

United States Patent [19]

McCaughey

[11] 3,710,610
[45] Jan. 16, 1973

[54] WIRE TERMINAL CRIMPING TOOL

[75] Inventor: William S. McCaughey, Naperville, Ill.

[73] Assignee: The Bunker-Ramo Corporation, Oak Brook, Del.

[22] Filed: June 5, 1970

[21] Appl. No.: 43,688

[52] U.S. Cl..... 72/410, 29/203 H, 29/212 D,
81/389, 81/421

[51] Int. Cl. B21d 9/08

[58] Field of Search..... 72/410; 29/200
H, 20 3H, 203; 29/212 R, 212 D, 282, 513;
81/341, 389, 421, 424

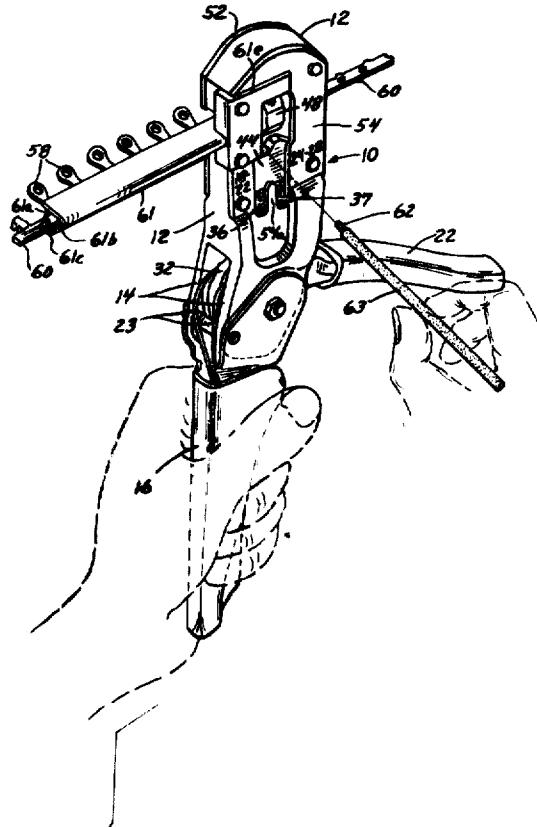
[56] References Cited

UNITED STATES PATENTS

3,420,086	1/1969	Long et al.....	29/203 H
3,070,144	12/1962	Evans.....	72/410
3,075,198	1/1963	Over.....	29/212 D
2,812,676	11/1957	Brown.....	81/15
3,494,171	2/1970	Rapp.....	29/203 H
3,393,438	7/1968	Marley et al.	29/282
3,571,888	3/1971	De Filippo.....	29/203 H
2,712,252	7/1955	Landis.....	81/389
3,523,351	8/1970	Filia.....	29/282
3,230,758	1/1966	Klinger.....	72/410

