发明名称
一种放射性\(^{18}F\)标记的靶向肿瘤血管Anxa1显像药物\(^{18}F\)-AL-NOTA-IF7及其制备方法

摘要
一种放射性\(^{18}F\)标记的靶向肿瘤血管Anxa1显像药物\(^{18}F\)-AL-NOTA-IF7及其制备方法，属于放射性药物及核医学技术领域。具体的是将NOTA-IF7、三氯化铝、醋酸、乙腈和新鲜制得的\(^{18}F\)水溶液加到反应管中，轻轻摇荡混匀，50～100 ℃水浴反应10～20min，加水稀释后用活化的Sep-PakC18柱分离纯化，即得到\(^{18}F\)-AL-NOTA-IF7。所述放射性药物\(^{18}F\)-AL-NOTA-IF7为无色透明液体，作为靶向肿瘤血管Anxa1显像药物，用于核医学的肿瘤显像，为肿瘤鉴别诊断、分期、病灶的精确定位和疗效监测提供了一种可视化工具。其制备工艺简单、操作方便，耗时短、标记率高，标记物稳定，便于临床、科研及药物开发的进一步应用。
1. 一种放射性^{18}F 标记的靶向肿瘤血管 Anxal 显像药物^{18}F-AL-NOTA-IF7, 其特征在于: \(^{18}F\)-AL-NOTA-IF7 结构简式为:

![结构简式图]

其中

![化学结构式]

2. 权利要求 1 所述放射性^{18}F 标记的靶向肿瘤血管 Anxal 显像药物^{18}F-AL-NOTA-IF7 的制备方法, 其特征在于步骤如下:

(1) ^{18}F-AL-NOTA-IF7 的标记: 取 NOTA-IF7, 用二甲基亚砜 DMSO 溶解, 取 30 μL NOTA-IF7 的 DMSO 溶液, 其中含 NOTA-IF7 10 μg ~ 100 μg, 依次加入 6 μL 2mmol/L 的氯化铝, 8 μL 浓度为 60.05g/mol 的醋酸, 25 μL 新鲜释出的 2~740MBq 的 \(^{18}F\) 水溶液及 4 倍于上述试剂总体积的乙腈, 轻轻振荡混匀; 50 ~ 100°C 水浴反应 10 ~ 20min, 即得到 ^{18}F-AL-NOTA-IF7；

(2) 纯化: 对 Sep-Pak C18 柱活化, 用 10mL 无水乙醇和 15mL 蒸馏水分别清洗柱子; 取步骤 (1) 制备的 ^{18}F-AL-NOTA-IF7 加入 15mL 蒸馏水注入 Sep-Pak C18 柱; 再分别用 10mL 0.01mol/L PBS 和 20mL 蒸馏水清洗柱; 最后用 300 μL 15mol/L 的盐酸/乙醇溶液洗 Sep-Pak C18 柱, 收集洗脱液, 即得到产品放射性^{18}F 标记的^{18}F-AL-NOTA-IF7。

3. 根据权利要求 2 所述放射性^{18}F 标记的靶向肿瘤血管 Anxal 显像药物^{18}F-AL-NOTA-IF7 的制备方法, 其特征在于放射性纯度测定方法如下: 采用 HPLC 测定 ^{18}F-AL-NOTA-IF7 放射性纯度:

HPLC 评估条件: 色谱分析柱为 C18 柱, 流速相 A 为含质量百分比 0.1% 三氟乙酸 TFA 的纯水, B 为含质量百分比 0.1% 三氟乙酸 TFA 的乙腈, 流速 1 mL/min; 流速梯度洗脱, 5min 时 95%A 和 5% B 增加到 30 min 时 35% A 和 65% B, 检测波长 218nm, 放射性检测应用 HPLC 专用放射性探测器。

4. 权利要求 1 所述放射性^{18}F 标记的靶向肿瘤血管 Anxal 显像药物^{18}F-AL-NOTA-IF7 的应用, 其特征在于: 作为靶向肿瘤血管 Anxal 显像药物用于核医学肿瘤显像。
说明 书

一种放射性 18F 标记的靶向肿瘤血管 Anxa1 显像药物 18F-AL-NOTA-IF7 及其制备方法

技术领域

【0001】 一种放射性 18F 标记的靶向肿瘤血管 Anxa1 显像药物 18F-AL-NOTA-IF7 及其制备方法，可用于肿瘤的早期诊断，属于放射性药物及核医学领域。

