Abstract: A femur fixation device including an elongated nail configured for insertion into the medullary canal of the femur and a buttress element extending from the elongated nail. The buttress element is configured to reinforce the lesser trochanter region of the femur and assist in stabilizing the head portion of the femur.

Title: FEMORAL FRACTURE FIXATION DEVICE

Published:
— without international search report and to be reprinted upon receipt of that report (Rule 48.2(g))
FEMORAL FRACTURE FIXATION DEVICE

CLAIM OF PRIORITY

[0001] Benefit of priority is hereby claimed to U.S. Patent Application Serial Number 13/210,037, entitled "FEMORAL FRACTURE FIXATION DEVICE", filed on August 15, 2011, which is hereby incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] This invention relates to bone fracture fixation devices, and, more particularly, to a device and method for reinforcing a region of damaged or deformed bone.

BACKGROUND

[0003] Fractures at or near the proximal end portion of the femur can occur in any area of the proximal end and oftentimes occur in multiple locations. Fig. 1 illustrates a femur 10 including a fracture 12 in the proximal end portion 14 of the femur. Femur 10 includes a neck portion 16, a trochanteric portion 17, a head portion 18 and a body 20. As shown in Fig. 1, fracture 12 is located in neck portion 16 or trochanteric portion 17, between head portion 18 and the body 20. When such a fracture occurs, the lower or lesser trochanter region 22 can become comminuted into fragmented pieces 24 that are separated from proximal end portion 14 of femur 10.

[0004] One device commonly employed to stabilize and fixate a fractured proximal end of the femur with a comminuted lesser trochanter is an intramedullary nail. Fig. 2 illustrates an intramedullary nail 26 that has been inserted and fixed within femur 10 having a proximal end fracture 12. During a minimally invasive procedure, intramedullary nail 26 can be inserted through proximal end 14 of femur 10 and into the medullary canal of femur 10. One or more cortical screws 30 may then be inserted through the cortical bone of one side of femur body 20, through a bore 32...
extending through intramedullary nail 26 and into the cortical bone of the other side of femur body 20.

[0005] A lag screw 34 can be inserted through the cortical bone and a bore 36 in the proximal end portion 38 of the intramedullary nail 26. Lag screw 34 includes a distal end portion 40 that can be inserted into head portion 18 of femur 10. Distal end portion 40 of the lag screw 34 engages trabecular or cancellous bone within head portion 18 of femur 10. Distal end portion 40 of lag screw 34 can include an engaging member or members, such as threads, that engage the cancellous bone of head portion 18. After lag screw 34 has engaged head portion 18, the head portion can be pulled by lag screw 34 toward neck portion 16 and body 20 of femur 10 to rejoin head portion 18 with femur 10 at fracture 12 as shown in Fig. 3.

[0006] When a patient, having an intramedullary nail implanted within a femur 10, places pressure on the affected leg, the acetabulum of the pelvic bone places outward and downward pressure on head portion 18 of the femur. Because the lesser trochanter has been comminuted and separated from the bone, the lesser trochanter region 24 can be essentially void and does not provide much, if any, support to head portion 18. As illustrated in Fig. 3, the downward pressure on head portion 18 from the acetabulum can cause head portion 18 to rotate in a downward direction, as indicated by arrow A. The acetabulum may also place outward pressure on head portion 18 that may cause head portion 18 and lag screw 34 to move into an anatomically incorrect position, e.g., too far towards neck 16 and body 20 of femur 10.

[0007] Downward rotation of head portion 18 can cause the cancellous bone in the region designated as 42 of head portion 18 to press against distal end portion 40 of lag screw 34. The pressure of the cancellous bone against distal end portion 40 of lag screw 34 may cause strain and further injury to the bone in region 42, which can cause further bone fracture or injury to head portion 18. Furthermore, downward rotation of head portion 18 can cause the lower region 46 of head portion 18 to be moved toward body 20, past its anatomically correct position.

[0008] Lag screw 34 can be designed to allow for some degree of movement of head portion 18 relative to trochanteric portion 17 and body 20. However, the
outward pressure placed on head portion 18 can cause lag screw 34 and head portion 18 to move outward, as indicated by arrow B, and in some instances head portion 18 can be pushed into trochanteric portion 17 and body 20 beyond its natural anatomical proposition. This can result in the head portion healing in an incorrect or unnatural anatomical position, which can cause lingering or prolonged pain to the patient after the fracture has healed.