3,230,757 1/1966 Filia 72/410

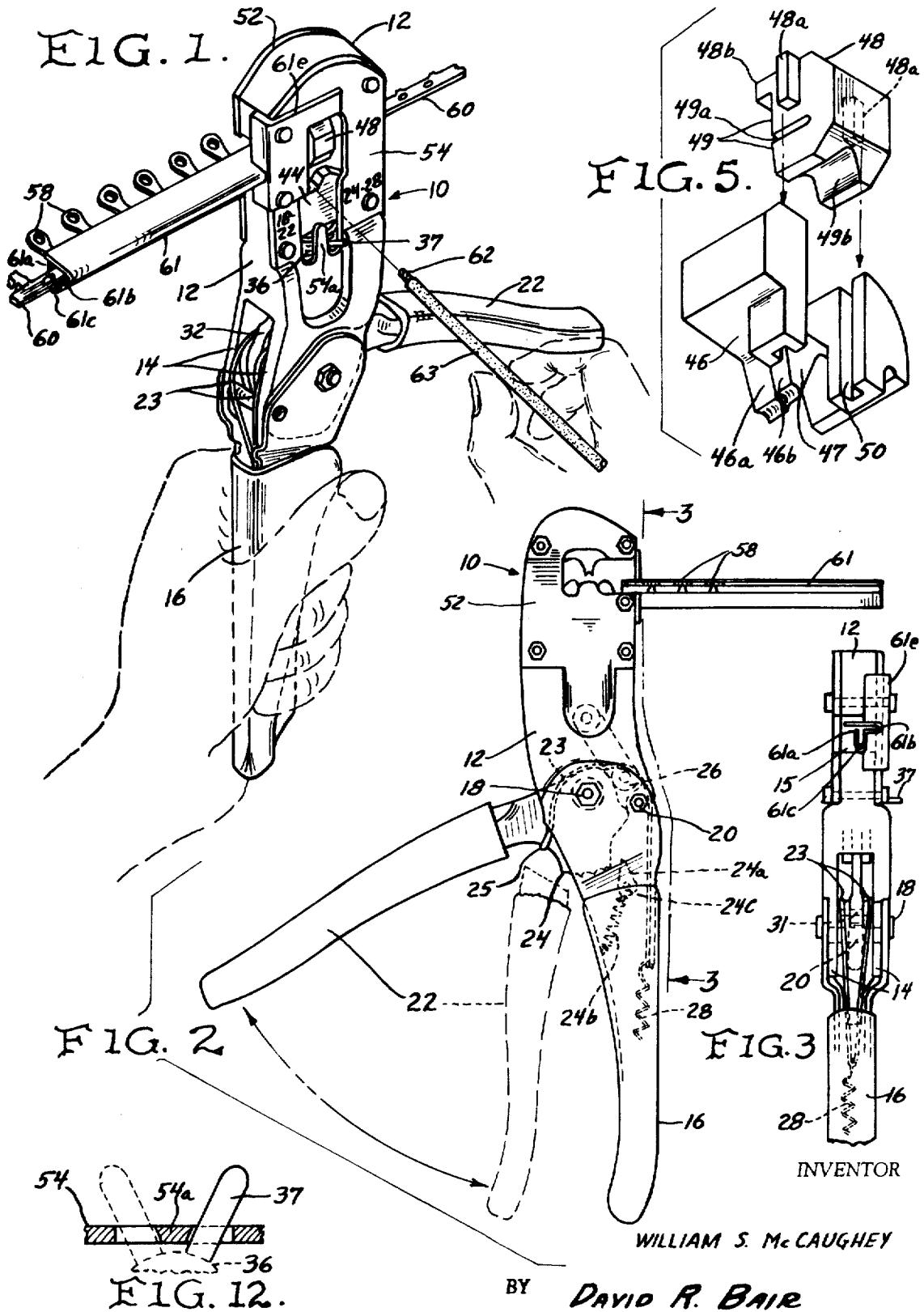
Primary Examiner—Charles W. Lanham


Assistant Examiner—Michael J. Keenan

Attorney—Frederick M. Arbuckle

[57] ABSTRACT

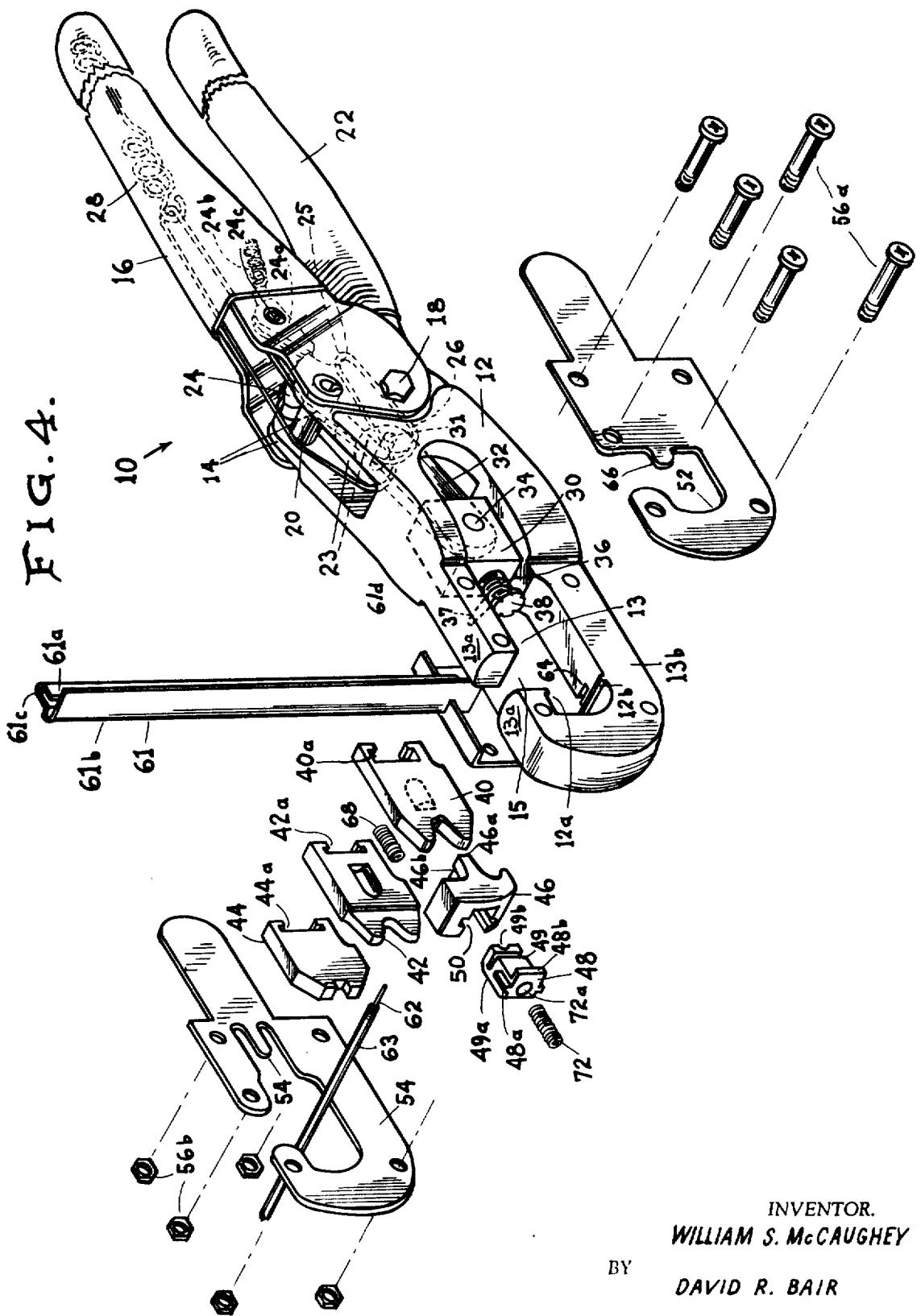
Tool for attachment of terminals to pre-stripped wires provides a combination crimping and shearing anvil, two crimp dies which are sequentially shiftable relative to the anvil, and a shear blade actuator movable into operative relation with the shearing member of the anvil. A group of terminals, joined by an integral carrier is manually advanced through a magazine, to position the leading terminal between the dies and anvil. The magazine confines only the end of the terminal which is to be attached to the wire, and thus permits any desired size or conformation of the other end. The pliers-handles of the tool are held in one hand while the wire, held by the other hand, is inserted between the die and anvil members and against a wire stop. Squeezing the handles moves the two dies in sequence, and the actuator, toward the anvil, crimping the terminal (1) onto the wire, (2) onto the insulation, and (3) shearing the terminal from the carrier. A lever on a screw interposed between the slide block and the dies permits selection of the degree of closure between the dies and anvil, to achieve proper crimp on predetermined wire size ranges.