背景技术

【0002】 核医学显像目前广泛应用于生物医学研究，代谢显像、受体显像、基因表达和放射免疫显像，是目前最为成熟的分子显像。优点是同时提供有关脏器和病变的血流、功能、代谢和 / 或受体密度，甚至是分子水平的化学信息，有助于疾病的早期诊断，灵敏度高。目前常见的核医学肿瘤分子影像学探针中，代谢类探针在临床应用研究较为广泛，主要反映组织内部糖代谢（如 18F-FDG）、核酸代谢（如 18F-FLT）、磷酸代谢（如 18C-MET）等的异常。多肽具有分子量小，免疫原性低，良好的组织穿透能力和肿瘤组织亲合力高，越来越成为肿瘤诊断和治疗的热点。

【0003】 18F 具有近 100% 的正电子效率，低正电子能量（0.64 兆电子伏）和良好的物理半衰期 ($t_{1/2} = 109.7$ 分），是理想的 PET 显像。

【0004】 糖模拟肽（carbohydrate mimetic peptide, CMP），是一短序列肽分子，能模拟生物大分子或细胞表面复杂的糖结构，常用于替代糖分子进行诱导免疫反应制备特异性抗体。CMP 分子小，血浆清除快，功能恶劣学方面极具优势，备受研究者青睐，现在也多用于筛选受体或抗体的特异性高亲和力配体。如能筛选出一种与肿瘤新生血管特异性的 CMP，将有较高应用前景。Shingo Hatakeyama 等在研究糖模拟肽的过程中，发现了一个名为 IF7 的七肽片段，能有效靶向肿瘤血管，而且基本不引起免疫反应。Anxa1 是钙磷脂结合蛋白 Anx 家族的成员之一，高表达于肿瘤新生血管，EGFR 的底物，可以特异性调节 MAPK/ERK 信号传导通路，同时作为 PLK1 的抑制剂等参与信号转导、细胞调亡、钙离子通道的形成等众多生理过程，在肿瘤的形成及发展中起重要作用。结合 Shingo Hatakeyama 等的研究，我们发展了以 IF7 为基础，以 Anxa1 为靶点，18F 为标记的肿瘤靶向示踪剂，研制一种新型的肿瘤显像剂。

发明内容

【0005】 本发明的目的是提供一种放射性 18F 标记的靶向肿瘤血管 Anxa1 显像药物 18F-AL-NOTA-IF7 及其制备方法，标记的化合物与肿瘤有很好的亲和力和选择性，其标记方法简单、操作方便，耗时短，标记率高，可用于肿瘤的早期诊断。

【0006】 本发明的技术方案，一种放射性 18F 标记的靶向肿瘤血管 Anxa1 显像药物 18F-AL-NOTA-IF7，即 18F-AL-NOTA-IF7，其结构简式为：
所述放射性 18F 标记的靶向肿瘤血管 Anxal 显像药物 18F-AL-NOTA-IF7 的制备方法，步骤如下：

（1）18F-AL-NOTA-IF7 的标记：取 NOTA-IF7，用二甲基亚砜 DMSO 溶解，取 30 μL NOTA-IF7 的 DMSO 溶液，其中含 NOTA-IF7 10 μg ～ 100 μg，依次加入 6 μL 2mmol/L 的氯化铝，8 μL 质量浓度为 60.05g/mol 的醋酸，50 μL 新鲜淋洗的 7.4 ～ 740kBq 的 18F 水溶液及 4 倍于上述试剂总体积的乙腈，轻轻振荡混匀；50 ～ 100℃ 水浴反应 10 ～ 20min，即得到 18F-AL-NOTA-IF7；

（2）纯化：对 Sep-Pak C18 柱活化，用 10mL 无水乙醇和 15mL 蒸馏水分别清洗柱子；取步骤（1）制备的 18F-AL-NOTA-IF7 加入 15mL 蒸馏水注入 Sep-Pak C18 柱；再分别用 10mL 0.01mol/L PBS 和 20mL 蒸馏水清洗小柱；最后用 300 μL 15mol/L 的盐酸 / 乙醇溶液洗 Sep-Pak C18 柱，收集洗脱液，即得到产品放射性 18F 标记的 18F-AL-NOTA-IF7。

放射性纯度测定方法如下：采用 HPLC 测定 18F-AL-NOTA-IF7 放射性纯度；

HPLC 分析条件：色谱分析柱为 C18 柱，流动相 A 为含质量百分比 0.1% 三氟乙酸 TFA 的纯水，B 为含质量百分比 0.1% 三氟乙酸 TFA 的乙腈，流速 1mL/min，梯度洗脱，5min 时 95%A 和 5% B 增加到 30 min 时 35% A 和 65% B，检测波长 218nm，放射性检测应用 HPLC 专用放射性探测器。