OVERVIEW

[0009] This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.

[0010] The present inventors have recognized, among other things, that the downward rotation of the head portion of a damaged or deformed bone during healing can result in the head portion healing in an incorrect or unnatural anatomical position, which can cause lingering or prolonged pain to the patient after the fracture has healed. Thus, the present inventors have recognized that what is needed in the art is a bone fracture fixation device that includes a bone reinforcement element for reinforcing a region of damaged or deformed bone. Even more particularly, the present inventors have recognized that what is needed in the art is a bone fracture fixation devices that includes an intramedullary nail including a lesser trochanter reinforcement member for reinforcing the lesser trochanter region of a damaged femur.

[0011] In one aspect, a femur fixation device can be provided that includes an elongated nail configured for insertion into the medullary canal of the femur and a buttress element extending from the elongated nail. The buttress element can be configured to apply a force to bone tissue in or adjacent to the lesser trochanter region of the femur. The buttress element can assist in stabilizing or fixing the head portion of the femur. The buttress element also can prevent or limit downward rotation or outward movement of the femur head.
In another aspect, a femur fixation device can be provided that includes an elongated nail adapted for insertion into the medullary canal of the femur and a buttress element associated with the nail. The buttress element can be configured for reinforcing the lesser trochanter region of the femur.

In yet another aspect, a method of treating a femur can be provided that includes inserting an elongated nail into an intramedullary canal of the femur and reinforcing a lesser trochanter region of the femur with a buttress element that extends from the elongated nail. The buttress element can assist in stabilizing the head portion of the femur. The buttress element can also limit or prevent outward or downward movement of the head portion of the femur.

To better illustrate the femur fixation devices and methods disclosed herein, a non-limiting list of examples is provided here:

In Example 1, a femur fixation device for treating a femur, the femur having an intramedullary canal, a head portion and a lesser trochanter region, the fixation device comprises an elongated nail configured for insertion into the medullary canal of the femur, and a buttress element extending from the elongated nail, wherein the buttress element is configured to apply a force to bone tissue in or adjacent to the lesser trochanter region of the femur.

In Example 2, the femur fixation device of Example 1 is optionally configured such that the buttress element assists in stabilizing the head portion of the femur.

In Example 3, the femur fixation device of any one of Examples 1 or 2 is optionally configured such that the buttress element limits or prevents outward movement and/or downward rotation of the head portion of the femur.

In Example 4, the femur fixation device of any one of Examples 1-3 is optionally configured such that the buttress element is configured to contact cortical bone in or adjacent to the lesser trochanter region.

In Example 5, the femur fixation device of any one of Examples 1-4 is optionally configured such that the buttress element includes a support member extending radially from the elongated nail and a reinforcement member located at a distal end portion of the support member.
[0020] In Example 6, the femur fixation device of Example 5 is optionally configured such that the support member comprises an elongated rod.

[0021] In Example 7, the femur fixation device of Example 5 is optionally configured such that the reinforcement member comprises a plate-like member.

[0022] In Example 8, the femur fixation device of Example 5 is optionally configured such that the reinforcement member comprises at least one reinforcement arm.

[0023] In Example 9, the femur fixation device of Example 5 is optionally configured such that the reinforcement member comprises an inflatable member.

[0024] In Example 10, the femur fixation device of Example 5 is optionally configured such that the reinforcement member and the support member are separate elements that adjoin together to form the buttress element.

[0025] In Example 11, the femur fixation device of Example 5 is optionally configured such that the support member includes a longitudinal axis and the reinforcement member extends in a direction generally transverse to the longitudinal axis of the support member.

[0026] In Example 12, a femur fixation device for treating a femur, the femur having an intramedullary canal, a head portion, and a lesser trochanter region, the fixation device comprises an elongated nail adapted for insertion into the intramedullary canal of the femur, and a buttress element associated with the nail, the buttress element configured for reinforcing the lesser trochanter region of the femur.

[0027] In Example 13, the femur fixation device of Example 12 is optionally configured such that the buttress element assists in stabilizing the head portion of the femur.