4 Claims, 14 Drawing Figures

PATENTED JAN 16 1973

3,710,610

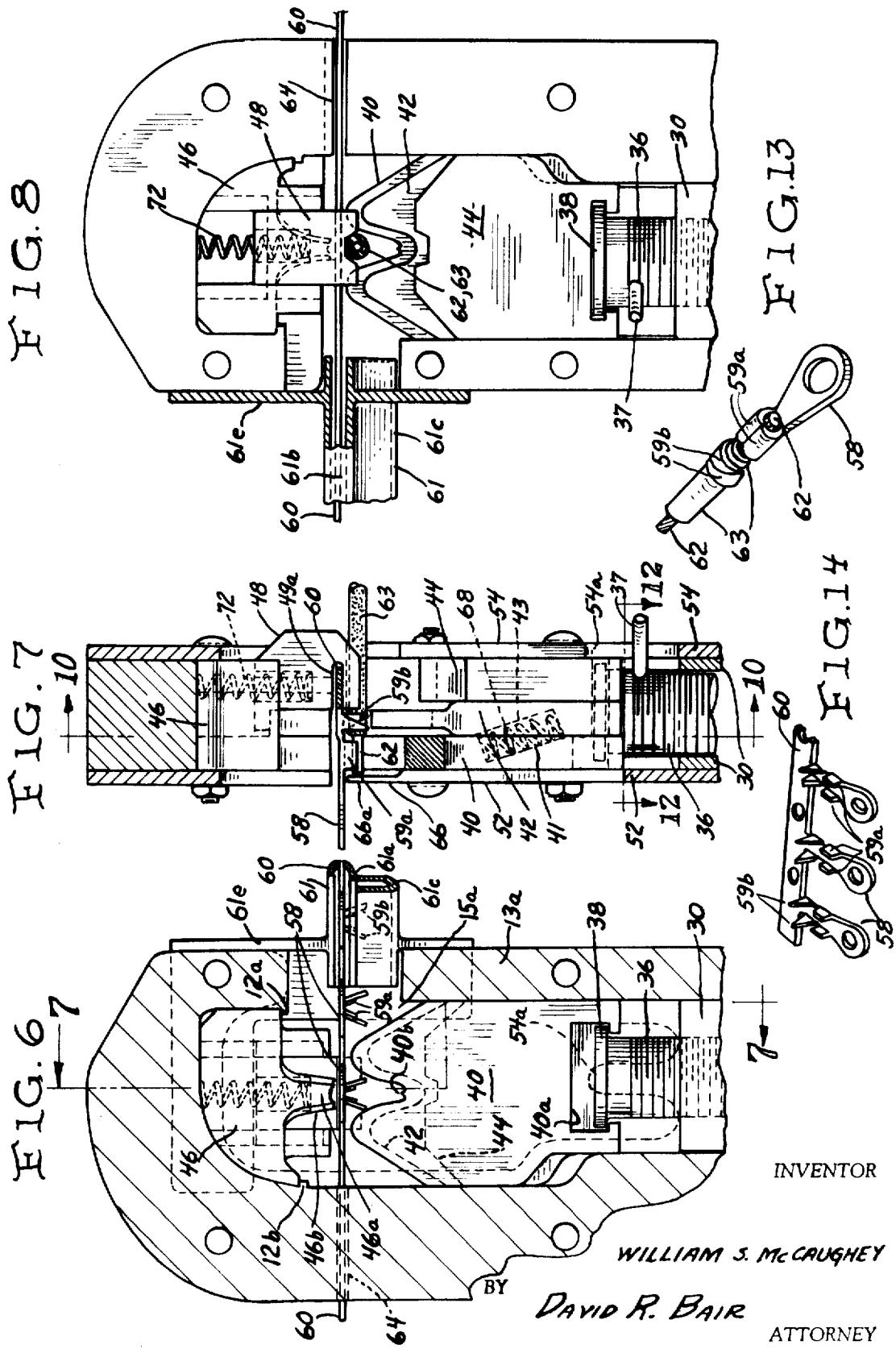
SHEET 1 OF 4


WILLIAM S. McCaughey

BY *DAVID R. BAIR*
ATTORNEY

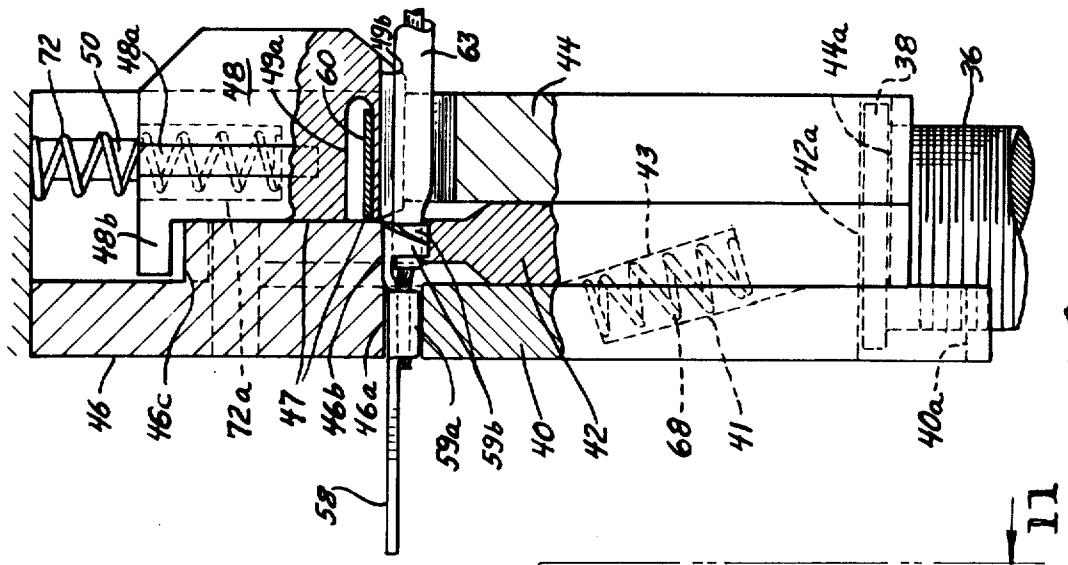
PATENTED JAN 16 1973

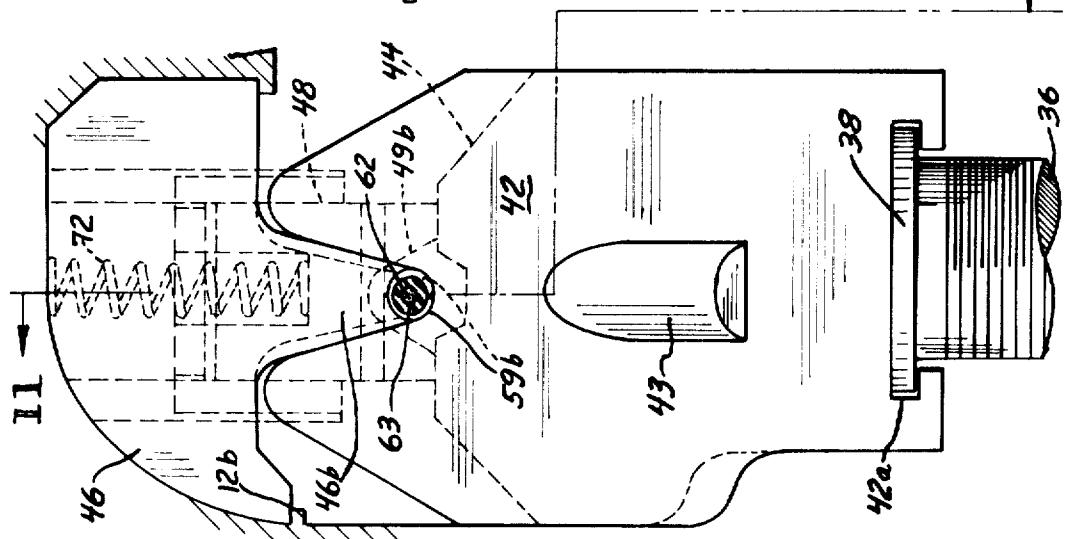
3,710,610


SHEET 2 OF 4

PATENTED JAN 16 1973

3,710,610


SHEET 3 OF 4


PATENTED JAN 16 1973

3,710,610

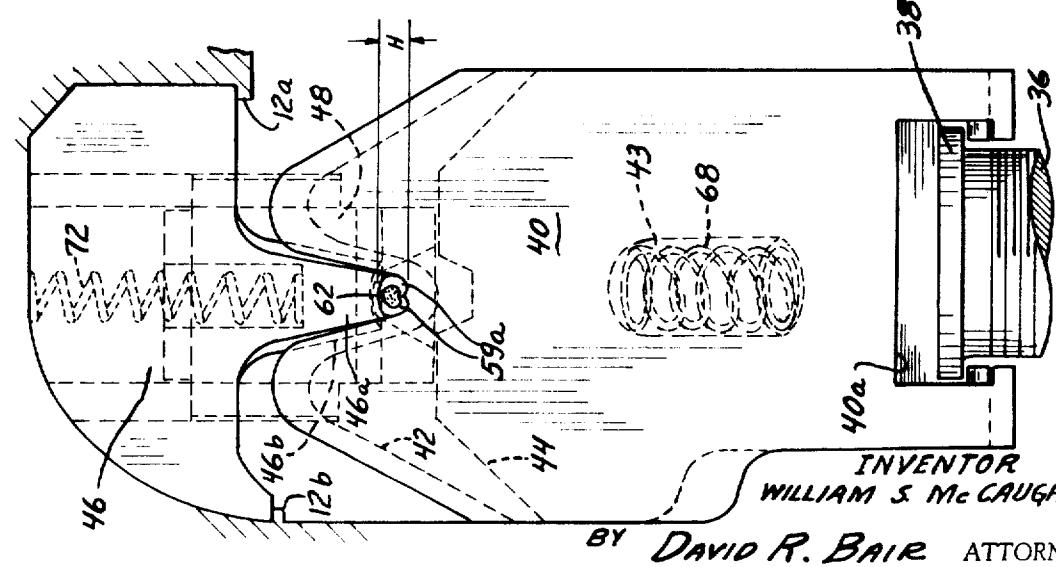

SHEET 4 OF 4

FIG. 11

FIG. 10

BY DAVID R. BAIR ATTORNEY

WIRE TERMINAL CRIMPING TOOL

BACKGROUND OF THE INVENTION

Many types of electrical connecting terminals are produced in continuous strips for convenience of use under conditions where large numbers of terminals are applied to wires used in manufacturing or assembly operations. Automated machinery is well known in the art for applying such terminals to the wire during repeat cycles of operation where relatively large quantities are involved. In general, the equipment used for such work is large, bulky and heavy, not well adapted for use in a remote location or in field repair work. There is a need for an effective tool of the hand-held, hand-operated type usable with convenience where only a few terminals need be applied at a time, and having a number of advantages described herein.

U.S. Pat. No. 3,842,018 relates to a hand tool for feeding and crimping magazine-fed electrical connectors, but it is primarily designed for the plastic sleeved type of terminal with a closed wire barrel. The apparatus disclosed in that patent is believed to have required undue or extreme amounts of force to cycle the tool, which would preclude easy, single hand operation.

U.S. Pat. No. 3,420,086 discloses a hand crimping tool using open barrel strip type terminals. In the use of that tool the strip must be hand-held and the tool is partially cycled to cut a terminal from the strip, whereupon the strip is set aside. The wire is then picked up and inserted and the tool is further cycled to complete the crimp. If more than one terminal is to be attached, the extra handling of the strip each time is an inconvenience.