所述放射性 18F 标记的靶向肿瘤血管 Anxal 显像药物 18F-AL-NOTA-IF7 的应用，作为靶向肿瘤血管 Anxal 显像药物用于核医学肿瘤显像。

所述 NOTA-IF7 的制备方法如下，其制备方法已另行申请专利。

一种靶向肿瘤血管 Anxal 标记前体显像剂 NOTA-IF7 的制备方法，步骤如下：

（1）溶解：称取 8mg p-SCN-Bn-NOTA 溶解在 50 μL 二甲基亚砜 DMSO 中，得到溶液 a；称取 20mg IF 7 溶解在 300 μL 二甲基亚砜 DMF 中，得到溶液 b；
（2）NOTA-IF 7 的制备：将步骤（1）制成的溶液 a 和溶液 b 按 NOTA：IF 7 质量比 1:2：1 加到玻璃锅中，再加 50 μL 二异丙基乙酰 DMEA，40℃反应 2h；冷却至室温，在反应液中加入 30 μL 乙酸终止反应；

（3）纯化：取步骤（2）制成的 NOTA-IF 7, 用制备型高效液相 HPLC 纯化；流动相 A 为含质量百分比 0.1% 三氟乙酸 TFA 的纯水，B 为含质量百分比 0.1% 三氟乙酸 TFA 的乙腈。流速 20 mL/min，进样体积为 1 mL，检测波长 254 nm；梯度洗脱，流动相组成从 5 min 的 95% A 和 5% B 增加到 24 min 的 35% A 和 65% B。收集 15-16 min 的组分，得到产品靶向肿瘤血管 Anxal 标记前体显像剂 NOTA-IF 7。

[0012] 纯化条件为：Waters XBridge C-18 色谱柱 150 mm ×19 mm, 5 μm。

[0013] 所述 IF 7 为 7 赖氨酸，具体为异亮氨酸-苯丙氨酸-亮氨酸-异亮氨酸-色氨酸-谷氨酰胺-精氨酸。

[0014] 所述 p-SCN-Bn-NOTA 购自市面。IF 7 见公开文献（Tumor Targeting by a Carbohydrate Ligand-Mimicking Peptide 和 Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide）。

[0015] 本发明的优点效果：

（1）本发明工艺简单、操作方便，耗时短，标记率高，标记物稳定，便于临床、科研及药物开发的进一步应用。

[0016] （2）本发明提供了一种新的靶向肿瘤血管 Anxal 标记剂，对肿瘤具有良好的靶向性，从而提高肿瘤显像的效果。

[0017] （3）本发明提供了肿瘤鉴别诊断、分期、病灶的精确定位和疗效监测的可视化工具。

[0018] （4）^{18}F-AL-NOTA-IF7 属于多肽的标记化合物，具有分子量小，免疫原性低，良好的组织穿透能力和肿瘤组织亲合力高，具有良好的应用前景。

附图说明

[0019] 图 1 是 ^{18}F-AL-NOTA-IF7 用 HPLC 测定放射性纯度。

[0020] 图 2 是 ^{18}F-AL-NOTA-IF7 小鼠肿瘤模型显像，肿瘤位置如箭头所示。

具体实施方式

[0021] 实施例 1 ^{18}F-AL-NOTA-IF7 的标记

NOTA-IF7 用 DMSO 溶解，取 30 μL NOTA-IF7 的 DMSO 溶液，其中含 NOTA-IF7 10 μg ～100 μg，依次加入 6 μL 2mmol/L 的氯化铝，8 μL 浓度为 60.05 g/mol 的乙酸，50 μL 新鲜淋洗的 7.4 ～ 740MBq 的 ^{18}F 水溶液及 4 倍于上述试剂总体积的乙醇，轻轻振荡混匀；50 ～ 100℃水浴反应 10 ～ 20 min，即得到 ^{18}F-AL-NOTA-IF7。

[0022] 一种靶向肿瘤血管 Anxal 标记前体显像剂 NOTA-IF 7 的制备方法，步骤如下：

（1）溶解：称取 8mg p-SCN-Bn-NOTA 溶解在 50 μL 二甲基亚砜 DMSO 中，得到溶液 a；称取 20mg IF 7 溶解在 300 μL 二甲基亚砜 DMF 中，得到溶液 b；

（2）NOTA-IF 7 的制备：将步骤（1）制成的溶液 a 和溶液 b 按 NOTA：IF 7 质量比 1:2：1 加到玻璃锅中，再加 50 μL 二异丙基乙酰 DMEA，40℃反应 2h；冷却至室温，在反应液中加
入 30 μL 乙酸终止反应；