[0028] In Example 14, the femur fixation device of any one of Examples 12 or 13 is optionally configured such that the buttress element limits or prevents outward movement and/or downward rotation of the head portion of the femur.

[0029] In Example 15, the femur fixation device of any one of Examples 12-14 is optionally configured such that the buttress element is configured to contact cortical bone in or adjacent to the lesser trochanter region.
In Example 16, the femur fixation device of any one of Examples 12-15 is optionally configured such that the buttress element includes a support member extending radially from the elongated nail and a reinforcement member located at a distal end portion of the support member.

In Example 17, a method of treating a femur comprises inserting an elongated nail into an intramedullary canal of the femur. The method can further include reinforcing a lesser trochanter region of the femur with a buttress element that extends from the elongated nail.

In Example 18, the method of Example 17 optionally further comprises contacting cortical bone in the lesser trochanter region with the buttress element.

In Example 19, the method of any one of Examples 17 or 18 is optionally configured such that the buttress element assists in stabilizing a head portion of the femur.

In Example 20, the method of any one of Examples 17-19 is optionally configured such that the buttress element limits or prevents outward movement or downward rotation of a head portion of the femur.

BRIEF DESCRIPTION OF THE FIGURES

In the following detailed description of example embodiments of the invention, reference is made to the accompanying drawings which form a part hereof, and which is shown by way of illustration only, specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.

In the course of this description, reference will be made to the accompanying drawing(s), wherein:

Fig. 1 is a frontal view of a femur having a proximal end fracture wherein the lesser trochanter has been comminuted;

Fig. 2 is a cross-sectional view of a fractured femur shown with a prior art fixation device implanted in the femur for treatment of the fracture;
Fig. 3 is a cross-sectional view of the fractured femur and prior art treatment device of Fig. 2 which shows the movement of the femur's head portion relative to the femur's trochanter and body in response to pressure placed on the head portion;

Fig. 4 is a cross-sectional view of a fractured femur shown with one embodiment of a fracture fixation device of the present disclosure implanted therein;

Fig. 5 is a perspective view of one embodiment of a buttress element of the present disclosure;

Fig. 6A is a cross-sectional view of one embodiment of a buttress element and a section of an intramedullary nail of the present disclosure with the buttress element in a pre-deployed position;

Fig. 6B is a cross-sectional view of the buttress element and intramedullary nail of Fig. 6A with the buttress element shown in a deployed position;

Fig. 7A is a cross-sectional view of another embodiment of a buttress element and a section of an intramedullary nail of the present disclosure with the buttress element shown in a pre-deployed position;

Fig. 7B is a cross-sectional view of the buttress element and intramedullary nail of Fig. 7A with the buttress element shown in a deployed position;

Fig. 8A is a perspective view of a further embodiment of a buttress element of the present disclosure shown in a deployed position;

Fig. 8B is a cross-sectional view of the buttress element of Fig. 8A and a section of an intramedullary nail wherein the buttress element has been deformed for insertion through the intramedullary nail;

Fig. 9A is a perspective view of another embodiment of a buttress element of the present disclosure shown in a deployed position;

Fig. 9B is a perspective view of the buttress element of Fig. 9A shown in a pre-deployed position;

Fig. 10A is a cross-sectional view of another embodiment of a buttress element and a section of an intramedullary nail of the present disclosure shown in a pre-deployed position;
[0051] Fig. 10B is a cross-sectional view of the buttress element and intramedullary nail with the buttress element of Fig. 10A shown in a deployed position;

[0052] Fig. 11A is a cross-sectional view of another embodiment of a buttress element and a section of an intramedullary nail of the present disclosure shown in a pre-deployed position; and

[0053] Fig. 11B is a cross-sectional view of the buttress element and intramedullary nail with the buttress element of Fig. 11A shown in a deployed position.

DETAILED DESCRIPTION

[0054] This present patent application related to devices and methods for reinforcing a region of damaged or deformed bone. The present patent application relates to bone fracture fixation devices, and, more particularly, to a device and method for reinforcing a region of damaged or deformed bone.

[0055] Fig. 4 illustrates a fracture fixation device 100 of the present disclosure shown within a femur 110 having a proximal end fracture 112 wherein the lesser trochanter has been comminuted and separated from the bone. Device 100 can be implanted into femur 110 to stabilize and heal the fractured segments of the bone. As will be explained in more detail below, device 100 includes an intramedullary nail 126 and a buttress element 102 associated with intramedullary nail 126.