There are a number of features needed in a tool for use in the field. It should be compact and reliable. It should be easy to operate, in the sense that only a moderate amount of manual force should be required to actuate it. The number of steps required in its use should be as few as possible. The sequence of those steps should be uncomplicated because, in many cases, the tool must be used by a technician who has little or no experience with the device. The same tool should be usable with various sizes and types of terminals without the necessity for changing removable parts which can easily get lost. In addition, it should be shiftable between a plurality of precisely predetermined settings for different ranges of wire sizes, again without the necessity for changing removable parts.

SUMMARY OF THE INVENTION

This invention provides a device for attachment of terminals to pre-stripped wires, utilizing terminals grouped in a strip by attachment to a suitable carrier. The invention may include two or more anvils and shear means mounted in opposed relation to a plurality of dies and a shear actuator, and means for sequentially moving the dies and shear actuator to and from working position. A setting device in the die moving means permits the degree of closure to be preselected. A suitable magazine guide is arranged to support a strip of terminals and to direct the foremost terminal into proper location between the anvil and the dies. The magazine permits the ends of the terminals opposite the crimp tabs to project beyond its confines, so that terminals of various shapes and sizes may be used.

When the tool is used, a stripped wire is inserted until it engages a stop member, and operation of the die moving means then causes the dies to crimp the terminal onto the wire, and also shears the terminal from its carrier in the same cycle.

This invention meets the objective of providing an improved tool which is relatively light in weight and which requires only one hand to hold and cycle the tool while the other hand is free to insert the wire end and to remove the terminated wire.

