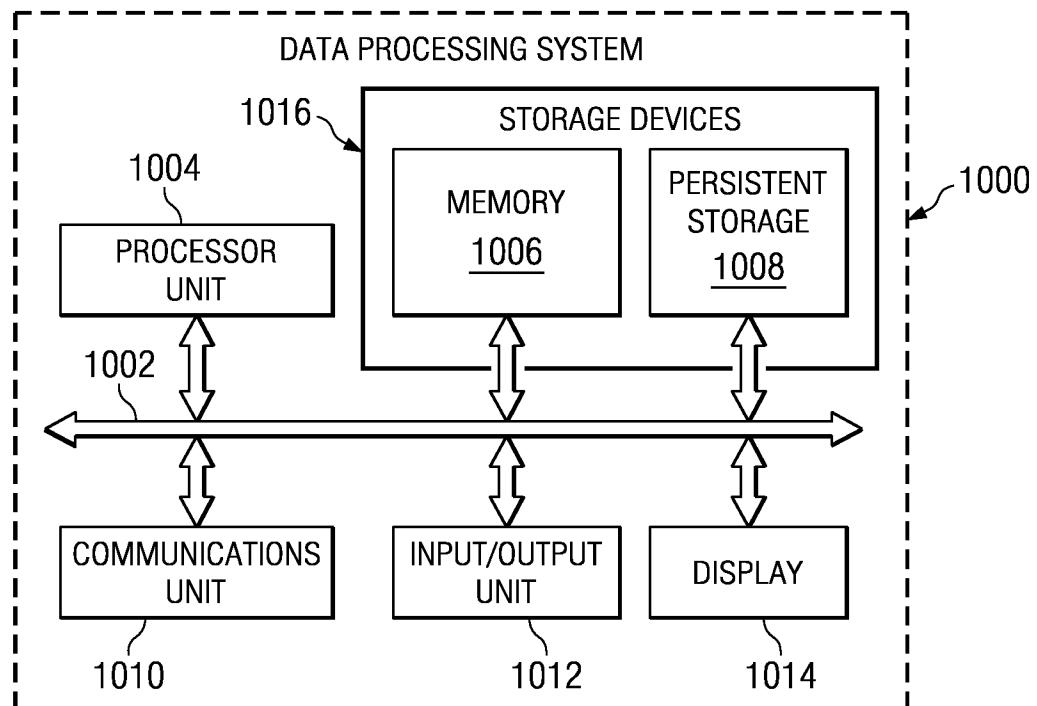
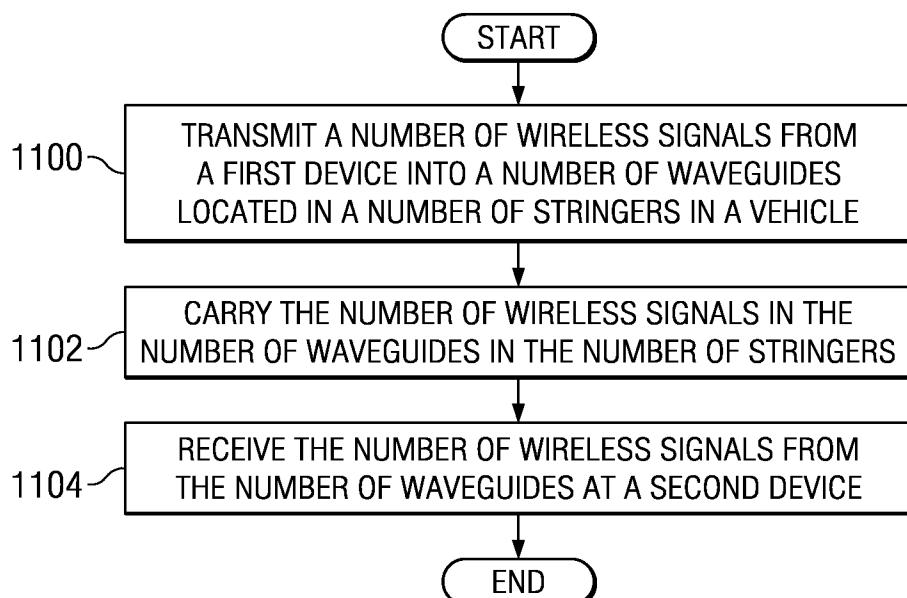

FIG. 1

FIG. 2

FIG. 3

2/7



FIG. 4

4/7

*FIG. 10**FIG. 11*

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2010/036082

A. CLASSIFICATION OF SUBJECT MATTER
INV. B64D45/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B64D H01P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 86/01039 A1 (COMMW OF AUSTRALIA [AU]) 13 February 1986 (1986-02-13) page 1, line 21 - line 25 -----	1
Y	US 2008/185478 A1 (DANNENBERG HEIKO [DE]) 7 August 2008 (2008-08-07) * abstract figure 1 paragraph [0014] - paragraph [0016] paragraph [0025] - paragraph [0026] paragraph [0047] -----	3,7,12, 14
Y	US 5 363 464 A (WAY JAMES A [US] ET AL) 8 November 1994 (1994-11-08) * abstract figures 2C, 2D column 4, line 46 - line 63 ----- -/-	10,11,13

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

12 November 2010

18/11/2010

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Estrela Calpe, Jordi

INTERNATIONAL SEARCH REPORT

International application No PCT/US2010/036082

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 2008/010841 A1 (VOGLEY WILBUR C [US]; STONER PAUL [US]) 24 January 2008 (2008-01-24) * abstract; figure 1 -----	2,4-6,8, 9,15
A	US 5 222 166 A (WELTHA M DUANE [US]) 22 June 1993 (1993-06-22) * abstract figure 1 -----	1-15
A	"How about this? Avionics would go in plane's skin", ELECTRONICS, VNU BUSINESS PUBLICATIONS, NEW YORK, US, vol. 60, no. 21, 15 October 1987 (1987-10-15), page 39,42, XP002210354, ISSN: 0883-4989 the whole document -----	1-15

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2010/036082

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 8601039	A1	13-02-1986	EP	0191790 A1		27-08-1986
US 2008185478	A1	07-08-2008	DE	102006050534 A1		30-04-2008
US 5363464	A	08-11-1994	AU	7115994 A		17-01-1995
			WO	9500979 A2		05-01-1995
WO 2008010841	A1	24-01-2008	US	2008019698 A1		24-01-2008
US 5222166	A	22-06-1993		NONE		