Buttress element 102 contacts the inner wall 104 of the cortical bone 106 or other tissue above damaged lesser trochanter region 108. In some examples, buttress element 102 also contacts inner wall 103 of the cortical bone 105 or other tissue below damaged lesser trochanter region 108 to assist in stabilizing head portion 118 of femur 110 relative to neck 116 and body 120 of the femur 110. In particular, buttress element 102, in this example, spans the region 108 of the comminuted or otherwise damage lesser trochanter to stabilize head portion 118. Buttress element 102, can among other things, reduce or prevent the amount of rotation of head portion 118 and/or the amount of outward sliding or movement of head portion 118 when pressure is applied to the head portion in the direction of arrow C and/or CI.

[0056] Intramedullary nail 126 can be of any design known in the art and may include for example, features such as bends, angles, spirals, flutes, etc.
Intramedullary nail 126 can be inserted through the proximal end 114 of femur 110 and into the intramedullary cavity of femur body 120. As shown in Fig. 4, head portion 118 of femur 110 is separated from body 120 by fracture 112. Fixation device 100 can also include a one or more lag screws 134 that are employed to connect head portion 118 to body 120 of femur 110. In the illustrated example, fixation device 100 includes one lag screw 134 which is inserted (1) through the cortical bone of femur 110, (2) through a bore 136 in the proximal end portion 138 of intramedullary nail 126, and (3) into head portion 118. Lag screw 134 engages head portion 118 of femur 110 to fix and stabilize head portion 118 relative to femur body 120. Similar to lag screw 34 of figs. 2 and 3, lag screw 134 includes a threaded distal end portion 140 the contacts and engages the inner cancellous bone of head portion 118.

Fixation device 100 also may include one or more fasteners, such as locking screws 130, which secure intramedullary nail 126 within the femur 110. Locking screws 130 are inserted (1) through one side of femur body 120, (2) through bores 132 of intramedullary nail 126, and (3) into the other side of the bone of femur body 120.

As discussed above, fixation device 100 includes a buttress element 102 that extents from intramedullary nail 126 and contacts inner wall 104 of cortical bone 106 or adjacent tissue to apply a force to cortical bone 106. Buttress element 102 can include a supporting member 150 and a reinforcement member 152. Supporting member 150 can be an elongated member, such as a post, rod, stem or shaft, which includes a proximal end portion 154 and a distal end portion 156. Reinforcement member 152 can be located at or adjoins distal end portion 156 of support member 150. As illustrated in Fig. 4, reinforcement member 152 includes an upper portion 158 that contacts the portion of cortical bone 106 above the damaged lesser trochanter region 108, and a bottom portion 160 the contacts the cortical bone 105 below the damaged lesser trochanter region 108. In some examples, the reinforcement member 152 can only contact the cortical bone 106 above damaged less trochanter region 108.
[0059] Fig. 5 illustrates one example of a buttress element 102 wherein support member 150 can be an elongated rod and reinforcement member 152 can be a square or rectangular plate-like member. In this example, reinforcement element 152 extends in a direction transverse to the longitudinal axis of support member 150. Reinforcement member 152 also may be other configurations, such as circular, oval, regular or irregular polygonal shapes of various sizes.

[0060] Referring back to Fig. 4, in this example, support member 150 of buttress element 102 extends through the cortical bone of femur body 120 and through a bore 162 in intramedullary nail 126. Reinforcement member 152 contacts the inner wall 104 of the cortical bone 106 in the lesser trochanter region to assist in stabilizing head portion 118. Proximal end portion 154 of support member 150 may be anchored to the cortical bone of femur body 120 to secure buttress element 102 in the desire position. Buttress element 102 provides a force which reduces, limits or prevents downward rotation and outward movement of head portion 118.

[0061] For example, as described above with respect to Fig. 3, when downward pressure is placed on head portion 18, the head portion may rotate in a downward direction resulting in (1) pressure of the in cortical bone in region 42 against distal end portion 40 of lag screw 34 and (2) separation of head portion 18 from trochanteric portion 17 and body 20 in the upper fracture site 44. Pressure of the bone against lag screw 34 and sliding of head portion 18 and neck 16 into the fracture site may result in patient pain and discomfort and unnatural healing of the bone.