It is another object to provide a tool with the above features which can be conveniently used in restricted areas such as may be encountered in applying a terminal to the end of a wire already in place in an existing piece of equipment in the field.

Still another object is the provision of a tool with simple setting for proper crimping on wires of different size ranges.

These and other objects will become more apparent as shown in a preferred embodiment of the invention in a tool described in more detail in conjunction with the following drawings.

DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a perspective view of the tool as held by an operator.

FIG. 2 is a side elevational view of the tool as seen from the side opposite that shown in FIG. 1. In broken outline the closed handle position is shown, indicating the operating range of the handle.

FIG. 3 is an elevational view of the tool as viewed on the line 3—3 of FIG. 2.

FIG. 4 is an exploded perspective view of the parts of the tool involved in this invention.

FIG. 5 is a perspective detail view of the combination anvil and shear blade, shown in exploded relation.

FIG. 6 is an enlarged fragmentary side elevational view of the wire and insulation crimping dies and the shear blade actuator shown in superposed relative position, within a cross-sectional part of the crimp plier frame, with a strip terminal properly positioned, prior to crimping actuation by the dies.

FIG. 7 is a transverse cross-section of the parts shown in FIG. 6, as seen on line 7—7 of FIG. 6.

FIG. 8 is a view similar to FIG. 6 but as seen from the opposite side of FIG. 6, with the shear blade and shear blade actuator seen foremost.

FIG. 9 is an enlarged elevational view generally similar to FIG. 6 but only of the anvil and crimp dies, illustrating the first stage in the crimping operation.

FIG. 10 is an enlarged view somewhat similar to FIG. 9, but taken on the line 10—10 of FIG. 7. It illustrates a second stage in the crimping operation.

FIG. 11 is a transverse sectional view as seen substantially on line 11—11 of FIG. 10, showing the terminal as sheared from the continuous strip, with the terminal crimped onto the wire shown in elevation.