（3）纯化：取步骤（2）制备的 NOTA-IF7，用制备型高效液相 HPLC 纯化。流动相 A 为含质量百分比 0.1% 三氯乙酸 TFA 的纯水，B 为含质量百分比 0.1% 三氯乙酸 TFA 的乙腈，流速 20mL/min，进样体积为 1mL，检测波长 234nm；梯度洗脱，流动相组成从 5min 的 95% A 和 5% B 增加到 24min 的 35% A 和 65% B，收集 15~20min 的组分，得到产品靶向瘤血管 Anxal 标记前体显像剂 NOTA-IF 7。

[0023] 纯化条件为：Waters XBridge C-18 色谱柱 150 mm ×19mm, 5μm。

[0024] 所述 IF 7 为 7 肽氨基酸，具体为异亮氨酸-苯丙氨酸-亮氨酸-亮氨酸-色氨酸-谷氨酰胺-精氨酸。

[0025] 实施例 2 ¹⁸F-AL-NOTA-IF7 的纯化

纯化：Sep-Pak C18 柱活化，用 10mL 无水乙醇和 15mL 蒸馏水分别清洗柱子；取实施例 1 制备的 ¹⁸F-AL-NOTA-IF7 加入 15mL 蒸馏水注入 Sep-Pak C18 柱；再分别用 10mL 0.01mol/L PBS 和 20mL 蒸馏水清洗柱；最后用 300μL 15mol/L 盐酸/乙醇溶液洗 Sep-Pak C18 柱，收集洗脱液，即得到产品放射性 ¹⁸F 标记的 ¹⁸F-AL-NOTA-IF7。

[0026] 实施例 3

¹⁸F-AL-NOTA-IF7 质量控制

¹⁸F-AL-NOTA-IF7 制备 HPLC 测定放射性纯度。HPLC 分析条件：色谱分析柱为 C18 柱，流动相 A 为含质量百分比 0.1% 三氯乙酸 TFA 的纯水，B 为含质量百分比 0.1% 三氯乙酸 TFA 的乙腈，流速 1mL/min；梯度洗脱，5min 时 95%A 和 5% B 增加到 30min 时 35% A 和 65% B，检测波长 218nm。放射性检测应用 HPLC 专用放射性探测器，结果见图 1。

[0027] 实施例 4 ¹⁸F-AL-NOTA-IF7 体外稳定性测定

¹⁸F-AL-NOTA-IF7 标记后 30min、60min、120min 分别用 HPLC 测定其放射化学纯度。取标记化合物 100 μL，加入人血清 400 μL，混合后用上述方法测其放射化学纯度。结果显示，¹⁸F-AL-NOTA-IF7 标记后 30min、60min、120min 的放化纯分别＞95%，加入人血清后放化纯＞90%。说明其有良好的稳定性。

[0028] 实施例 5 ¹⁸F-AL-NOTA-IF7 在小鼠的体内的生物分布

按照本实施例制备好标记率大于 95% 的 ¹⁸F-AL-NOTA-IF7 溶液。

[0029] 将 30 只正常 ICR 小鼠随机分成 3 组，每组 10 只。经小鼠尾静脉注射 0.2mL（0.74MBq）标记化合物，分别于 30min、60min、120min 处死小鼠，收集血、脑、心、肝、脾、肺、肾、胃、肠、胰、肌肉、脂肪、性腺、肾上腺、甲状腺、骨，称重后用 γ 计数器测放射性计数，并计算各脏器和组织的摄取量（%ID/g），实验结果以 %ID/g 表示。

[0030] 结果显示，¹⁸F-AL-NOTA-IF7 注射后 30min，胃肠有明显的放射性浓聚，60min 后基本消除。

[0031] 表 1 正常小鼠注射 ¹⁸F-AL-NOTA-IF7 后不同时点个脏器放射性摄取 %ID/g
实施例 6 ^{18}F-AL-NOTA-IF7 小鼠肿瘤模型显像

裸鼠于前肢腋部皮下接种 A431 细胞（3 × 10^6/0.1 mL），4 周后肿瘤长至 1cm，从小鼠尾静脉注射 3.7 MBq ^{18}F-AL-NOTA-IF7。采用二维有序子集期望最大化算法进行图像重建，对 Micro PET 扫描所得全身衰变校正冠状图像感兴趣区（ROI）。结果表明（图 2）：小鼠肿瘤组织的摄取明显高于正常对照，与对侧正常肌肉相比表现为高摄取，120min 后骨中的摄取低，说明标记物在体内稳定，无脱 ^{18}F 的现象，此标记物可能成为一种良好的肿瘤显像剂。

[0032] 最后应说明的是：以上所述仅为本发明的优选实施例而已，并不用于限制本发明，尽管参照前述实施例对本发明进行了详细的说明，对于本领域的技术人员来说，依然可以对前述各实施例所述记载的技术方案进行修改，或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围内。