[0062] With reference to Fig. 4 and fixation device 100 of the present disclosure, when downward pressure is placed on head portion 118 of femur 110 as indicated by arrow C, the upper portion 158 of reinforcement member 152 in contact with or applying a force to a portion of the cortical bone 106 above the damaged lesser trochanter region 108 buttresses or reinforces cortical bone 106. The reinforcement provided by the buttress element 102 stabilizes head portion 118 and reduces, limits or prevents head portion 118 from rotating downward. Preventing or limiting the downward rotational movement head portion 118 reduces, prevents or limits the pressure of the cancellous bone in region 145 against distal end portion 140 of lag
screw 134 and prevents head portion 118 from pulling away from neck 116 and body 120 in the upper area of the fracture 112.

[0063] Also as described above with respect to Fig. 3, lag screw 34 can be designed to allow some inward and outward movement of head portion 18 relative to trochanteric portion 17 and body portion 20. However, if too much outward pressure is placed on head portion 18 or lag screw 134 allows too much outward movement, head portion 18 may over slide or be pressed too far into trochanteric portion 17 and body portion 20. This may result in the head portion healing in an incorrect anatomical position, as shown in Fig. 3.

[0064] With fixation device 100 described herein and as shown in Fig. 4, when outward pressure is placed on head portion 118, the upper portion 158 of reinforcement member 152 in contact with the inner wall 104 of the cortical bone 106 above the damaged lesser trochanter region 108 buttresses, reinforces or applies a force to the cortical bone 106. The reinforcement provided by the buttress element 152 stabilizes head portion 118 by acting as a stop that prevents outward movement of head portion 118 beyond a desired point. Preventing head portion 118 from moving outward beyond a desired point retains head portion 118 in a substantially anatomically correct position and reduces the risk of head portion 118 from healing in an incorrect anatomical position.

[0065] Figs. 6A-10B illustrate some exemplary examples of the buttress element of the present disclosure. Figs. 6A and 6B are cross-sectional views of a section of an intramedullary nail 200 and a buttress element 202 (as shown in Fig. 6B). Buttress element 202 includes a reinforcement member 204 and a support member 206. In this example, the reinforcement member 204 and support member 206 are provided as two separate pieces which join together to form buttress element 202. Reinforcement member 204 can be a plate-like element which includes a threaded recess 208 within the inner surface 210 of reinforcement member 204. The support member 206 is a threaded support member and the threaded distal end portion 214 of support member is configured to engage thread recess 208 of reinforcement member 204 to attach support member 206 with reinforcement member 204.
Referring to Fig. 6A, in an initial or pre-deployed position, reinforcement member 204 is positioned within a recess 212 in the wall of the intramedullary nail 200. In the illustrated example, the outer surface 216 of reinforcement member 204 is substantially flush with the outer surface 218 of intramedullary nail 200. In other examples, the front surface 216 of reinforcement member 204 can extend beyond or be recessed within outer surface 218 of intramedullary nail 200. Furthermore, reinforcement member 204 can be held within recess 212 by a friction fit or by an adhesive. When in this initial position, intramedullary nail 200, with reinforcement member 204 located in recess 212 can be inserted into the intramedullary cavity of the bone.

After intramedullary nail 200 is implanted in the desired position, support member 206, is inserted through the cortical bone (not shown) and into a threaded bore 220 passing through intramedullary nail 200. As shown in Fig. 6B, threaded support member 206 mates with the threads of bore 220 and support member 206 is rotated to advance support member 206 through bore 220. As support member 206 is advanced, distal end portion 214 of the support member 206 engages and mates with threaded recess 208 of reinforcement member 204 to adjoin reinforcement member 204 and support member 206. With reinforcement member 204 adjoined to support member 206, support member 206 is further rotated to advance support member 206 and to move reinforcement member 204 from recess 212 and in the direction of arrow D. Support member 206 is rotated until reinforcement member 204 comes into contact with cortical bone 106 of the lesser trochanter region 108, as shown in Fig. 4. In this example, the connection between recess 208 of reinforcement member 204 and distal end portion 214 of support member 206 can be such that reinforcement member 204 is connected to support member 206 but does not rotate as supporter member 206 rotates.