FIG. 12 is a fragmentary cross-sectional view taken on line 12—12 of FIG. 7, showing the setting slot detail.

FIG. 13 is a perspective detail of the completed crimped terminal attached to the wire.

FIG. 14 is a perspective view of a partial strip of one form of terminal for use with this tool, shown in an inverted position.

GENERAL DESCRIPTION

Referring to the drawings, and particularly FIG. 1 - 4, wherein like reference numerals designate like parts throughout the various figures, the tool designated generally at 10 comprises a crimp plier frame or housing 12 open in its middle area 13 and having a bifurcated handle attaching end 14, from which a fixed, complementally bifurcated handle 16 extends. The fixed handle is attached by any suitable means such as a bolt-and-nut assembly 18 and a rivet 20. A movable handle 22 with ratchet segment 24 is pivotally mounted within the handle 16 and bifurcated end 14 by means of said bolt assembly 18. A spring 28 mounted inside the handle 16 exerts tension on a flexible cable 23 which passes around the pivot point and under the handle 22 at 25. The effect of the spring is to move the handle normally to the open position shown in full lines in FIG. 2. Handle 22 has an upper nose end 26 which by engaging against rivet 20 acts as a stop, limiting movement of the handle in the opening direction. Closing and opening movement of the handle 22 effects reciprocating movement of slide block 30 (FIG. 4) via the connecting link 32 pivotally connected at 34 within a bifurcated lower portion of said slide block 30. The block 30 has a screw 36 adjustably threaded in the upper end of said block 30, and terminating in a headed or flanged portion 38.

A conductor crimp die 40, insulation crimp die 42, and shear blade actuator 44 are disposed within the middle open cavity 13 of frame 12, in side-by-side relation as illustrated in FIG. 4. The three members are complementally notched at their respective lower ends 40a, 42a and 44a, for engagable mounting upon and movement by the flanged end 38 of adjusting screw 36. An anvil 46 carrying a shear blade 48 with opposed lugs 48a slidably mounted in trackway 50, is mounted within the upper end of open cavity 13 of said frame 12, with the aid of retaining lugs 12a and 12b on the respective front and back walls 13a and 13b, seen in FIG. 4 and FIG. 6. These major tooling parts are held within the open cavity 13 of the frame 12 by removable laterally opposed housing side wall plates 52 and 54 attached by a plurality of screw-and-nut assemblies 56a and 56b, the screws passing through suitable clearance holes formed in the frame 12 (see FIG. 4).

The front wall 13a of frame 12 is interrupted at 15, leaving a space which permits insertion of the terminals 58 into the crimping area.

In the usual way of manufacturing terminals of the kind for which this tool is intended, the individual terminal elements 58 are formed integrally with a carrier strip 60 which spaces them uniformly, and connects them in a group for convenience in handling, orientation and use. For use with this invention, the wire attachment ends of the terminal elements are preferably fabricated in the form shown in FIG. 14, with opposed upstanding wire gripping ears 59a and somewhat longer opposed upstanding insulation gripping ears 59b.

A guide trackway or magazine 61 is attached to the frame 12 by a bracket 61e (FIG. 1). It serves as a feed channel through which a strip of terminals is guided so that the foremost terminal is moved into proper position between the anvil 46 and the crimping dies. For simplicity, in the form of the device shown here, the feeding is done manually, but it is possible to provide other means for advancing the strip each time the tool is actuated.

The wire to be used is pre-stripped, having its conductor 62 exposed for a distance approximately the same as the axial length of the terminal ears 59a. The wire 62 is thrust into the crimping area until the wire end bears against a suitable wire stop such as that depicted at 66 (FIG. 7). The wire stop means 66 may be formed as a tongue on the side plate 52, with an end portion 66a projecting to act as an abutment against which the wire 62 may be positioned. When the wire is so located, the stripped area of the conductor 62 lies between the opposed wire gripping ears 59a, with the adjacent portion of the insulation 63 disposed between opposed insulation gripping ears. Actuation of the slide block 30, by squeezing the handles 16 and 22 together, moves the dies toward the anvil, successively crimps the respective pairs of ears around the wire and the insulation, and shears the terminal from its carrier 60. When the handles of the tool are opened, the completely terminated wire can be withdrawn.

OPERATION IN DETAIL

To minimize the force required to actuate the handles of the tool, and for other reasons which will be subsequently explained, the invention provides for sequential performance of the operations of crimping the ears 59a onto the wire conductor 62, and of crimping the ears 59b onto the insulation 63 and shearing terminal 58 from the carrier strip 60. The wire crimp die 40 is therefore arranged to advance into working position somewhat ahead of the insulation crimp die 42. The relative location of the working faces of these dies as they advance can be seen in FIG. 6, where the jaws of the wire crimp die 40 are shown in full lines, and the jaws of the insulation crimp die, which lies behind it, are shown dotted. The same relation is seen in FIG. 8, where both dies are shown in full lines.

As one way of providing for an elevated or advanced position of die 40 with respect to die 42, the parts on 40 their adjacent faces are mutually recessed at 41 and 43 to house a compression spring 68 therebetween. The normal length of the spring is greater than that of the cavity, so it is under partial compression when confined therein. The spring thus tends to move die 40 in advance of die 42 on a closure stroke, and yet permits sliding movement of die 42 relative to die 40 by compression of the spring after die 40 has reached full closure position.