Figs. 7A and 7B illustrate another example of a buttress element 302 and a section of an intramedullary nail 300. Buttress element 302 (as shown in Fig. 7B) includes a reinforcement member 304 and a support member 306. The reinforcement member 304 includes a plate-like element 308 and a stem 310 extending therefrom. Support member 306 is threaded and includes a joining
member, which can be a post 312, located at the distal end portion 314 of support member 306. The post 312 is received into a joining receptacle 316 in stem 310 of reinforcement member 304 to join reinforcement member 304 to support member 306.

Intramedullary nail 300 includes a recess 318 in the wall of the nail and a threaded bore 320 aligned with recess 318. Plate-like portion 308 of reinforcement member 304 is nested within recess 318 and stem 310 of reinforcement member 304 is located within threaded bore 320. After intramedullary nail 300 with reinforcement member 304 has been inserted into the medullary canal of the femur and placed in the desired position, support member 306 is inserted through the cortical bone (not shown) of the femur and into bore 320 of intramedullary nail 300. The post 312 of support member 306 enters the receptacle 316 of the stem 310 of reinforcement member 304 to join support member 306 to reinforcement member 304. Additionally, the threads of support member 306 mate with the threads of bore 320 such that rotation of support member 306 within bore 320 advances support member 306 through the bore. Support member 306 is rotated to push reinforcement member 304 out of recess 318 in the direction of arrow E. Support member 306 is rotated to move reinforcement member 304 into contact with the cortical bone 106 of the lesser trochanter region 108, as shown in Fig. 4.

Figs. 8A and 8B illustrate another example of a buttress element 400. Buttress element 400 includes a reinforcement member 402 and a support member 404. The reinforcement member 402 can include at least one reinforcement projection or arm 406 that extend(s) or splay(s) radially outward from the center 408 of reinforcement member 402 and is configured to contact and reinforce the cortical bone in lesser trochanter region. In one example, the reinforcement member 402 includes a plurality of reinforcement arms 406. In the illustrated example, the reinforcement member 402 includes fours arms 406 in a generally cruciform configuration.

In one example, reinforcement arms 406 are made from a material that can be deformed from its original configuration for insertion into the femur. Once inserted into the femur, the material is such that the reinforcement arms 406 return
to their original configuration. For example, reinforcement member 402 can be made of a shape member alloy or a shape member of polymer. In other examples reinforcement arms 406 can include a mechanical mechanism, such as hinges and/or biasing mechanisms, that allows arms 406 to be moved between a splayed and non-splayed configurations.

[0072] Support member 404 is rod-shaped and includes a proximal end portion 410 and a reduced diameter distal end portion 412. Referring to Fig. 8B, the reinforcement arms 406 can be deformed into a non-splayed configured by bending arms 406 backwards. In this configuration, arms 406 are bent toward the reduced diameter portion 412 of the support member 404. The reduced diameter portion 412 allows the arms to be bent backwards such that surface 416 of the arms 406 when folded have an outer diameter substantially equal to the outside diameter of proximal end portion 410 of support member 404.

[0073] Referring to Fig. 8B, after intramedullary nail 420 has been inserted into and positioned within the intramedullary canal of femur (not shown), buttress element 400 with reinforcement arms 406 in the non-splayed configuration is inserted through the cortical bone (not shown) of the femur and through a bore 422 that extends through intramedullary nail 420. Once the reinforcement arms 406 have cleared or passed through the bore 422, arms 406 are returned to the splayed configuration illustrated in Fig. 8A. When the arms 406 are made from a shape memory material, they can self return to the splayed configuration. One the other hand, if the movement of arms 406 is controlled by a mechanical mechanism, the mechanism can be activated to splay the arms. Support member 404 is advanced through bore 422 until reinforcement arms 406 are in contact with the cortical bone 106 of the lesser trochanter region 108 as shown in Fig. 4.