Wire crimp die 40 is preferably provided with a double U-form crimping seat 40b to set the ears firmly into the wire 62, and FIG. 9 illustrates the stage at which this operation has just been completed.

After the wire crimp has been set, and the die 40 cannot advance further, to allow for further advance of the die 42 provision must be made for some lost motion between the die 40 and the actuating mechanism. This is done by making the slot 40a somewhat longer, in the direction of movement, than is necessary to fit over the head 38 of the screw 36, as seen in FIGS. 6 and 9.

The next stage in the operation, as the actuating mechanism is further advanced, is seen in FIG. 10, which is a section through the interface between dies 40 and 42. The jaws of die 42 have engaged the ears 59b and formed them around the insulation 63, so the attachment functions are complete. The shear blade actuator 44 has come into contact with the shear blade 48, both shown dotted in FIG. 10.

As seen in FIG. 11, upward movement of the shear blade 48 has sheared the terminal 58 from the carrier 60, Die 42 has moved upward with relation to die 40, resulting in compression of spring 68.

It will be observed that the arrangement wherein the wire crimp die 40 is first advanced, by yieldable coupling means, provides important advantages. The crimping of terminal ears onto the wire will be fully and properly performed for a considerable range of wire sizes, and with a considerable tolerance for production variations in the thickness and temper of the terminal material. Yet oversize wire or terminal material will not cause such an increase in operating force requirements that the user would have difficulty in completing the crimp operation through the insulation crimp and cut-off stages.

ANVIL-SHEAR BLADE DETAILS

Referring to FIG. 5, the anvil 46 comprises compositely the depending anvil portion 46a, adapted to back up the crimping of the ears 59a, and the anvil portion 46b, adapted to back up the crimping of ears 59b. The anvil has formed at one side an opposed pair of trackways 50 for the shear blade 48. The latter is slidably disposed adjacent the insulation-receiving anvil portion, which has a planar shearing face 47 for cooperation with a complementary shearing face and edge 49 of shear blade 48. Responsive to upward movement of the shear blade initiated by the shear blade actuator 44, the shear blade moves against the bias of a compression spring 72 seated within a suitable recess 72a formed in the top end of the blade 48 (FIGS. 4, 6-11). The blade member 48 is provided with a stop ledge 48b, which limits its downward movement by engagement against a stop shoulder 46c of the anvil 46 (FIG. 11). A slot 49a receives the terminal carrier strip 60, and the lower, outer corner of the slot is the functional shearing edge.

A recessed area 49b (FIG. 5) provides a guideway which assists the user in directing a wire into proper position. FIG. 7 shows how the wire passes through it. The recessed area, cooperating with a corresponding recess on the lead edge of the shear blade actuator 44, prevents crushing of the wire when the actuator engages the shear blade. Upon such engagement, the shear blade is moved upward, and the result can be understood by reference to FIGS. 7 and 11. In FIG. 7 the carrier strip 60 is shown in section, passing through the slot 49a in the shear blade. It will be apparent that when the blade moves upward, carrying the strip 60 with it, the shearing action of the lower lip of the slot 49a against the surface 47 of the anvil will separate the strip from the adjacent end of the terminal 58. This stage is illustrated in FIG. 11.

The handles of the tool are then allowed to open, which causes the dies 40 and 42 to retract from their engagement with the terminal 58, so that the wire with the terminal attached can be withdrawn. Also, the shear blade actuator retracts, and under the force of spring 72, the shear blade moves back down to its initial position, with stop ledge 48b resting against stop shoulder 46c. The terminal strip can then be further advanced.

TERMINAL STRIP FEED MEANS

The trackway or magazine 61 provided to receive terminal strips is of a T-shape configuration in cross-section, as seen most clearly in FIG. 3. It is open at both ends and along one lateral side 61a, from which the terminals 58 project. The opposite lateral side forms the guide channel portion 61b within which the carrier strip 60 is slidably conducted. A depending channel portion 61c is provided for receiving and guiding the insulation gripping ears 59b. The trackway is attached to the tool frame 12 by a bracket 61e in such a way that a strip inserted through the track comes into proper alignment with the anvil.

After an operation cycle is completed, the strip of terminals is manually advanced to bring the next terminal into proper position, and the tool is ready for insertion of another wire. The operator need not lay the tool down, nor the strip of terminals, as is necessary with some earlier devices.

As the strip is successively advanced with each operation, the carrier 60 moves on through a slot 64 in the frame 12, and the portion of the carrier which projects from the rear of the frame can be grasped to advance the strip after the latter has been used to the point where it is not conveniently accessible from the front of the tool.

An important feature of the arrangement of the tool and feed means described is that the functional end of the terminal 58 projects outside the confines of the magazine trackway and of the tool, and thus is not limited in size or conformation by the device used to attach it to the wire. The term "functional end" is used to refer to that portion of the terminal opposite the end where the crimp ears are located. The functional end is the part of the terminal used to connect to other circuit elements after the terminal has been crimped to a wire. While the terminal is shown in the drawings as having a ring or loop end, it may just as well be any of the other known conformations — spade, tab, receptacle, taper pin, etc. Since this end of the terminal does not have to be accommodated in the device, no adjustments or accessories are necessary to enable the use of terminals with functional ends of any of the various types.

WIRE SIZE SETTING

A highly desirable feature in a tool of the kind described is the capability of use on wire of various conductor gauges with a minimum of inconvenience, and preferably without the necessity for changing separable parts or attachments. Some available crimping tools are designed to work with wire of various gauges, but require removal of one crimping sub-assembly and insertion of another when a change of wire gauge must be accommodated. This is a substantial inconvenience, and further involves the risk of loss of the extra sub-assemblies.

The fundamental requirement to accommodate wire of various gauges is a variation in the closure distance, that is, the distance between the anvil and the crimping dies at the full stroke position in the operating cycle, giving a crimp height designated as H in FIG. 9.

To permit selection of this distance, the present invention provides a setting lever 37 attached to and projecting radially from the screw 36; the lever can be

selectively positioned on one side or the other of a projection 54a on the lower portion of the side plate 54. In FIG. 1 the lever is shown in the space at the right of projection 54a, and marking on the side plate 54 designates this as the proper position for use with wire of gauges in the range 24-28.

To change the setting, the tool handles are partially closed to elevate the screw lever 37 above the projection 54a, where it can be moved to the left side of the projection, in the space designated for wire of gauges in the range 18-22. With a right-hand thread, the screw 36 enters the block 30 by a few thousandths of an inch, increasing the closure distance by that amount, to make a proper crimp on wire of larger gauge. The actual amount is determined by the angle through which the screw is turned, (illustrated in FIG. 12) and the pitch of its thread. The pitch is selected to give a change in closure distance as required: for example, with 28 threads per inch, and a 50° swing of the lever, the adjustment is approximately 0.005 inch.

It is to be understood that initial spacing or relative positioning of tool members is made for the preset lever positions during manufacturing procedures to establish dimensions within the requisite tolerances for proper crimping. A tool in accordance with the invention, when properly set, will perform a cycle such as that herein described with the application of a force of approximately 17-18 pounds to the tool handles.

It will be apparent that the invention herein described provides a crimping tool which is compact and portable and which assures the making of a proper crimp joint regardless of the skill of the operator. It embodies simple means of selection and presetting for a choice of wire size ranges, without the use of separate parts which could be easily get lost. Once the wire size range is chosen and set, the operation of the tool involves only three extremely simple steps — movement of the foremost terminal of a strip into proper crimping position, insertion of a stripped wire against the stop, and squeezing of the handles. This is a sequence easily understood and one which can be performed without error even by an untrained technician.

The same tool, with no changes or attachments, can be used for a wide range of types and sizes of terminals, by reason of the arrangement previously described, whereby the functional end of the terminals projects from the trackway and from the tool, and thus is not limited in size or conformation by any dimensions of the tool.

The foregoing description of the present invention is only illustrative of a specific form which the invention may take. Still other modifications and variations will suggest themselves to persons skilled in the art. It is intended, therefore, that the foregoing detailed description be considered as exemplary only and that the

scope of the invention be ascertained from the following claims.

That which is claimed is:

1. In a tool for attaching terminals to the end of stripped wires, wherein a mounting frame carries pliers-type handles, an anvil member, a slide member, and means actuated by said handles to cyclically move said slide member with relation to said anvil, the improvement consisting of a shear member arranged to cooperate in shearing relation with said anvil member, die means comprising first and second die members advanced sequentially by said slide member into operative crimping relation to said anvil, and a spring interposed between said slide member and said first die member, whereby said second die member may be further advanced after said first die member has attained full closure with respect to said anvil member, said shear member being advanced by further movement of said slide member into engagement with said anvil member to effect shearing action.
2. In a crimping tool for use with terminals having separate pairs of upstanding ears for engagement with stripped and insulated portions of a wire respectively, the improvement comprising, in combination, a first tool means including an anvil and a V-shaped die adapted to crimp a pair of ears therebetween on the stripped portion of a wire, and a second tool means including an anvil and a V-shaped die adapted to crimp a pair of ears therebetween on the insulated portion of a wire, and handoperated means including plier-type handles actuating said first and second tool means in sequence upon closure of said handles, said handoperated means including a spring interposed between said handles and said first tool means, permitting further movement of said second tool means after said first tool means has completed a crimp operation.
3. In a tool for attaching terminals to the end of stripped wires, wherein a mounting frame carries operating handles, an anvil member, a slide member, and means actuated by said handles to cyclically move said slide member with relation to said anvil, the improvement consisting of first and second die members advanced sequentially by said slide member into crimping relation to said anvil, a screw threaded into said slide member and engaging said die members, and setting means including a lever extending radially from said screw and a member mounted on said frame having a plurality of slots formed therein extending parallel to the axis of said screw, said lever being optionally movable into any one of said slots.
4. The invention as defined in claim 3, including yieldable means interposed between said screw and said first die member, permitting further movement of said second die member after said first die member has attained full closure with respect to said anvil member.

* * * * *

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 3,710,610

DATED : January 16, 1973

INVENTOR(S) : William S. McCaughey

It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 1, line 19, change "3,842,018" to -2,842,018-.

Column 2, line 10, change "removed" to -remove-.

Column 7, line 18, change "required:" to -required;-; line 35, cancel "be".

Column 8, line 30, change "handoperated" to -hand-operated-; same line, change "piller-type" to -plier-type-.

Signed and Sealed this
tenth Day of February 1976

[SEAL]

Attest:

RUTH C. MASON
Attesting Officer

C. MARSHALL DANN
Commissioner of Patents and Trademarks