[0074] Figs. 9A and 9B illustrate yet another example of a buttress element 500 of the present disclosure. Similar to the previous examples, the buttress element 500 includes a reinforcement member 502 and a support member 504. In this example, the reinforcement member 502 is an inflatable element, for example a balloon or bag, which can be filled with a hardenable or curable material. Fig. 9A shows the inflatable reinforcement member 502 in the inflatable configuration and Fig. 9B
shows the inflatable reinforcement member 502 in the deflated configuration. The inflatable reinforcement member 502 can be any variety of shapes and sizes, for example, circular, square, elongated, etc. Additionally, the reinforcement member 502 can be made of a suitable polymer material, such as polyolefins, polyethylene, polycarbonate, polyethylene terephthalate, ether-ketone polymers and copolymers thereof.

[0075] The inflatable reinforcement member 502 is located at the distal end portion 506 of the support member 504. The support member can include a passageway (not shown) for delivering flowable, curable material into the inflatable reinforcement member 502. Such material can be any suitable curable material that when cured is sufficiently strong to reinforce the cortical bone of the lesser trochanter region. In one example, the hardenable, flowable material can be polymethylmethacrylate.

[0076] During use, an intramedullary nail is inserted into the medullary canal of a femur. After the nail is in position, the buttress element 500 with the reinforcement member 502 in the deflated condition is inserted through the cortical bone and through a bore in the intramedullary nail. After the deflated reinforcement member 502 has cleared or passed through the bore, flowable, curable material is injected through the passageway in the support member 504 and into the inflatable reinforcement member 502. The flowable material is injected at a pressure sufficient to inflate the reinforcement member 502. The support member 504 and the inflated reinforcement member 502 are advanced through the bore in the intramedullary nail until the reinforcement member is located adjacent to and preferably in contact with the cortical bone 106 of the lesser trochanter region 108, as illustrated in Fig. 4.

[0077] Figs. 10A and 10B illustrate another example of a buttress element 600 (as shown in Fig. 10B) and a section of an intramedullary nail 602. In this example, the buttress element 600 includes a reinforcement member 604 and a support member 606. The reinforcement member 604 is a plate-like element that is pivotally connected to the intramedullary nail 602. In the illustrated example, the bottom portion 608 of the reinforcement member 604 is connected to the intramedullary nail 602 by hinge 610. Fig. 10A shows the reinforcement member 604 in an initial
or pre-deployed configuration, and Fig. 10B shows the reinforcement member 604
in a deployed configuration.

[0078] The reinforcement member 604 is in the initial or pre-deployed
configuration when the intramedullary nail 602 is inserted into the medullary canal
of the femur. Once the intramedullary nail 602 is the desired configuration, the
support member 606, which includes threads, is inserted through the cortical bone
and into threaded bore 612 passing through intramedullary nail 602. The support
member 606 is rotated to advance the support member through the bore 612. As the
support member is advanced, the distal end portion 614 of the support member 606
contacts the back surface 616 of the reinforcement member 604 and causes the
reinforcement member 604 to pivot about hinge 610 to move the reinforcement
member 604 into the deployed position. In the deployed position, the reinforcement
member 604 contacts the cortical bone 106 in the lesser trochanter region to
reinforce the bone in this area.

[0079] Figs. 11A and 11B illustrate another example of a buttress element 700 and a
section of an intramedullary nail 702. The buttress element 700 includes a
reinforcement member 704 that is pivotally or rotatablely attached to intramedullary
nail 702. In this example, the reinforcement member 704 has a generally arcuate
surface 706 and a generally hemispherically shaped body 708. In other examples,
the reinforcement member 704 can have any other suitable shape and surface 706
can have any other suitable contour. Reinforcement member 704 can optionally
includes one or more support members 712 that extend from body 708. Support
member 712 is connected to the intramedullary nail 702 by hinge 710. Fig. 11A
shows the reinforcement member 704 in an initial or pre-deployed configuration,
and Fig. 11B shows the reinforcement member 704 in a deployed configuration.

[0080] In the pre-deployed configuration, reinforcement member 704 resides or is
positioned in a passageway, channel, or cavity 714 defined by intramedullary nail
702. In one example, reinforcement member 704 can be biased toward this position
by a biasing mechanism, such as a spring or leaf spring. In other examples, the
reinforcement member 704 can be held in the pre-deployed configuration by a
releasable restraint or adhesive. In use, the intramedullary nail 702 is inserted into
the medullary canal with the reinforcement member 704 in the initial or pre-deployed configuration shown in Fig. 11A. Once the intramedullary nail 702 is the desired configuration, an actuation member, such as an elongated member 716, which can be a screw, rod or the like, is inserted into, and optionally through, passageway 714 of intramedullary nail 702 as shown in Fig. 11B. Elongated member 716 contacts reinforcement element 704 and pushes or advances it out of passageway 714. In examples wherein reinforcement element 704 is biased toward the pre-deployed configuration, the force applied to reinforcement member 704 by elongated member 716 is sufficient to overcome the biasing force to move reinforcement element 704. In the examples wherein reinforcement member 704 is releasable restrained into the pre-deployed configuration, the force applied by elongated member 716 is sufficient overcome the restraint.

[0081] As reinforcement member 704 is moved out of the passageway 716, it rotates or pivots about hinge 710 into the deployed position. In the illustrated example, bottom surface 718 of reinforcement member 704 contacts the outer surface 720 of intramedullary nail 702 when in the deployed position. In the deployed position, the reinforcement member 704 contacts the cortical bone 106 (shown in Fig. 4) in the lesser trochanter region to reinforce or buttress the bone in this area.

[0082] While the present invention has been illustrated by the description of one or more embodiments thereof, and while the embodiments have been described in considerable detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope of the general inventive concept.
WHAT IS CLAIMED IS:

1. A femur fixation device for treating a femur, the femur having an intramedullary canal, a head portion and a lesser trochanter region, the fixation device comprising:
 an elongated nail configured for insertion into the medullary canal of the femur; and
 a buttress element extending from the elongated nail, wherein the buttress element is configured to apply a force to bone tissue in or adjacent to the lesser trochanter region of the femur.

2. The fixation device of claim 1, wherein the buttress element assists in stabilizing the head portion of the femur.

3. The fixation device of any one of claims 1 or 2, wherein the buttress element limits or prevents outward movement and/or downward rotation of the head portion of the femur.

4. The fixation device of any one of claims 1-3, wherein the buttress element is configured to contact cortical bone in or adjacent to the lesser trochanter region.

5. The fixation device of any one of claims 1-4, wherein the buttress element includes a support member extending radially from the elongated nail and a reinforcement member located at a distal end portion of the support member.

6. The fixation device of claim 5, wherein the support member comprises an elongated rod.

7. The fixation device of claim 5, wherein the reinforcement member comprises a plate-like member.
8. The fixation device of claim 5, wherein the reinforcement member comprises at least one reinforcement arm.

9. The fixation device of claim 5, wherein the reinforcement member comprises an inflatable member.

10. The fixation device of claim 5, wherein the reinforcement member and the support member are separate elements that adjoin together to form the buttress element.

11. The fixation device of claim 5, wherein the support member includes a longitudinal axis and the reinforcement member extends in a direction generally transverse to the longitudinal axis of the support member.

12. A femur fixation device for treating a femur, the femur having an intramedullary canal, a head portion, and a lesser trochanter region, the fixation device comprising:
 an elongated nail adapted for insertion into the intramedullary canal of the femur; and
 a buttress element associated with the nail, the buttress element configured for reinforcing the lesser trochanter region of the femur.

13. The fixation device of claim 12, wherein the buttress element assists in stabilizing the head portion of the femur.

14. The fixation device of any one of claims 12 or 13, wherein the buttress element limits or prevents outward movement and/or downward rotation of the head portion of the femur.

15. The fixation device of any one of claims 12-14, wherein the buttress element is configured to contact cortical bone in or adjacent to the lesser trochanter region.
16. The fixation device of any one of claims 12-15, wherein the buttress element includes a support member extending radially from the elongated nail and a reinforcement member located at a distal end portion of the support member.

17. A method of treating a femur, comprising:
 inserting an elongated nail into an intramedullary canal of the femur; and
 reinforcing a lesser trochanter region of the femur with a buttress element that extends from the elongated nail.

18. The method of claim 17, further including contacting cortical bone in the lesser trochanter region with the buttress element.

19. The method of any one of claims 17 or 18, wherein the buttress element assists in stabilizing a head portion of the femur.

20. The method of any one of claims 17-19, wherein the buttress element limits or prevents outward movement or downward rotation of a head portion of the femur.
FIG. 3 PRIOR ART